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Abstract

Existing episodic reinforcement algorithms assume that the length of an episode is fixed across time and known
a priori. In this paper, we consider a general framework of episodic reinforcement learning when the length of
each episode is drawn from a distribution. We first establish that this problem is equivalent to online reinforcement
learning with general discounting where the learner is trying to optimize the expected discounted sum of rewards
over an infinite horizon, but where the discounting function is not necessarily geometric. We show that minimizing
regret with this new general discounting is equivalent to minimizing regret with uncertain episode lengths. We then
design a reinforcement learning algorithm that minimizes regret with general discounting but acts for the setting with
uncertain episode lengths. We instantiate our general bound for different types of discounting, including geometric
and polynomial discounting. We also show that we can obtain similar regret bounds even when the uncertainty over
the episode lengths is unknown, by estimating the unknown distribution over time. Finally, we compare our learning
algorithms with existing value-iteration based episodic RL algorithms on a grid-world environment.

1 Introduction
We consider the problem of episodic reinforcement learning, where a learning agent interacts with the environment
over a number of episodes [SB18]. The framework of episodic reinforcement learning usually considers two types of
episode lengths: either each episode has a fixed and invariant length H , or each episode may have a varying length
controlled by the learner. The fixed-length assumption is relevant for recommender systems [Agg+16] where the plat-
form interacts with a user for a fixed number of rounds. Variable length episodes arise naturally in robotics [KBP13],
where each episode is associated with a learning agent completing a task, and so the length of the episode is en-
tirely controlled by the learner. Fixed horizon lengths make the design of learning algorithms easier, and is the usual
assumption in most papers on theoretical reinforcement learning [AOM17; Jin+18].

In this paper, we take a different perspective on episodic reinforcement learning and assume that the length of each
episode is drawn from a distribution. This situation often arises in online platforms where the length of an episode
(i.e., the duration of a visit by a user) is not fixed a priori, but follows a predictable distribution [OSB14]. Additionally,
various econometric and psychological evidence suggest that humans learn by maintaining a risk/hazard distribution
over the future [Soz98], which can be interpreted as a distribution over the horizon length. Despite a large and growing
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literature on episodic reinforcement learning, except for [Fed+19], uncertain epsiodic lengths or settings with general
survival rates of agents have not been studied before.

Our Contributions: In this paper, we describe reinforcement learning algorithms for general distributions over
episode lengths. Our main contribution is a general learning algorithm which can be adapted to a given distribution
over episode lengths to obtain sub-linear regret over time. In particular, our contributions are the following.

• We first establish an equivalence between maximization of expected total reward with uncertain episode lengths
and maximization of expected (general) discounted sum of rewards over an infinite horizon. In particular, we
show that minimization of regret is equivalent in these two environments.

• Next we design a learning algorithm for the setting with arbitrary distribution over the episode lengths. Our
algorithm generalizes the value-iteration based learning algorithm of Azar et al. [AOM17] by carefully choosing
an effective horizon length and then updating the backward induction step based on the distribution over episode
lengths. In order to analyze its regret, we use the equivalence result above, and bound its regret for a setting
with general discounting.

• We instantiate our general regret bound for different types of discounting (or equivalently episode distribu-
tions), including geometric and polynomial discounting, and obtain sub-linear regret bounds. For geometric
discounting with parameter γ, we bound regret by Õ(

√
SAT/(1 − γ)1.5) which matches the recently estab-

lished minimax optimal regret for the non-episodic setting [HZG21]. For the polynomial discounting of the
form h−p we upper bound regret by Õ(

√
SAT

1
2−1/p ).

• Finally, we show that we can obtain similar regret bounds even when the uncertainty over the episode lengths is
unknown, by estimating the unknown distribution over time. In fact, for geometric discounting, we recover the
same regret bound (i.e. Õ(

√
SAT/(1− γ)1.5) up to logarithmic factors, and for the polynomial discounting we

obtain a regret bound of Õ(
√
SAT

p
1+2p ), which asymptotically matches the previous regret bound.

Our results require novel and non-trivial generalizations of episodic learning algorithms and straightforward exten-
sions to existing algorithms do not work. Indeed, a naive approach would be to use the expected episode length as the
fixed horizon length H . However, this fails with heavy-tailed distributions which often appear in practice. Alternately,
we could compute an upper bound on the episode length so that with high probability the lengths of all the T episodes
are within this bound. Such an upper bound can be computed with the knowledge of distribution over episode lengths
and using standard concentration inequalities. However, these upper bounds become loose either with a large number
of episodes or for heavy-tailed distributions.

1.1 Related Work
Episodic Reinforcement Learning: Our work is closely related to the UCB-VI algorithm of Azar et al. [AOM17],
which achieves O(

√
HSAT ) regret for episodic RL with fixed horizon length H . The main difference between our

algorithm and UCB-VI is that we use a different equation for backward-induction where future payoffs are discounted
by a factor of γ(h + 1)/γ(h) at step h, where γ is a general discount function. Beyond [AOM17], several papers
have considered different versions of episodic RL including changing transition function [Jin+18; JL20], and function
approximation [Jin+20; WSY20; YW20].

General Discounting: Our work is also closely related to reinforcement learning with general discounting. Even
though geometric discounting is the most-studied discounting because of its theoretical properties [Ber12], there is
a wealth of evidence suggesting that humans use general discounting and time-inconsistent decision making [Ain75;
Maz85; GM04]. In general, optimizing discounted sum of rewards with respect to a general discounting might be
difficult as we are not guaranteed to have a stationary optimal policy. Fedus et al. [Fed+19] study RL with hyperbolic
discounting and learn many Q-values each with a different (geometric) discounting. Our model is more general, and
our algorithm is based on a modified value iteration. We also obtain theoretical bounds on regret in our general setting.
Finally, Pitis [Pit19] introduced more general state, action based discounting but that is out of scope of this paper.

Stochastic Shortest Path: Our work is related to the stochastic shortest path (SSP), introduced by Bertsekas et
al. [BT91]. In SSP, the goal of the learner is to reach a designated state in an MDP, and minimize the expected total
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cost of the policy before reaching that goal. Recently, there has been a surge of interest in deriving online learning
algorithms for SSP [Ros+20; Coh+21; Tar+21]. Our setting differs from SSP in two ways. First, the horizon length
is effectively controlled by the learner in SSP, once she has a good approximation of the model. But in our setting,
the horizon length is drawn from a distribution at the start of an episode by the nature, and is unknown to the learner
during that episode. Second, when the model is known in SSP, different policies induce different distributions over the
horizon length. Therefore, in contrast to our setting, minimizing regret in SSP is not the same as minimizing regret
under general discounting.

Other Related Work: Note that uncertainty over episode lengths can also be interpreted as hazardous MDP [HM72],
where hazard rate is defined to be the negative rate of change of log-survival time. Sozou [Soz98] showed that different
prior belief over hazard rates imply different types of discounting. We actually show equivalence between general dis-
counting and uncertain episode lengths, even in terms of regret bounds. Finally, this setting is captured by the partially
observable Markov decision processes [KLC98], where one can make the uncertain parameters hidden and/or partially
observable.

2 Model
We consider the problem of episodic reinforcement learning with uncertain episode length. An agent interacts with an
MDPM = (S,A, r,P, PH), where PH denotes the probability distribution over the episode length. We assume that the
rewards are bounded between 0 and 1. The agent interacts with the environment for T episodes as follows.

• At episode k ∈ [T ], the starting state xk,1 is chosen arbitrarily and the length of the episode Hk ∼ PH(·). 1

• For h ∈ [Hk], let the state visited be xk,h and the action taken be ak,h. Then, the next state xk,h+1 ∼
P(·|xk,h, ak,h).

The agent interacts with the MDPM for T episodes and the goal is to maximize the expected undiscounted sum
of rewards. Given a sequence of k episode lengths {Hk}k∈[T ] the expected cumulative reward of an agent’s policy
π = {πk}k∈[T ] is given as

Rew
(
π; {Hk}k∈[T ]

)
=

T∑
k=1

E

[
Hk∑
h=1

r(xk,h, ak,h)

]
Since each Hk is a random variable drawn from the distribution PH(·), we are interested in expected reward with
respect to distribution PH.

E
[
Rew

(
π; {Hk}k∈[T ]

)]
= E

[
T∑
k=1

∞∑
Hk=1

PH(Hk)

Hk∑
h=1

r(xk,h, ak,h)

]

= Eπ

[
T∑
k=1

∞∑
h=1

PH(H ≥ h)r(xt,h, at,h)

]
(1)

As is standard in the literature on online learning, we will consider the problem of minimizing regret instead of
maximizing the reward. Given an episode length Hk and starting state xk,1 let π?k be the policy that maximizes the ex-

pected sum of rewards overHk steps i.e. π?k ∈ argmaxπEπ
[∑Hk

h=1 r(xk,h, ak,h)|xk,1
]
.We will write V πk(xk,1;Hk)

to write the (undiscounted) value function of a policy πk overHk steps starting from state xk,1. Then π?k is also defined
as π?k ∈ argmaxπV

π(xk,1;Hk). We will also write V ?(xk,1;Hk) to denote the corresponding value of the optimal
value function. Now we can define the regret over T steps as follows.

Definition 1. The regret of a learning algorithm π = {πk}k∈[T ] over T steps with episode lengths {Hk}k∈[T ] is

Reg (π; {Hk}) =
∑
k∈[T ]

V ?(xk,1;Hk)− V πk(xk,1;Hk) (2)

1The parameter Hk is unknown to the learner during episode k.
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Note that the regret as defined in eq. (2) is actually a random variable as the episode lengths are also randomly
generated from the distribution PH(·). So we will be interested in bounding the expected regret. Let V ?(xk,1) be
the expected value of V ?(xk,1;Hk) i.e. V ?(xk,1) =

∑
` V

?(xk,1; `)PH(`). Then the expected regret of a learning
algorithm is given as

Reg(π; PH(·)) =
∑
k∈[T ]

V ?(xk,1)− EHk [V πk(xk,1;Hk)]

2.1 An Equivalent Model of General Discounting
We first establish that the problem of minimizing regret in our setting is equivalent to minimizing regret in a different
environment, where the goal is to minimize discounted reward over an infinite horizon with a general notion of dis-
counting. By setting γ(h) = PH(H ≥ h), the expected reward in eq. (1) becomes a sum of T expected rewards under
the general discounting function {γ(h)}∞h=1.

E
[
Rew(π; {Hk}k∈[T ])

]
=

T∑
t=1

E

[ ∞∑
h=1

γ(h)r(xt,h, at,h)|xk,1

]
Therefore, we consider the equivalent setting where the agent is interacting with the MDPM = (S,A, r,P,γ) where
γ = {γ(h)}∞h=1 is a general discounting factor. We will require the following two properties from the discounting
factors:

1. γ(1) = 1,

2.
∑∞
h=1 γ(h) ≤M for some universal constant M > 0.

The first assumption is without loss of generality as we can normalize all the discount factors without affecting the
maximization problem. The second assumption guarantees that the optimal policy is well-defined. Note that this
assumption rules out hyperbolic discounting γ(h) = 1

1+h , but does allow discount factors of the form γ(h) = h−p for
any p > 1. Finally, note that our original reformulation of γ(h) = PH(H ≥ h) trivially satisfies the first assumption.
The second assumption essentially ensures that the horizon length has a finite mean. We will also write Γ(h) to define
the sum of the tail part of the series starting at h i.e.

Γ(h) =
∑
j≥h

γ(j) (3)

In this new environment, the learner solves the following episodic reinforcement learning problem over T episodes.

Environment: General Discounting
1. The starting state xk,1 is chosen arbitrarily.

2. The agent maximizes E [
∑∞
h=1 γ(h)r(xk,h, ak,h)|xk,1] over an infinite horizon.

Notice that even though the new environment is episodic, the length of each episode is infinite. So this environment
is not realistic, and we are only introducing this hypothetical environment to design our algorithm and analyze its
performance.

Suppose that we are given a learning algorithm π = {πk}k∈[T ]. We allow the possibility that πk is a non-stationary
policy as each πk is used to maximizing a discounted sum of rewards with respect to a general discounting factor and
in general the optimal policy need not be stationary. A non-stationary policy πk is a collection of policies {πk,h}∞h=1

where πk,h : (S ×A)h−1 × S → ∆(A). Given a non-stationary policy πk at episode k, we define the state-action Q
function and the value function as

Qπk(x, a;γ) = E

[ ∞∑
h=1

γ(h)r(xk,h, ak,h)|xk,1 = x, ak,1 = a

]

V πk(x;γ) = E

[ ∞∑
h=1

γ(h)r(xk,h, ak,h)|xk,1 = x

]

4



Here ak,h ∼ πk,h(xk,1, ak,1, . . . , xk,h−1, ak,h−1, xk,h). In this environment, we again measure the regret as the sum
of sub-optimality gaps over the T episodes.

Definition 2. Let the optimal value function be defined as V ?(x;γ) = supπ V
π(x;γ). Then we define regret for a

learning algorithm π = {πk}k∈[T ] as

Reg(π,γ) =

T∑
k=1

V ?(xk,1;γ)− V πk(xk,1;γ) (4)

Our next result shows that it is sufficient to minimize regret with respect to the new environment of episodic
reinforcement learning. In fact, if any algorithm has regretR(T ) with respect to the new benchmark, then it has regret
at mostR(T ) with respect to the original environment with uncertain episode lengths.

Lemma 1. For any learning algorithm π = {πk}k∈[T ] we have the following guarantee:

Reg(π; PH(·)) ≤ Reg(π;γ).

We also show that a converse of lemma 1 holds with additional restrictions on the discount factor γ.

Lemma 2. Suppose the discount factor γ is non-increasing. Then there exists a distribution PH(·) over the episode
lengths so that

Reg(π;γ) ≤ Reg(π; PH(·)).

Because of lemma 1, it is sufficient to bound a learning algorithm’s regret for the environment with infinite horizon
and general discounting. Therefore, we now focus on designing a learning algorithm that acts in an episodic setting
with uncertain episode lengths, but analyze its regret in the infinite horizon setting with general discounting.

3 Algorithm: Regret Minimization under General Discounting
We now introduce our main algorithm. Given a non-stationary policy πk, we define the state-action function and value
function at step h as follows.

Qπkh (x, a) = E

 ∞∑
j=1

γ(j)r(xk,h+j−1, ak,h+j−1) | Hh−1, xk,h = x, ak,h = a


V πkh (x) = E

 ∞∑
j=1

γ(j)r(xk,h+j−1, ak,h+j−1) | Hh−1, xk,h = x


where Hh−1 = (xk,1, ak,1, . . . , ak,h−1) and ak,h+j ∼ πk,h+j(Hh+j−1, xk,h+j). Note that, both the state-action Q-
function and the value function depend on the history Hh−1. Moreover, conditioned on the history, we are evaluating
the total discounted reward as if the policy {πk,h+j}j≥0 was used from the beginning. We first establish some relations
regarding the above state-action and value functions. We drop the episode index k for ease of exposition. Given a
non-stationary policy π = {πh}h≥1 let

Qπh(x, a) = r(x, a) + γ(2) · E

 ∞∑
j=1

γ(j + 1)

γ(2)
r(xh+j , ah+j)|Hh−1, xh = x, ah = a


= r(x, a) + γ(2)Exh+1∼P(·|x,a)

E
 ∞∑
j=1

γ(j + 1)

γ(2)
r(xh+j+1, ah+j+1)|Hh, xh+1


= r(x, a) + γ(2)Exh+1∼P(·|x,a)

[
V πh+1(xh+1;γ2)

]
5



ALGORITHM 1: UCB-VI Generalized
Input: Discount factor {γ(h)}∞h=1, parameter ∆
H ← ∅.
for h = 1, . . . , N(∆) do

Set Q1,h(x, a)←
∑∞
j=1 γh(j) = 1

γ(h)

∑∞
j=1 γ(j + h− 1) for all x ∈ S and a ∈ A.

for t = 1, . . . , T do
Update-Q-values(H,γ,∆).
Receive state xt,1.
for h = 1, . . . do

if h ≤ N(∆) then
Take action at,h = argmaxaQt,h(xt,h, a)
UpdateH = H ∪ (xt,h, at,h, xt,h+1)
if xt,h+1 is a terminal state then

Continue to the next episode.
Take an arbitrary action.

where in the last line we write γ2 to denote the discount factor γ2(j) = γ(j+1)
γ(2) and V πh+1(xh+1;γ2) is the value

function at time-step h with respect to the new discount factor γ2. By a similar argument one can write the action-
value function with respect to the discount factor γ2 as the following expression.

Qπh(x, a;γ2)

= r(x, a) + γ2(2)Exh+1∼P(·|x,a)

[
V πh+1(xh+1;γ2)

]
= r(x, a) +

γ(3)

γ(2)
Exh+1∼P(·|x,a)

[
V πh+1(xh+1;γ3)

]
where the discount factor γ3 is given as γ3(j) = γ(j+2)

γ(3) . In general, we have the following relation.

Qπh(x, a;γk) = r(x, a) +
γ(k + 1)

γ(k)
Exh+1∼P(·|x,a)

[
V πh+1(xh+1;γk+1)

]
(5)

where the discount factor γk is defined as γk(j) = γ(j+k−1)
γ(k) for j = 1, 2, . . .. Notice that when γ is a geometric

discounting, we only need equation.

Qπh(x, a) = r(x, a) + γExh+1∼P(·|x,a)

[
V πh+1(xh+1)

]
(6)

Description of the Learning Algorithm : The sequence of recurrence relations eq. (5) motivates our main algorithm
(1). Our algorithm is based on the upper confidence value iteration algorithm (UCBVI [AOM17]). In an episodic
reinforcement learning setting with fixed horizon length H , UCBVI uses backward induction to update the Q-values
at the end of each episode, and takes greedy action according to the Q-table.

However, in our setting, there is no fixed horizon length and the Q-values are related through an infinite se-
quence of recurrence relations. So, algorithm 1 considers a truncated version of the sequence of recurrence rela-
tions eq. (5). In particular, given an input discount factor {γ(h)}∞h=1

2 and a parameter ∆, algorithm 1 first deter-
mines N(∆) as a measure of effective length of the horizon. In particular, we set N(∆) to be an index so that
Γ(N(∆)) =

∑
j≥N(∆) γ(j) ≤ ∆. Note that, such an index N(∆) always exists as we assumed that the total sum

of the discounting factors converges. Then algorithm 1 maintains an estimate of the Q value for all possible discount
factors up to N(∆) i.e. γk for k = 1, . . . , N(∆).

The details of the update procedure is provided in the appendix. In the update procedure, we first set the (N(∆) +
1)-th Q-value to be ∆/γ(N(∆) + 1) which is always an upper bound on the Q-value with discount factor γN(∆)+1

2Recall that γ(h) = PH(H ≥ h).
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because of the way algorithm 1 sets the value N(∆). Then starting from level N(∆), we update the Q-values through
backward induction and eq. (5).

Note that our algorithm needs to maintainN(∆) action-value tables. We will later show that in order to obtain sub-
linear regret we need to choose ∆ based on the particular discount factor. In particular, for the geometric discount factor
γ(h) = γh−1 we need to choose N(∆) = log T

log(1/γ) . On the other hand, discounting factor of the form γ(h) = 1/hp

requires N(∆) = O
(
T 1/(2p−1)

)
.

4 Analysis
The next theorem provides an upper bound on the regret Reg(π;γ). In order to state the theorem, we need a new
notation. Let the function t : N → R be defined as

t(h) =

{
1 if h = 1

γ(h)
γ(1)

∏h
j=2

(
1 + γ(j)

jβΓ(j)

)
o.w.

Note that the function t is parameterized by the parameter β and depends on the discount factor γ(·).

Theorem 1 (Informal). With probability at least 1− δ, Algorithm 1 has the following regret.

Reg(π;γ) ≤ ∆T

γ(N(∆) + 1)
t(N(∆) + 1) + max

h∈[N(∆)]
t(h)

Γ(h+ 1)

γ(h)
Õ
(√

SATN(∆)
)

Theorem 1 states a generic bound that holds for any discount factor. The main terms in the bound areO
(√

SATN(∆)
)

,
∆T , and several factors dependent on the discount factor γ. We now instantiate the bound for different discount factors
by choosing appropriate value of ∆ and the parameter β.

Corollary 2. Consider the discount factor γ(h) = h−p. For p ≥ 2 and T ≥ O(S3A) we have

Reg(T ) ≤ Õ
(
S1/2A1/2T

1
2−1/p

)
and for 1 < p < 2 and T ≥ O

(
(S3A)

2p−1
p−1

)
we have

Reg(T ) ≤ Õ
(

(p− 1)−
p
p−1S1/2A1/2T

1
2−1/p

)
We prove corollary 2 by substituting β = p − 1 and ∆ = O

(
T−

p−1
2p−1

)
. Note that this result suggests that as

p increases to infinity, the regret bound converges to O(
√
T ). This also suggests that for exponentially decaying

discounting factor, our algorithm should have exactly O(
√
T ) regret. We verify this claim next.

Corollary 3. Consider the discount factor γ(h) = γh−1 for γ ∈ [0, 1) and suppose T ≥ S3A
(1−γ)4 . Then algorithm 1

has regret at most
Reg(T ) ≤ Õ

(√
SAT/(1− γ)1.5

)
Here we substitute β = 3/2 and ∆ = T−1/(1− γ). Our regret bound for the geometric discounting matches the

minimax optimal regret bound of the non-episodic setting of [HZG21].

Proof Sketch of Theorem 1 : We now give an overview of the main steps of the proof. Although the proof is based
upon the proof of the UCB-VI algorithm [AOM17], there are several differences.

• Let V ?h (·) be the optimal value function under discounting factor γh(·) i.e. V ?h (x) = supπ V
π(x; γh). We

first show that the estimates Vk,h maintained by Algorithm 1 upper bound the optimal value functions i.e.
Vk,h(x) ≥ V ?h (x) for any k, h ∈ [N(∆)].

7



ALGORITHM 2: Estimating Unknown Discount Factor
Input: Horizon Length H? = N(∆).
Set block length B =

√
T log T log(log(T )/δ).

Set γ̂0 to be an arbitrary discount factor.
for j = 0, 1, . . . , log(T/B)− 1 do

if j > 0 then
γ̂j(h) = 1− F̂H(h− 1) forall h.

∆̂j =
∑
h≥H?+1 γ̂j(h).

Run algorithm 1 for 2jB episodes with inputs γ̂j and ∆̂j .
/* update empirical distribution function */

F̂H(h) = 1
2jB

∑2jB
t=0 1 {Ht ≤ h}.

• Let ∆̃k,h = Vk,h − V πkh . Then regret can be bounded as

Reg(π;γ) =

T∑
k=1

V ?(xk,1)− V πk1 (xk,1) ≤
T∑
k=1

Vk,1(xk,1)− V πk1 (xk,1) ≤
T∑
k=1

∆̃k,1(xk,1)

• Let δ̃k,h = ∆̃k,h(xk,h). Then, the main part of the proof of theorem 1 is establishing the following recurrent
relation.

δ̃k,h ≤
γ(h+ 1)

γ(h)

(
1 +

γ(h+ 1)

(h+ 1)βΓ(h+ 1)

)
δ̃k,h+1 +

√
2Lεk,h + ek,h + bk,h + εk,h + fk,h

Here εk,h and εk,h are Martingale difference sequences and bk,h, ek,h, fk,h are either the bonus term or behave
similarly as the bonus term.

• We complete the proof by summing the recurrence relation above over all the episodes and from h = 1 to
N(∆). Although [AOM17] established a similar recurrence relation, there are two major differences. First the
multiplicative factor in front of δ̃k,h+1 is changing with time-step h and is not a constant. This is because the
backward induction step uses eq. (5) in our setting. Second, after expanding the recurrence relation from h = 1
to N(∆) the final term is no longer zero and an extra O(∆T ) term shows up in the regret bound.

5 Estimating the Discount Function
In this section we consider the situation when the discount function γ(h) = PH(H ≥ h) is not unknown. We start
with the assumption that the optimal value of N(∆) (say H?) is known. The next lemma bounds the regret achieved
by running an algorithm with N(∆) = H? with the true discounting γ and an estimate of the discounting γ̂. Our
algorithm partitions the entire sequence of T episodes into blocks of lengthsB, 2B, 22B, . . . , 2sB for s = log(T/B)−
1. At the end of each block the algorithm recomputes an estimate of γ. Recall that we defined γ(h) = Pr(H ≥ h).
Since every episode we get one sample from the distribution of H (the random length of the current episode) we can
use the empirical distribution function of horizon length to obtain γ̂. At the end of block B, the algorithm computes
γ̂B , and runs algorithm 1 with this estimate and ∆̂B = Γ̂B(H? + 1) =

∑
h≥H?+1 γ̂B(h) for the block B + 1.

Theorem 4 (Informal). When run with horizon lengthH?, algorithm 2 has the following regret bound with probability
at least 1− δ

Reg(π;γ) ≤ min
L∈[T ]

(
TΓ(L+ 1) + 2L log(T )

√
T )
)

+ Γ(H?)T

+ max
h∈[H?]

t(h)

γ(h)
g(h)Γ(h+ 1)

O(T−1/4)

Γ(h+ 1)
Õ
(√

SATH?
)

where g(h) = exp
{
O
(∑h

k=2
T−1/4

γ(k)+kβΓ(k)

)}
.
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(a) Geometric, γ = 0.9 (b) Geometric, γ = 0.95 (c) Geometric, γ = 0.975

(d) Polynomial, p = 1.4 (e) Polynomial, p = 1.6 (f) Polynomial, p = 2.0

(g) Quasi-Hyperbolic, β = 0.7 (h) Quasi-Hyperbolic, β = 0.8 (i) Quasi-Hyperbolic, β = 0.9

Figure 1: Comparison of our algorithm with different variants of UCB-VI on the Taxi environment [Die00]. The regret
is measured over 100 episodes, and the length of each episode is drawn independently from a given distribution. Each
plot shows average regret and standard error from 10 trials.

Our proof relies on bounding the estimation error of γ̂ and Γ̂. We can use the classical DKW inequality [DKW56]
to bound the maximum deviation between empirical CDF (P̂H(·)) and true CDF (PH). Through a union bound over the
log(T ) blocks, this immediately provides a bound between ‖γ̂j − γj‖∞ for all j ∈ [log(T/B)]. However, we also
need to bound the distance between Γ̂j(·) and Γ(·) for all j (defined in (3)). A naive application of DKW inequality
results in an additive bound between Γ̂j(h) and Γ(h) that grows at a rate of h. This is insufficient for our case to get
a sublinear regret bound. However, we show that we can use the multiclass fundamental theorem [SB14] to derive an
error bound that grows at a rate of

√
log h and this is sufficient for our proof.

The main challenge in the proof of theorem 4 is controlling the growth of the term t(h)/γ(h). Notice that this term
is a product of h terms of the form 1 + γ(k)

kβΓ(k)
, so any error in estimating γ could blow up the product by a factor of

h. We could show that the regret is multiplied by an additional function g(h) which is parameterized by β. We next
instantiate theorem 4 for different discount factors and show that we can obtain regret bounds similar to corollary 2,
and 3 up to logarithmic factors.
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Corollary 5. Consider the discount factor γ(h) = h−p for p ≥ 2. Then the regret of algorithm 2 is

Reg(T ) ≤

 Õ
(√

SAT
p+1
2p

)
if T ≥ O

(
(S3/2A1/2)p

)
Õ
(
S2AT

1
2−1/p

)
if T ≤ O

(
(S3/2A1/2)p

)
Corollary 6. Consider the geometric discount factor γ(h) = γh−1 for γ ∈ [0, 1) and suppose T

log3 T
≥ S3A

(1−γ)4 . Then

algorithm 2 has regret at most Õ
(√

SAT/(1− γ)1.5
)
.

For the polynomial discounting we get a regret of the order of T (p+1)/2p which is worse than the regret bound of
theorem 1 by a factor of T 1/2p. However, the difference goes to zero as p increases and approaches the same limit
of Õ(

√
T ). On the other hand, for geometric discounting we recover the same regret as corollary 3. Interestingly,

He et al. [HZG21] obtained a similar bound on regret for the non-episodic setting where the learner maximizes her
long-term geometrically distributed reward.

Unknown N(∆): Note that algorithm 2 takes as input the optimal value of N(∆) or H?. However, this problem
can be handled through a direct application of model selection algorithms in online learning [Cut+21]. Let Reg(H?)
be the regret when algorithm 2 is run with true H?. We now instantiate algorithm 2 for different choices of H? and
perform model selection over them. In particular, we can consider H? = 2, 22, . . . , 2O(log T ) as it is sufficient to
consider H? = O(T ). Moreover, given true H? there exists H̃ ≤ 2H? for which the regret is increased by at most a

constant. This step requires bounding t(H?)
γ(H?)/

t(H̃)

γ(H̃)
and is constant for the discounting factors considered in the paper.

We now apply algorithm 1 from [Cut+21] to the collection of O(log T ) models and obtain a regret bound of at most
O
(√

log TReg(H̃)
)

= Õ(Reg(H?)).

6 Experiments
We evaluated the performance of our algorithm on the Taxi environment, a 5×5 grid-world environment introduced by
[Die00]. The details of this environment is provided in the appendix, since the exact details are not too important for
understanding the experimental results. We considered 100 episodes and each episode length was generated uniformly
at random from the following distributions. 3

1. Geometric discounting γ(h) = γh−1.

2. Polynomial discounting γ(h) = h−p.

3. Quasi-Hyperbolic discounting γ(h) = β1{h>1}γh−1

Figure 1 shows some representative parameters for three different types of discounting. For the geometric discounting,
we show γ = 0.9, 0.95 and 0.975. For the polynomial discounting we generated the horizon lengths from a polynomial
with p ∈ {1.4, 1.6, 2.0} and added an offset of 20. Finally, for the Quasi-hyperbolic discounting, we fixed γ at 0.95
and considered three values of β: 0.7, 0.8, and 0.9.

We compared our algorithm (1) with two variants of UCB-VI [AOM17] – (a) UCB-VI-Hoeffding computes
bonus terms using Chernoff-Hoeffding inequality, and (b) UCB-VI-Bernstein computes bonus terms using Bernstein-
Freedman inequality. It is known that when the horizon length is fixed and known, UCB-VI-Bernstein achieves
minimax optimal regret bounds. We implemented two versions of UCB-VI with three different assumed horizon
lengths.

Figure 1 shows that, for several situations, our algorithm strict improves in regret compared to all the other vari-
ants of UCB-VI. These include Geometric discounting (γ = 0.95 and 0.975) and Quasi-Hyperbolic discounting (all
possible choices of β). For the other scenarios (e.g. polynomial discounting), our algorithm performs as well as the
best version UCB-VI. Figure 1 also highlights the importance of choosing not only the right horizon length but also
the correct update equation in backward induction. Consider for example, figure 1b for the geometric discounting

3Here γ(h) refers to probability that the episode lengths exceeds h i.e. γ(h) = Pr(H ≥ h).
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with γ = 0.95. Here the expected horizon length is 1
1−γ = 20. However, different UCB-VI variants (horizon lengths

10, 20, 30 and Bernstein and Hoeffding variants) perform worse. Our algorithm benefits by choosing the right effective
horizon length, and also the correct update equation (6).

7 Conclusion
In this paper, we have designed reinforcement learning algorithms when the episode lengths are uncertain and drawn
from a fixed distribution. Our general learning algorithm (1) and result (theorem 1) can be instantiated for different
types of distributions to obtain sub-linear regret bounds. Some interesting directions of future work include extension
of our algorithm to function approximation [Jin+20], changing probability transition function [Jin+18], etc. We are
also interested in other models of episode lengths. For example, one can consider a setting where the lengths are
adversarially generated but there is a limit on the total amount of change. This is similar to the notion of variation
budget [BGZ14] considered in the literature on non-stationary multi-armed bandits.
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A Pseudocode of Update-Q-Values

ALGORITHM 3: Update-Q-values
Input: Discount factor {γ(h)}∞h=1, parameter ∆, episode k, and datasetH.
Nk(x, a, y) =

∑
(x′,a′,y′)∈H 1 {x′ = x, a′ = a, y′ = y} for all (x, a, y) ∈ S ×A× S.

Nk(x, a) =
∑
y Nk(x, a, y) for all (x, a) ∈ S ×A.

Set P̂ (y|x, a) = Nk(x,a,y)
Nk(x,a)

for all (x, a) s.t. Nk(x, a) > 0. Otherwise, P̂ (y|x, a) = 1
S

/* Update all the Q values */

Qk,N(∆)+1(x, a)← ∆
γ(N(∆)+1)

for all x ∈ S and a ∈ A.
Vk,N(∆)+1(x, a)← ∆

γ(N(∆)+1)
for all x ∈ S.

for h = N(∆), . . . , 1 do
/* Define [P̂kVk,h+1](s, a) = Ex∼P̂k(·|s,a)

[
Vk,h+1(x)

]
and let Γ(h) =

∑
j≥h γ(j). */

UCBk,h(s, a) =
3Γ(h+ 1)

γ(h)

ln(SATN(∆)/δ)√
Nk(s, a)

Qk,h(s, a) = min {Qk−1,h(s, a), r(s, a)

+
γ(h+ 1)

γ(h)
[P̂kVk,h+1](s, a) + UCBk,h(s, a)

}
Vk,h(s, a) = max

a∈A
Qk,h(s, a)

B Additional Experimental Details
In the Taxi environment [Die00] environment, there are four randomly chosen designated locations indicated by Red,
Green, Blue, and Yellow. The driver (learner) starts at a random square and the passenger is at a random location. The
taxi drives to the passenger’s location, picks up the passenger (from one of the four locations), drives to the passenger’s
destination (another one of the four specified locations), and then drops off the passenger. There are six actions and
the observations include the location of the taxi and the starting point and the destination of the passenger. Each step
incurs a cost of 1. There is a reward of 20 for successfully delivering a passenger, and a reward of −10 for executing
pickup and drop-off actions illegally. We used the Open-AI implementation Taxi-v3 [Bro+16] to interact with the
environment.

All experiments were conducted on a computer cluster with machines equipped with2Intel XeonE5-2667 v2 CPUs
with 3.3GHz (16 cores) and 50 GB RAM.

C Equivalence between Reg(π;γ) and Reg(π; PH(·))
C.1 Proof of Lemma 1
Proof. Consider any learning algorithm π = {πk}k∈[T ].

EHk [V πk(xk,1;Hk)] =
∑
`

PH(`)E [V πk(xk,1; `)] = E

[∑
`

PH(`)
∑̀
h=1

r(xk,h, ak,h)

]

= E

[ ∞∑
h=1

PH(Hk ≥ h)r(xk,h, ak,h)

]
= E

[ ∞∑
h=1

γ(h)r(xk,h, ak,h)

]
= V πk(xk,1;γ)
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Therefore, we have the following result.

T∑
k=1

EHk [V πk(xk,1;Hk)] =

T∑
k=1

V πk(xk,1;γ) (7)

We now upper bound the quantity
∑
` V

?(xk,1; `)PH(`). Let π?k,` be the policy that maximizes the `-step value function
i.e. V ?(xk,1; `) = V π

?
k,`(xk,1; `). Let us also define a new policy π∞ as follows.

1. At step h, draw an index j ∈ [h,∞) according to the distribution PH(·)
PH(H≥h) .

2. Take action π?k,j(xk,1, ak,1, . . . , xk,h−1, ak,h−1, xk,h).

Then the infinite-horizon discounted sum of rewards under the policy π∞ is given as

Eπ∞

[ ∞∑
h=1

γ(h)r(xk,h, ak,h)

]
= E

[ ∞∑
h=1

PH(H ≥ h)Eπ∞ [r(xk,h, ak,h)|Hh]

]

= E

 ∞∑
h=1

PH(H ≥ h)

∞∑
j=h

PH(j)

PH(H ≥ h)
Eak,h∼π?k,j(Hh) [r(xk,h, ak,h)|Hh]


= E

 ∞∑
h=1

∞∑
j=h

PH(j)Eak,h∼π?k,j(Hh) [r(xk,h, ak,h)|Hh]


= E

 ∞∑
j=1

PH(j)

j∑
h=1

Eak,h∼π?k,j(Hh) [r(xk,h, ak,h)|Hh]


= E

 ∞∑
j=1

PH(j)Eπ?k,j

[
j∑

h=1

r(xk,h, ak,h)

] =
∑
j

V ?(xk,1; `)PH(j)

Since π∞ is one candidate policy for maximizing infinite horizon sum of discounted rewards, its value function is
bounded by the optimal value function.

T∑
k=1

∑
`

PH(`)V
?(xk,1; `) =

T∑
k=1

V π∞(xk,1;γ) ≤
T∑
k=1

V ?(xk,1;γ) (8)

Combining equations 7 and 8 we get that the regret under the new general discounting environment upper bounds the
regret under the original environment i.e. Reg(π; PH(·)) ≤ Reg(π;γ).

C.2 Proof of Lemma 2
Proof. Given a discount factor γ, we define the following distribution over episode lengths.

PH(H = h) = γ(h)− γ(h+ 1)

This definition implies that Pr(H ≥ h) = γ(h) and under this condition lemma 1 already shows that
∑T
k=1 EHk [V πk(xk,1;Hk)] =∑T

k=1 V
πk(xk,1;γ). Therefore, it remains to upper bound the quantity

∑T
k=1 V

?(xk,1;γ). Let π? = (π?1 , π
?
2 , . . .) be

the policy that maximizes long-term discounted sum of rewards with respect to the discount factor γ. Note that one
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can also play the policy π? for the finite horizon setting.

∑
`

PH(`)V
?(xk,1; `) ≥

∑
`

PH(`)V
π?(xk,1; `) =

∑
`

PH(`)Eπ?

∑̀
j=1

r(xk,j , ak,j)


= Eπ?

 ∞∑
j=1

∑
`≥j

(γ(`)− γ(`+ 1))r(xk,j , ak,j)


= Eπ?

 ∞∑
j=1

γ(j)r(xk,j , ak,j)

 = V ?(xk,1;γ)

Since the optimal value under the new environment (episode distribution PH(·)) upper bounds the optimal value under
the discount factor γ, the regret under PH(·) can only get worse.

D Proof of theorem 1 and Related Corollaries
We first show that the Q values at each time-step upper bounds the optimal Q values.

Lemma 3. With probability at least 1− δ, for all k ∈ [T ], h ∈ [N(∆)], x ∈ S, a ∈ A, we have

Qk,h(x, a) ≥ Q?h(x, a), Vk,h(x) ≥ V ?h (x)

Proof. We prove this statement using induction. First note that we always have Qk,N(∆)+1(x, a) ≥ Q?N(∆)+1(x, a)

just from the initialization.Suppose the given claim is true for all k′ ≤ k − 1 and also Qk,h′(x, a) ≥ Q?k(x, a) for
all h′ ≥ h + 1. We now wish to show that Qk,h(x, a) ≥ Q?k(x, a). We can assume that Qk,h(x, a) 6= Qk−1,h(x, a)
otherwise the claim is true just from the induction hypothesis. Then we have,

Qk,h(x, a)−Q?h(x, a) =
γ(h+ 1)

γ(h)

(
[P̂kVk,h+1](x, a)− [PV ?h+1](x, a)

)
+ UCBk,h(x, a)

≥ γ(h+ 1)

γ(h)

(
[(P̂k − P )V ?h+1](x, a)

)
+ UCBk,h(x, a)

The last inequality follows because from the induction hypothesis Vk,h+1(y) ≥ V ?h+1(y). We now bound Bernstein’s
inequality and union bound to bound the first term. Using the fact that V ?h+1(·) is uniformly bounded by Γ(h +
1)/γ(h + 1), we get that the following bound holds with probability at least 1 − δ for any (x, a) ∈ S × A, t ∈ [T ],
and h ∈ [N(∆)].

∣∣∣[(P̂k − P )V ?h ](x, a)
∣∣∣ ≤√2V?h(x, a) ln(SATN(∆)/δ)

Nk(x, a)
+

2Γ(h) ln(SATN(∆)/δ)

3γ(h)Nk(x, a)

We now bound the variance term V?h+1(x, a) by (Γ(h + 1)/γ(h + 1))2 and substitute the above bound to obtain the
following bound on the different between Q values.

Qk,h(x, a)−Q?h(x, a) ≥ −Γ(h+ 1)

γ(h)

(√
2 ln(SATN(∆)/δ)

Nk(x, a)
+

2 ln(SATN(∆)/δ)

3Nk(x, a)

)
+ UCBk,h(x, a)

Now it follows from the definition of UCBk,h(x, a) that the final term is non-negative.
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D.1 Proof of theorem 1
We first provide a formal statement of theorem 1.

Theorem 7. With probability at least 1− δ, Algorithm 1 has the following regret.

Reg(π;γ) ≤ ∆T

γ(N(∆) + 1)
t(N(∆) + 1) + max

h∈[N(∆)]
t(h)

γ(h+ 1)

γ(h)
O
(√

TN(∆) log(TN(∆)/δ)
)

+ max
h∈[N(∆)]

t(h)
Γ(h+ 1)

γ(h)
O
(√

SATN(∆)
)

+ max
h∈[N(∆)]

t(h)
(Γ(h+ 1))2

γ(h)γ(h+ 1)
Õ
(
S2A(N(∆))β

)
Proof. At episode k, time h the algorithm takes the best action according to Qk,h(·, ·). Therefore, πk,h(xk,h) =
ak,h ∈ argmaxaQk,h(xk,h, a). Moreover, V πk(xk,h) = Qπkh (xk,h, πk,h(xk,h)) = Qπk(xk,h, ak,h).

∆̃k,h(xk,h) = Vk,h(xk,h)− V πkh (xk,h) = Qk,h(xk,h, ak,h)−Qπkh (xk,h, ak,h)

≤ γ(h+ 1)

γ(h)
[P̂kVk,h+1 − PV πkh+1](xk,h, ak,h) + UCBk,h(xk,h, ak,h)

Now we proceed similarly as the proof of theorem 1 from [AOM17] and derive a recurrence relation for δ̃k,h =

∆̃k,h(xk,h).

δ̃k,h ≤
γ(h+ 1)

γ(h)
[(P̂k − P )(Vh,k+1 − V ?h+1)](xk,h, ak,h)

+
γ(h+ 1)

γ(h)
[P (Vk,h+1 − V πkh+1)](xk,h, ak,h)

+
γ(h+ 1)

γ(h)
[(P̂k − P )V ?h+1](xk,h, ak,h)

+ UCBk,h(xk,h, ak,h)

= ck,h +
γ(h+ 1)

γ(h)
[P ∆̃k,h+1](xk,h, ak,h) + ek,h + bk,h

where in the last line we used the following notations.

ck,h =
γ(h+ 1)

γ(h)
[(P̂k − P )(Vk,h+1 − V ?h+1)](xk,h, ak,h) (9)

ek,h =
γ(h+ 1)

γ(h)
[(P̂k − P )V ?h+1](xk,h, ak,h) (10)

bk,h = UCBk,h(xk,h, ak,h) (11)

Finally, writing εk,h as the following error term

εk,h =
γ(h+ 1)

γ(h)
[P ∆̃k,h+1](xk,h, ak,h)− γ(h+ 1)

γ(h)
∆̃k,h+1(xk,h+1) (12)

we get the following recurrence relation for δ̃k,h.

δ̃k,h ≤
γ(h+ 1)

γ(h)
δ̃k,h+1 + ck,h + ek,h + bk,h + εk,h (13)

Let L = 2 ln(SATN(∆)/δ). Then we can apply Bernstein’s inequality (lemma 4) to conclude that with probability
at least 1− δ the following bound holds for each j ∈ [N(∆)] and k ∈ [T ].

ek,j ≤
γ(j + 1)

γ(j)

√LVary∼P(·|xk,j ,ak,j)V
?
j+1(y)

Nk(xk,j , ak,j)
+
Lmaxy V

?
j+1(y)

3Nk(xk,j , ak,j)
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Now instantiating the above bound for j = h and using the fact that V ?h+1(y) is bounded by Γ(h)/γ(h) we get the
following bound on ek,h.

ek,h ≤
Γ(h+ 1)

γ(h)

(√
L

Nk(xk,h, ak,h)
+

L

3Nk(xk,h, ak,h)

)

Now we bound the term ck,h defined in eq. (9).

ck,h =
γ(h+ 1)

γ(h)

[
(P̂k − P )(Vh,k+1 − V ?h+1)

]
(xk,h, ak,h)

=
γ(h+ 1)

γ(h)

∑
y

(
P̂k(y|xk,h, ak,h)− P (y|xk,h, ak,h)

)
(Vk,h+1(y)− V ?h+1(y))

We now substitute two bounds. First we can use Bernstein inequality to bound the difference between estimated
probability and actual probability as

∣∣∣P̂k(y|xk,h, ak,h)− P (y|xk,h, ak,h)
∣∣∣ ≤√2P (y|xk,h, ak,h)(1− P (y|xk,h, ak,h))L

Nk(xk,h, ak,h)
+

2L

3Nk(xk,h, ak,h)

Second we bound Vk,h+1(y)− V ?h+1(y) ≤ Vk,h+1(y)− V πkh+1(y) ≤ ∆̃k,h+1(y). This gives us the following bound on
ck,h.

ck,h ≤
γ(h+ 1)

γ(h)

∑
y

√
2P (y|xk,h, ak,h)L

Nk(xk,h, ak,h)
∆̃k,h+1(y) +

γ(h+ 1)

γ(h)

∑
y

2L

3Nk(xk,h, ak,h)
∆̃k,h+1(y)

≤ γ(h+ 1)

γ(h)

√
2L
∑
y

√
P (y|xk,h, ak,h)

Nk(xk,h, ak,h)
∆̃k,h+1(y)︸ ︷︷ ︸

:=T1

+
2SLΓ(h+ 1)

3γ(h)Nk(xk,h, ak,h)

We now bound the term labelled T1. Let

[y]k,h =

{
y : P (y|xk,h, ak,h)Nk(xk,h, ak,h) ≥ 2(h+ 1)2βL

(
Γ(h+ 1)

γ(h+ 1)

)2
}
. (14)

Here we choose a threshold that is different than [AOM17]. In fact, we require the additional poly(h) factor to ensure
convergence of the final recurrence relation. Moreover, the threshold is parameterized by the parameter β, and can be
chosen based on the particular discount factor.

T1 =
∑

y∈[y]k,h

√
P (y|xk,h, ak,h)

Nk(xk,h, ak,h)
∆̃k,h+1(y) +

∑
y/∈[y]k,h

√
P (y|xk,h, ak,h)

Nk(xk,h, ak,h)
∆̃k,h+1(y)

The first term can be bounded as

∑
y∈[y]k,h

√
P (y|xk,h, ak,h)

Nk(xk,h, ak,h)
∆̃k,h+1(y) = ε̂k,h +

√
P (xk,h+1|xk,h, ak,h)

Nk(xk,h, ak,h)
∆̃k,h+1(xk,h+1)1 {xk,h+1 ∈ [y]k,h}

≤ ε̂k,h +
γ(h+ 1)√

2L(h+ 1)βΓ(h+ 1)
δ̃k,h+1
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where ε̂k,h is an error term defined as follows.

ε̂k,h =
∑

y∈[y]k,h

√
P (y|xk,h, ak,h)

Nk(xk,h, ak,h)
∆̃k,h+1(y)

−

√
P (xk,h+1|xk,h, ak,h)

Nk(xk,h, ak,h)
∆̃k,h+1(xk,h+1)1 {xk,h+1 ∈ [y]k,h} (15)

It can be checked that ε̂k,h is actually a Martingale difference sequence. The second term of T1 can be bounded as∑
y/∈[y]k,h

√
P (y|xk,h, ak,h)

Nk(xk,h, ak,h)
∆̃k,h+1(y) ≤

∑
y/∈[y]k,h

√
P (y|xk,h, ak,h)Nk(xk,h, ak,h)

Nk(xk,h, ak,h)
∆̃k,h+1(y)

≤
√

2L(h+ 1)βS

Nk(xk,h, ak,h)

(
Γ(h+ 1)

γ(h+ 1)

)2

Substituting the bound on T1 in the upper bound on ck,h we get the following bound.

ck,h ≤
γ(h+ 1)

γ(h)

√
2L

(
ε̂k,h +

γ(h+ 1)√
2L(h+ 1)βΓ(h+ 1)

δ̃k,h+1 +

√
2L(h+ 1)βS

Nk(xk,h, ak,h)

(
Γ(h+ 1)

γ(h+ 1)

)2
)

+
2SLΓ(h+ 1)

3γ(h)Nk(xk,h, ak,h)

≤ γ(h+ 1)

γ(h)

√
2Lε̂k,h +

(γ(h+ 1))2

γ(h)Γ(h+ 1)(h+ 1)β
δ̃k,h+1 +

(h+ 1)β(Γ(h+ 1))2

γ(h)γ(h+ 1)

2LS

Nk(xk,h, ak,h)︸ ︷︷ ︸
:=fk,h

Substituting the previous upper bound on ch,k in eq. (13) and writing εk,h = γ(h + 1)/γ(h)ε̂k,h we get the final
recurrence relation for δ̃k,h.

δ̃k,h ≤
γ(h+ 1)

γ(h)

(
1 +

γ(h+ 1)

(h+ 1)βΓ(h+ 1)

)
δ̃k,h+1 +

√
2Lεk,h + ek,h + bk,h + εk,h + fk,h (16)

Then expanding the recurrence relation eq. (16) from h = 1 to h = N(∆) we get the following equation.

δ̃k,1 ≤ t(N(∆) + 1)δ̃k,N(∆)+1 +

N(∆)∑
h=1

t(h)
(√

2Lεk,h + ek,h + bk,h + εk,h + fk,h

)
(17)

We now use the fact that δ̃k,N(∆)+1 ≤ ∆/γ(N(∆) + 1) and obtain the following bound on δ̃k,1.

δ̃k,1 ≤
∆

γ(N(∆) + 1)
t(N(∆) + 1) +

N(∆)∑
h=1

t(h)
(√

2Lεk,h + ek,h + bk,h + εk,h + fk,h

)
Summing over the T episodes the final bound on regret is given as.

Reg(T ) ≤
T∑
k=1

δ̃k,1 ≤
∆T

γ(N(∆) + 1)
t(N(∆) + 1) +

T∑
k=1

N(∆)∑
h=1

t(h)
(√

2Lεk,h + ek,h + bk,h + εk,h + fk,h

)
(18)

We now bound the second term. First consider the exploration bonus term bk,h.

T∑
k=1

N(∆)∑
h=1

t(h)bk,h =

T∑
k=1

N(∆)∑
h=1

t(h)
Γ(h+ 1)

γ(h)

L√
Nk(xk,h, ak,h)

≤ L max
h∈[N(∆)]

t(h)
Γ(h+ 1)

γ(h)

∑
k,h

1√
Nk(xk,h, ak,h)
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Using a simple counting argument we can bound the last summation as follows. Here we use the fact that only the first
N(∆) steps of each episode are used to update the Nk(·, ·) counters.

T∑
k=1

N(∆)∑
h=1

1√
Nk(xk,h, ak,h)

=
∑
x,a

NT (x,a)∑
n=1

1√
n
≤ 2

∑
x,a

√
Nk(x, a)

≤ 2
√
SA

√∑
x,a

NT (x, a) = 2
√
SATN(∆)

This result gives us the following bound on the sum of bk,hterms.

T∑
k=1

N(∆)∑
h=1

t(h)bk,h = L max
h∈[N(∆)]

t(h)
Γ(h+ 1)

γ(h)
O
(√

SATN(∆)
)

(19)

By a similar argument we can prove the following bounds on the ek,h and fk,h terms.

T∑
k=1

N(∆)∑
h=1

t(h)ek,h = L max
h∈[N(∆)]

t(h)
Γ(h+ 1)

γ(h)
O
(√

SATN(∆)
)

(20)

T∑
k=1

N(∆)∑
h=1

t(h)fk,h ≤ L max
h∈[N(∆)]

t(h)
(Γ(h+ 1))2

γ(h)γ(h+ 1)
O
(
S2A(N(∆))β log(TN(∆))

)
(21)

We now consider the martingale differences term εk,h and εk,h. If we write Fk,h to denote the sigma-algebra
generated by the actions, and states until step h of episode k, then we have E[εk,h|Fk,h] = 0. Moreover, each εk,h is

bouned by O
(

Γ(h+1)
γ(h)

)
. So we can define a new set of martingales ε̃k,h = εk,h

γ(h)
Γ(h+1) so that |ε̃k,h| ≤ 1. Now, we

can apply the Azuma-Hoeffding inequality to get the following result with probability at least 1− δ.

T∑
k=1

N(∆)∑
h=1

t(h)εk,h ≤ max
h∈[N(∆)]

t(h)
Γ(h+ 1)

γ(h)

T∑
k=1

N(∆)∑
h=1

|ε̃k,h|

≤ max
h∈[N(∆)]

t(h)
Γ(h+ 1)

γ(h)
O
(√

TN(∆) log(TN(∆)/δ)
)

(22)

Now recall that we defined εk,h = γ(h+1)
γ(h) ε̂k,h where ε̂k,h was defined in equation 15. This gives us the following

expression for εk,h.

εk,h =
γ(h+ 1)

γ(h)

∑
y∈[y]k,h

√
P (y|xk,h, ak,h)

Nk(xk,h, ak,h)
∆̃k,h+1(y)

− γ(h+ 1)

γ(h)

√
P (xk,h+1|xk,h, ak,h)

Nk(xk,h, ak,h)
∆̃k,h+1(xk,h+1)1 {xk,h+1 ∈ [y]k,h}

It can be easily verified that E[εk,h|Fk,h] = 0. We now establish an upper bound on εk,h. Consider the first term in
the definition of εk,h.

γ(h+ 1)

γ(h)

∑
y∈[y]k,h

√
P (y|xk,h, ak,h)

Nk(xk,h, ak,h)
∆̃k,h+1(y)

=
γ(h+ 1)

γ(h)

∑
y∈[y]k,h

P (y|xk,h, ak,h)√
P (y|xk,h, ak,h)Nk(xk,h, ak,h)

∆̃k,h+1(y)

≤ 1√
2L(h+ 1)β

γ(h+ 1)

γ(h)

γ(h+ 1)

Γ(h+ 1)

Γ(h+ 1)

γ(h+ 1)
≤ 1

2
√
L

γ(h+ 1)

γ(h)
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The last inequality uses the definition of [y]k,h (eq. (14)).The second term of εk,h can be bounded similarly. Therefore,
again using Azuma-Hoeffding inequality, we get the following result with probability at least 1− δ.

T∑
k=1

N(∆)∑
h=1

√
2Lt(h)εk,h ≤ max

h∈[N(∆)]
t(h)

γ(h+ 1)

γ(h)
O
(√

TN(∆) log(TN(∆)/δ)
)

(23)

Substituting equations 19, 20, 21, 22, 23 in equation 18 we get the final bound on regret.

Lemma 4 (Bernstein’s Inequality). Let Z1, . . . , Zn be i.i.d. random variables with values bounded by H and let
δ > 0. Then with probability at least 1− δ we have

EZ1 −
1

n

n∑
i=1

Zi ≤
√

2Var(Z1) ln(2/δ)

n
+

2H ln(2/δ)

3n

D.2 Proof of Corollary 2
Proof. Consider the discount factor γ(h) = h−p for p ≥ 2. Recall that we defined Γ(h) =

∑
j≥h γ(j). We will use

the following bound on Γ(h) ∈
[
h−p+1

p−1 , h−p
(

1 + h
p−1

)]
. We substitute β = p − 1 and bound various γ-dependent

constants appearing in the regret bound.

t(N(∆) + 1)

γ(N(∆) + 1)
=

N(∆)+1∏
j=2

(
1 +

γ(j)

jβΓ(j)

)
≤
N(∆)+1∏
j=2

(
1 +

p− 1

j1+β

)
≤ e(p−1)

∑
j j
−p
≤ e

max
h∈[N(∆)]

t(h)
Γ(h+ 1)

γ(h)
= max
h∈[N(∆)]

Γ(h+ 1)

h∏
j=2

(
1 +

γ(j)

jβΓ(j)

)
≤ e max

h∈[N(∆)]
h−p

(
1 +

h

p− 1

)
= e

The last inequality follows because the final term is a decreasing function of h for p > 1.

max
h∈[N(∆)]

t(h)
(Γ(h+ 1))2

γ(h)γ(h+ 1)
= max
h∈[N(∆)]

(Γ(h+ 1))2

γ(h+ 1)

h∏
j=2

(
1 +

γ(j)

jβΓ(j)

)

≤ e max
h∈[N(∆)]

(h+ 1)−p
(

1 +
h+ 1

p− 1

)2

≤ e

Here we use p ≥ 2 to conclude that the term inside max is non-increasing. We now bound the term N(∆). Recall that
N(∆) is the value of h such that Γ(h) is bounded from above by ∆. Using the lower bound of h−p+1/(p− 1) we get
N(∆) should be at least (∆(p− 1))−1/(p−1).Substituting the value of N(∆) and the bound on the three constants in
the expression for regret, we get the following bound on regret.

Reg(T ) ≤ e∆T + e (∆(p− 1))
− 1

2(p−1)

[
Õ(
√
SAT ) + Õ(

√
T )
]

+ e (∆(p− 1))
− 1/2
p−1 Õ(S2A)

For T ≥ O(S3A) then the last term is dominated by the other terms in the expression above. Finally, substituting
∆ = T−

p−1
2p−1 (p− 1)−

1
2p−1 we get the following bound on regret.

Reg(T ) ≤ (p− 1)−
1

2p−1S1/2A1/2T
p

2p−1 = O
(
S1/2A1/2T

p
2p−1

)
The last equality uses the fact that p−O(1/p) = O(1) for p ≥ 2.
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1 < p < 2: We now substitute β = p− 1. Proceeding similarly as earlier, we can establish the following inequali-
ties.

t(N(∆) + 1)

γ(N(∆) + 1)
≤ e(p−1)/β = e

max
h∈[N(∆)]

t(h)
Γ(h+ 1)

γ(h)
≤ e2 max

h∈[N(∆)]
h−p

(
1 +

h

p− 1

)
≤ e p

p− 1

The third term is different for the case of 1 < p < 2.

max
h∈[N(∆)]

t(h)
(Γ(h+ 1))2

γ(h)γ(h+ 1)
≤ e max

h∈[N(∆)]
(h+ 1)−p

(
1 +

h+ 1

p− 1

)2

≤ e max
h∈[N(∆)]

(h+ 1)−p
(

1 + 2
h+ 1

p− 1
+

(h+ 1)2

(p− 1)2

)
≤ e

(
p

2(p− 1)
+

(1 +N(∆))2−p

(p− 1)2

)
≤ 2e

p− 1
(N(∆))2−p

We now substitute the inequalities above and use N(∆) = (∆(p− 1))−1/(p−1).

Reg(T ) ≤ e∆T + e
p

p− 1

√
SAT (∆(p− 1))−1/2(p−1)

+
2e

p− 1
(∆(p− 1))−1/(p−1)S2A log(T ) + e

√
T log T (∆(p− 1))−1/2(p−1)

We substitute ∆ = T−
p−1
2p−1 to get the following bound on regret.

Reg(T ) ≤ eT p/(2p−1) + e
p

p− 1
(p− 1)−1/2(p−1)T p/(2p−1)

√
SA

+
2e

p− 1
(p− 1)−1/(p−1)T 1/(2p−1)S2A log T + e(p− 1)−1/2(p−1)T p/(2p−1)

√
log T

If T ≥ O
(
(S3A)(2p−1)/2(p−1)

)
then the first term dominates the third term and we get the following bound on regret.

Reg(T ) ≤ 4e
p

p− 1
T

p
2p−1

√
SA log T (p− 1)−1/(p−1)

D.3 Proof of Corollary 3
Proof. For discount factor γ(h) = γh−1, it is easy to check that Γ(h) = γh−1/(1 − γ). We will substitute β = 3/2
and use the following inequality.

h∏
j=2

(
1 +

γ(j)

jβΓ(j)

)
=

h∏
j=2

(
1 +

1− γ
j3/2

)
= exp

(1− γ)

h∑
j=2

1

j3/2

 ≤ e1−γ

This gives the following bounds on the three constants.

t(N(∆) + 1)

γ(N(∆) + 1)
=

N(∆)+1∏
j=2

(
1 +

γ(j)

jβΓ(j)

)
≤ e1−γ

max
h∈[N(∆)]

t(h)
Γ(h+ 1)

γ(h)
= max
h∈[N(∆)]

Γ(h+ 1)

h∏
j=2

(
1 +

γ(j)

jβΓ(j)

)

≤ max
h∈[N(∆)]

γh

1− γ
e1−γ ≤ γ

1− γ
e1−γ
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Now let us consider the second constant.

max
h∈[N(∆)]

t(h)
(Γ(h+ 1))2

γ(h)γ(h+ 1)
= max
h∈[N(∆)]

(Γ(h+ 1))2

γ(h+ 1)

h∏
j=2

(
1 +

γ(j)

jβΓ(j)

)

≤ max
h∈[N(∆)]

γh

(1− γ)2
e1−γ ≤ γ

(1− γ)2
e1−γ

Since Γ(h) = γh/(1 − γ), it is easy to show that N(∆) = log(1/∆(1−γ))
log(1/γ) . Substituting the bounds on the constants

and the bound on N(∆) we get the following bound on the regret.

Reg(T ) ≤ e1−γ∆T +
e1−γ

1− γ

√
log(1/∆(1− γ))

log(1/γ)

(
Õ(
√
SAT ) + Õ(

√
T )
)

+
e1−γ

(1− γ)2

(
log(1/∆(1− γ))

log(1/γ)

)β
Õ(S2A)

If T ≥ 1
(1−γ)2 (N(∆))2Õ(S3A) then the last term in the expression is dominated by the other terms. We further use

the inequality log(1/γ) ≥ 1− γ to simplify the regret expression.

Reg(T ) ≤ e1−γ∆T +
1

(1− γ)1.5

√
log(1/∆(1− γ))Õ(

√
SAT )

to get a regret bound of Õ
( √

SAT
(1−γ)1.5

)
. Notice that we need to satisfy the following bound on T .

T ≥ 1

(1− γ)2

(
log(1/∆(1− γ))

log(1/γ)

)2

Õ(S3A)

For ∆ = T−1/(1− γ) the above bound is equivalent to the condition T ≥ Õ
(
S3A/(1− γ)4

)
E Proof of theorem 4 and Related Corollaries
We first provide a formal statement of theorem 4.

Theorem 8. When run with horizon length H?, algorithm 2 has the following regret bound with probability at least
1− δ

Reg(π;γ) ≤ min
L∈[T ]

(
TΓ(L+ 1) + 2L log(T )

√
T )
)

+ Γ(H? + 1)T + Õ
(√

T
)

+ log(T )
t(H? + 1)

γ(H? + 1)
g(H? + 1) + max

h∈[H?]

t(h)

γ(h)
g(h)Γ(h+ 1)

(
1 +

O(T−1/4)

Γ(h+ 1)

)
Õ
(√

SATH?
)

+ log2(T ) log(TH?) max
h∈[H?]

t(h)
(Γ(h+ 1))2

γ(h)γ(h+ 1)
g(h)

(
1 +

O(T−1/4)

Γ(h+ 1)

)2

O
(
S2A(H?)β

)
+ log5/2(T ) max

h∈[H?]

t(h)

γ(h)
γ(h+ 1)g(h)

(
1 +

O(T−1/4)

γ(h+ 1)

)
O
(√

TH? log(TH?/δ)
)

where g(h) = exp
{
O
(∑h

k=2
T−1/4

γ(k)+kβΓ(k)

)}
.

Proof. Since each γ̂j is the empirical distribution function, by the Dvoretzky–Kiefer–Wolfowitz inequality [DKW56;
Mas90] and a union bound over the log(T/B) blocks the following result holds.

Pr

(
∀j sup

h
|γ̂j(h)− γ(h)| >

√
log (2 log(T/B)/δ)

2jB

)
≤ δ
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For the remainder of the proof we will assume ‖γ̂j − γ‖∞ ≤ εj for εj =
√

log(2 log(T/B)/δ)
2jB . Now consider any

j > 1. Since algorithm 1 is run for 2jB episodes with estimate γ̂j we have∑
k∈Bj

V ?(xk,1; γ̂j)− V πk(xk,1; γ̂j) ≤ R(H?, ∆̂j , 2
jB, γ̂j)

Here we write Bj to denote the episodes in block j andR(H,∆, T, γ̂j) is the regret bound derived in theorem 1 with
N(∆) = H and discount factor γ̂j . We establish a lower bound on V ?(xk,1; γ̂j).

V ?(xk,1;γ) = Eπ?(γ)

[ ∞∑
h=1

γ(h)r(xk,h, ak,h)

]

≤ Eπ?(γ)

[
L∑
h=1

γ(h)r(xk,h, ak,h)

]
+ Γ(L+ 1)

≤ Eπ?(γ)

[
L∑
h=1

γ̂j(h)r(xk,h, ak,h)

]
+ εjL+ Γ(L+ 1)

≤ V ?(xk,1; γ̂j) + εjL+ Γ(L+ 1)

The first inequality uses the fact that rewards are bounded by 1 and Γ(L+ 1) =
∑
h≥L+1 γ(h). The second inequality

uses maxh |γ̂j(h)− γ(h)| ≤ εj . This gives us the following lower bound.

V ?(xk,1; γ̂j) ≥ V ?(xk,1;γ)− εjL− Γ(L+ 1) (24)

We now derive an upper bound on V πk(xk,1; γ̂j).

V πk(xk,1;γ) = Eπk

[ ∞∑
h=1

γ(h)r(xk,h, ak,h)

]

≥ Eπk

[
L∑
h=1

γ(h)r(xk,h, ak,h)

]
− Γ(L+ 1)

≥ Eπk

[
L∑
h=1

γ̂(h)r(xk,h, ak,h)

]
− εjL− Γ(L+ 1)

= V πk(xk,1; γ̂j)− Eπk

[ ∞∑
h=L+1

γ̂(h)r(xk,h, ak,h)

]
− εjL− Γ(L+ 1)

≥ V πk(xk,1; γ̂j)− Γ̂j(L+ 1)− εjL− Γ(L+ 1) (25)

We now use lemma 5 with D = T and a union bound over the log(T/B) blocks to get the following bound for all
j ∈ [log(T/B)] and h ∈ [T ].

∣∣∣Γ̂j(h)− Γ(h)
∣∣∣ ≤√ log T + log(log(T/B)/δ)

|Bj |
≤
(

1 +
√

log T
)
εj

Substituting the above bound in equation 25 and rearranging we get the following bound.

V πk(xk,1; γ̂) ≤ V πk(xk,1;γ) + εj

(
L+ 1 +

√
log T

)
(26)
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Using equations 24 and 26 we can bound the regret of algorithm 2 during the episodes of block Bj .∑
k∈Bj

V ?(xk,1;γ)− V πk(xk,1;γ)

≤
∑
k∈Bj

V ?(xk,1; γ̂)− V πk(xk,1; γ̂) + Γ(L+ 1) + εj

(
2L+ 1 +

√
log T

)
≤ R(H?, ∆̂j , 2

jB, γ̂j) + |Bj |Γ(L+ 1) + |Bj | εj
(

2L+ 1 +
√

log T
)

We use the fact that εj =
√

log(2 log(T/B)/δ
|Bj | and sum over all j = 1, . . . , log(T/B).

T∑
t=1

V ?(xt,1;γ)− V πt(xt,1;γ) ≤
log(T/B)∑
j=1

R(H?, ∆̂j , 2
jB, γ̂j)

+
∑
j

|Bj |Γ(L+ 1) +

log(T/B)∑
j=1

√
log(2 log(T/B)/δ)O

√
|Bj |

(
2L+ 1 +

√
log T

)

Now we use
∑
j |Bj | = T and

∑
j

√
|Bj | ≤

√
log(T/B)

√∑
j |Bj | = O

(√
T log(T/B)

)
, andB =

√
T log T log(log(T )/δ)

to get the following bound on regret.

T∑
t=1

V ?(xt,1;γ)− V πt(xt,1;γ) ≤
log(T/B)∑
j=1

R(H?, ∆̂j , 2
jB, γ̂j)

+ min
L∈[T ]

(
TΓ(L+ 1) + 2L log(T )

√
T )
)

We now bound the first term by substituting the definition of ofR(H?, ∆̂j , |Bj | , γ̂j).

log(T/B)∑
j=1

R(H?, ∆̂j , |Bj | , γ̂j) ≤
log(T/B)∑
j=1

∆̂j |Bj |
γ̂j(H? + 1)

t̂j(H
? + 1)

+

log(T/B)∑
j=1

max
h∈[H?]

t̂j(h)
Γ̂j(h+ 1)

γ̂j(h)
O

(√
SA |Bj |H?

)

+

log(T/B)∑
j=1

max
h∈[H?]

t̂j(h)
(Γ̂j(h+ 1))2

γ̂j(h)γ̂j(h+ 1)
O
(
S2AH?β log(|Bj |H?)

)

+

log(T/B)∑
j=1

max
h∈[H?]

t̂j(h)
γ̂j(h+ 1)

γ̂j(h)
O

(√
|Bj |H? log(|Bj |H?/δ)

)
(27)

We now bound the four terms separately. We will frequently use the following two identities.

log(T/B)∑
j=1

εj ≤
∞∑
j=1

ε1

(
√

2)j−1
= O

(√
log(log(T/B)/δ)

B

)
(28)
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log(T/B)∑
j=1

max
h∈[H?]

t̂j(h)

γ̂j(h)
=

log(T/B)∑
j=1

max
h∈[H?]

h∏
k=2

(
1 +

γ̂j(k)

kβΓ̂j(k)

)

≤
log(T/B)∑
j=1

max
h∈[H?]

h∏
k=2

(
1 +

γ(k)

kβΓ(k)
+

2εj
√

log T

kβΓ(k)

)
[By lemma 6]

=

log(T/B)∑
j=1

max
h∈[H?]

t(h)

γ(h)

h∏
k=2

(
1 +

2εj
√

log T

γ(k) + kβΓ(k)

)

≤ log(T/B) max
h∈[H?]

t(h)

γ(h)

log(T/B)∑
j=1

h∏
k=2

(
1 +

2εj
√

log T

γ(k) + kβΓ(k)

)

≤ log(T/B) max
h∈[H?]

t(h)

γ(h)

log(T/B)∑
j=1

exp

{
h∑
k=2

2εj
√

log T

γ(k) + kβΓ(k)

}

≤ log(T/B) max
h∈[H?]

t(h)

γ(h)
exp


log(T/B)∑
j=1

h∑
k=2

2εj
√

log T

γ(k) + kβΓ(k)


≤ log(T/B) max

h∈[H?]

t(h)

γ(h)
exp

{
O

(√
log(log(T/B)/δ)

B

h∑
k=2

2
√

log T

γ(k) + kβΓ(k)

)}
[By eq. 28]

≤ log(T ) max
h∈[H?]

t(h)

γ(h)
exp

{
O

(
h∑
k=2

T−1/4

γ(k) + kβΓ(k)

)}
[As B =

√
T log T log(log(T )/δ)]

Now writing g(h) = exp
{
O
(∑h

k=2
T−1/4

γ(k)+kβΓ(k)

)}
we get the following inequality.

log(T/B)∑
j=1

max
h∈[H?]

t̂j(h)

γ̂j(h)
≤ log(T ) max

h∈[H?]

t(h)

γ(h)
g(h) (29)

log(T/B)∑
j=1

∆̂j |Bj |
γ̂j(H? + 1)

t̂j(H
? + 1) =

log(T/B)∑
j=1

Γ̂j(H
? + 1) |Bj |

γ̂j(H? + 1)
t̂j(H

? + 1)

≤
log(T/B)∑
j=1

(
∆? + 2εj

√
log T

)
|Bj |

t̂j(H
? + 1)

γ̂j(H? + 1)
[Since ∆? = Γ(H? + 1), and using lemma 5]

≤
log(T/B)∑
j=1

(
∆? + 2εj

√
log T

)
|Bj |

log(T/B)∑
j=1

t̂j(H
? + 1)

γ̂j(H? + 1)
[Since

∑
i

aibi ≤
∑
i

ai
∑
i

bi for ai, bi ≥ 0.]
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The first summation can be bounded as follows.

log(T/B)∑
j=1

(
∆? + 2εj

√
log T

)
|Bj | = ∆?T + 2

√
log T

∑
j

εj |Bj |

= ∆?T +O
(√

log T
√

log(log(T/B)/δ)
)∑

j

√
Bj

≤ ∆?T +O
(√

T log T log log T
)

The second summation can be bounded by log(T ) t(H
?+1)

γ(H?+1)g(H? + 1) by following the same steps used to derive
eq. (29). This gives us the following bound on the first term in eq. (27).

log(T/B)∑
j=1

∆̂j |Bj |
γ̂j(H? + 1)

t̂j(H
? + 1) ≤ ∆?T +O

(√
T log T log log T

)
+ log(T )

t(H? + 1)

γ(H? + 1)
g(H? + 1) (30)

Now we bound the second term in eq. (27).

log(T/B)∑
j=1

max
h∈[H?]

t̂j(h)
Γ̂j(h+ 1)

γ̂j(h)

≤ log(T )

log(T/B)∑
j=1

max
h∈[H?]

t(h)

γ(h)
g(h)

(
Γ(h+ 1) + 2εj

√
log T

)
[By inequality 29 and lemma 5]

≤ log(T ) log(T/B) max
h∈[H?]

t(h)

γ(h)
g(h)Γ(h+ 1)

1 +
2
√

log T

Γ(h+ 1)

log(T/B)∑
j=1

εj


≤ log(T ) log(T/B) max

h∈[H?]

t(h)

γ(h)
g(h)Γ(h+ 1)O

(
1 +

2
√

log T

Γ(h+ 1)

√
log(log(T/B)/δ)

B

)

≤ log2(T ) max
h∈[H?]

t(h)

γ(h)
g(h)Γ(h+ 1)O

(
1 +

T−1/4

Γ(h+ 1)

)
[As B =

√
T log T log(log(T/B)/δ)]

Now we have the following bound on the second term in eq. (27).

log(T/B)∑
j=1

max
h∈[H?]

t̂j(h)
Γ̂j(h+ 1)

γ̂j(h)
O

(√
SA |Bj |H?

)

≤
log(T/B)∑
j=1

max
h∈[H?]

t̂j(h)
Γ̂j(h+ 1)

γ̂j(h)

log(T/B)∑
j=1

O

(√
SA |Bj |H?

)

≤ log2(T ) max
h∈[H?]

t(h)

γ(h)
Γ(h+ 1)g(h)O

(
1 +

T−1/4

Γ(h+ 1)

)√
log(T/B)

√√√√log(T/B)∑
j=1

SA |Bj |H?

≤ log5/2(T ) max
h∈[H?]

t(h)

γ(h)
g(h)Γ(h+ 1)

(
1 +

O(T−1/4)

Γ(h+ 1)

)
O
(√

SATH?
)

(31)
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Following similar steps, we can also bound the fourth term in equation 27.

log(T/B)∑
j=1

max
h∈[H?]

t̂j(h)
γ̂j(h+ 1)

γ̂j(h)
O

(√
|Bj |H? log(|Bj |H?/δ)

)

≤ log5/2(T ) max
h∈[H?]

t(h)

γ(h)
γ(h+ 1)g(h)

(
1 +

O(T−1/4)

γ(h+ 1)

)
O
(√

TH? log(TH?/δ)
)

(32)

We now consider the third term in equation 27.

log(T/B)∑
j=1

max
h∈[H?]

ˆtj(h)
(Γ̂j(h+ 1))2

γ̂j(h)γ̂j(h+ 1)

≤ log(T )

log(T/B)∑
j=1

max
h∈[H?]

t(h)

γ(h)
g(h)

(
Γ(h+ 1)

γ(h+ 1)
+

2εj
√

log T

γ(h+ 1)

)(
Γ(h+ 1) + 2εj

√
log T

)
[By inequality 29, and lemma 5, and 7]

≤ log(T ) max
h∈[H?]

t(h)
(Γ(h+ 1))2

γ(h)γ(h+ 1)
g(h)

log(T/B)∑
j=1

(
1 +

2εj
√

log T

Γ(h+ 1)

)(
1 +

2εj
√

log T

Γ(h+ 1)

)

≤ log(T ) log(T/B) max
h∈[H?]

t(h)
(Γ(h+ 1))2

γ(h)γ(h+ 1)
g(h)

1 +
∑
j

2εj
√

log T

Γ(h+ 1)

2

≤ log(T ) log(T/B) max
h∈[H?]

t(h)
(Γ(h+ 1))2

γ(h)γ(h+ 1)
g(h)

(
1 +

2
√

log T

Γ(h+ 1)

√
log(log(T/B)/δ)

B

)2

≤ log2(T ) max
h∈[H?]

t(h)
(Γ(h+ 1))2

γ(h)γ(h+ 1)
g(h)

(
1 +

O(T−1/4)

Γ(h+ 1)

)2

This gives the following bound on the third term.

log(T/B)∑
j=1

max
h∈[H?]

ˆtj(h)
(Γ̂j(h+ 1))2

γ̂j(h)γ̂j(h+ 1)
O
(
S2A(H?)β log(|Bj |H?)

)
≤ log2(T ) log(TH?) max

h∈[H?]
t(h)

(Γ(h+ 1))2

γ(h)γ(h+ 1)
g(h)

(
1 +

O(T−1/4)

Γ(h+ 1)

)2

O
(
S2A(H?)β

)
(33)

Substituting bounds 30, 31, 33, and 32 in eq. 27 we get the following bound.

log(T/B)∑
j=1

R(H?, ∆̂j , |Bj | , γ̂j) ≤ ∆?T +O
(√

T log T log log T
)

+ log(T )
t(H? + 1)

γ(H? + 1)
g(H? + 1)

+ log5/2(T ) max
h∈[H?]

t(h)

γ(h)
g(h)Γ(h+ 1)

(
1 +

O(T−1/4)

Γ(h+ 1)

)
O
(√

SATH?
)

+ log2(T ) log(TH?) max
h∈[H?]

t(h)
(Γ(h+ 1))2

γ(h)γ(h+ 1)
g(h)

(
1 +

O(T−1/4)

Γ(h+ 1)

)2

O
(
S2A(H?)β

)
+ log5/2(T ) max

h∈[H?]

t(h)

γ(h)
γ(h+ 1)g(h)

(
1 +

O(T−1/4)

γ(h+ 1)

)
O
(√

TH? log(TH?/δ)
)
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Lemma 5. LetH1, . . . ,Hn be iid according to a distributionD. For h ∈ {1, . . . , D} let Γ̂n(h) =
∑
u≥h γ̂n(h). Then

with probability at least 1− δ the following holds.

max
h∈{1,...,D}

∣∣∣Γ̂n(h)− Γ(h)
∣∣∣ ≤√ logD + log(1/δ)

n

Proof. We will prove this statement by first constructing a class of functions, and proving uniform convergence over
this class. In particular the class consists of a finite number of multi-valued functions, and we will use the bounded
Natarajan dimension [Nat89] of this class to derive uniform convergence guarantees.

Let hv : N→ N be defined by fv(x) = max{0, x−v}. Consider the class of functionsH = {fv : v ∈ {1, 2, . . . , D}}.
Let H1, . . . ,Hn be n random variables drawn i.i.d. from some distribution D. Then for any h ∈ {1, . . . , D} we have

1

n

n∑
i=1

fh(Hi) =
1

n

n∑
i=1

max{Hi − h, 0} =
1

n

n∑
i=1

∞∑
u=h

1 {Hi > u}

=
1

n

n∑
i=1

∞∑
u=h

(1− 1 {Hi ≤ h}) =

∞∑
u=h

1

n

n∑
i=1

(1− 1 {Hi ≤ u})

=

∞∑
u=h

(
1− F̂n(u)

)
=
∞∑
u=h

γ̂n(u) = Γ̂n(h)

Similarly one can show that EH∼D[fh(H)] = Γ(h). Then by the multiclass fundamental theorem [SB14] the follow-
ing result holds as long as n ≥ Ndim(H) log(D)+log(1/δ)

ε2 .

Pr

(
max
h∈H

∣∣∣∣∣ 1n
n∑
i=1

fh(Hi)− E[fh(H)]

∣∣∣∣∣ > ε

)
≤ δ

This also implies that Pr
(

maxh∈[D]

∣∣∣Γ̂n(h)− Γ(h)
∣∣∣ > ε

)
≤ δ. We now bound the term Ndim(H) which is the

Natarajan dimension of the class of functionsH. In fact, we prove that Ndim(H) = 1.
Consider a set {a, b} ⊆ [D] shattered by H. We will assume that a < b. This implies there exist two function f0

and f1 such that f0(x) 6= f1(x) for x ∈ {a, b}. Moreover, for every B ⊆ {a, b} there exists a function h ∈ H such
that h(x) = f0(x) for all x ∈ B and h(x) = f1(x) for all x ∈ B \ {a, b}.

We will use the following property of the class H. Any function fv ∈ H is characterized by a vector of the
following form (0, 0, . . . , 0, 1, 2, . . . , B − v) where the i-th entry is fv(i). Since all functions take value 0 at point 1,
a cannot be zero. Otherwise, either f0(a) or f1(a) must be non-zero, and there doesn’t exist a function that takes that
non-zero value at a. This contradicts the fact that the set {a, b} is shattered byH.

Therefore, suppose a ≥ 2. First observe that f0(b)−f0(a) ≤ b−a, as there does not exist any function f ∈ H that
jumps by more than b− a as input changes from a to b. By the same argument we must have f1(b)− f1(a) ≤ b− a.
Moreover, as the set is shattered by H there must exist a function f ∈ H such that f(a) = f0(a) and f(b) = f1(b).
This implies f1(b)− f0(a) ≤ b− 1. Similarly we have f0(b)− f1(a) ≤ b− a.

We now consider two cases. First, f0(a) = 0. Then f1(a) ≥ 1, and moreover f1(b) = f1(a) + b − a ≥
b − a + 1 as any function taking non-zero value at a must increase by 1 every step. However, this is a contradiction,
as f1(b)− f0(a) ≥ b− a+ 1.

For the second case, suppose f0(a) ≥ 1. In that case, f1(a) = f0(a) + b − a. We suppose f1(a) ≥ f0(a) + 1.
This is without loss of generality as the case f1(a) ≤ f0(a) − 1 can be covered by exchanging the roles of f0 and
f1. Since f1(a) ≥ 1, we must have f1(b) = f1(a) + b − a. But this leads to a contradiction as f1(b) − f0(a) =
f1(a)− f0(a) + b− a ≥ b− a+ 1. Therefore, the set {a, b} cannot be shattered by the function classH.

Lemma 6. Suppose |γ̂j(h)− γ(h)| ≤ εj and
∣∣∣Γ̂j(h)− Γ(h)

∣∣∣ ≤ εj(1 +
√

log T ) then we have∣∣∣∣∣ γ̂j(h)

Γ̂j(h)
− γ(h)

Γ(h)

∣∣∣∣∣ ≤ εj(2 +
√

log T )

Γ(h)
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Proof. ∣∣∣∣∣ γ̂j(h)

Γ̂j(h)
− γ(h)

Γ(h)

∣∣∣∣∣ =

∣∣∣γ̂j(h)Γ(h)− γ(h)Γ̂j(h)
∣∣∣

Γ(h)Γ̂j(h)

≤
γ̂j(h)

∣∣∣Γ(h)− Γ̂j(h)
∣∣∣+ Γ̂j(h) |γ̂j(h)− γ(h)|

Γ(h)Γ̂j(h)

≤ γ̂j(h)εj(1 +
√

log T )

Γ(h)Γ̂j(h)
+

εj
Γ(h)

≤ εj(2 +
√

log T )

Γ(h)

The last line uses γ̂j(h) ≤ Γ̂j(h).

Lemma 7. Suppose |γ̂j(h)− γ(h)| ≤ εj and
∣∣∣Γ̂j(h)− Γ(h)

∣∣∣ ≤ εj(1 +
√

log T ) then we have∣∣∣∣∣ Γ̂j(h)

γ̂j(h)
− Γ(h)

γ(h)

∣∣∣∣∣ ≤ εj(1 +
√

log T )

γ(h)

Proof. ∣∣∣∣∣ Γ̂j(h)

γ̂j(h)
− Γ(h)

γ(h)

∣∣∣∣∣ =

∣∣∣Γ̂j(h)γ(h)− Γ(h)γ̂j(h)
∣∣∣

γ(h)γ̂j(h)

≤
Γ̂j(h) |γ(h)− γ̂j(h)|+ γ̂j(h)

∣∣∣Γ̂j(h)− Γ(h)
∣∣∣

γ(h)γ̂j(h)

≤ Γ̂j(h)

γ̂j(h)

εj
γ(h)

+
εj(1 +

√
log T )

γ(h)

This gives us the following bound.

Γ̂j(h)

γ̂j(h)
− Γ(h)

γ(h)
≤ Γ̂j(h)

γ̂j(h)

εj
γ(h)

+
εj(1 +

√
log T )

γ(h)

Rearranging we get the following inequality.

Γ̂j(h)

γ̂j(h)
≤ Γ(h)

γ(h) + εj
+
εj(1 +

√
log T )

γ(h) + εj
≤ Γ(h)

γ(h)
+
εj(1 +

√
log T )

γ(h)
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E.1 Proof of Corollary 6
Proof. For the geometric discount factor we have γ(k) = γk−1 and Γ(k) = γk−1/(1 − γ). We substitute β = 3/2
and get the following bound on g(h).

g(h) = exp

{
O

(
h∑
k=2

T−1/4

γ(k) + kβΓ(k)

)}

= exp

{
O

(
h∑
k=2

1

γk−1

T−1/4

1 + k3/2/(1− γ)

)}

≤ exp

{
O

(
T−1/4

γh−1

h∑
k=2

1

1 + k3/2/(1− γ)

)}

≤ exp

{
O

(
T−1/4

γh−1

∫ h

k=2

(1− γ)dk

k3/2

)}
≤ exp

{
O

(
T−1/4(1− γ)h−1/2

γh−1

)}

In corollary 3 we showed that t(h)
γ(h) ≤ e1−γ for any h. We also substitute H? = log T

2 log(1/γ) . This gives us the
following bounds.

max
h∈[H?]

t(h)

γ(h)
g(h)Γ(h+ 1)

(
1 +

O(T−1/4)

Γ(h+ 1)

)
≤ e1−γ max

h∈[H?]
exp

{
O

(
T−1/4(1− γ)h−1/2

γh−1

)}(
γh

1− γ
+O(T−1/4)

)
≤ 2γe1−γ

1− γ
max
h∈[H?]

exp

{
O

(
T−1/4(1− γ)h−1/2

γh−1

)}
(34)

Now we observe that the function f(h) = h−1/2

γh−1 is a decreasing function of h for 2h log h > log(1/γ). Otherwise

f is increasing in h. This implies maxh∈[H?]
h−1/2

γh−1 ≤ max

{
1, T 1/4

√
2 log(1/γ)

log T

}
≤ T 1/4

√
2 log(1/γ)

log T as long as

T ≥ log2 T
4(1−γ)2 . Substituting this bound in eq. (34) we get

max
h∈[H?]

t(h)

γ(h)
g(h)Γ(h+ 1)

(
1 +

O(T−1/4)

Γ(h+ 1)

)

≤ 2γe1−γ

1− γ
exp

{
O

(
γ(1− γ)

√
log(1/γ)

log T

)}
≤ 2γe1−γ

1− γ
exp {O (

√
γ(1− γ))} = O

(
γe1−γ

1− γ

)
(35)

By a similar argument we can prove the following bounds.

max
h∈[H?]

t(h)

γ(h)
g(h)γ(h+ 1)

(
1 +

O(T−1/4)

γ(h+ 1)

)
≤ O

(
γe1−γ

1− γ

)
(36)

max
h∈[H?]

t(h)
(Γ(h+ 1))2

γ(h)γ(h+ 1)
g(h)

(
1 +

O(T−1/4)

Γ(h+ 1)

)2

≤ max
h∈[H?]

e1−γ
(
γh/2

1− γ
+ γh/2O(T−1/4)

)2

g(h) = O

(
γe1−γ

(1− γ)2

)
(37)
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Finally, we bound the remaining term in the regret expression from theorem 4: minL∈[T ] TΓ(L+ 1) + 2L log(T )
√
T .

In particular we substitute L = log T
2 log(1/γ) to get the following bound on this term.

√
T

1− γ
+

√
T log2 T

log(1/γ)
= O

(√
T log2 T

1− γ

)
(38)

Note that this choice of L requires L ≤ T which is satisfied as long as T ≥ O(1/(1 − γ)2). Substituting bounds 38,
37, 36, and 35 in the regret expression from theorem 4 we get the following bound on regret.

Reg(π;γ) ≤O

(√
T log2 T

1− γ

)
+O

(√
T log T log log T

)
+ log5/2(T )O

(
e1−γ

1− γ

√
SAT

log T

log(1/γ)

)

+ log2(T ) log

(
T log T

log(1/γ)

)
O

(
e1−γ

(1− γ)2
S2A

(
log T

log(1/γ)

)3/2
)

≤ O

(√
T log2 T

1− γ

)
+O

(√
SAT log3 T

(1− γ)3/2

)
+O

(
S2A log9/2 T

(1− γ)7/2

)

≤ O

(√
SAT log3 T

(1− γ)3/2

)
[If T/ log3 T ≥ S3A/(1− γ)4]

E.2 Proof of Corollary 5

Proof. For the polynomial discount factor we have γ(k) = k−p and Γ(k) ∈
[
k−p+1

p−1 , k−p
(

1 + k
p−1

)]
. We substitute

β = p− 1 and get the following bound on g(h).

g(h) = exp

{
O

(
h∑
k=2

T−1/4

γ(k) + kβΓ(k)

)}
= exp

{
O

(
h∑
k=2

T−1/4

k−p + 1/(p− 1)

)}

≤ exp

{
O

(
T−1/4

h∑
k=2

kp

1 + kp/(p− 1)

)}
≤ exp

{
O

(
T−1/4 hp+1

1 + hp/(p− 1)

)}
The last inequality follows because the function kp/(1 + kp/(p− 1)) is an increasing function of k. In corollary 2 we
showed that t(h)

γ(h) ≤ e for any h and p > 1. We also substitute H? = T 1/2p. This gives us the following bounds.

max
h∈[H?]

t(h)

γ(h)
g(h)Γ(h+ 1)

(
1 +

O(T−1/4)

Γ(h+ 1)

)
≤ e max

h∈[H?]
exp

{
O

(
T−1/4 hp+1

1 + hp/(p− 1)

)}(
(h+ 1)−p

(
1 +

h+ 1

p− 1

)
+O(T−1/4)

)
≤ e

(
1 +

2−(p−1)

p− 1

)
max
h∈[H?]

exp

{
O

(
T−1/4 hp+1

1 + hp/(p− 1)

)}
For p ≥ 2, hp+1/(1 + hp/(p− 1)) ≤ 2h. This gives the following bound on the term above.

max
h∈[H?]

t(h)

γ(h)
g(h)Γ(h+ 1)

(
1 +

O(T−1/4)

Γ(h+ 1)

)
≤ 2e exp

{
O(T−1/4 + T 1/2p)

}
≤ 2e (39)

By a similar argument we can prove the following bounds.

max
h∈[H?]

t(h)

γ(h)
g(h)γ(h+ 1)

(
1 +

O(T−1/4)

γ(h+ 1)

)
≤ 2e (40)
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max
h∈[H?]

t(h)
(Γ(h+ 1))2

γ(h)γ(h+ 1)
g(h)

(
1 +

O(T−1/4)

Γ(h+ 1)

)2

≤ max
h∈[H?]

e(p− 1)(h+ 1)−p
(

1 +
h+ 1

p− 1

)2

max
h∈[H?]

g(h)

≤ 2e [As p ≥ 2] (41)

Finally, we bound the remaining term in the regret expression from theorem 4: minL∈[T ] TΓ(L+ 1) + 2L log(T )
√
T .

We substitute L = T 1/2p and get the following bound on the final term.

2T 1/2p log T + T · T−1/2

(
1 +

T 1/2p

p− 1

)
= O

(
T

1+p
2p

)
(42)

Substituting bounds 39, 40, 41, and 42 in the regret expression from theorem 4 we get the following bound on regret.

Reg(π;γ) ≤ T
p+1
2p + T

(
T−1/2 +

T−(1−p)/2p

p− 1

)
+O

(√
T log T

)
+ log5/2(T )O

(√
SAT (2p+1)/2p

)
+ log3(T ) ·O

(
S2AT (p−1)/2p

)
+ log5/2(T ) ·O

(√
T (2p+1)/2p log T

)
If T > (S3/2A1/2)p then the first and the fourth term dominates and regret is at most O(

√
SAT (p+1)/2p). On the

other hand, if T < (S3/2A1/2)p then the fifth term dominates and regret is at most Õ
(
S2AT (p−1)/2p

)
.
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