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Protected spin-orbit induced absorption divergence in distorted Landau levels
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The effect of spin-orbit (and Darwin) interaction on a two-dimensional (2D) electron gas subject to a radial
symmetric, inhomogeneous 1/r magnetic field is discussed analytically in a perturbative and nonperturbative
manner. For this purpose, we investigate the radial Hall conductivity that emerges from an additional homo-
geneous electric field perturbation perpendicular to the 2D electron gas, which solely interacts via spin-orbit
coupling. Numerical calculations of the absorptive spin-orbit spectra show for an ideal InSb electron gas a
behavior that is dominated by the localized (atomic) part of the distorted Landau levels. In contrast, however, we
also find analytically that a (nonlocal) divergent static response emerges for Fermi energies close to the ionization
energy in the thermodynamic limit. The divergent linear response implies that the external electric field is entirely
absorbed outside the 2D electron gas by induced radial spin-orbit currents, as it would be the case inside a perfect
conductor. This spin-orbit induced polarization mechanism depends on the effective g∗ factor of the material for
which it shows a critical behavior at g∗

c = 2, where it abruptly switches direction. The diverging absorption relies
on the presence of degenerate energies with allowed selection rules that are imposed by the radial symmetry
of our inhomogeneous setup. We show analytically the presence of a discrete Rydberg-like band structure that
obeys these symmetry properties. While in our case this structure turns out to be of minor relevance, it is a
promising property, which may facilitate the experimental realization in the future. In a last step, we investigate
the robustness of the spectra by solving analytically the Dirac equation expanded up to order 1/(mc)2. We find
that the distorted Landau levels, and thus the divergent spin-orbit polarization, remain protected with respect to
slow changes of the applied 1/r magnetic field.

DOI: 10.1103/PhysRevB.107.214409

I. INTRODUCTION

The Hall effect has been a cornerstone of solid-state
physics for almost 150 years since its first discovery [1]. The
basic mechanism, that a charge current gets deflected in a
perpendicular magnetic field, does not only hold on a macro-
scopic scale, but numerous seminal experiments have been
designed, where delicate quantum features of the materials
become apparent in all sorts of different Hall setups. For ex-
ample, the integer [2] and fractional [3,4] quantum Hall effect
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are potentially the most famous among those experiments.
With growing experimental capabilities, more delicate exper-
imental conditions have been realized over time, where even
the quantization of the electromagnetic fields can become de-
cisive, as for example under ultrastrong-coupling conditions
in optical cavities [5–14]. All of these experiments have in
common that they fundamentally rely on the emergence of
quantized Landau levels for a two-dimensional (2D) electron
gas [15,16], which provides a paradigmatic analytic model for
materials in a (locally) homogeneous magnetic field.

So far, inhomogeneous fields were typically studied for
externally applied electric fields, which can give rise to Lan-
dau quantization effects for typically neutral (atomic) setups
[17–19]. Only very recently, a simple analytic solution was
provided for charged particles in a truly inhomogeneous mag-
netic field instead, by assuming a rotationally symmetric and
(1/r)-decaying magnetic field with respect to the distance
r from the origin [20]. It has been shown that this B-field
“impurity” introduces strongly distorted Landau levels in a
noninteracting 2D electron gas that can fundamentally alter
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physical observables, compared with Landau-level physics or
the homogeneous electron gas [20]. When creating distorted
Landau levels with a strong spin dependency, it is now tempt-
ing to ask what spin-orbit effects could emerge in such a
setting. In this paper we will uncover those basic mechanisms
analytically and numerically for the spin-orbit Hall conduc-
tivity. Notice that our chosen setup is fundamentally different
from the anomalous Hall effect in ferromagnetic materials
[21] or the related spin Hall effect [22], which also emerge
from spin-orbit interaction and are of particular interest for
the flourishing field of spintronics [23]. In those cases, three
dominant mechanisms are known: the intrinsic scattering con-
tributions [24], which emerge from the topological Fermi
liquid property [25], and two extrinsic contributions (skew
[26,27] and side jump scattering [28]) that are related to the
scattering at a scalar potential well (e.g., charged impurity).
All of these effects can jointly be described by Kubo’s linear
response theory [29], which we will also rely on subsequently.
However, in our case, the significant spin-orbit effects will
not emerge from a scalar potential; instead they arise from
the subtle interplay of a magnetic field impurity (affecting the
Zeeman interaction) with its corresponding vector potential
that couples to the momentum operator.

The paper is structured as follows: First, we shortly recapit-
ulate the recently introduced analytical solution for distorted
Landau levels in an inhomogeneous magnetic field. Based on
this, we determine the radial Hall conductivity that emerges
from spin-orbit interaction when applying a small electric
field perturbation perpendicular to the 2D electron gas. In the
next section, we focus on the static (DC) absorptive features
of the radial Hall conductivity, which shows local as well as
nonlocal (diverging) features depending on the Fermi energy.
Furthermore, we discuss the influence of the effective g∗ factor
on the results, which gives rise to different phases. After-
wards, we focus on the robustness of the previously derived
results with respect to slow variations of the externally applied
magnetic fields, by solving analytically the corresponding
quasistatic eigenvalue problem. Finally, we summarize our
results and assess them with respect to their potential experi-
mental verification.

II. RADIAL HALL CONDUCTIVITY FROM
SPIN-ORBIT INTERACTION

As the starting point of our investigation of transversal
spin-orbit Hall conductivity effects in a noninteracting 2D
electron gas subject to an inhomogeneous magnetic field B(r),
we use the Pauli Hamiltonian [20,30]

Ĥ0 =
N∑

j=1

�̂
2
j

2m∗ − g∗qh̄

4m∗ σ̂ j · B(r j ). (1)

The recently introduced bound-state solution is given by [20]

En,l,s = q2A2
φ

2m∗

(
1 −

[
2l + g∗s

2n + 1

]2)
, n � l, l +|, g∗s/2 > 0,

(2)

with hydrogenlike eigenstates,

�n,l,s(r, φ) = 1√
Nn,l,s

eilφe− x(r)
2 xl (r)L2l

n−l (x(r))χ (s), (3)

which are written in terms of generalized Laguerre polyno-
mials Lν

w. We have introduced an energy-dependent radial
scaling factor,

x(r) := 2qAφ

h̄

2l + g∗s

2n + 1
r, (4)

and the normalization constant,

Nn,l,s =
∫ 2π

0

∫ ∞

0
�∗

n,l,s(r, φ)�n,l,s(r, φ)rdrdφ

= 2π
(n + l )!

(n − l )!
(2n + 1)

(
2qAφ

h̄

2l + g∗s

2n + 1

)−2

. (5)

Notice that the inequality conditions for the allowed quantum
numbers distinguishes the bound states from the unknown
continuum solution, for which l + g∗s/2 � 0 holds [20].
The canonical momentum operator is defined as �̂ j := p̂ j −
qA(r j ) and the effective electron mass is indicated by m∗ with
negative unit charge q = −e. The integer quantum numbers
are labeled as n, l , where l corresponds to the angular mo-
mentum quantum number. Furthermore, the electron spin-half
quantum numbers are indicated by s. We denote the usual
position operator of particle j as r j and the corresponding
momentum operator as p̂ j . The anisotropic external vector
potential is denoted by A(r) and an effective g factor is in-
troduced as g∗, which in our definition explicitly excludes
modifications due to the effective mass of the electrons; i.e., it
only accounts for relativistic corrections or other higher-order
host material effects (e.g., the influence of Coulomb inter-
action or applied magnetic fields). Those mechanisms will
not be discussed further. The Pauli vector for electron j is
labeled by σ j . In cylindrical coordinates the vector potential
and corresponding magnetic field are given as [20]

A(r) := Aφeφ, (6)

B(r) = ∇ ∧ A = 1

r

∂ (rAφ )

∂r
ez = Aφ

r
ez, (7)

such that Aφ is constant, with eφ = 1
r (−yex + xey) indicating

the unit vector along the φ direction. Notice that our inhomo-
geneous magnetic field B(r) corresponds to a radial external
current density of the form Jext = ∇∧B

μ0
= Aφ

μ0

1
r2 eφ if consid-

ered in free space; i.e., it does not correspond to a magnetic
monopole. Equation (2) gives rise to a distorted Landau-level
structure (see Fig. 1 for different g∗ factors), which introduces
a plethora of features such as infinite degeneracies, charge
or current oscillations, as well as Hall conductivity phase
transitions for in-plane static electric field perturbations which
have been previously been discussed in Ref. [20]. Notice
also that likewise, hydrogen-related spectra emerge for two-
dimensional magnetic quantum dots [31,32].

In contrast to established properties within the context of
Hall conductivity for in-plane perturbations, we will investi-
gate the impact of a time-dependent, homogeneous electric
field Ez(t ) = Eze−iωt ez perpendicular to the 2D electron gas
(see Fig. 2). Notice that a related setup is discussed for a
homogeneous magnetic field (Landau setting) in Ref. [33],
regarding its impact on the degeneracies of the Landau levels.
For this purpose, we apply Kubo’s linear response formalism
to our setup. The leading-order in-plane effects from Ez(t ) are
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FIG. 1. Radially resolved bound-state eigenvalue spectrum for an InSb 2D electron gas (m∗ = 0.015me) assuming different effective
g∗ factors and Aφ = −0.0006 a.u.. The radial position expectation values are defined as rn,l,s := 〈�n,l,s|r̂|�n,l,s〉 based on the eigenstates
introduced in Eq. (3). A distorted Landau-level structure becomes apparent caused by the applied 1/r-decaying magnetic field (orange) [20].
The up-spin (red) and down-spin (blue) dependencies are visualized as well as the ionization energy at EA2 = q2A2

φ/(2m∗) (dashed black line).
An increase in the externally applied vector potential Aφ will result in an increase of the ionization threshold and simultaneously it will squeeze
the states spatially more densely; i.e., it reduces the expected radial distance rn,l,s with respect to the origin.

induced by the spin-orbit (and Darwin) interaction [according
to the Foldy-Wouthuysen expansion of the Dirac equation up
to order 1/(m∗c)2]. The corresponding time-dependent per-
turbing Hamiltonian can be written as [30]

Ĥ1(t ) = −
N∑

j=1

qh̄

8m∗2c2
[( p̂ j − qA(r j )) · (σ̂ j × Ez(t ))

+ (σ̂ j × Ez(t )) · ( p̂ j − qA(r j ))] (8)

= −
N∑

j=1

qh̄

4m∗2c2
[(σy(cos(φ)er − sin(φ)eφ )

− σx(sin(φ)er + cos(φ)eφ ))] j · �̂ jEz(t ) (9)

=: −d̂1Ez(t ), (10)

where the Darwin contribution ∝ divE vanishes due to as-
suming a homogeneous electric field. From Eq. (9) we
immediately notice that the perturbing Hamiltonian starts
to mix the two different spin channels by σx, σy. This has
not been the case for our Ĥ0, which solely depends on the
identity Pauli matrix σz instead. This has important implica-
tions, since it ensures that the only radially induced current
〈 ĵr (t )〉 must be induced by the spin-orbit current operator

FIG. 2. Sketch of the 2D electron gas subject to the inhomo-
geneous magnetic field with applied perpendicular electric field
perturbation (blue), giving rise to radial bound-state currents (red)
by spin-orbit interactions.

ĵSO
j := −h̄q/(4m∗2c2)(σ̂ j × E ) [34] within Kubo’s linear re-

sponse formalism. In contrast, paramagnetic, diamagnetic,
and magnetization currents cannot induce radial currents
perturbatively, since they are all spin-preserving operators.
Notice that this property, i.e., ĵr = ĵSO · er , is universally true
for any radially symmetric magnetic fields with a superim-
posed homogeneous electric field perturbation, which may
simplify experimental realizations. Applying the Kubo linear
response relation, the total radial current can be written as

〈 ĵr (t )〉 = 〈 ĵr (t )〉0 − i
∫ t

0
dt ′〈[ ĵr (t ′), Ĥ1(t ′)]〉0 (11)

= −
∫ ∞

−∞
dt ′σ̂ rz(t − t ′)Ez(t ′), (12)

where the first term becomes exactly zero [20]. The 〈 〉0 indi-
cates a ground state depending on temperature T . Additionally
we introduced the radial Hall conductivity,

σ rz(t − t ′) = −iθ (t − t ′)〈[ ĵr (t ), d̂1(t )]〉0, (13)

with unit step function θ (t ). Taking the Laplace transform
with respect to time transforms the convolution integral into

jr (ω, EF , T ) = −σ rz(ω, EF , T )Ez(ω). (14)

The frequency-dependent (AC) transversal conductivity can
be written at temperature T [35,36],

σ rz(ω, EF , T )

= −i
∑
a,b

f (Ea)(1 − f (Eb))

×
[

〈a| ĵr |b〉〈b|d̂1|a〉
Ea − Eb + h̄ω + i�

+ 〈a|d̂1|b〉〈b| ĵr |a〉
Ea − Eb − h̄ω − i�

]
,

(15)
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FIG. 3. Absorptive radial spin-orbit Hall conductivity spectra with respect to different Fermi energies EF and driving frequencies ω of the
external Ez-field perturbation. The shown spectral features for our InSb 2D electron gas are mainly caused by the local discretization of the
2D electron gas in the vicinity of the magnetic field divergence at the origin. In contrast, the more delocalized electronic states, that are further
away from the origin, do not contribute significantly to the spectral features, which is a consequence of vanishing overlap matrix elements.

assuming a Lorentzian line shape with a finite lifetime � > 0
for the δ distribution and the Fermi distribution is given by
f (Ea) := 1/(e(Ea−EF )/kBT + 1). Notice that we implicitly re-
strict our subsequent analysis to bound-state currents and/or
conductivities, since the continuum states giving rise to free
currents are not known. However, restricting the

∑
a,b to

bound states will not affect the validity of our calculations, as
we will see later. The frequency-dependent absorptive (imag-
inary) part of the spin-orbit conductivity can be found by the
identity 1/(x + i�) = P(1/x) − iπδ(x) [36], for which we
find

Im(σ rz(ω, EF , T ))

= π i
∑
a,b

f (Ea)(1 − f (Eb))

×
[ 〈a| ĵr |b〉〈b|d̂1|a〉�

(Ea − Eb + h̄ω)2 + �2
− 〈a|d̂1|b〉〈b| ĵr |a〉�

(Eb − Ea + h̄ω)2 + �2

]
.

(16)

In a next step we compute the AC absorptive Hall con-
ductivity under experimentally plausible conditions according
to Eq. (16). For this purpose we focus on a 2D electron gas
made of InSb, which possesses an extremely low effective
electron mass of 0.015 a.u. that makes it an ideal candidate to
investigate spin-orbit effects in magnetic fields [37]. For our
calculations we assume a temperature of 20 mK and a static
vector potential of Aφ = −6 × 10−4, which gives rise to a
(1/r)-decaying magnetic field in the z direction on a millitesla
scale for radial distances from the origin in the micrometer
regime. The homogeneous perturbing electric field along the
z axis is chosen as Ez = −6 × 10−6 a.u. which corresponds
to −3.1 V/µm. Furthermore, we assume relatively long-lived
states by setting τ = 1 ms with corresponding sharp line shape
� = 1/τ that partially compensates for the small prefactors
of spin-orbit effects. The numerical evaluation of Eq. (16)
simplifies considerably when considering that the matrix ele-
ment 〈a|d̂1|b〉 imposes that only spin flips can have a nonzero

transition matrix elements, i.e.,

sa = −sb, (17)

which leaves us with the spin-orbit current operator only,

ĵr = ĵSO,r = − h̄q

4m∗2c2
σ j × Ez(0) · er

= − h̄q

4m∗2c2
(σy cos φ − σx sin φ)Ez. (18)

Eventually, Eqs. (17) and (18) jointly determine the angular
selection rule

la − lb = ±1. (19)

Notice that those angular and spin selection rules remain
valid for any radial symmetric magnetic fields. Furthermore,
it also ensures that our restriction to bound states is valid,
since any overlap with the (unknown) scattering states of
the continuum must vanish except for the smallest angu-
lar momentum quantum numbers minl (l + g∗s/2) > 0, which
separate the bound states from the continuum [20]. Eventually
one can find a simplified expression for Im(σ rz(ω, EF , T ))
as derived in Appendix A, which was implemented for
our numerical calculations. The resulting absorptive radial
spin-orbit Hall conductivity spectra are shown in Fig. 3 for
different effective g∗ factors. Careful inspection of the AC
spectrum reveals that the main contributions stem from lo-
calized electrons close to the origin; i.e., varying the finite
number of numerical states does not change the strongest
absorption peaks, which indicates that the overlap integrals
become smaller, the more delocalized the eigenstates be-
come. Thanks to this localization effect we can converge
our numerical calculations. This also suggests that the local
and/or atomic nature of the AC absorption is mainly related
to the decaying magnetic field and the infinite ranging vector
potential plays a minor role. We find that for small g∗ =
1 significant absorption lines only occur for relatively low
frequencies, whereas around g∗ = 2 a characteristic pattern
occurs across the entire frequency regime. For the larger g∗ =
3 only a few significant absorption peaks occur. However,
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FIG. 4. Absorptive (imaginary) part of the DC (ω → 0) Hall conductivity with respect to the Fermi energy EF for different g∗ factors at
T = 20 mK. The calculated pattern is mostly determined by only a few discrete eigenstates localized closest to the origin. Therefore, converged
results are possible by exploring quantum numbers up to n = 30 only, except for Fermi energies approaching the continuum limit at EF = EA2 .
In this case only analytical considerations become feasible that indeed suggest a diverging absorptive Hall conductivity (red arrows) in the
thermodynamic limit, i.e., for n → ∞.

the range of allowed energetic transitions is significantly in-
creased since the energetically lowest eigenvalue can become
negative, while the ionization energy EA2 remains constant
independently of g∗.

At this point, we would also like to mention two additional
properties of the induced radial spin-orbit Hall current that are
immediately evident from the analytics. First, the orientation
of the perturbing field does not influence the radial current
response, since

jr = −σ rz(Ez, EF , T )Ez ∝ E2
z

m∗4c4
, (20)

and furthermore it is suppressed by m∗4c4, which suggests
a tiny effect overall. However, as we have seen in Fig. 3, a
significant radial spin-orbit conductivity may still emerge for
small effective electron masses and allowed transitions with
long-lived states. Those aspects should be taken into account
for a potential verification of the predicted effects.

III. DIVERGENT ABSORPTION IN THE STATIC LIMIT
ω → 0

In a next step, we investigate the zero-frequency limit
Im(σ rz

0 (EF , T )) = limω→0 Im(σ rz(ω, EF , T )) of our setup,
which shows particularly interesting features that originate
from allowed transitions of degenerate states Ea = Eb. In the
static limit Eq. (16) reduces to

Im
(
σ rz

0 (EF , T )
)

= π i
∑
a,b

f (Ea)(1 − f (Eb))

×
[ 〈a| ĵr |b〉〈b|d̂1|a〉�

(Ea − Eb)2 + �2
− 〈a|d̂1|b〉〈b| ĵr |a〉�

(Eb − Ea)2 + �2

]
. (21)

which is evaluated for different g∗ factors and Fermi energies
at T = 20 mK of our InSb 2D electron gas in Fig. 4. Numerics
reveals that overall the DC limit of the spin-orbit absorptive
conductivity remains small, as one expects from Eq. (20).
However, close inspection of g∗ factors in the vicinity of
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the critical nonrelativistic g∗
c = 2 value reveal a phase tran-

sition (i.e., sharp sign flip). In other words, by changing g∗,
the external electric field will be absorbed by either radially
inflowing or outflowing currents. Similarly to the AC case,
we reach numerical convergence only, with a finite number

of states, thanks to the localization of the significant over-
lap integrals. However, we notice that this is no longer true
for Fermi energies approaching the ionization energy EA2 :=
limn→∞ En,l,s = q2A2

φ/(2m∗), where the conductivity starts to
scale with the finite system size.

In a next step, we try to better understand the aforementioned numerical absorption and scaling features by analytical
considerations in the zero-temperature limit,

Im(σ rz(ω, EF , 0)) = π
∑

Ea<EF�Eb

[
〈a| ĵr |b〉〈b|d̂1|a〉�

(Ea − Eb + h̄ω)2 + �2
− 〈a|d̂1|b〉〈b| ĵr |a〉�

(Eb − Ea + h̄ω)2 + �2

]
(22)

= −π�
h̄2q2Ez

16m∗4c4

∑
Ea<EF�Eb

Fa,b〈Ra||Rb〉 (23)

with

Fa,b :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+
[ 〈Rb| −h̄la

r +qAφ−h̄∂r |Ra〉
(Ea−Eb+h̄ω)2+�2 + 〈Ra| −h̄lb

r +qAφ+h̄∂r |Rb〉
(Eb−Ea+h̄ω)2+�2

]
δla−lb,1δsa,↓δsb,↑ for 0 < g∗ < 2

0 for g∗ = 2

−
[ 〈Rb| −h̄la

r +qAφ+h̄∂r |Ra〉
(Ea−Eb+h̄ω)2+�2 + 〈Ra| −h̄lb

r +qAφ−h̄∂r |Rb〉
(Eb−Ea+h̄ω)2+�2

]
δla−lb,−1δsa,↑δsb,↓ for g∗ > 2,

, (24)

where the different cases with respect to g∗ follow the selection rules of Eq. (A7) in combination with an exchange of the
energetic order, i.e., Ea � Eb �→ Ea � Eb, when crossing the critical value g∗

c = 2. While Eq. (23) already suggests a phase
transition, further insights can be achieved by investigating the transition matrix elements in the asymptotic limit at the ionization
threshold, i.e., by taking n → ∞ (i.e., energies closest to EA2 ) and considering states Ea

n→∞→ Eb = EF (see Appendix B):

〈Ra||Rb〉 = 〈Rb||Ra〉 n→∞= −1, (25)

〈Ra|1

r
|Rb〉 = 〈Rb|1

r
|Ra〉 n→∞= 0, (26)

lim
n→∞ 〈Ra|∂r |Rb〉 = lim

n→∞ 〈Rb|∂r |Ra〉 = 1

2
. (27)

This suggests, for the DC limit,

∣∣ lim
n→∞ Im

(
σ rz

0 (EF,n, 0)
)∣∣ >

∣∣∣∣∣∣∣∣
−π�

h̄2q3EzAφ

8m∗4c4

∑
Ea<EF =Eb

×

⎧⎪⎪⎨
⎪⎪⎩

1
(Ea−Eb)2+�2 δla−lb,1δsa,↓δsb,↑ for 0 < g∗ < 2

0 for g∗ = 2

− 1
(Ea−Eb)2+�2 δla−lb,−1δsa,↑δsb,↓ for g∗ > 2

∣∣∣∣∣∣∣∣
,

which implies

lim
EF →EA2

Im
(
σ rz

0 (EF , 0)
) = −π�

h̄2q3EzAφ

8m∗4c4

⎧⎪⎨
⎪⎩

∞ for 0 < g∗ < 2

0 for g∗ = 2

−∞ for g∗ > 2.

(28)

To prove that the summation in Eq. (28) indeed diverges in the thermodynamic limit, we need to find an infinite number of
state pairs |a〉, |b〉 that obey Ea < EF � Eb. This can be seen by assuming g∗ = 2 + 2ε, ε > 0, setting EF = Eb, and solving
Ena+kc,la,1/2 = Eb = Ena,la+1,−1/2 = EF

na→∞→ E2
A for integer kc, which yields

kc = ε(2na + 1)

2l + 1 − ε

na→∞→ ∞, 0 < ε < 2l + 1, (29)

where an analogous argument holds for the case ε < 0. An
unbounded kc implies that the summation in Eq. (28) indeed
diverges; i.e., the number of contributing states grows at least
with kc, since they are either strictly positive or negative. We
consider the resulting divergent DC absorption by spin-orbit
interaction at the ionization threshold as one of the main
results of this work. In other words, Eq. (28) suggests that

a (small) static, perpendicular electric field will be screened
entirely by spin-orbit effects for Fermi energies approaching
the ionization threshold. Depending on the g∗ factor, radi-
ally in- or outflowing bound-state currents will cause this
effect, which can be reinterpreted as a longitudinal polar-
ization effect by looking at the Maxwell equations. From
∇ × B = μ0(Jb + J f + ε0∂t E ), Jb indicates bound current
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density and J f the free current density. The free currents can
be safely discarded for our setting as mentioned previously.
We then notice that the curl of the magnetic field cannot
account for the radial spin-orbit currents, which automatically
implies that the spin-orbit current density jr (r) effectively
corresponds to a longitudinal polarization Pr of the system in
the macroscopic formulation of the Maxwell equations, i.e.,
∂t Pr = jr = −σ rzEz. In other words, the divergent absorptive
(imaginary) part of σ rz indicates that the external (perpen-
dicular) electric field is entirely screened, as it would be the
case inside a perfect conductor. This screening effect emerges
in our setup merely as a consequence of the constant vector
potential Aφ ; i.e., it is an Aharonov-Bohm-like behavior for
infinite degeneracies in the thermodynamic limit. Notice that
the contributing states for EF → EA2 can be considered as
radially delocalized [20]. However, the observed divergence
is not only an effect of delocalization, but rather caused by
the distorted Landau-level structure, which is a consequence
of delicate interplay between the vector potential and the
magnetic field (Zeeman interaction) [20]. The resulting ac-
cumulation point at the ionization energy threshold can be
occupied by any state with finite angular momentum in the
thermodynamic limit (setting n → ∞). Hence, this highly
degenerate state of matter will at least theoretically be very
sensitive towards all sorts of external DC perturbations. How-
ever, clearly, for any experimental realization things will be
much more complex. For example, a perfect constant Aφ

potential, i.e., a perfect 1/r magnetic field, is not feasible,
which in practice means that states far enough away from the
origin will always belong to the continuum solution. In other
words, finite system sizes will reduce the effect and compli-
cate the experimental verification. Furthermore, beyond linear
response effects may in principle lift the contributing ener-
getic degeneracies. In addition, finite lifetimes and thermal
effects for electronic fillings up to (almost) the continuum
limit (at least for our ideal setup, not involving any band gaps)
may also hamper an experimental realization. Nevertheless,
we believe distorted Landau levels should emerge in exper-
iments with strong nonlocal behavior, provided that one can
realize a radial symmetric setup, with sufficiently localized
magnetic field and long-range vector potential.

Following this practical argument, it is tempting to ask
if there are further divergences present in our system that
the finite state numerics may have missed. While we have
observed divergent absorptive DC behavior for the fillings
arbitrarily close to the ionization energy, the question emerges
if a similar effect could also occur at lower Fermi energies. To
shine further light on this question, we search for degenerate
eigenvalues obeying the angular and spin selection rules as
follows:

Ena,la,1/2(g∗) = Enb,la+1,−1/2(g∗). (30)

By assuming a positive rational g∗ = g1/g2 > 0, {g1, g2} ∈ N,
it turns out that we can find an infinite set of quantum numbers
na, la, nb fulfilling Eq. (30), given that there is at least one
solution. In more detail, we find a discrete set of infinitely

degenerate energy levels at (see Appendix C)

E∞(g∗ ∈ Q∗
+):=

{
En,l,1/2, n �= l for g∗ = 2
q2A2

φ

2m∗
(
1 − [ |2−g∗|

2k

]2)
> 0, k ∈ O otherwise,

with Q∗
+ being the strictly positive rational numbers and O

the positive odd integer numbers. The resulting energy pat-
tern resembles a squeezed Rydberg-like series that strongly
depends on g∗, as can be seen by the vertical green lines in
Fig. 4. Nevertheless, they all share an accumulation point at
E∞ → EA2 , independently of g∗, as can be seen for k → ∞,
which is in line with the previous considerations at the ioniza-
tion threshold. Notice also that the density of the degenerate
bands will in practice delicately depend on the chosen g∗
factor. For our ideal 1/r magnetic field setup, numerics sug-
gests that the Rydberg-like bands contribute only locally to
the DC conductivity Im(σ rz

0 (EF , 0)) as it was the case for
the AC response, since the matrix overlap seems to strongly
decline for states localized further away from the origin. This
drastically limits the absorbance for Fermi energies close to
E∞(g∗) except for the previously discussed divergent case at
the ionization threshold. However, this strong local suppres-
sion may no longer hold for different radially symmetric field
shapes, which in turn could facilitate the detection of strong
spin-orbit effects at specific Fermi energies, similarly to our
ideal system at the ionization threshold.

IV. ANALYTIC SOLUTION AND PROTECTED
DEGENERACIES FOR TIME-DEPENDENT

MAGNETIC FIELDS

We have seen so far that our system possesses intriguing
linear response features that emerge in the DC limit due to
the presence of (infinitely) degenerate states. This immedi-
ately raises the question of how robust those degeneracies
are. As already mentioned, they will overall be very deli-
cate to achieve in experiments for multiple reasons. However,
surprisingly they seem to be protected with respect to slow
enough changes of the applied strength of the 1/r magnetic
field, as we subsequently will show. It turns out that we can
find an analytical solution for the nonrelativistic Hamiltonian
expanded up to order 1/(m∗c)2 [30], i.e., including the spin-
orbit and Darwin interaction, in a similar spirit to Ref. [20]. In
more detail we can solve the eigenvalue problem for

ˆ̃H (t ) =
N∑

j=1

1

2m∗ �̂
2
j − g∗qh̄

4m∗ σ j · B(r j, t ) − qh̄

8m∗2c2
[�̂ j · (σ j × E(r j, t )) + (σ j × E(r j, t )) · �̂ j] − qh̄

8m∗2c2
divE(r j, t ) (31)

as well, instead of only solving Eq. (1). We now assume slowly varying external fields of the following form: A(r, t ) := Aφ (t )eφ

and B(r, t ) = Aφ (t )/rez. The corresponding electric field is given by E(r, t ) = −∇rV/e − (∂/∂t )A = −Ȧφ (t )eφ , which immedi-
ately removes the Darwin interaction (last term) in our Hamiltonian formulation. By applying the method of Frobenius, we can
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determine the bound-state spectrum (see Appendix D),

Ẽn,l,s(t ) = q2A2
φ

2m∗ − 16m∗3c4

q2 h̄2Ȧ2
φ

[
1 −

√
1 − q4h̄2Ȧ2

φA2
φ

16m∗4c4

[
2l + g∗s

2n + 1

]2
]
, n � l, l + g∗s/2 > 0. (32)

While at first glance the spectrum looks much different com-
pared to the static Eq. (2), by taking the static limit one indeed
recovers

lim
Ȧ→0

Ẽn,l,s(t ) = En,l,s, (33)

as one would expect. More remarkable, however, is that the
spin-orbit interaction, which now contributes due to the time-
dependent vector potential, does not change the structure of
the spectrum, i.e., degeneracies are not lifted, since one can
reformulate Eq. (32) as follows:

Ẽ (En,l,s(t ), t ) = q2A2
φ

2m∗ − 16m∗3c4

q2 h̄2Ȧ2
φ

×
[

1 −
√

1 + q2h̄2Ȧ2
φ

8m∗3c4
(En,l,s(t ) − EA2 )

]
.

(34)

Consequently, the degenerate states seem to be protected
with respect to slow variations of Aφ at least up to order
1/(m∗c)2. However, the overall squeezing of the energetic
structure is extremely small as one can see in Fig. 5 for
moderate time variations Ȧ. Clearly, this picture might change
for jumps in the magnetic field, but then one automatically
violates the assumption of a slow field variation; i.e., one

FIG. 5. Deviation of the time-dependent energy eigenvalue Ẽ for
the chosen InSb setup, with respect to the strictly static energy E
measured by �E := Ẽ (E ) − E for different small variations of the
externally applied vector potential Aφ . Notice the extremely small
shift due to nonzero Ȧφ . However, as explained in the main text, the
much more striking feature is that the structure of the static energy
eigenvalues remains preserved exactly, i.e., Ẽ (E ).

would need to solve the time-dependent Schrödinger problem
instead.

We can determine not only analytic eigenvalues, but also
the corresponding orthonormal eigenstates in terms of gener-
alized Laguerre polynomials Lν

w(x) (see Appendix D),

�̃n,l,s(r, φ) = 1√
Ñn,l,s

eilφe−iγ (r)e− x̃(r)
2 x̃l (r)L2l

n−l (x̃(r))χ (s),

(35)

which are identical to the static solution given in Eq. (3),
except for an r-dependent complex phase factor,

γ (r) := δs√
1 − δ2

x(r), (36)

and a different scaling in radial coordinates,

x̃(r) :=
√

1 − δ2
2qAφ

h̄

2l + g∗s

2n + 1
r, (37)

where δ := qh̄2

4m∗2c2 Ȧφ

√
m∗|Ẽ−|

2h̄2 with Ẽ− = Ẽ − EA2 . The corre-
sponding normalization is explicitly calculated as

Ñn,l,s =
∫ 2π

0

∫ ∞

0
�̃∗

n,l,s�̃n,l,srdrdφ

= 2π
(n + l )!

(n − l )!
(2n + 1)

(√
1 − δ2

2qAφ

h̄

2l + g∗s

2n + 1

)−2

.

(38)

Notice that for constant vector potential Ȧφ = 0, we nat-
urally recover the previously known static solution as
given in Eq. (3). The emergence of a radially depen-
dent phase factor opens interesting research perspectives
with regards to geometric phases and topological protec-
tion for slow variations of Aφ, Ȧφ , which may substantiate
theoretically the protected energetic structure of Eq. (34).
However, this clearly goes beyond the scope of this
work.

V. CONCLUSION AND OUTLOOK

We have investigated the effect of spin-orbit interaction in
a 2D electron gas with distorted Landau-level structure that
arises from an externally applied radially symmetric, (1/r)-
decaying magnetic field. By applying a weak perpendicular
electric field Ez with respect to the 2D electron gas (and in
parallel with the applied magnetic field), we find that radial
Hall currents emerge solely from spin-orbit interaction. The
absorptive part of the radial Hall conductivity shows spectral
features that are of atomistic nature, i.e., dominated by the
discrete energy levels localized close to the origin. Overall
the magnitude of absorption is expected to be small, be-
cause of the 1/(m∗c)4 prefactor and the quadratic dependency
of the radial Hall current on the Ez perturbation. Partially,
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this suppression can be mediated by choosing a small ef-
fective electron mass of the host material (InSb) and by
assuming long-lived states. Surprisingly, things change when
approaching Fermi energies close to the ionization threshold,
where we could show analytically that a divergent static spin-
orbit absorbance emerges in the thermodynamic limit due
to the distorted Landau-level structure. This divergent linear
response implies that the external electric field is entirely
absorbed by induced radial spin-orbit currents, i.e., by radial
polarization, where the induced flow and/or polarization di-
rection depends on the effective g∗ factor of the material. In
other words, the small electric field perpendicular to the 2D
electron gas is screened entirely, as would be the case inside a
perfect conductor. Interestingly, the divergent bound-state cur-
rents also show a critical behavior at g∗

c = 2, where the radial
current response is reversed. In our setup, the physical origin
of the divergence is a consequence of the long-range (con-
stant) vector potential (Aharonov-Bohm-like effect), which
clearly in this form is experimentally out of reach, due to
the associated magnetic field divergence at the origin. How-
ever, for other radial magnetic fields, which induce differently
distorted Landau levels, we would still expect the generic
emergence of some discrete level structure with possibly
strong linear response to external perturbations, probably in
a similar fashion to our case, for which we found a discrete,
infinitely degenerate Rydberg-like band structure that obeys
allowed angular momentum and spin selection rules. While
this structure turns out to be of minor relevance for our setup,
things may change for different (more realistic) radial field
dependencies. One should also keep in mind that the proposed
spin-orbit effects may depend nontrivially on many other
external influences (e.g., Coulomb interaction, decoherence,
impurities). Nevertheless, we could show analytically that the
structure of the energy eigenvalues remains preserved exactly
with respect to slow variations of the applied 1/r magnetic

field strength, by solving the Dirac equation expanded up to
order 1/(m∗c)2. In particular, we find that the time-dependent
field variations cannot lift the static degeneracies, which sug-
gests a protection mechanism that will become the focus of
future work. Clearly, there is still a long way to go, with
many obstacles to overcome, for an experimental verification
of our theoretical predictions. However, we believe the ex-
perimental realization of rotationally distorted Landau levels
would not only be highly fruitful with respect to spin-orbit
effects, but more generally by opening novel pathways to en-
gineer (distorted) Landau-level physics from local to nonlocal
degeneracies.

PYTHON implementation is available on reasonable request.
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APPENDIX A: RADIAL SPIN-ORBIT HALL CONDUCTIVITY SIMPLIFICATION

For our radially symmetric (1/r)-decaying magnetic field setup the radial spin-orbit Hall conductivity can be simplified by
using the angular and spin-orbit selection rules that enter as follows:

〈sa, la|σy cos φ − σx sin φ|sb, lb〉 =

⎧⎪⎨
⎪⎩

−i for la − lb = −1, sa =↑, sb =↓
i for la − lb = 1, sa =↓, sb =↑
0 otherwise,

(A1)

〈sa, la| − σy sin φ − σx cos φ|sb, lb〉 =

⎧⎪⎨
⎪⎩

−1 for la − lb = −1, sa =↑, sb =↓
−1 for la − lb = 1, sa =↓, sb =↑
0 otherwise,

(A2)

which eventually yields

Im(σ rz(ω, EF , T )) = π i
∑
a,b

f (Ea)(1 − f (Eb))

[
〈a| ĵr |b〉〈b|d̂1|a〉�

(Ea − Eb + h̄ω)2 + �2
− 〈a|d̂1|b〉〈b| ĵr |a〉�

(Eb − Ea + h̄ω)2 + �2

]
(A3)

= π i�
h̄q

4m∗2c2

∑
a,b

f (Ea)(1 − f (Eb))〈a|σy cos φ − σx sin φ|b〉 (A4)
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×
[

〈b|d̂1|a〉
(Ea − Eb + h̄ω)2 + �2

+ 〈a|d̂1|b〉
(Eb − Ea + h̄ω)2 + �2

]

= π i�
h̄2q2Ez

16m∗4c4

∑
a,b

f (Ea)(1 − f (Eb))〈a|σy cos φ − σx sin φ|b〉 (A5)

×
[

〈b|(−σy sin φ − σx cos φ) · (− i h̄
r ∂φ − qAφ

) + (σy cos φ − σx sin φ) · (−i h̄∂r )|a〉
(Ea − Eb + h̄ω)2 + �2

+ 〈a|(−σy sin φ − σx cos φ)
(− i h̄

r ∂φ − qAφ

) + (σy cos φ − σx sin φ)(−i h̄∂r )|b〉
(Eb − Ea + h̄ω)2 + �2

]

= π i�
h̄2q2Ez

16m∗4c4

∑
a,b

f (Ea)(1 − f (Eb))

{
− i〈Ra||Rb〉

[
〈Rb|(−1) · ( h̄la

r − qAφ

) + (i) · (−i h̄∂r )|Ra〉
(Ea − Eb + h̄ω)2 + �2

+ 〈Ra|(−1)
( h̄lb

r − qAφ

) + (−i )(−i h̄∂r )|Rb〉
(Eb − Ea + h̄ω)2 + �2

]
δla−lb,−1δsa,↑δsb,↓+i〈Ra||Rb〉

×
[

〈Rb|(−1) · ( h̄la
r − qAφ

) + (−i) · (−i h̄∂r )|Ra〉
(Ea − Eb + h̄ω)2 + �2

+ 〈Ra|(−1)
( h̄lb

r − qAφ

) + (i )(−i h̄∂r )|Rb〉
(Eb − Ea + h̄ω)2 + �2

]
δla−lb,1δsa,↓δsb,↑

}

= −π�
h̄2q2Ez

16m∗4c4

∑
a,b

f (Ea)(1 − f (Eb)) (A6)

×
{

− 〈Ra||Rb〉
[

〈Rb|−h̄la
r + qAφ + h̄∂r |Ra〉

(Ea − Eb + h̄ω)2 + �2
+ 〈Ra|−h̄lb

r + qAφ − h̄∂r |Rb〉
(Eb − Ea + h̄ω)2 + �2

]
δla−lb,−1δsa,↑δsb,↓

+ 〈Ra||Rb〉
[

〈Rb|−h̄la
r + qAφ − h̄∂r |Ra〉

(Ea − Eb + h̄ω)2 + �2
+ 〈Ra|−h̄lb

r + qAφ + h̄∂r |Rb〉
(Eb − Ea + h̄ω)2 + �2

]
δla−lb,1δsa,↓δsb,↑

}
. (A7)

APPENDIX B: RADIAL OVERLAP INTEGRALS

For analytical accessibility, we assume that Ea
n→∞→ Eb, which means that the radial scaling factor x(r) =: νr, defined from

Eq. (4), becomes equal for both states |a〉 and |b〉. Notice that ν ∝ 1/(2n + 1)
n→∞→ 0. The resulting radial overlap integrals can

then be solved analytically:

〈Ra||Rb〉 νa=νb= 1√
Nl Nl+1

∫ ∞

0
e−νr (νr)2l+1L2l

n−l (νr)L2l+2
n−l−1(νr)rdr (B1)

= 1√
Nl Nl+1ν2

∫ ∞

0
e−ρ (ρ)2l+2L2l

n−l (ρ)L2l+2
n−l−1(ρ)dρ (B2)

= 1√
Nl Nl+1ν2

∫ ∞

0
e−ρ (ρ)2l+2

[
L2l+2

n−l (ρ) − 2L2l+2
n−l−1(ρ) + L2l+2

n−l−2(ρ)
]

L2l+2
n−l−1(ρ)dρ (B3)

= −2

√
(n − l )!

(n + l )!(2n + 1)

(n − l − 1)!

(n + l + 1)!(2n + 1)

(n + l + 1)!

(n − l − 1)!
(B4)

n→∞= −1, (B5)

where we have used the following well-known three-point rule and orthogonality relation for the generalized Laguerre polyno-
mials [38],

Lα
n = Lα+1

n − Lα+1
n−1 , (B6)∫ ∞

0
xαe−αLα

n (x)Lα
m(x)dx = �(n + α + 1)

n!
δn,m, (B7)
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with [20]

Nl = ν−2 (n + l )!

(n − l )!
(2n + 1), (B8)

and Mathematica [39] for the limiting procedure.
In a next step we similarly investigate

〈Ra|1

r
|Rb〉 νa=νb= 1√

NlNl+1

∫ ∞

0
e−νr (νr)2l+1L2l

n−l (νr)L2l+2
n−l−1(νr)dr (B9)

= 1√
NlNl+1ν

∫ ∞

0
e−ρ (ρ)2l+1L2l

n−l (ρ)L2l+2
n−l−1(ρ)dρ (B10)

= 1√
NlNl+1ν

∫ ∞

0
e−ρ (ρ)2l+1

[
L2l+1

n−l (ρ) − L2l+1
n−l−1(ρ)

]
(B11)

× [
L2l+1

n−l−1(ρ) + L2l+1
n−l−2(ρ) + · · · + L2l+1

1 (ρ) + 1
]
dρ

= ν

√
(n − l )!

(n + l )!(2n + 1)

(n − l − 1)!

(n + l + 1)!(2n + 1)
(B12)

×
(

(n + l + 1)!

(n − l )!
− (n + l )!

(n − l − 1)!

)
n→∞= 0, (B13)

and we find

〈Ra|∂r |Rb〉 νa=νb= 1√
Nl Nl+1

∫ ∞

0
e− νr

2 (νr)l+1L2l+2
n−l−1(νr)

[
∂re− νr

2 (νr)lL2l
n−l (νr)

]
rdr (B14)

= −〈Ra||Rb〉 + l〈Ra|1

r
|Rb〉 − 1√

Nl Nl+1

∫ ∞

0
e−νr (νr)2l+1L2l+1

n−l−1(νr)L2l+2
n−l−1(νr)rdr (B15)

= −〈Ra||Rb〉 + l〈Ra|1

r
|Rb〉 (B16)

− 1√
NlNl+1ν2

∫ ∞

0
e−ρ (ρ)2l+2

[
L2l+2

n−l−1(ρ) − L2l+2
n−l−2(ρ)

]
L2l+2

n−l−1(ρ)dρ

= −〈Ra||Rb〉 + l〈Ra|1

r
|Rb〉 (B17)

−
√

(n − l )!

(n + l )!(2n + 1)

(n − l − 1)!

(n + l + 1)!(2n + 1)

(n + l + 1)!

(n − l − 1)!

n→∞= 1

2
. (B18)

Analogous derivations can be applied to show that 〈Rb|∂r |Ra〉 → 1/2.

APPENDIX C: DERIVATION OF SQUEEZED RYDBERG
DIVERGENCES

To solve the integer value problem imposed by the energy
degeneracy relation given in Eq. (30), three different regimes
of rational g∗ := g1/g2 > 0 have to be considered separately.
For 0 < g∗ < 2 we find

2l1 + g1/(2g2)

2n1 + 1
= 2l1 + g1/(2g2)

2n2 + 1

+ 2(1 − g1/(2g2))

2n2 + 1
!= C, (C1)

n2 := n1 + �n,�n ∈ N with �n � n1, (C2)

2g2(2(n1 + �n) + 1)
2l1 + g1/(2g2)

2n1 + 1

= 4g2l1 + g1 + 2(2g2 − g1) (C3)

⇒
�n = (2g2 − g1)(2n1 + 1)

4g2l1 + g1
∈ N (C4)

⇒
4g2l1 + g1

2n1 + 1
= 2g2 − g1

k
, k ∈ N (C5)

⇒
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C = 2g2 − g1

2g2k
, (C6)

E∞ := q2A2
φ

2m∗

(
1 −

[
2g2 − g1

2g2k

]2)
. (C7)

A similar argument applies for 2 < g∗, where we find an anal-
ogous expression, by using n2 := n1 − �n, �n ∈ N instead,

C = |2g2 − g1|
2g2k

, (C8)

which eventually yields

E∞ = q2A2
φ

2m∗

(
1 −

[ |2 − g∗|
2k

]2)
, g∗ ∈ Q∗

+ \ {2}. (C9)

So far we have not said anything about the allowed k numbers
except that they must be positive integers. However, there
are additional constraints with respect to g1, g2 as well as
the quantum numbers n1, l1, n2, l2 to be obeyed. From the
relation in Eq. (C5), we notice the following, depending on
whether or not g1 is an even e ∈ E := {2n, n ∈ N} or odd
o ∈ O := {2n − 1, n ∈ N} number:

g1 = o, 2g2 = e ⇒ o1

o2
= o3

k
⇒ k ∈ O, (C10)

g1 = e, 2g2 = e ⇒ e1

o2
= e3

k
⇒ k ∈ O. (C11)

Hence we have found that k must be an odd number. In a
last step, we look at the special nonrelativistic case g∗ = 2 for
which we find trivially,

2l1 + 1

2n1 + 1
= 2l1 + 1

2n2 + 1
, (C12)

n2 = n1, (C13)

which implies that Eq. (30) holds almost everywhere expect
for the lowest flat band [20], due to the condition l + g∗s/2 >

0 for the angular quantum numbers. This inequality at the
same time also imposes that

C < 1, (C14)

which sets limits on the minimally allowed quantum numbers
k, depending on g1 and g2 according to Eqs. (C6) and (C8).
The resulting expression for the squeezed Rydberg-like series,
imposed by Eq. (30), is then given in Eq. (31) of the main text.

APPENDIX D: DERIVATION OF AN ANALYTIC
SOLUTION FOR A TIME-DEPENDENT MAGNETIC FIELD

IN THE SLOWLY VARYING LIMIT

In order to solve the quasistatic eigenvalue problem of
Eq. (31), we follow an analogous procedure to Ref. [20] and
choose a cylindrical coordinate system, which yields

ˆ̃H =
N∑

j=1

[
− h̄2

2m∗ ∇2
j + Aφqh̄

m∗

(
i

∂

r j∂φ j
− g∗

sσz, j

4r j

)

− i
qh̄

8m∗2c2
h̄σz, j Ȧφ

[
1

r j
+ 2

∂

∂r j

]]
+ N

q2A2
φ

2m∗ , (D1)

assuming a strictly two-dimensional electron gas. Fortunately,

the contribution of the diamagnetic term EA2 := q2A2
φ

2m∗ remains

constant for all N electrons in radial coordinates, which re-
duces the complexity of our problem considerably. In a next
step, we introduce

α := Aφqh̄

m∗ > 0, (D2)

ε := qh̄2

4m∗2c2
Ȧφ, (D3)

which allows a more compact notation, and the resulting
eigenvalue problem for a single electron can be written as[

− h̄2

2m∗

(
∂2

∂r2
+ ∂

r∂r
+ ∂2

r2∂φ2

)

+ iα
∂

r∂φ
+ αg∗σz

4r
− iεs

[
1

r
+ 2

∂

∂r

]]
�̃ = Ẽ−�̃, (D4)

where the constant EA2 term is neglected for the moment. The
angular and spin problem can trivially be solved by separation
of variables as �̃(r, φ, s) = R̃(r)�(φ)χ (s), with spin function
χ and � = eilφ with l ∈ Z , s = ± 1

2 , since [ ˆ̃H, ∂
∂φ j

] = 0. This
leaves us with the radial problem

ˆ̃Hl,sR :=
[

− h̄2

2m∗

(
∂2

∂r2
+ ∂

r∂r
− l2

r2

)

−α
l + g∗s/2

r
− iεs

[
1

r
+ 2

∂

∂r

]]
R̃ = Ẽ−R̃. (D5)

Bound-state eigenvalues.. To solve for the attractive eigen-
value problem, we apply the method of Frobenius and match
orders of a series expansion similar to Ref. [20]. Therefore,
we define

ρ :=
√

8m∗|Ẽ−|
h̄2 r � 0, (D6)

λl,s := α(l + g∗s/2)

√
m∗

2h̄2|Ẽ−| , (D7)

δ := ε

√
m∗|Ẽ−|

2h̄2 , 0 � δ2 < 1, (D8)

for which our radial problem assumes a convenient form,[
∂2

∂ρ2
+ ∂

ρ∂ρ
− l2

ρ2
+ λl,s

ρ
− 1

4
− iδs

ρ
− 2iδs

∂

∂ρ

]
R̃(ρ) = 0.

(D9)

To reach a simple closed-form solution, we introduce the
ansatz

R̃(ρ) = e−βρ f (ρ) (D10)

with

β := −iδs + 1
2

√
1 − 4δ2s2 = −iδs + 1

2

√
1 − δ2. (D11)

This choice imposes an upper bound for δ2, i.e., δ2 < 1.
This ensures that we have a normalizable solution for R̃(ρ),
given in Eq. (D10), i.e., having an exponentially decaying
real part for ρ → ∞. Notice that large δ2 values would also
imply a rapidly changing external vector potential, which cer-
tainly contradicts the initial assumption of a slow (adiabatic)
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time evolution. Consequently, we find an ordinary differential
equation for f (ρ) of the following form:[

∂2

∂ρ2
− 2β

∂

∂ρ
+ ∂

ρ∂ρ
− l2

ρ2

+(λl,s − β )
1

ρ
− iδs

ρ
− 2iδs

∂

∂ρ

]
f (ρ) = 0. (D12)

If we apply the series representation f (ρ) = ∑∞
j=0 c jρ

j and
match the different orders in ρ, we find, after an index shift
j �→ j + 1 with c−1 = 0,

∞∑
j=−1

c j+1 j( j + 1)ρ j−1 − 2βc j jρ j−1

− 2iδsc j jρ j−1 + c j+1( j + 1)ρ j−1−βc jρ
j−1

− l2c j+1ρ
j−1 + λl,sc jρ

j−1 − iδsc jρ
j−1 = 0. (D13)

This gives rise to the indicial equation

c j+1[( j + 1)2 − l2] = c j

[√
1 − δ2 j +

√
1 − δ2

2
− λl,s

]
.

(D14)

It implies the “series switches on” for c j+1 when ( j +
1)2 = l2, i.e., j + 1 = l , and it can terminate only if√

1 − δ2(|Ẽ−|) j +
√

1 − δ2(|Ẽ−|)/2 − λl,s(Ẽ−) = 0. Other-
wise one would converge to a non-normalizable solution
since c j+1 → c j

j for large j and f → ∑∞
j=0

ρ j

j! . This also
implies that λ > 0; i.e., we find a bound-state solution only
for l + g∗s/2 > 0 similar to the strictly static results [20].
Now, introducing quantum number n := j leads to a quadratic
equation in Ẽ−:(

n + 1

2

)2

= λ2

1 − δ2
= α2(l + g∗s/2)2m∗

2h̄2

× 1

|Ẽ−|

[
1

1 − ε2m∗
2h̄2 |Ẽ−|

]
, n � l, (D15)

with a simple closed-form solution for the energy eigenvalues,

Ẽ−
n,l,s = ± h̄2

m∗ε2

[
1 ±

√
1 − α2ε2m∗2

h̄4

[
2l + g∗s

2n + 1

]2
]
,

n � l, l + g∗s/2 > 0. (D16)

We will subsequently see that the quantum numbers n, l, s
uniquely define an eigenfunction of the partial differential
equation (PDE) given in Eq. (D4) with corresponding unique
eigenvalue Ẽ . To determine the correct sign, we notice that

for ε → 0 our PDE given in Eq. (D4) reduces to the problem
of a static vector potential (Ȧφ = 0) with known solutions
[20]. The known eigenvalues are indeed recovered exactly by
choosing the negative signs twice, i.e., from

E−
n,l,s

!= lim
ε→0

Ẽ−
n,l,s

= lim
ε→0

{
− h̄2

m∗ε2

[
1 −

√
1 − α2ε2m∗2

h̄4

[
2l + g∗s

2n + 1

]2
]}

(D17)

= −q2A2
φ

2m∗

[
2l + g∗s

2n + 1

]2

, (D18)

whereas a positive sign in front of the square root would lead
to a divergent limit instead. Finally, we obtain Eqs. (32)–(34),
as introduced in the main part of the paper.

Eigenfunctions. After having identified the bound-state
energy eigenvalues for n � l , l + g∗s/2 > 0, we can next
find the corresponding eigenfunctions by expressing f (ρ) =
ρ l L(ρ) [40]. This turns Eq. (D12) into

ρ
d2L

dρ2
+ (2l + 1 −

√
1 − δ2ρ)

dL

dρ

+
[

−
√

1 − δ2

2
− l

√
1 − δ2 + λ

]
L = 0, (D19)

which can be further simplified, by substituting x̃ :=√
1 − δ2ρ and using Eq. (D15), to

x̃
d2L

dx̃2
+ (2l + 1 − x̃)

dL

dx̃
+ (n − l )L = 0, n, l ∈ N0.

(D20)

This PDE can be solved by the associated Laguerre polynomi-
als L2l

n−l of degree n − l and parameter 2l [41]. The associated
Laguerre polynomials are given by Rodrigues’s formula [41],

Lν
w(x̃) = x̃−νex̃

w!

dw

dx̃w
(e−x̃ x̃w+ν ). (D21)

Therefore, the radial solution of our problem given in Eq. (D5)
becomes

R̃n,l,s(x̃) = e
−i δs√

1−δ2
x̃
e− x̃

2

(
x̃√

1 − δ2

)l

L2l
n−l (x̃). (D22)

Consequently, the orthonormal eigenfunctions of the full
problem are found as given in Eqs. (35)–(38) in the main
section. The orthogonality of the eigenfunctions can be shown
identically to the argument given in Ref. [20], where surpris-
ingly the same degeneracy argument remains valid because of
Eq. (34).
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