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We determine the current-phase relation (CPR) of two-terminal configurations of Josephson junctions
containing two-dimensional (2D) time-reversal invariant topological superconductors (TRITOPS), includ-
ing TRITOPS-TRITOPS, as well as junctions between topological and non-topological superconductors
(TRITOPS-S). We focus on wide junctions for which several channels intervene in the tunneling coupling. We
derive effective Hamiltonians to describe the topological edge modes for different TRITOPS models, including
Hamiltonians with p-wave pairing and Hamiltonians combining s-wave pairing with spin-orbit coupling. We
also derive effective low-energy Hamiltonians to describe the Josephson junction. These can be solved analyti-
cally and explain the contribution of the edge states to the Josephson current as a function of the phase bias. We
find that edge-modes yield peculiar features to the CPR for both junction types. The primary effects occur for the
response of the Majorana zero-modes at half-flux quantum phase φ ≈ π in TRITOPS-TRITOPS junctions and
for integer flux quantum phase φ ≈ 0 for TRITOPS-S junctions, respectively. The former effect is particularly
strong for two-component nematic superconductors. The second effect leads to a spontaneously broken time-
reversal symmetry in the TRITOPS-S junction and to a breakdown of the bulk-boundary correspondence. We
analyze in this case the role of the phase fluctuations. For weakly-coupled junctions, we show that time-reversal
symmetry is restored for large enough stiffness in these fluctuations.

I. INTRODUCTION.

Topological superconductivity is among the most active re-
search topics for some time now [1]. The topological super-
conductors are characterized by nontrivial topological quan-
tum numbers in the bulk, which are usually accompanied by
subgap excitations localized at the edges that behave as gap-
less Majorana fermions. Those have attracted great interest
because of their potential application in quantum information
processing [2–4].
The simplest model for topological superconductivity is Ki-
taev’s model, which was formulated for spinless (or fully spin-
polarized) fermions with p-wave pairing [2]. In 1D the subgap
states are Majorana bound states at zero energy that are local-
ized at the ends of the superconducting wire. The latter are
represented by operators satisfying γ† = γ and γ2 = 1. In 2D
Majorana edge modes are massless and propagate along the
edge in 1D channels satisfying η†k = η−k and {ηk, ηk′ } = δk,k′ .
Such models guided the search for the topological phase in
more realistic systems, where singlet superconductivity is the
dominant type. A promising platform for the realization of
topological superconductivity is based upon the combination
of s-wave singlet superconductivity with spin-orbit coupling
(SOC) and magnetic fields, which effectively generates p-
wave superconductivity [5, 6]. Several experiments in semi-
conducting wires with spin-orbit coupling in proximity with
superconductors show features consistent with these ideas [7–
11]. Another avenue to engineer a 1D topological supercon-
ductor is based on magnetic adatoms inducing subgap states

in superconducting substrates [12–14]. Furthermore, the iron-
based material FeSeTe, with intrinsic s-wave superconductiv-
ity and surface magnetism [15] as well as topological insula-
tors in proximity with ordinary superconductors and magnetic
islands [16, 17] are also considered as a platform to realize
Majorana states. Several results in this direction are reviewed
in Refs. 18–21. All the systems mentioned above rely on
mechanisms breaking time-reversal symmetry. On the basis
of symmetry analysis, it was recognized early on that other
families of topological superconductors may exist [22]. Those
preserving time-reversal symmetry are referred to as members
of the DIII-class or TRITOPS (time-reversal symmetric topo-
logical superconductors). The key ingredient to realize this
topological phase is the existence of two channels in which
the pairing function have opposite signs[23]. Formally, a sim-
ple way to generate this effect is with two copies of Kitaev’s
model related by time-reversal symmetry [24–26] or by con-
sidering time-reversal-symmetric p-wave pairing [27]. Sev-
eral theoretical proposals have been formulated in a number
of systems. These include 2D and 3D models [11, 23, 28, 29],
as well as architectures of real systems like nanowires with
Rashba spin-orbit coupling with proximitized d-wave [30] or
extended s-wave [31], configurations of two wires with spin-
obit coupling, s-wave superconductivity and magnetic fields
in arrangements globally preserving time-reversal symmetry
[25, 32–34], 2D topological insulators in proximity with su-
perconductors [35–39] and thin films of iron-based supercon-
ductors [40]. As a consequence of the time-reversal sym-
metry, the edge modes of these topological systems appear

ar
X

iv
:2

20
5.

14
99

3v
3 

 [
co

nd
-m

at
.s

up
r-

co
n]

  2
 N

ov
 2

02
2



2

in Kramers’s pairs of Majorana modes. Their signatures can
be identified in the noise spectrum and in the behavior of the
Josephson current [32, 41–52].
The hybridization between the topological edge states of topo-
logical superconductors in a Josephson junction leads to the
formation of Andreev bound states. In 1D TRITOPS, the edge
modes have zero energy and are localized at the end of the
system. The corresponding Andreev bound states are char-
acterized by symmetry-protected level crossings, which give
rise to jumps in the current-phase relation (CPR) J (φ), being
φ the phase bias at the junction. Such features depend on the
structure of these modes, in particular on the spin projection
of their particle and hole components [45, 49, 53, 54]. In 2D,
the edge modes extend along the boundaries of the system.
One of the goals of the present work is to analyze the struc-
ture of these modes, in particular, their dispersion relation and
their spin structure.
In 2D, the characteristics of the Majorana edge modes are not
universal but depend on the nature of the bulk. We show
that they depend, in particular, on the details of the pairing
mechanism and are also affected by the presence of the spin-
orbit coupling. To properly analyze and compare these ef-
fects, we do not restrict ourselves to a single type of TRI-
TOPS but consider models with and without spin-orbit cou-
pling. We focus on two families of BCS models in 2D, which
are representative of the different proposals reported in the
literature: (a) p-wave pairing. Here our aim is to analyze
the effect of spatial symmetry, which enables superconduct-
ing phases represented by one and two-dimensional order pa-
rameters. This is motivated by the observation of a nematic
phase in the doped topological insulator CuxBi2Se3[55, 56],
which has been suggested to be a TRITOPS with odd-parity
superconducting pairing [28]. (b) s±-wave pairing in combi-
nation with SOC, which are the ingredients of the TRITOPS
platforms based on unconventional superconductors [31, 40].
We derive effective Hamiltonians for the edge modes in each
case which we compare with numerical results. These con-
sist of 1D Dirac Hamiltonians describing the dynamics of the
Kramers pairs of Majorana modes. The velocity of propa-
gation of these modes as well as the structure of the spinors
describing them are determined by the pairing mechanism of
the bulk Hamiltonian and by the presence of the SOC.
The other goal of the present work is to analyze the impact
that the structure of the edge modes have on the behavior of
the CPR. We consider two types of Josephson junctions: (i)
TRITOPS-TRITOPS and (ii) TRITOPS-S (S denotes a con-
ventional superconductor). We derive effective low-energy
Hamiltonians for these configurations, which can be solved
analytically. The coupling of the edge modes in the junc-
tion generate φ-dependent mass terms in the Dirac Hamilto-
nians, which reveals the different nature of the junction. In
the TRITOPS-TRITOPS case, the mass term is ∝ cos(φ/2)
implying the opening of a gap in the spectrum of the topo-
logical Andreev modes close to φ = 0. This mass term de-
pends on the type of pairing and may have a complex struc-
ture which depends on the SOC. Instead, in the TRITOPS-S
case, the mass generation is much more subtle. In this case
the junction separates phases of different topology and hence

the bulk-boundary correspondence demands the edge to host
gapless modes. This is reflected in the ∝ sin(φ) dependence
of the mass term. This is a consequence of the fact that for
φ = 0 the Kramers’ pair of edge modes remains robust un-
der the coupling to the non-topological S system. However,
as soon as the time-reversal symmetry is broken by a small φ,
a gap develops in the corresponding Andreev spectrum. We
show that this mechanism is very general and it takes place
irrespective of the details of the pairing mechanism and the
SOC. The outcome is a jump of the CPR at φ = 0, implying
an instability of the bulk-boundary correspondence as soon as
the time reversal protecting symmetry is broken. The work
is organized as follows. We introduce the models to be in-
vestigated in Section II. Section III is devoted to analyze the
topological properties of the different models and to derive the
effective Hamiltonians for the edge modes. We analyze the
Josephson current in Section IV. Here we solve the problem
numerically by diagonalizing exactly the lattice Hamiltonians
and we also derive effective low-energy models based on the
Josephson-tunneling coupling of the edge modes, which can
be solved analytically. In all the cases we focus on junctions
with many transverse channels that we analyze in the momen-
tum space. Section V is devoted to analyze in detail the insta-
bility of the TRITOPS-S junction. Section VI contains a sum-
mary and conclusions, some technical details are presented in
Appendices A to D.

II. MODELS FOR THE TRITOPS PHASE

We consider two different types of 2D models with BCS pair-
ing defined in the square lattice and hosting a TRITOPS phase.
(a) Models with p-wave pairing preserving time-reversal sym-
metry. The most studied case in the literature consists of two
copies of the Kitaev model [23–25], where each copy has
triplet pairing of fully polarized fermions. However, this is
not the only possibility, since it is also possible to have triplet
p-wave pairing between electrons with opposite spin orienta-
tion as it is well known in the context of He3[57, 58]. Tak-
ing also into account the symmetry properties of the under-
lying lattice, we analyze the structure of the edge modes in
the different irreducible representations of the p-wave pair-
ing order parameter. This analysis is important in view of
the nematic phase observed in the superconducting phase of
the doped topological insulator CuxBi2Se3[55, 56]. Although
this phase takes place in 3D, two-dimensional architectures
based on this compound could inherit similar properties. We
anticipate that, while the one-dimensional irreducible repre-
sentations host dispersing edge modes, the edge modes of the
two-dimensional one are dispersionless. (b) We also study a
model where the pairing is of extended s-wave type in com-
bination with SOC. Here, we will see that the combination of
these two ingredients effectively generates a p-wave type pair-
ing in the one-dimensional irreducible representations of the
2D lattice but with a spin structure of the edge modes affected
by the SOC. In the forthcoming sections, we will analytically
derive effective Hamiltonians for the edge modes and we will
see how all these features lead to different signatures in the
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behavior of the CPR.

A. p-wave pairing

We consider the following Hamiltonian in the lattice H =
1
2
∑

k c†kHp
k ck, with ck =

(
ck,↑, ck,↓, c

†

−k,↓,−c†
−k,↑

)T
and k =(

kx, ky

)
, while the Bogoliubov de Gennes Hamiltonian matrix

reads

Hp
k = ξkτ

zσ0 + τxσ ·∆α,β

k
. (1)

The Pauli matrices τx,y,z and σ = (σx, σy, σz) act, respectively,
on the particle-hole and spin degrees of freedom, while τ0, σ0

are 2 × 2 identity matrices. The dispersion relation is defined
in terms of a hopping element t as εk = −2t

(
cos kx + cos ky

)
,

hence ξk = εk − µ, being µ the chemical potential. Our re-
sults do not rely on the assumption of only nearest neighbor
hopping in εk and easily carry over to dispersions with further
range hoppings. The p-wave pairing vector function, restrict-
ing to a k dependence with only linear terms in sin kx and
sin ky and preserving time-reversal symmetry, reads

∆α,β

k
= ∆x sin kx nα + ∆y sin ky nβ, (2)

with (∆y,∆y) real. With the above restrictions, it is possible
to build a pairing vector function for each of the irreducible
representations of the point group D4h,

∆A1u
k

= ∆
(
sin kx nx + sin ky ny

)
∆A2u

k
= ∆

(
sin ky nx − sin kx ny

)
,

∆B1u
k

= ∆
(
sin kx nx − sin ky ny

)
,

∆B2u
k

= ∆
(
sin kx ny + sin ky nx

)
,

∆Eu
k

= ∆
(
sin kx ± sin ky

)
nz,

(3)

nx,y,x being unit vectors along the x, y, z-directions. The A ju,
B ju, j = 1, 2 are one-dimensional irreducible representations,
while the Eu is two-dimensional. For an intrinsic supercon-
ductor, the allowed values for the two components

(
∆x,∆y

)
are

determined by the non-linear, quartic terms of the Ginzburg-
Landau expansion. The three options that result are, on the
one hand two solution proportional to either (1,±1) or (1, 0)
and (0, 1). Those are nematic superconductors where the su-
perconducting state breaks a rotation symmetry. On the other
hand, there is the option proportional to (1,±i) which breaks
time-reversal symmetry and hence is not of the type discussed
in this paper. Alternatively, superconductivity could be the
consequence of a proximity effect to a substrate, in which case
all the real combinations of

(
∆x,∆y

)
are consistent with the

time-reversal symmetry. In addition, the edges of the sam-
ples are not necessarily aligned with the crystalline axes. We
consider the particular real nematic phase with ∆Eu

k
defined in

Eq. (3) but we have checked that our conclusions hold for any
other choice of (∆x,∆y).

B. s±-wave pairing and SOC

The second type of model we will analyze is based on BCS
pairing with s-wave symmetry in combination with spin-orbit
coupling. We focus, in particular, on the model proposed
by Zhang-Kane-Mele (ZKM) in Ref. 31, which is a BCS
Hamiltonian with local ∆0 plus extended ∆1 s-wave pairing
and Rashba spin-orbit coupling (SOC) λ. The Hamiltonian
reads

HZKM
k = ξkτ

zσ0 + 2λτz
(
sin kxσ

y − sin kyσ
x
)

+ τxσ0∆k. (4)

The pairing potential has a local ∆0 plus an extended ∆1 s-
wave components, with ∆k = ∆0 + 2∆1

(
cos kx + cos ky

)
. This

model hosts a topological phase for |µ − ε0| < ε1, with ε0 =

t∆0/∆1 and ε1 = 2λ
√
|∆0/∆1| − ∆2

0/(4∆2
1).

III. EFFECTIVE HAMILTONIANS FOR THE EDGE
MODES

The TRITOPS phase is characterized by the existence of
Kramers’ pairs of Majorana edge modes. The aim of this sec-
tion is to derive effective Hamiltonians to analytically describe
the dynamics of these modes. This will be the starting point
to analytically describe the Andreev spectra generated when
these states are coupled in the Josephson junction. We fo-
cus on the two families of models previously introduced. For
simplicity, we start the discussion with an analytic investiga-
tion of edge modes in the continuum limit. In the case of
the ZKM model we must rely on an analytical solution of the
lattice model in order to capture all the details introduced by
the SOC. In all the cases we compare with the solution of the
lattice Hamiltonian with a numerical approach.

A. p-wave model with A ju and B ju symmetry

A simple derivation of the effective Hamiltonian to describe
the edge modes is possible by considering the continuum ver-
sion of the Hamiltonian of Eq. (1). We start by analyzing the
cases with ∆

A1u
k and ∆

B1u
k , which corresponds to

H (1) =
1
2

∫
d2x Ψ†(x) H(1) Ψ(x), (5)

with the Bogoliubov-deGennes Hamiltonian

H(1) = τzσ0
[
εp − µ(x)

]
+ ∆τx

(
pxσ

x ± pyσ
y
)
, (6)

where ± corresponds to A1u and B1u, respectively. The Nambu
field operators are defined as Ψ(x) =

(
ψ(x), iσyψ†(x)

)T
, being

ψ(x) = (ψ↑(x), ψ↓(x))T a spinor in spin space, while x = (x, y)
and px, py denote the momentum in the x and y direction, re-
spectively, with the dispersion relation εp = p2/(2m).
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FIG. 1. Edge states and spectra for the topological phase of Hamilto-
nians with p-wave pairing. (a) and (b) correspond to the Hamiltonian
of Eq. (1), with ∆k belonging to the one-dimensional irreducible rep-
resentations of Eq. (3), while (c) and (d) to the two dimensional rep-
resentation Eu. Only A1u (equal to A2u) is shown. B1u (equal to B2u)
has the same spin structure with opposite chiralities. The spectra are
calculated for a system with open boundaries along the x direction
and periodic boundary conditions along y (only ky ≥ 0 is shown).
The edge states are indicated in light blue. These are two-fold and
four-fold degenerate in (b) and (d), respectively.

The Hamiltonians for the edges along y read (see Appendix A
for details)

Hν =
∑

py≥0,σ

vν,σpyη
†
ν,py,σ

ην,py,σ, (7)

where ν = l, r labels the left of right edges of a long ribbon
along the y direction and vν,σ = sνsσ∆ is the velocity of prop-
agation of the modes, with s↑ = −s↓ = 1. The corresponding
Bogoliubov operators are

ην,py,σ =
eisν sσπ/4

√
2

(
cν,py,σ − isνsσc†ν,−py,σ

)
, (8)

where cν,py,σ is the annihilation operator of a fermion with mo-
mentum py and spin σ at the edge ν. Notice that the Bogoli-
ubov operators describing the edge modes, given in Eq. (8),
satisfy the condition

η†ν,py,σ
= ην,−py,σ. (9)

The solution for the edges along the x-direction is similar and
the picture is consistent with two helical Majorana modes
with associated opposite spin orientations circulating along
the edges with opposite chiralities (see sketch of Fig. 1.a).
The corresponding spectrum is presented in Fig. 1.b. The
analysis of the representations A2u and B2u is completely anal-
ogous and the solution is the same with an identical result.

B. p-wave model with Eu symmetry

We can proceed in a similar way as in Sec. III A. The
Bogoliubov-De-Gennes Hamiltonian for the continuum ver-
sion in the present case reads

HEu = τzσ0
[
εp − µ(x)

]
+ ∆τxσz

(
px ± py

)
, (10)

where, as before, we consider ∆ > 0 and the topological phase
corresponds to µ > 0. The calculation of the zero modes for
py = 0 leads to a solution with identical structure as Eq. (A2),
but with Λν

0,s being a spinor that satisfies τyσzΛν
0s = sνΛν

0s,
with sr = −sl = 1. Hence, Λν

0+
= 1

2 (1, 1, sνi,−sνi)T and
Λν

0− = 1
2 (1,−1, sνi, sνi)T . Remarkably, the solution for py , 0

corresponds to evanescent modes, which is consistent with a
flat band of zero modes localized at the edges. Therefore,
the edge modes are non-dispersive. The sketch of these states
along with the spectrum is shown in Fig. 1.c and 1.d, respec-
tively.

C. ZKM model

1. Simplified continuum version

To proceed as in the case of the p-wave BCS model, we
define a low-energy continuum Hamiltonian for the lattice
model defined in Eq. (4). The pairing potential of this model
has a nodal surface for which ∆k = 0, which encloses the
time-reversal-invariant point k0 = (0, 0) for ∆0/∆1 < 0, or
k0 = (π, π) for ∆0/∆1 > 0 [31] and the topological phase de-
velops when the Fermi energy approaches this surface. Due
to the SOC, the system without pairing has two bands with
different Fermi surfaces. The dispersion relation for ky = 0 is
shown in Fig. 2 a. The continuum model is obtained by lin-
earizing this Hamiltonian with respect to the Fermi points of
these two bands at the Fermi energy of the nodal surface of ∆k.
The procedure is explained in Appendix B. The effective low
energy Hamiltonian has p-wave pairing in the representations
A ju or B ju along with SOC as an additional ingredient.
The Hamiltonian for the y-edges reads

Hν =
∑

py≥0,s=±

vs pyη
†
py,sην,py,s, (11)

with vs = s2λ. Similar to the case of Eq. (8), the Bogoli-
ubov operators describing the edge modes, given in Eq. (B6),
satisfy the condition

η†ν,py,s = ην,−py,s. (12)

Notice, however, that the spin orientation is along the x-
direction in the present case. The solution for the edges run-
ning along the x-direction is similar but with the spin orien-
tation along y. The picture is consistent with two helical Ma-
jorana modes circulating along the edges with opposite chi-
ralities and the spin texture shown in the sketch of Fig. 2.b.
This is consistent with the spectrum calculated by the exact
diagonalization of Eq. (4), which is presented in Fig. 2.c.
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ZKM

x

Y

FIG. 2. (a) Bands of the Hamiltonian HZKM without pairing for ky =

0. The yellow region indicates the range of values of µ within which
the topological phase develops. The Fermi points indicated in dots
are −kF1, −kF2, kF2, kF1 (from left to right). (b) Sketch of the edge
states for the continuum Hamiltonian. (c) Spectrum of HZKM with
periodic boundary conditions along y and open boundary conditions
along x in a system with Nx = 200. Parameters are ∆0 = −2∆1 =

−0.4t, λ = 0.5t and µ = −2t. The (doubly degenerate)
edge states are indicated in light blue.

2. General solution in the lattice model

In the previous analysis we have linearized the Hamiltonian
with respect to k-points with one component of k0 kept fixed
and the other component on the nodal lines of ∆k and we
have calculated the corresponding effective Hamiltonians for
the edge modes. For sake of simplicity, we have neglected
low-energy terms corresponding to linearizing the Hamilto-
nian with respect to other k-values of the 2D Fermi surface.
In those cases, the dispersion relation with respect to kx keep-
ing ky fixed is similar to the one shown in Fig. 2.b, but with
the orientation of the spin tilted with respect to z. In order to
account for such more general context, we propose an ansatz
for the description of the edge modes in terms of Bogoliubov
operators with the structure of Eq. (B6) but with fermions
having a tilted spin orientation. It reads

ην,k,s =
e−issνπ/4

√
2

(
f̃ν,k,s + issν f̃ †

ν,−k,s

)
, s = ± (13)

where k denotes the transverse direction to the finite-length
ribbon, along which the edge localizes. The fermionic opera-
tors f̃ν,k,s are

f̃ν,k,+ = e−iδν,k

[
cos(

θν,k

2
) fν,k,↑ + e−iϕν,k sin(

θν,k

2
) fν,k,↓

]
f̃ν,k,− = eiδν,k

[
−eiϕν,k sin(

θν,k

2
) fν,k,↑ + cos(

θν,k

2
) fν,k,↓

]
, (14)

with θν,k = θν,−k, ϕν,k = ϕν,−k, δν,k = δν,−k, so that they are
time-reversal partners, T f̃ν,k,+T −1 = f̃ν,−k,−, T f̃ν,k,−T −1 =

− f̃ν,−k,+. These operators describe localized fermions
at the ν edge with spin-1/2 orientations along ~nν,k =

(cos θν,k cosϕν,k, cos θν,k sinϕν,k, sin θν,k) in the coordinate sys-
tem indicated in Fig. 2. For this reason, the fermions of Eq.
(14) are basically the fermions cν,py,s of Eq. (B6) upon apply-
ing a SU(2) operation that tilts the spin from an orientation
along the x-direction to ~nν,k. Following the reasoning of Ref.
59, we notice that a SU(2) rotation in the fermions defining
Majorana modes comes along with a change in the phases. For
this reason, we introduced the phase δν,k in Eq. (14), which,
together with ϕν,k, θν,k, define the generalized Bloch coordi-
nates for each k-value along the edge state.
This heuristic argument can be verified by following a similar
procedure as in Refs. 60 and 61, modified to get analytical
results as explained in Appendix C. Concretely, we consider
the following lattice Hamiltonian,

HZKM
k =

Lx∑
j=1

c†j,k
[
τz (ξk − 2λ sin kσx) + ∆kτ

x] c j,k

+

Lx−1∑
j=1

(
c†j,k

[
τz (−t − iλσz) + ∆1τ

x] c j+1,k + H.c.
)

(15)

with c j,k =
(
c j,k,↑, c j,k,↓, c

†

j,−k,↓,−c†j,−k,↑

)T
, ξk = −2t cos k − µ,

∆k = ∆0 + 2∆1 cos k. This corresponds to the Hamiltonian of
Eq. (4) defined in a slab of Lx sites in the x-direction and pe-
riodic boundary conditions in the transverse y-direction (we
are simplifying notation ky ≡ k). The solution in the neigbor-
hood of k = k0,y is given by Eqs. (13) and (14) with the angles
θν,k = π/2, ϕν,k = −sνϕk and the phase δν,k = sνϕk/2 with

sl = −sr = sign(λ∆1). (16)

Hence, all the angles and phases of the generalized Bloch co-
ordinates can be expressed in the present case in terms of a
single k-dependent phase ϕk. The fermionic operators fν,k,σ
are related to the fermionic operators of the basis of the lattice
model as follows,

fl,k,σ = Nk

2∑
`=1

αk,`,σ

Lx∑
j=1

z j−1
k,`,σck jσ,

fr,k,σ = Nk

2∑
`=1

αk,`,σ

Lx∑
j=1

zLx− j
k,`,σck jσ, (17)

where Nk is a normalization factor, while αk,`,↑ = αk,`,↓ ≡

αk,` = α−k,` and zk,`,↑ = zk,`,↓ ≡ zk,` = z−k,` are complex coeffi-
cients which are determined by the open boundary conditions.
The Hamiltonian for the edge modes reads

Hν =
∑

k>0,s=±

sελ,k η
†

ν,k,sην,k,s, (18)

with

ελ,k = −2ρkλ sin k. (19)
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The parameters ρk and ϕk are related to the parameters α` and
z j through

ρkeiϕk = N2
k

Lx∑
j=1

 2∑
`=1

αk,`z
j−1
k,`


2

. (20)

Importantly, ρk ' ρ, and ϕk ' ϕ are approximately constant
close to the Dirac point k0,y, while ρk tends to zero as k signif-
icaly departs from this point. The structure of the edge modes
corresponds to the sketch of Fig. 2, but with the spins tilted
an angle ϕ with respect to the plane of the superconductor.

IV. JOSEPHSON JUNCTION AND CPR

Our goal now is to analyze of the impact on the Josephson cur-
rent of the different types of edge states corresponding to the
different platforms for realizing the TRITOPS phase. To this
end, we consider two superconductors contacted in a Joseph-
son junction. The hybridization of the states of the two super-
conductors leads to the development of Andreev states with
energies below the superconducting gap. In the topological
phase, these states are mainly originated by the hybridization
between the edge states, which leads to peculiar features in the
CPR. We analyze junctions between two TRITOPS as well as
junctions between TRITOPS and an ordinary superconducting
phase (S).
The Hamiltonian for the full system containing the two super-
conductors, S1, S2 and the tunneling junction is expressed as
H =

∑
k Hk with

Hk =
∑

α=S1,S2

Hα,k + HJ,k. (21)

The Hamiltonian Hα,k corresponds to the TRITOPS Hamilto-
nian expressed in a slab of length Nx and periodic boundary
conditions in the transverse direction, adopting a representa-
tion as in Eq. (15). The Hamiltonian for the tunneling junction
is HJ =

∑
k HJ,k, with

HJ,k = tJ
∑
σ

(
eiφ/2c†S1,k,1σcS2,k,1,σ + H.c.

)
, (22)

where c†S1,k,1,σ (c†S2,k,1,σ) creates an electron with spin σ in the
superconductor S1 (S2) at the boundary contacting the junc-
tion with wave vector k in the transverse direction. The phase
bias at the junction, φ = 2πΦ/Φ0, is defined by the total mag-
netic flux Φ, being Φ0 = h/2e the flux quantum. Our aim is
to analyze features originated in the intrinsic properties of the
topological edge states. For this reason we focus on Josephson
junctions without spin-orbit effects. The latter usually intro-
duce extra phases which affect the behavior of the Josephson
current [54].
We calculate the Josephson current by diagonalizing exactly
Hk and evaluating the energy of the ground state of this many-
body Hamiltonian as [59, 62]

E0(k, φ) = −
1
2

∑
s=±

εk,s(φ), J(k, φ) =
2e
~

∂E0(k, φ)
∂φ

. (23)

The energies εk,s(φ) are the negative single-particle energies
of Hk. The total Josephson current as a function of φ (CPR)
is simply calculated as J(φ) =

∑
k Jk(φ). In all the cases, we

compare the exact numerical results with analytical ones that
are obtained by substituting the exact Hamiltonians for the
superconductors by effective Hamiltonians representing only
the edge modes of the TRITOPS and/or a simplified version
of the ordinary superconductor.

A. TRITOPS-TRITOPS junction
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FIG. 3. k-resolved Josephson current (in units of e/~) as a func-
tion of the phase difference in the topological phase for a junction of
2D topological superconductors with p-wave pairing calculated with
numerical exact diagonalization. The upper and lower panel corre-
sponds to the representations A1u (identical results are obtained for
the A2u and B ju, j = 1, 2) and Eu, respectively. The plots in thick
lines corresponds to k = 0. Plots in violet correspond to the edge
states, while the other k values are shown in red. The parameters are
tJ = λ = 0.5t, ∆ = t and µ = −3t. A similar behavior is observed for
other parameters within the topological phase (−4t ≤ µ ≤ 4t)
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1. p-wave model

Results for the Josephson current for different k-values in
junctions between TRITOPS with p-wave pairing are shown
in Fig. 3. The two panels of the figure illustrate the behav-
ior of this quantity for the different representations of the p-
wave pairing introduced before. The different colors distin-
guish the contributions associated to the hybridization of the
edge modes from those corresponding to the hybridization of
the continuum states. We can see the impact of the different
structure of edge modes in the two cases.
The B1u case is shown in the upper panel and we recall that the
spectrum of the edge modes has a linear dispersion relation.
The contribution of the zero-mode leads to a Josephson cur-
rent which has a discontinuity at φ = π (see light-blue plot).
This is the same behavior observed in topological supercon-
ducting wires and is a consequence of a level crossing of the
Andreev states resulting from the hybridization of the Majo-
rana zero-modes [17, 25, 27, 49, 53]. Instead, the Josephson
current is continuous as a function of φ for all the other edge
modes with finite energy. Nevertheless, the observed behav-
ior differs from the usual ∝ sin(φ) function of non-topological
junctions (see violet plots). The latter behavior is observed
only for k-values associated to the continuum states (see red
plots). We will see below that the Josephson coupling intro-
duces a mass term in the effective Dirac Hamiltonian describ-
ing the free edge states which explains the peculiar CPR of
the propagating Majorana edge states. Identical results are
obtained for the representations A2u and B ju, j = 1, 2. For
the Eu case, where the edge modes form a flat band at zero en-
ergy, not only the k = 0-mode but all the edge modes show a
discontinuity at φ = π (see lower panel of Fig. 3). The CPR is
shown in Fig. 4 and is a superposition of all the k-components.

0 0.5 1 1.5 2

φ/π

−4

−2

0

2

4

J
(φ

)[
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h̄

]

FIG. 4. Josephson current (in units of e/~) as a function of the phase
difference in the topological phase for a junction of 2D topological
superconductors with p-wave pairing calculated by numerically diag-
onalyzing the coupled lattice Hamiltonians. Solid and dashed lines
correspond to the representation B1u and Eu for tJ = λ = 0.5t, ∆ = t
and µ = −3t.

In both types of junctions, the behavior of the Josephson cur-
rent for k-values associated to the edge states can be explained
in terms a low-energy effective Hamiltonian for the junction
[46, 53, 59], where we replace the fermionic operators for the
TRITOPS’ boundaries close to the junction cS1,k,1,σ ≡ cr,k,σ
and cS2,k,1,σ ≡ cl,k,σ in Eq. (22) by their projections on the
low-energy subgap excitations given by Eq. (8). Concretely,
we perform the gauge transformation η†

ν,k,σ → eisν sσπ/4η†
ν,k,σ

and we substitute

c†
ν,k,σ '

1
√

2
η†
ν,k,σ, c†

ν,−k,σ '
isνsσ
√

2
ην,k,σ.

Introducing ην,k = (ην,k,↑, ην,k,↓)T , for k ≥ 0, we get the fol-
lowing effective Hamiltonian for the junction, obtained after
adding the contributions of k and −k in the original Hamilto-
nian

Hp−p
eff,k = tJ cos(φ/2)η†l,kηr,k + H.c. + vk

∑
ν

sνη
†

ν,kσ
zην,k. (24)

For the case of the Eu representation we have v = 0 and for
the other representations we have v = ±∆.
Defining the spinor ηk = (ηl,k,↑, ηl,k,↓, ηr,k,↑, ηr,k,↓)T , this effec-
tive Hamiltonian can be expressed as

Hp−p
eff,k = η†k

[
tJ cos(φ/2) τ̃x + vkη†k τ̃

zσz
]
ηk, (25)

where the Pauli matrices τ̃ j act on the left-right degrees of
freedom. We see that it has the structure of a Dirac Hamil-
tonian with a mass term ∝ cos(φ/2). The Hamiltonian of
(25) can be diagonalized and has the following eigenenergies
±ε

p−p
k (φ) with

ε
p−p
k (φ) =

√
(vk)2 + t2

J cos2(φ/2), (26)

which defines the Andreev spectrum. As a consequence of the
dependence of the mass term with φ a gap opens for arbitrary
small φ. The derivative ∂Ek,−/∂φ leads to a behavior of Jk
that is perfectly consistent with the behavior reported in Fig.
3. For the Eu representation, the different amplitude of the
discontinuity for different k-values can be explained by taking
into account the renormalization of tJ due to the k-dependent
projection of the edge-modes on the fermionic operators of
the boundary in Eq. (24).

2. ZKM model

The Josephson current for the different k-values as a function
of the phase bias φ for the ZKM model is shown in Fig. 5.
As in the previous section, we distinguish with different col-
ors the contribution of the continuum states (red) and the edge
modes (violet), highlighting the component of the zero modes
corersponding to the time-reversal symmetric points k0 = 0, π
(light blue). The latter mode presents the same type of dis-
continuity at φ = π observed in the p-wave models. We also
observe the typical ∝ sin(φ)-behavior in the contribution of
the states well inside the continuum. The behavior of the edge
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FIG. 5. (a) k-resolved Josephson current as a function of the phase
difference in the topological phase for a junction of 2D topological
superconductors with tJ = t/2, ∆0 = 2∆1 and µ = ε0. The plot in
thick lines corresponds to k = π. Plots in violet correspond to the
edge states, while the other k values are shown in red. The upper
insets show the total Josephson current and the effective Josephson
current. The lower inset shows the comparison of the exact numerical
solution with the prediction based on Eq. (35) with the effective pa-
rameters calculated with the exact solution as explained in Appendix
C (dashed lines). (b) Same as top panel for ∆0 = ∆1 and tJ = t.

modes is more clearly distinguished for the parameters corre-
sponding to the the upper panel and we will provide an an-
alytical description below. The lower panel corresponds to
parameters, for which the superconducting gap is smaller. In
this case, there is a strong hybridization between the topolog-
ical edge-states and those belonging to the quasiparticle con-
tinuum. We see interesting features, including several sign
changes of Jk(φ) for such mixed states. The total CPR for
different parameters is shown in the top insets of both panels.

In order to analyze the contributions of the edge states in
the present case, we follow the same procedure of the pre-
vious section. Introducing the gauge transformation η†

ν,k,s →

e−issνπ/4η†
ν,k,s we have

f̃ν,k,s =
1
√

2
ην,k,s, f̃ †

ν,−k,s = −issν
1
√

2
ην,k,s, (27)

with the fermionic operators defined in Eq. (14).
Therefore, assuming λ∆1 > 0,

fν,k,↑ =
eisνϕk/2

2
(
ην,k,+ − ην,k,−

)
,

fν,k,↓ =
e−isνϕk/2

2
(
ην,k,+ + ην,k,−

)
,

f †
ν,−k,↑ = −isν

e−isνϕk/2

2
(
ην,k,+ + ην,k,−

)
,

f †
ν,−k,↓ = −isν

eisνϕk/2

2
(
ην,k,+ − ην,k,−

)
. (28)

Finally, we use the relation to the parameters of Eq. (17) cor-
responding to the wave function of the lattice Hamiltonian,
which leads to

c†
ν,±k,σ = Ων,k,σ f †

ν,±k,σ,

(29)

with

wl,k = Ωl,k,↑ = Nk

2∑
`=1

αk,` = Ωr,k,↑ = Ωl,k,↓ = Ωr,k,↓ = wr,k.

(30)
Substituting in Eq. (22), and assuming that the right edge of
S1 is connected to the left edge of S2, leads to the effective
Hamiltonian for the junction. Including the contribution of
the free edge states described by Eq. (18) we get

HZKM−ZKM
eff,k = cos(φ/2)

∑
s=±

[
t1,kη

†

r,k,sηl,k,s + it2,kη
†

r,k,sηl,k,−s + H.c.
]

+
∑
s=±

sελ,k η
†

ν,k,sην,k,s, (31)

where ελ,k is defined in Eq. (19) and we have introduced the
definitions

t1,k = tJRe(w2
keisrϕk ), t2,k = tJIm(w2

keisrϕk ). (32)

The term in the first line of Eq. (31) describes the hybridiza-
tion of the edge states through the Josephson-tunneling pro-
cess, while the second one corresponds to the free edge states.
In analogy to the case of the p-wave model, we can introduce
the spinor ηk = (ηl,k,+, ηl,k,−, ηr,k,+, ηr,k,−)T , in terms of which
the effective Hamiltonian reads

HZKM−ZKM
eff,k = η†k

[
cos(φ/2)

(
t1,k τ̃x + t2,k τ̃yσx) + ελ,k σ

z ]
ηk.

(33)
We see that in the present case, the effective Hamiltonian for
the coupled edge modes has the structure of the Dirac Hamil-
tonian as in the case of the p-wave model, but with two mass
terms. Both mass terms are ∝ cos(φ/2), which implies the
opening of a gap in the Andreev spectrum for arbitrary small
φ. It is interesting to notice that, unlike the p-wave case, the
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two massive terms are k-dependent in this case. This is a con-
sequence of the spin structure of the edge modes, which do
not have a fixed direction in space, but have a k-dependent tilt
ϕk. The effective Hamiltonian can be diagonalized and has the
following eigenenergies ±εZKM

k,± (φ) with

εZKM
k,± (φ) =

√(
t1,k cos(φ/2) ± ελ,k

)2
+ t2

2,k cos2(φ/2). (34)

The calculation of the Josephson current for this effective
Hamiltonian results

Jeff,k(φ) =
1
2

teff(φ) sin(
φ

2
), (35)

teff(φ) =

[
t1,k cos(φ/2) + ελ,k

]
t1,k + t2

2,k cos(φ/2)

εZKM
k,+ (φ)

+

[
t1,k cos(φ/2) − ελ,k

]
t1,k + t2

2,k cos(φ/2)

εZKM
k,− (φ)

.

For the time-reversal symmetric points k0 = 0,±π, there is a
level crossing in the spectrum because of which the ground
state energy E0,eff(k, φ) has a cusp and its derivative is discon-
tinuous at φ = π, which explains the jump in the Josephson
current at this value of the phase. Other k-values correspond-
ing to the edge modes are semi-quantitatively described by
Eq. (35). An illustration is shown in the lower inset of Fig. 5
(a), where the Josephson current calculated from exact diago-
nalization of the full lattice model is explicitly compared with
the prediction of Eq. (35) based on the analytical calculation
of the parameters wk and ϕk from Eqs. (C10) and (C15). Al-
though these parameters depend in k, close to the Dirac point,
such dependence can be neglected. We see that the agree-
ment is very good and the slight quantitative mismatching can
be understood by recalling that the analytical calculation in-
troduces some approximations, namely it treats λ perturba-
tively and also assumes strongly localized edge modes [see
Eqs. (C14) and Eq. (C15)]. The plots of Fig. 5 (b) correspond
to parameters for which the superconducting gap is smaller.
Under these conditions, the topological edge modes of each
topological superconductor hybridize in the junction, not only
with the topological edge states of the other superconductor
but also with the non-topological states above the gap. As a
consequence of this mixed hybridization other features, like
sign changes and a saw-tooth type behavior observed in these
plots emerge. This peculiar behavior can be qualitatively ex-
plained in terms of an effective Hamiltonian for the junction,
which consists in adding a term representing the high-energy
states to the effective low-energy Hamiltonian of Eq. (33).
Such a procedure is similar to the one explained in the next
section for the description of the TRITOPS-S junction.
We have considered so far junctions between TRITOPS with
SOC oriented in the same direction. It is also interesting to
consider a configuration where the two planes hosting the su-
perconductors are tilted in an angle β around the z-axis in the
coordinate frame of Fig. 2 (b). Introducing such a rotation
in the Hamiltonian of S2 in Hk and in Eq. (22) leads to the
k-resolved Josephson current shown in Fig. 6. We appreci-
ate some different features for the k-values corresponding to

the edge modes, in comparison to Fig. 5 (a), which has been
calculated for the same parameters of the Hamiltonian in a
junction without any tilt (β = 0). As before, the behavior
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FIG. 6. k-resolved Josephson current for a junction tilted an angle
β = π/4 respect to the xz-plane with tJ = t/2, ∆0 = 2∆1, µ = ε0.
Inset: Comparison with the effective model. Dashed lines correspond
to Eq. (35) with the parameters defined in Eq. (36).

of Jk(φ) for k belonging to the edge modes, can be captured
with a good degree of accuracy by the description provided
by the effective Hamiltonian describing the Josephson-tunnel
coupled edge modes. In the present case, this corresponds to
Eq. (31) suitably modified to account for the tilt, which im-
plies modifying the parameters to

t1,k = tJRe(w2
ke−i

(
ϕk+

β
2

)
), t2,k = tJIm(w2

ke−i
(
ϕk+

β
2

)
). (36)

This merely adds a shift β/2 to the tilt of the spins of the
edge modes with respect to the plane of the superconductor.
The corresponding contribution to the Josephson current cal-
culated from this effective model is given by Eq. (35) with
these modified parameters.
The net Josephson current, resulting from adding the contribu-
tion of all the transverse k channels is shown in the upper right
inset of Fig. 5 (a) and (b). In the topological case, it shows
a smooth but richer structure, which should be traced back to
the maxima, minima and crossings that take place for the k
values corresponding to the edge states for these parameters.

B. TRITOPS-S junction

We now consider a Josephson junction between a TRITOPS
and a non-topological superconductor. Concretely, we con-
sider the Hamiltonian of Eqs. (21) and (22) with S1 being
a BCS superconductor with only local pairing ∆0. This cor-
responds to Eq. (4) with λ = ∆1 = 0. The results for the
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k-resolved Josephson current for S1 modeled by the three
TRITOPS Hamiltonians studied in the previous sections are
shown in Fig. 7.
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FIG. 7. k-resolved Josephson current as a function of the phase dif-
ference in the topological phase for a junction between a 2D topolog-
ical superconductor with p-wave pairing (upper and middle panels)
and a non-topological one with s-wave pairing. These panels corre-
spond to the representation A1u and Eu, respectively. The lower panel
corresponds to a junction between the ZKM model and an ordinary
superconductor (corresponding to ∆1 = λ = 0). The parameters are
tJ = λ = 0.5t, ∆ = ∆0 = 2∆1 = 0.4t, µ = ∆0/∆1t.

The common pattern we can identify in these three configu-
rations is the behavior of the k0-component. It is character-
ized by three remarkable features, in striking contrast with the
TRITOPS-TRITOPS junctions. These are: (i) a sign change
in Jk0 (φ), (ii) twice the periodicity in φ and (iii) discontinuous
jump at φ = 0. Such a peculiar behavior was discussed in
the context of 1D systems in Refs. [23, 41, 49]. In the case of
the Eu representation, these features are observed, not only for
k0, but also for all the k-values belonging to the (zero-energy)
edge modes. A similar behavior was discussed in the frame-
work of Josephson junctions between a superconductor with
dx2−y2 pairing and superconductors with s-wave pairing [63–
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FIG. 8. Total Josephson current as a function of the phase difference
in the topological phase for a junction between a 2D topological su-
perconductor and a non-topological one with s-wave pairing. Light
blue, violet and red colors correspond to the A1u, Eu and ZKM mod-
els, respectively.

65]. A jump in the CPR akin to the one observed in Fig. 7 is
predicted when the nodal line of the d-wave superconductor is
perpendicular to the junction, as a consequence of zero modes
in the interface. In our case, the existence of the zero modes
are associated to the topological edge states. It is important
to notice that this feature is, however, different from the so
called ”anomalous Josephson effect” taking place when time-
reversal symmetry is broken in the superconductor and/or in
the junction at φ = 0 [66–69]. In fact, as a consequence of the
time-reversal symmetry, the CPR in the TRITOPS-S junction
obeys J(φ = 0) = 0,∀k. A finite, albeit arbitrary small φ is
necessary to induce the jump in Jk(φ) for k belonging to the
zero-energy modes.
We can also derive an effective low-energy Hamiltonian for
the TRITOPS-S junction. To this end, we consider the edge
modes of the topological side, coupled to the high-energy
quasiparticle excitations of the non-topological (S) one. In or-
der to simplify the calculations, we neglect the free dispersion
relation and we consider the following model for the S-side

HS ,k = ∆0(c†k,↑c
†

−k,↓+H.c.) =
∑
s=±

s∆0 d†k,sdk,s +constant, (37)

with dk,s =
(
ck,↑ ± c†

−k,↓

)
/
√

2.
Considering the Hamiltonian of Eq. (8) for the edge states of
the p-wave Hamiltonian expressed in the basis of the spinor
ην,k = (ην,k,↑, ην,k,↓)T and integrating out the degrees of free-
dom of the ordinary superconductor in the second order of
perturbation theory in the tunneling coupling tJ, we get

Hp−S,eff

k = η†k

[
ε̃

p
kσ

z + mp sin(φ)σy
]
ηk (38)

with

ε̃
p
k = vksν, mp = −|tJ|2/∆0. (39)
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For the case of the ZKM model, we can consider the projec-
tions on the edge modes of the fermionic operators at the end
of the TRITOPS by using Eqs. (27), (28) and (29) and inte-
grate out the fermions of the S-side in a similar way as before.
This leads to the following effective Hamiltonian for the junc-
tion expressed in the basis of the spinor ηk = (ην,k,+, ην,k,−)T

(see Appendix D for details)

HZKM−S,eff

ν,k = η†k

[
ε̃ZKMσz + mZKM

k sin(φ)σx
]
ηk. (40)

where we adopt the same notation as in Sec. IV A 2 and we
have introduced

ε̃ZKM
k = ελ,k

(
1 − mZKM/∆0

)
, mZKM = 2sνt2

J |wk |
2/∆0. (41)

The diagonalization of the two Hamiltonians defined in Eqs.
(38) and (40) for the TRITOPS-S junction leads to the eigen-
states ±εT−S

k (φ) with

εT−S
k (φ) =

√(
mZKM)2 sin2(φ) + ε̃2

k , (42)

with the parameters defined in Eqs. (39) and (41), for the
p-wave and ZKM Hamiltonians for the TRITOPS, respec-
tively. This leads to the many-body ground-state energy
E0(φ) ≡ −εT−S

k (φ). Hence, the Josephson CPR is given by

Jeff,k(φ) = −
1

2εT−S
k (φ)

(
mZKM

)2
sin(2φ). (43)

This analytical expression is in full agreement with the behav-
ior of the Josephson current for k corresponding to the edge
states shown in Fig. 7. In the case of the p-wave pairing
within the Eu representation, which is shown in the middle
panel, all the k-components close to the Dirac point have a
jump at φ = 0 because the edge channels are dispersionless,
hence ε̃k = 0 in Eq. (42).
To finalize, we show in Fig. 8 the total CPR obtained by
adding all the k-components for the three models. We see
that all the three cases are characterized by a jump at φ =

0, mod(π). As expected, the amplitude of this feature is much
more pronounced in the case of the Eu-type p-wave pairing.

V. INSTABILITIES AND BULK-BOUNDARY
CORRESPONDENCE

In this section we discuss how our findings are related to the
expectations that follow from the bulk-boundary correspon-
dence. We will see that the behavior at TRITOPS-TRITOPS
junctions is fully in line with the bulk-boundary correspon-
dence. The junction separates two topologically non-trivial
systems. Hence states in the junction area should be gapped.
The tunneling term between two TRITOPSs must therefore
induce a gap of the edge states of both topological super-
conductors. By the same logic one would expect massless
states at the TRITOPS-S junction, as it separates a topologi-
cally trivial and non-trivial state. However, our results imply
that TRITOPS-S junctions violate the bulk boundary princi-
ple. We will argue that this is a consequence of the spon-
taneously broken time-reversal symmetry in the TRITOPS-S

junction itself. With the protecting symmetry spontaneously
broken at the edge, edge states become massive. We expect
this to be a fully generic feature of TRITOPS-S junctions.
The low energy states of both junctions can be described in
terms of a Majorana spinor with Hamiltonian

Hedge = vpα + m (φ) v2β. (44)

For the TRITOPS-TRITOPS junction we have a four com-
ponent Majorana spinor. We focus on the p-wave case Eq.
(40), for which α = τ̃zσz and β = τ̃x. In addition, the
fermion mass depends on the relative phase according to
m (φ) = m0 cos (φ/2), where m0 is linearly proportional to the
tunneling matrix element tJ . In distinction, at the TRITOPS-
S junction we have a two-component Majorana spinor with
α = σz, β = σx. The most crucial difference is the phase
dependence of the mass m (φ) = m0 sin φ, where m0 ∝ t2

J/∆0
with pairing gap ∆0 of the topologically trivial superconduc-
tor.
So far, we have considered the phase bias of the junction as
a parameter that is fixed by external conditions, like imple-
menting the junction in a ring-shape structure threaded by a
magnetic flux. We now consider the junction regarding φ as
an internal degree of freedom, in order to analyze the stability
close to φ = 0. The usual phase dependence of the Josephson
energy is

EJ,0 (φ) =
1

2λ2
J

(1 − cos φ) , (45)

which yields an equilibrium phase φ∗ = 0 mod (2π). Eq.(45) is
the result of tunneling due to states above the bulk pairing gap,
just like in any other superconductor. Using this value for the
equilibrium phase difference φ∗ and inserting in the two mass-
phase relations for the two junction types, edge states are mas-
sive for TRITOPS-TRITOPS junctions (cos(φ∗/2) , 0) and
massless for TRITOPS-S junctions (sin(φ∗) = 0). This is in
line with the expectation that follows from the bulk-boundary
correspondence.
It is however important to analyze the impact of the edge states
on the current-phase relation, i.e. to properly include the edge-
state contribution to the Josephson energy:

EJ (φ) = EJ,0 (φ) + δEJ (φ) . (46)

Here,

δEJ (φ) = 〈Hedge〉φ − 〈Hedge〉φ=0 (47)

is the phase-dependent expectation value of the energy due to
edge modes. We made the assumption that the phase stays
constant in space along the junction, an assumption that we
will relax below.
In order to determine δEJ (φ) we integrate out the edge state
fermions. To justify this we assume and check later for con-
sistency that the fermion mass is finite. It follows from Hedge
of Eq.(44) that

δEJ (φ) = −
v

8π
m (φ)2 log

(
Λ2

m (φ)2

)
. (48)
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Here Λ is the high-energy cutoff.
Let us first comment on the impact of edge modes on the
current-phase relation of TRITOPS-TRITOPS junctions. If
we use m (φ) = m0 cos (φ/2) in Eq.(48), the minimum in
EJ (φ) continues to be at φ = 0 mod(2π) and the edge modes
are indeed massive m (φ∗) = m0 , 0, fully consistent with the
bulk-boundary correspondence. Only near φ = π, where the
fermion mass changes sign, do we find a singular behavior for
the current:

J (φ) ∼ − log
 Λ2

m2
0(φ − π)2

 (φ − π) (49)

This is the main effect of edge modes for TRITOPS-TRITOPS
junctions.
More dramatic behavior occurs at the TRITOPS-S junction.
With m (φ) = m0 sin φ, one easily finds that the singular log-
arithmic dependence near φ = 0 implies that the minimum in
EJ (φ) is always shifted to a finite phase φ∗, yielding a finite
fermion mass, which corresponds to broken chiral symmetry.
Using C = PT for the chiral, parity, and time-reversal sym-
metries, we see that broken C with intact P, breaks the time-
reversal symmetry, as expected for a junction with non-trivial
phase difference φ , 0, π. Clearly the bulk-boundary corre-
spondence does not apply.
We conclude that the edge modes at the junction between a
TRITOPS and a conventional superconductor are not gapless,
but massive which is closely connected to a finite equilibrium
phase difference at the junction. The bulk boundary correspo-
nence at the edge is invalidated as the gapless modes are un-
stable against an infinitesimal Josephson coupling. The pro-
tecting time-reversal symmetry is broken at the junction as a
consequence of the phase-edge mode coupling.
Other physical effects may play a role. Particularly interesting
are the role of phase fluctuations, which could induce mech-
anisms tending to restore the broken time-reversal symmetry
in the TRITOPS-S junction. Another interesting effect that
could take place in the coupled dynamics of the edge states
and the phase fluctuations is the emergence of Majorana zero
modes that are tied to solitonic phase slips. Those localized
zero modes are expected for both junction types. All these
phenomena are worth of being analyzed in combination with
capacitive electron-electron interactions in the junction. The
starting point to this goal are the effective Hamiltonians of
Eqs. (25), (33), (38) and (40) we have derived for the differ-
ent junctions suitable extended to address these other effects.

VI. CONCLUSIONS

We have studied different models for two dimensional time-
reversal symmetric topological superconductors (TRITOPS),
with and without spin-orbit coupling. To this end, we have
derived effective Hamiltonians for the edge modes and shown
that their spectrum and spin texture strongly depend on the
point-group symmetry of the superconducting pairing as well
as on the spin-orbit coupling.
We have then analyzed wide Josephson junctions between two
topological superconductors (TRITOPS-TRITOPS) as well

between a topological superconductor and an ordinary s-wave
superconductor (TRITOPS-S). The discontinuous current-
phase relation near φ = π, known from junctions between
two one-dimensional topological superconductors, continues
to be visible in our wide TRITOPS-TRITOPS junctions. It
is particularly pronounced in the two-component, nematic su-
perconductors, where edge modes are non-dispersive. This re-
sult follows not only from our approximate continuum’s the-
ory, but is equally present in the full numerical solution of
the lattice version. Singular behavior near φ = π is however
also present in other junctions between two TRITOPSs, al-
beit weaker, given the edge-state dispersion. This behavior is
caused by vanishing mass of the edge modes at φ = π.
The behavior is rather different in TRITOPS-S junctions be-
tween a time-reversal symmetric topological and a topologi-
cally trivial superconductor. Now the edge-mode gap vanishes
for φ = 0, and minimization of the energy leads to a finite
but small φ leading to time-reversal symmetry breaking in the
edge. This endows the edge modes with a mass and generates
an unexpected jump in the Josephson current.
These results provide useful hints in the experimental search
of the TRITOPS phase. In addition, the effective Hamiltoni-
ans for the different junctions we have derived in the present
work are the foundation stones to investigate several other in-
teresting phenomena that may take place in Josephson junc-
tions with time-reversal symmetric topological superconduc-
tors, and can be extended to analyze the effect of phase fluctu-
ations, the generation of solitonic modes and charging effects.
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Appendix A: Details of the derivation of the edge states of the
p-wave model

We assume ∆ > 0, and the topological phase corresponds to
µ > 0. We focus on an edge intersecting the horizontal axis at
the x = 0 of a slab of infinite length along the y-direction. To
analyze the right/left edge, we consider a domain wall of the
form µr/l(x) = ∓sgn(x)|µ0|, which corresponds to the topolog-
ical phase in the region with x < 0 / x > 0, respectively.
For py = 0, there exists a Kramer’s pair of Majorana zero
modes, which can be calculated from the solution of{

−µν(x)τzσ0 + ∆τx (−i∂xσ
x)
}
Φν

0(x) = 0, (A1)

where we have neglected, for simplicity, the dispersion rela-
tion. The solutions are

Φν
0,s(x) = gν(x)Λν

0s, gν(x) = g0esν
∫ x

0 dx′ µ
ν (x′ )
∆ . (A2)
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with Λν
0,s being a spinor that satisfies τyσxΛν

0s = sνΛν
0s, with

sr = −sl = 1 and s = ±. Hence, Λν
0s = 1

2 (1, s, sνsi, sνi)T . For
finite py we look for solutions of the form

Ψ(x, t) =
∑
py>0

e−iEν
py t

(
Φν

py
(x)ην,py + CTΦν

py
(x)η†ν,py

)
, (A3)

being CT ≡ −iτyiσyK where C is the charge conjuga-
tion, T is the time-reversal operator in Nambu space, K is
complex conjugation and the Bogoliubov operator is ην,py =∫

d2xΦ
ν†
py (x)Ψ(x). Hence, we must solve{

−µν(x)τzσ0 + ∆τx
(
−i∂xσ

x ∓ i∂yσ
y
)}

Φν
py

(x) = Eν
py

Φν
py

(x).
(A4)

We find two degenerate solutions, which we label withσ =↑, ↓
for each py. The eigenenergies are

Eν
py,σ

= ±vν,σpy (A5)

with vν,σ = sνsσ∆, with s↑ = −s↓ = 1. The eigenfunctions are

Φν
py,σ

(x, y) = gν(x)eisν sσπ/4eipyyΛν
0,σ, Λν

0,σ =

(
Λν

0,+ + sσΛν
0,−

)
√

2
.

(A6)
The corresponding Bogoliubov operators are

ην,py,σ =
eisν sσπ/4

√
2

(
cν,py,σ − isνsσc†ν,−py,σ

)
. (A7)

Appendix B: Derivation of an approximate continuum
Hamiltonian for the ZKM model

We find it convenient to transform the Hamiltonian of Eq. (4)
by means of a rotation R = e−iπ/4σx

in the spin degrees of free-
dom, which transforms σy → σz. The derivation of the con-
tinuum Hamiltonian is particularly simple for ∆0 = ±2∆1 and
we shall focus on λ, ∆1 > 0. Let us assume, for concreteness,
the case with ∆0 = −2∆1, λ > 0, and ky = 0, in which case
the nodal surface crosses at the nodal points (±π/2, 0) and the
two bands have a well defined z-component of the spin ± 1/2.
For |µ+2t| ≤ 2λ, there are four Fermi points in the kx-axis (see
Fig. 2.a). We call them ±kF

1 ,±kF
2 , with kF

1 and kF
2 belonging

to the different branches ↑, ↓, respectively. Hence, linearizing
with respect to the Fermi points the spectrum without pair-
ing has right and left movers with ↑, ↓ z-component of spin.
Projecting the pairing potential on the Fermi points and ex-
panding with respect to the points ±π/2, which are precisely
the nodal points of this potential, we have the following low-
energy Hamiltonian

Hky=0
p = −δµτzσ0 + 2∆1 pxτ

xσz + 2λpyτ
zσx, (B1)

which is defined in the basis of the spinor
(ckF

1 ,↑
, ckF

2 ,↓
, c†
−kF

1 ,↓
,−c†

−kF
2 ,↑

)T with |px| = kF
1 − π/2 = π/2 − kF

2 ,
py = ky, p = (px, py) and δµ = µ + 2t − 2λ.
We can repeat the argument along ky for kx = 0. The differ-
ence is that the two bands represented in Fig. 2.a have spin

components along the x-direction instead of z. The resulting
Hamiltonian is

Hkx=0
p = δµτzσ0 + 2∆1 pyτ

xσx − 2λpxτ
zσz, (B2)

with py = ky ∓ π/2, px = kx. Furthermore, a similar reasoning
can be followed for the case with ∆0 = 2∆1 for |µ − 2t| ≤ 2λ
and the same values of the other parameters. For simplicity,
we have neglected the momentum dependence of the disper-
sion relation of the two bands without pairing at the Fermi
energy.
We now consider the Hamiltonian Hky=0

p given by (Eq. B1)
to derive the wave function and the effective Hamiltonian for
the edge states along the y-direction. The structure of the so-
lution for the case py = 0 is identical to Eq. (A1). In turn, as
pointed out in the previous section, this solution has an iden-
tical structure as Eq. (A2), but Λν

0,σ is now a spinor that satis-
fies τyσzΛν

0σ = sνΛν
0σ, with sr = −sl = 1 and σ =↑, ↓. Hence,

Λν
0↑ = (1, 0, sνi, 0) and Λν

0↓ = (0, 1, 0,−sνi). For py , 0, we
consider a field operator with the structure of Eq. (A3), where
the spinors should satisfy{
−µν(x)τzσ0 + 2∆1τ

x (−i∂xσ
z) + 2λpyτ

zσx
}
Φν

py
(x) = Eν

py
Φν

py
(x).

(B3)
We find two degenerate solutions, which we label with s =

+,− for each py. The eigenenergies are

Eν
py,s = vs py (B4)

with vs = s2λ. The eigenfunctions are

Φν
py,s(x, z) = gν(x)e−issνπ/4eipyyΛν

0,s, Λν
0,s =

(
Λν

0,↑ + sΛν
0,↓

)
√

2
(B5)

and the corresponding Bogoliubov operators can be expressed
as

ην,py,s =
e−issνπ/4

√
2

(
cν,py,s + issνc

†
ν,−py,s

)
,

cν,py,s =
1
√

2

(
cν,py,↑ + scν,py,↓

)
, ∆0/∆1 < 0. (B6)

The corresponding effective Hamiltonians for the edges are
given in Eq. (11).
For the case with ∆0/∆1 > 0, we can follow a similar ap-
proach, taking into account that the expansion leading to the
effective continuum Hamiltonian must be done with respect
to k0 = (π, π). In such a case, we would get for Hky=π

p , with
px = kx ± π/2, py = ky − π and Hkx=π

p ,with px = kx − π,
py = ky±π/2 expressions like those of Eqs. (B1) and (B2) but
with opposite sign of the pairing term.

Appendix C: Exact solution of the ZKM Hamiltonian for a
transverse channel

We consider the ZKM model in a ribbon of finite length Nx
along the x- direction and periodic boundary conditions in the
transverse direction. For a single k-channel as defined in Eq.
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(15) this Hamiltonian is one-dimensional. Hence, it is pos-
sible to solve it with a similar method as the one introduced
in Ref. [60, 61]. The procedure is very similar as the one
explained for this specific model in Ref. [48]. We explain
bellow the main steps.
We express the Hamiltonian as follows

Hk =
∑

j

Ha
k j + Hb

k j + Hλ
k j, (C1)

where the first term is

Ha
k j = ξk

∑
σ

c†k jσck jσ +
(
∆kc†k j↑c

†

−k j↓ + H.c.
)
, (C2)

the second one is

Hb
k j = −t

(
c†k j+1σck jσ + H.c.

)
+

[
−iλ

(
c†k j+1↑ck j↑ − c†k j+1↓ck j↓

)
+∆1

(
c†k j↑c

†

−k j+1↓ + c†
−k j+1↑c

†

k j↓

)
+ H.c.

]
(C3)

These two terms are combined as follows

H0
k =

∑
j

(
Ha

k j + Hb
k j + Ha

−k j + Hb
−k j

)
, (C4)

and this Hamiltonian is solved exactly. The third term is

Hλ
k j = −2λ sin k

(
c†k j↑ck j↓ + c†k j↓ck j↑

)
, (C5)

and it is treated as a perturbation, by defining

Hλ
k =

∑
j

(
Hλ

k j + Hλ
−k j

)
. (C6)

As in previous works [48, 59], the Hamiltonian matrix is ex-
pressed in a basis constructed by mapping the annihilation (a)
and creation (c) operators to different states

cα ↔ |αa〉, c†α ↔ |αc〉. (C7)

A solution for H0
k in a chain of Nx sites with open boundary

conditions with the structure of states of the generalized Bloch
form

|zkσb〉 =

Nx∑
j=1

z j−1|k jσb〉, (C8)

where b = a or c, is proposed. Following the same steps as in
Refs. [48, 59] a zero mode localized at the left (L) side of the
stripe is obtained:

γLk↑ = Nk

2∑
i=1

αi

Nx∑
j=1

z j−1
i

(
ck j↑ + iζc†

−k j↓

)
, (C9)

where the (k dependent) zi and αi are determined by request-
ing that Eq. (C8) is an eigenstate of H0

k with zero energy,
which leads to a 2nd order polinomial in z, with roots z1, z2.

ζ = sgn(λ∆1) has been chosen to lead to |zi| < 1. The normal-
ization factor Nk, is determined from {γk↑, γ

†

k↑} = 1,

N−2
k = 2

Nx∑
j=1

∣∣∣∣∣∣∣
2∑

i=1

αiz
j−1
i

∣∣∣∣∣∣∣
2

' 2

 2∑
i=1

|αi|
2

1 − |zi|
2 +

α1ᾱ2

1 − ziz̄2
+

ᾱ1α2

1 − z̄1z2

 , (C10)

where in the last equality, it has been assumed that Nx is much
larger than the localization length of the zero mode.
Using time-reversal symmetry the corresponding solution for
the Kramer’s partner with spin down is obtained

γLk↓ = Nk

2∑
i=1

ᾱi

Nx∑
j=1

z̄ j−1
i

(
ck j↓ + iζc†

−k j↑

)
, (C11)

where we have used that Nk, αi and zi are even in k. Moving
the parameters, this continues to be valid by continuity until
|zi| = 1 is reached for one of the roots. At this point the zero
mode disappears [the normalization factor in Eq. (C9) van-
ishes, see Eq. (C10)] and the system ceases to be topological.
Note that

γ†Lkσ = −iζγL−k−σ. (C12)

So far, we have obtained exactly the zero-modes of the Hamil-
tonian disregarding Hλ

k . Using Eq. (C9) we obtain for the
complete Hamiltonian

[γLk↑,H] = (−2λ sin k) Nk

2∑
i=1

αi

Nx∑
j=1

z j−1
i

(
ck j↓ + iζc†

−k j↑

)
.

(C13)
The second member of this equation has a low-energy part
proportional to γLk↓ and a high-energy part. In first order per-
turbation theory in Hλ

k we consider only the former part, which
is obtained anticommuting the second member with γ†Lk↓. The
result is

[γLk↑,H] = −2λρkeiϕk sin kγLk↓ + ..., (C14)

where ... denotes the high-energy part (a continuum of ex-
cited states) and ρk and ϕk are the modulus and phase of the
complex number

ρkeiϕk = 2N2
k

Nx∑
j=1

 2∑
i=1

αiz
j−1
i


2

' 2N2
k

 2∑
i=1

α2
i

1 − z2
i

+
2α1α2

1 − z1z2

 ,
(C15)

where in the last equality, it has been assumed that Nx is much
larger than the localization length of the zero mode. Note that
all quantities in Eq. (C15) are even in k.
Using Eq. (C14) we obtain the eigenmodes

ηLk± =
1
√

2

(
γLk↑ ± eiϕkγLk↓

)
, [ηLk±,H] = ±ελ,k,

ελ,k = −2λρk sin k (C16)
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Under time reversal K these operators transform as

KηLk±K† = ∓e−iϕkηL−k∓. (C17)

Using Eqs. (C12) the following property is easily proved

η†L−k± = ∓iζe−iϕkηLk±. (C18)

The resulting energies are in excellent agreement with numer-
ical results for parameters well inside the topological region,
for which ρk ∼ 1, for example t = 1, µ = 2, ∆0 = 4, ∆1 = 2.2,
λ = 7 and k near π. If the largest |zi| approaches 1, ρk is small
and the results lose accuracy . The dependence of ρk with k
is important. In general, the system is topological for small ξk
and ∆k [see Eqs. (C2)] [31], a condition difficult to satisfy for
all k except for very small t and ∆0.
The low-energy states with important amplitude for sites near
j = Nx can be obtained from those derived above by reflection
( j is interchanged with Nx+1− j) and complex conjugation (as
done before [48] and confirmed numerically). Then we have

γRk↑ = Nk

2∑
i=1

ᾱi

Nx∑
j=1

z̄Nx− j
i

(
ck j↑ − iζc†

−k j↓

)
,

γRk↓ = Nk

2∑
i=1

αi

Nx∑
j=1

zNx− j
i

(
ck j↓ − iζc†

−k j↑

)
,

ηRk± =
1
√

2

(
γRk↑ ± e−iϕkγRk↓

)
, (C19)

with the following properties similar to Eqs. (C12) and (C18)

γ†Rkσ = iζγR−k−σ, η†R−k± = ±iζeiϕkηRk±. (C20)

Appendix D: Derivation of the effective Hamiltonian for the
TRITOPS-S junction

We consider the low-energy effective Hamiltonian for the
TRITOPS (S2) in Eq. (22)

HS 2 =
∑
k>0

ελ,k
(
η†k+

ηk+ − η
†

k−ηk−

)
, (D1)

with ελ,k given by Eq. (19). The non-topological supercon-
ductor (S) is modeled by Eq. (37). We substitute Eqs. (29) to
(30) in the operators of the TRITOPS side while for the S-side
we use

c†k↑ =
1
√

2

(
d†k+

+ d†k−
)
, c†k↓ =

1
√

2
(d−k+ − d−k−) . (D2)

The effective phase-dependent tunneling Hamiltonian for the
junction, obtained after adding the contributions of k and −k,
reads

√
2Hk

J

tJ
= η†Lk+

[wkg−(φ)dk+ + wkg+(φ)dk− + w̄keiϕk g−(φ)d†
−k+
− w̄keiϕk g+(φ)d†

−k−]

+η†Lk−[wkg−(φ)dk+ + wkg+(φ)dk− − w̄keiϕk g−(φ)d†
−k+

+ w̄keiϕk g+(φ)d†
−k−] + H.c., (D3)

where

g±(φ) = e−iφ/2 ± iζeiφ/2. (D4)

The fermionic degrees of freedom of S can be ”integrated-

out” by treating Hk
J in second-order of perturbation theory.

The result is the effective Hamiltonian for the TRITOPS edge
given in Eq. (40).
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