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Abstract

Most proteins form complexes consisting of two or more subunits, where complex assembly

can proceed via two competing pathways: co-translational assembly of a mature and a

nascent subunit, and post-translational assembly by two mature protein subunits. Assembly

pathway dominance, i.e., which of the two pathways is predominant under which conditions,

is poorly understood. Here, we introduce a reaction-diffusion system that describes protein

complex formation via post- and co-translational assembly and use it to analyze the domi-

nance of both pathways. Special features of this new system are (i) spatially inhomoge-

neous sources of reacting species, (ii) a combination of diffusing and immobile species, and

(iii) an asymmetric binding competition between the species. We study assembly pathway

dominance for the spatially homogeneous system and find that the ratio of production rates

of the two protein subunits determines the long-term pathway dominance. This result is

independent of the binding rate constants for post- and co-translational assembly and

implies that a system with an initial post-translational assembly dominance can eventually

exhibit co-translational assembly dominance and vice versa. For exactly balanced produc-

tion of both subunits, the assembly pathway dominance is determined by the steady state

concentration of the subunit that can bind both nascent and mature partners. The introduced

system of equations can be applied to describe general dynamics of assembly processes

involving both diffusing and immobile components.

Introduction

Proteins are peptide chains with lengths ranging from a few tens to ten thousands of amino

acids. They constitute one of the most important classes of biomolecules as they are involved

in all processes of life and fulfill a plethora of different tasks in living cells. The majority of

proteins forms homo- or heterooligomers: multiple peptide chains assemble to form a func-

tional protein complex [1], giving rise to all kinds of assemblies, from small antibodies to large

structures like the tails of bacterial viruses. In cells, proteins are synthesized by biomolecular

machines called ribosomes. Ribosomes use mRNA molecules as genetic templates to catalyze

the sequential concatenation of individual amino acids into polypeptides. This process is called
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translation. During their synthesis, most nascent polypeptides fold into a defined threedimen-

sional structure to become functional proteins when translation has finished and they are

released from the ribosome. When proteins encounter each other, for example while diffusing

in the cytosol or within the cell membrane, they can bind and form stable protein complexes.

This is called post-translational assembly because complex formation occurs after the synthesis

of the individual subunits. Shieh et al. [2] demonstrated that protein dimer assembly can also

take place while one of the binding partners is still being synthesized by a ribosome. In this

case, the mature binding partner (subunit A) binds to a part of the nascent chain of the second

binding partner (subunit B) that is already exposed from the ribosome, see Fig 1. Protein A
stays bound to nascent chain B until the latter is fully synthesized and remains bound after-

wards. This complex formation pathway is called co-translational assembly. Co-translational

assembly was shown to occur in bacteria [2] and yeast [3, 4], see [5] for a recent review, and

was also proposed for an inner membrane protein [6] and a multiprotein complex [7]. In prin-

ciple, both the post- and the co-translational assembly pathway lead to functional protein com-

plexes. However, both pathways differ in a fundamental aspect: Co-translational assembly is

Fig 1. Post- and co-translational assembly of protein complexes. Ribosomes (yellow) bind to mRNA molecules (colored lines) with time- and

position-dependent initiation rates anascAini ð~x;~tÞ and anascBini ð~x;~tÞ, and synthesize protein subunits A and B with constant ratesonascA
term andonascB

term ,

respectively. Subunit A can bind subunit B co- or post-translationally with binding rate constants κco and κpost, respectively. In contrast, nascent

subunit nascA cannot be bound by subunit B.

https://doi.org/10.1371/journal.pone.0281964.g001
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asymmetric in the sense that subunit A can bind nascent subunit B but not vice versa, which

implies that subunit A needs to be synthesized before subunit B. In contrast, for post-transla-

tional assembly the order of subunit synthesis is irrelevant. Furthermore, the nascent chain B
is tethered to the translating ribosome and thus the encoding mRNA. Therefore, for co-trans-

lational assembly, binding partner A diffuses whereas the other component B is practically

immobilized.

For the mathematical study of reactions, ordinary differential equations (ODEs) relating

growth rates of concentrations with the amount of reactants by means of a mass action law

have a long history [8–11]. Under fairly general conditions persistence and global stability

properties, like convergence of all solutions to the appropriate steady state, have been shown

(for convergence in case of an acyclic reaction graph for a closed system see [11, Sec. 4.2.2];

persistence for weakly reversible (or, more generally, lower endotactic) mass-action systems

with bounded trajectories (under dimensionality conditions): [12]; proof of the global attractor

conjecture for weakly reversible systems: [13]). Note, however, that not all reactions fulfil the

conditions of these theorems (especially if they are non-conservative), and some may exhibit

quite different properties; for an early example of periodic behavior in an ODE system for an

autocatalytic reaction see [9].

Additionally including diffusion of each component leads to a system of parabolic partial

differential equations. Such reaction-diffusion systems form another well-studied area of

mathematics [14, 15], and it is known that inclusion of unequal diffusion rates may signifi-

cantly affect the behavior of the system. For example, equilibria may be rendered unstable

(Turing instabilities, see [16]), and physically reasonable assumptions (quasipositivity and

mass dissipation) even no longer suffice for global existence of classical solutions, as the coun-

terexample by Pierre and Schmitt [17] attests. Accordingly, such reaction-diffusion systems

are interesting already on the level of existence theory of solutions and a rich mathematical lit-

erature has grown (see e.g., the survey [15] or [18–20] for some recent contributions), yielding,

inter alia, bounded global classical solutions to reaction-diffusion systems with linear diffusion

and at most slightly superquadratic reaction terms [19]. Systems with degenerate diffusion in

the sense that only some of the chemical species diffuse are less frequently studied. At least for

a certain single reversible reaction with one non-diffusible reagent (of, in total, two educts and

two products), solutions, like in the non-degenerate case, exist globally and exponentially con-

verge to the equilibrium (if the domain is spatially two-dimensional or if it is three-dimen-

sional and the other diffusion rates sufficiently close to each other), as was recently shown in

[21].

Here, we model protein heterodimer formation from two competing pathways as a reac-

tion-diffusion system with diffusing and immobile components. We investigate under which

conditions which of the two pathways is dominating the complex formation process. Due

to the sustained production of the proteins, the system is nonconservative and permits

unbounded solutions. Its notable features include immobility of one component, unbounded-

ness of solutions, and competing reactions. Note that the quantity of interest is the relation

between reaction rates, not the total concentrations of the reacting species.

Results and discussion

Molecular species and reaction parameters

We assume that the dynamics of protein heterodimer formation by post- and co-translational

assembly depend on the following system parameters [22], see also Fig 1: The synthesis of

nascent peptide chains nascA and nascB requires encountering and binding of corresponding

mRNA molecules and ribosomes. In a cell, the distributions of mRNAs as well as ribosomes
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are non-uniform and time-dependent. Therefore, nascent chain synthesis is initiated with

time- and position-dependent rates anascAini ð~x;~tÞ and anascBini ð~x;~tÞ, respectively. Nascent chains are

tethered to the translating ribosomes and, thus, immobilized until translation has terminated

with constant rates onascA
term and onascB

term , respectively. After translation has terminated, the nascent

chains are released from the ribosomes and become free protein subunits A and B, respec-

tively. A free subunit A can bind to a nascent chain nascB with binding rate constant κco. The

formed complex AnascB is immobile until the synthesis of subunit B is finished and the

AnascB complex is released from the ribosome with rate onascB
term . The released complex ABco is

called co-translationally assembled complex to reflect its formation process. Alternatively, a

free subunit A binds a free (released) subunit B with binding rate constant κpost to form a

post-translationally assembled complex ABpost. Free subunits as well as co- and post-transla-

tionally assembled complexes diffuse with diffusion constants DA, DB, and DAB, respectively.

With these system parameters, the time evolution of the concentrations Cð~x;~tÞ of nascent

chains nascA and nascB, protein subunits A and B, nascent complex AnascB and mature

complexes ABco and ABpost is described by

@

@~t
CnascAð~x;~tÞ ¼ a

nascA
ini ð~x;~tÞ � o

nascA
term CnascAð~x;~tÞ ð1aÞ

@

@~t
CnascBð~x;~tÞ ¼ a

nascB
ini ð~x;~tÞ � o

nascB
term CnascBð~x;~tÞ � kcoCAð~x;~tÞCnascBð~x;~tÞ ð1bÞ

@

@~t
CAð~x;~tÞ ¼ onascA

term CnascAð~x;~tÞ � kpostCAð~x;~tÞCBð~x;~tÞ � kcoCAð~x;~tÞCnascBð~x;~tÞ

þ DADCAð~x;~tÞ
ð1cÞ

@

@~t
CBð~x;~tÞ ¼ onascB

term CnascBð~x;~tÞ � kpostCAð~x;~tÞCBð~x;~tÞ

þ DBDCBð~x;~tÞ
ð1dÞ

@

@~t
CAnascBð~x;~tÞ ¼ � o

nascB
term CAnascBð~x;~tÞ þ kcoCAð~x;~tÞCnascBð~x;~tÞ ð1eÞ

@

@~t
CABco

ð~x;~tÞ ¼ onascB
term CAnascBð~x;~tÞ

þ DABDCABco
ð~x;~tÞ

ð1fÞ

@

@~t
CABpost

ð~x;~tÞ ¼ kpostCAð~x;~tÞCBð~x;~tÞ

þ DABDCABpost
ð~x;~tÞ

ð1gÞ

As usual, Δ denotes the Laplacian with respect to the spatial variable only.
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Remark 1. Some first observations show that CnascA and CnascB remain bounded as long as
anascAini and anascBini are bounded functions. Furthermore,

d
d~t

Z

ðCnascAð~x;~tÞ þ CnascBð~x;~tÞ þ CAð~x;~tÞ þ CBð~x;~tÞ

þ 2CAnascBð~x;~tÞ þ 2CABco
ð~x;~tÞ þ 2CABpost

ð~x;~tÞÞd~x

¼

Z

ðanascAini ð~x;~tÞ þ a
nascB
ini ð~x;~tÞÞd~x:

ð2Þ

For the sake of clarity, we make two simplifications to this reaction-diffusion system.

First simplifying assumption. The production of nascA is completely independent from

all other reactions and we assume that is has reached its steady state at all positions ~x in the sys-

tem, which can easily be written explicitly. We assume that both the synthesis rate anascAini and

the concentration of nascent chains nascA are constant over time such thatonascA
term CnascAð~xÞ ¼

anascAini ð~xÞ at steady state. Likewise, we assume that the synthesis of nascent chains nascB is con-

stant over time such that the initiation rate anascBini ð~xÞ is a function of space but not time.

Remark 2. In this case, (2) immediately reveals that there is unlimited growth in the model as
~t !1, which according to the first observation in Remark 1 has to take place in a component
different from CnascA and CnascB. On the other hand, it is not necessarily only the final products
whose concentrations grow without bounds:

d
d~t

Z

CAð~x;~tÞ � CnascBð~x;~tÞ þ CBð~x;~tÞð Þ
� �

d~x ¼
Z

anascAini ð~xÞ � a
nascB
ini ð~xÞ

� �
d~x: ð3Þ

This already shows that the total amount of either A or B will tend to infinity, if
R
ðanascAini ð~xÞ �

anascBini ð~xÞÞd~x is positive or negative, respectively.

Second simplification. In order to compare which of the two reaction paths is more

important at each point in time and space, it makes more sense to compare @

@~t ðCABco
ð~x;~tÞ þ

CAnascBð~x;~tÞÞ and @

@~t CABpost
ð~x;~tÞ than CABco

ð~x;~tÞ and CABpost
ð~x;~tÞ. To this end, it is sufficient to

know CAð~x;~tÞ, CBð~x;~tÞ, CnascBð~x;~tÞ and the coefficients, so that we may neglect the equations

for CABco
ð~x;~tÞ, CAnascBð~x;~tÞ, and CABpost

ð~x;~tÞ entirely.

If we additionally pick an arbitrary reference length L, duration t ¼ 1

onascB
term

, and abbreviate

(and rescale) x ¼ 1

L ~x, t ¼ 1

t
~t ,

aðx; tÞ ¼
kco

onascB
term

CA Lx;
t

onascB
term

� �

;

nðx; tÞ ¼
kco

onascB
term

CnascB Lx;
t

onascB
term

� �

;

bðx; tÞ ¼
kco

onascB
term

CB Lx;
t

onascB
term

� �

;

and set da ¼
DA

onascB
term
� 1

L2, db ¼
DB

onascB
term
� 1

L2, kaðxÞ ¼
kcoa

nascA
ini ðLxÞ

ðonascB
term Þ

2 , kbðxÞ ¼
kcoa

nascB
ini ðLxÞ

ðonascB
term Þ

2 and g ¼
kpost
kco

, we

finally end up with the following system of three equations:

at ¼ ka � an � gab þdaD a ð4aÞ

nt ¼ kb � n � an ð4bÞ
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bt ¼ n � gab þdbDb ð4cÞ

inO × (0,1), where we have written ð�Þt ¼
@

@t for the time derivative, D ¼
PN

i¼1
@2

@x2
i
, and where

O � RN
;N 2 N; is a bounded domain with smooth boundary: ð5Þ

Note: While

g > 0; da � 0; db � 0 ð6Þ

are constant, κa and κb may depend on the spatial variable. They are, however, assumed to be

nonnegative and constant w.r.t. time, see first simplification above. We will assume that

ka; kb 2 C1ð�OÞ; ka � 0;kb � 0 in O: ð7Þ

As long as diffusion is included in the description (that is, da or db are positive), we supple-

ment (4) with homogeneous Neumann boundary conditions, where @ν denotes the derivative

in direction of the outward unit normal ν:

da@na ¼ 0 in @O� ð0;1Þ ð8aÞ

and

db@nb ¼ 0 in @O� ð0;1Þ: ð8bÞ

Additionally, initial data are prescribed:

að�; 0Þ ¼ a0; nð�; 0Þ ¼ n0; bð�; 0Þ ¼ b0 in O; ð9Þ

where we will assume that

a0; n0; b0 2 C1ð�OÞ are nonnegative functions: ð10Þ

In the variables of (4), the rates with which the concentrations of protein complexes that

can be attributed to the co-translational or post-translational assembly grow are given by an
and γab, respectively.

Solvability

In this brief section we will give a basic result on the full system (4). Since the main focus of

the analytical investigations in this work will lie on the special case of da = db = 0, we keep the

proof to a short outline.

Theorem 3. We assume (5), (6), (7) and (10).

Then there is a unique global solution of (4), (9), (8), i.e. a triplet of functions ða; n; bÞ 2
Cð�O � ½0;1ÞÞ such that at; nt; bt; daDa; dbDb 2 Cð�O � ð0;1ÞÞ and (4), (9), (8) are satisfied at
each point.

This solution moreover satisfies

0 � aðx; tÞ � ka0kL1ðOÞ þ kkakL1ðOÞt

0 � nðx; tÞ � �cn≔max fkn0kL1ðOÞ; kkbkL1ðOÞg

0 � bðx; tÞ � kb0kL1ðOÞ þ �cnt

for all (x, t) 2 O × (0,1).
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Proof. The estimates can be obtained from comparison arguments. If da = db = 0, (4) is a

system of ordinary differential equations (ODEs), and existence and uniqueness of a local

solution are asserted by the Picard–Lindelöf theorem. That this solution is global follows from

the bounds given above. For positive da and db, we prove existence by employing a Schauder

fixed point reasoning, which relies on general parabolic regularity (mainly [23, Theorems

14.4, 14.6, 15.5], [24, Theorem 4]) and (for Hölder regularity in the coupled PDE-ODE system)

on a result like [25, Lemma 2.1]. Uniqueness is easily derived with the help of Grönwall’s

inequality.

The homogeneous case: da = db = 0, a0, b0, n0, κa, κb constant

In this section, we investigate the system in the spatially homogeneous setting, finally giving a

complete characterization of the long-term behavior of solutions with respect to the relative

importance gab
an of the reaction pathways.

In this simpler scenario, (4) is reduced to the ODE system

at ¼ ka � an � gab; ð11aÞ

nt ¼ kb � n � an; ð11bÞ

bt ¼ n � gab:; ð11cÞ

according to (9) and (10) supplemented with initial conditions

að0Þ ¼ a0 2 ½0;1Þ; nð0Þ ¼ n0 2 ½0;1Þ; bð0Þ ¼ b0 2 ½0;1Þ: ð11dÞ

A first general observation, irrespective of the size of the involved parameters, is the follow-

ing conserved quantity:

ða � ðnþ bÞÞt ¼ ka � kb; hence aðtÞ ¼ nðtÞ þ bðtÞ þ ðka � kbÞt þ c0; ð12Þ

where c0 ¼ a0 � n0 � b0 2 R. Note that this corresponds to (3) for (1).

The case of overproduction of B: κa< κb

If there is an overproduction of B, the post-translational assembly pathway dominates:
gab
an !1, more precisely:

Lemma 4. Let da = db = 0 and let a0, b0, n0, κa, κb, γ be positive constants with κa< κb. Then
the solution to (11) satisfies

aðtÞ ! 0; bðtÞ ! 1; nðtÞ ! kb; ntðtÞ ! 0; btðtÞ � atðtÞ ! kb � ka as t !1:

Proof. According to (12), a − (n + b)! −1 as t!1, which, due to a� 0, implies n + b!
1. Given any M> 0, there is T> 0 such that for all t> T we have n(t) + γb(t) >M and thus

at � ka � Ma on ðT;1Þ;

which shows that lim supt!1aðtÞ �
ka
M. As M was arbitrary and a� 0, therefore limt!1 a(t) =

0.

For every ε> 0, one can find T> 0 such that for t> T, a(t)< ε. For such T,

nt ¼ kb � n � an � kb � n � εn in ðT;1Þ;

showing that lim inf t!1nðtÞ �
kb

1þε. As, additionally, lim supt!1 n(t)� κb (because nt� κb − n
on (0,1)), we obtain n(t)! κb as t!1.
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As n(t) + b(t)!1 as t!1, this means that b(t)!1 as t!1.

Subsequently, can also conclude from (11) that nt! 0 and at − bt! κa − κb.

The case of overproduction of A: κb< κa

If there is an overproduction of A, the concentrations of both nascB and B vanish in the large-

time limit, as both are immediately used in reactions.

Lemma 5. Let da = db = 0 and let a0, b0, n0, κa, κb, γ be positive constants with κa> κb. Then
the solution to (11) satisfies

aðtÞ ! 1; nðtÞ ! 0; bðtÞ ! 0 as t !1: ð13Þ

Proof. By (12), a� a − (n + b)!1 as t!1; in particular, a(t)!1 as t!1.

Let M> 0. Then there is T> 0 such that a(t)>M for all t> T. On (T,1), we have

nt � kb � ðM þ 1Þn:

Therefore, by a comparison argument,

lim sup
t!1

nðtÞ �
kb

M þ 1
:

Employing this reasoning for arbitrarily large M, we obtain that limt!1 n(t) = 0.

Given ε> 0 and M> 0, there is T> 0 such that for every t> T we have n(t) < ε and

aðtÞ > M
g
. Hence, on (T,1),

bt ¼ n � gab � ε � Mb;

so that lim supt!1bðtÞ � ε
M, i.e. b(t)! 0 as t!1.

Remark 6. According to Lemma 4 and Lemma 5, in both cases κa< κb and κa> κb, the tra-
jectories of the ODE system (11) are not persistent (cf. [12, Def. 2.12]).

Although both concentrations n and b tend to 0, we can still reasonably ask which of the

reaction pathways is stronger, that is how the quotient b
n behaves. Even for large γ—i.e. when

the binding rate constant for post-translational assembly exceeds that for co-translational

assembly—it is almost immediately obtained from a study of w ¼ b
nþb that the co-translational

pathway wins over the post-translational. As we will find in Lemma 8, for small γ> 0 the result

is the same, although it is not as easily seen from the system.

Lemma 7. In addition to the assumptions of Lemma 5 let γ� 1. Then

bðtÞ
nðtÞ
! 0 as t !1:

Proof. In order to see this, we introduce w ¼ b
nþb ¼

b
n

1þb
n

and show that w(t)! 0 as t!1. We

conclude from (11) that

wt ¼ 1 � wþ ð1 � gÞawð1 � wÞ �
kb

nþ b
w in ð0;1Þ: ð14Þ

Since γ� 1, the term (1 − γ)aw(1 − w) is negative so that (14) shows

wt � 1 � w �
kb

nþ b
w in ð0;1Þ:

Due to (κb> 0 and) n + b! 0 (Lemma 5), given M> 0 we find T> 0 such that on (T,1) we
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have
kb
nþbþ 1 > M, that is

wt � 1 � Mw on ðT;1Þ;

i.e. lim supt!1wðtÞ � 1

M, hence limt!1 w(t) = 0.

Lemma 8. In addition to the assumptions of Lemma 5 let γ< 1. Then

bðtÞ
nðtÞ
! 0

Proof. We show this in two steps: Firstly, ab! 0 as t!1 (Lemma 9), secondly, an! κb as t
!1 (Lemma 10), so that b

n ¼
ab
an! 0 as t!1.

Lemma 9. Under the assumptions of Lemma 8, a(t)b(t)! 0 as t!1.

Proof. Concerning the evolution of ab, system (11) implies

ðabÞt ¼ kab � abn � gab2 þ an � ga2b ¼ kabþ að� bn � gb2 þ n � gabÞ:

Let us assume that lim supt!1 (ab)(t)� δ for some δ> 0. Relying on (13) we choose t1 > 0

such that

a >
3

g
; kab <

d

2
; � bn � gb2 þ n <

gd

2
on ½t1;1Þ

and note that

if t � t1 and ðabÞðtÞ �
3d

4
then

ðabÞtðtÞ �
d

2
þ a

gd

2
� gab

� �

�
d

2
þ ag

d

2
�

3d

4

� �

¼
d

2
�

agd
4
� �

d

4

ð15Þ

Furthermore, we let ftðkÞ2 gk2N be an increasing sequence with limit1 such that abðtðkÞ2 Þ >
3d

4

for each k 2 N, introduce

Mk≔ t 2 ½t1; t
ðkÞ
2 � j ðabÞðtÞ <

3d

4

� �

and assume that Mk 6¼ ;. Then tðkÞ3 ¼ supMk 2 ½t1; t
ðkÞ
2 Þ is well-defined and

ðabÞðtÞ �
3d

4
for each t 2 ðtðkÞ3 ; t

ðkÞ
2 Þ:

According to (15), ðabÞtðtÞ � �
d

4
< 0 for these t, so that

3d

4
< ðabÞðtðkÞ2 Þ � ðabÞðt

ðkÞ
3 Þ �

3d

4
;

a contradiction. Hence, Mk = ;, that is

ab �
3d

4
on

[

k2N

½t1; t
ðkÞ
2 Þ ¼ ½t1;1Þ:

Again by (15), we therefore may conclude that ðabÞt < �
d

4
on [t1,1), which implies (ab)(t)!

−1 as t!1, in contradiction to the nonnegativity of ab.

We conclude that lim supt!1 (ab)(t) = 0 and thus ab! 0.

Similar reasoning shows an! κb:

Lemma 10. Under the assumptions of Lemma 8, a(t)n(t)! κb as t!1.
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Proof. We assume that lim supt!1 an� κb + δ for some δ> 0 and, aided by (13), let t1 > 0

be such that

kan <
d

2
; a > 2 on ðt1;1Þ:

Letting ftðkÞ2 gk2N be a monotone sequence with limk!1t
ðkÞ
2 ¼ 1 such that

ðanÞðtðkÞ2 Þ > kb þ
d

2
for each k 2 N;

we let Mk ¼ ft 2 ½t1; t
ðkÞ
2 � j ðanÞðtÞ < kb þ

d

2
g and tðkÞ3 ¼ supMk. If we assume that Mk 6¼ ;, then

tðkÞ3 exists and satisfies tðkÞ3 < tðkÞ2 and for t 2 ðtðkÞ3 ; t
ðkÞ
2 Þ, we have ðanÞðtÞ � kb þ

d

2
according to

the definition of tðkÞ3 . This implies that

ðanÞt ¼ kanþ að� n2 � gbnþ kb � n � anÞ � kanþ aðkb � anÞ

�
d

2
þ a kb � kb þ

d

2

� �� �

¼
d

2
ð1 � aÞ < �

d

2

on ðtðkÞ3 ; t
ðkÞ
2 Þ, in particular ðanÞðtðkÞ2 Þ < ðanÞðt

ðkÞ
3 Þ, contradicting the definitions of tðkÞ2 and tðkÞ3 .

Therefore, Mk = ; for each k 2 N and

an � kb þ
d

2
on

[

k2N

½t1; t
ðkÞ
2 Þ ¼ ½t1;1Þ:

As above, this entails that ðanÞt < �
d

2
on (t1,1), which in turn proves an! −1, in contra-

diction to the nonnegativity of a and n. In conclusion, lim supt!1 (an)� κb.

Now we assume liminft!1 (an)� κb − δ for some δ> 0. With t1 > 0 chosen such that

a> 1 and n2 þ gnbþ n < d

4
on (t1,1), we have

ðanÞt ¼ kanþ að� n2 � gbn � nþ kb � anÞ � a �
d

4
þ kb � an

� �

on ðt1;1Þ:

If ftðkÞ2 gk2N is, again, a monotone increasing divergent sequence such that ðanÞðtðkÞ2 Þ < kb �
d

2

for every k 2 N, Mk ¼ ft 2 ½t1; t
ðkÞ
2 � j ðanÞðtÞ > kb �

d

2
g and—under the assumption that Mk

be nonempty—tðkÞ3 ¼ supMk, we see that an � kb �
d

2
on ðtðkÞ3 ; t

ðkÞ
2 Þ, and thus

ðanÞt � a �
d

4
þ kb � an

� �

� a
d

4
�
d

4

on ðtðkÞ3 ; t
ðkÞ
2 Þ. As consequence, ðanÞðtðkÞ2 Þ � ðanÞðt

ðkÞ
3 Þ, contradicting the definitions of tðkÞ2 and

tðkÞ3 . Thus, Mk = ; and

an � kb �
d

2
on ðt1;1Þ:

Therefore ðanÞt �
d

4
on (t1,1), so that (an)(t)!1 as t!1, which contradicts lim supt!1

(an)(t)� κb as well as the assumption liminft!1 an� κb − δ. In conclusion, liminft!1 (an)

(t)� κb. Together with the first part, this shows limt!1 (an)(t) = κb.
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The special case of balanced production κa = κb

In the previous two subsections we have seen that if the production of either A or B exceeds

that of the other, this component accumulates in the system and determines which of the reac-

tion pathways is more important on long time scales. We will now, in contrast, consider the

case where the production rates of nascA and nascB are precisely in balance: κa = κb.

While it can be argued that exact equality of parameters is never found in reality, this case is

interesting as the critical case where the system behavior is not determined by oversaturation

with one of the two proteins. (Taking into account that the assumption of time-independence

of the parameters already is an approximation that hides fluctuations, equality of these param-

eters can on the other hand be seen as the relevant and most appropriate choice among con-

stants for all scenarios where there is no unlimited buildup of any of the two components in

the long term.)

In this case we set

k ≔ ka ¼ kb

and first observe that any surplus of one of the protein types is conserved for all times:

a � ðnþ bÞ ¼ c0 ¼ a0 � n0 � b0 2 R on ð0;1Þ ð16Þ

This allows us to write (11) equivalently as

at ¼ k � ga2 þ gc0aþ ðg � 1Þan ð17aÞ

nt ¼ k � n � an ð17bÞ

or

at ¼ k � a2 þ ac0 þ ð1 � gÞab ð18aÞ

bt ¼ � b � c0 þ a � gab ð18bÞ

or

nt ¼ k � n � n2 � nc0 � nb ð19aÞ

bt ¼ � gb2 � gc0bþ n � gbn: ð19bÞ

We can already note a first difference to the earlier cases where one of the concentrations grew

without bounds:

Lemma 11. Let da = db = 0 and let a0, b0, n0, γ be positive constants and κ = κa = κb> 0.

Then there are constants ca;�ca; cn;�cn; cb;�cb > 0 such that the solution (a, n, b) to (11) satisfies

ca < aðtÞ < �ca; cn < nðtÞ < �cn; cb < bðtÞ < �cb

for all t 2 (0,1). Moreover,

lim inf
t!1

aðtÞ � c0 ð20Þ

with c0 as in (16).

Proof. From (17b) boundedness of n from above is immediate and subsequently (19b) and

(18a) make boundedness of b and a, respectively, obvious. Using boundedness of a and (17b),

we also find a positive lower bound for n; (18a) and b � �cb entail a lower bound ca > 0 of a,

whereas �cn � n � cn and (19b) yield a positive lower bound for b.
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As to (20), we know from (11), nonnegativity of n and b and (16) that

at ¼ k � an � gab � k � amaxf1; ggðnþ bÞ ¼ k � amaxf1; ggða � c0Þ:

Since the solution a of

at ¼ k � a maxf1; ggða � c0Þ; að0Þ ¼ a0

satisfies limt!1aðtÞ ¼ a1, where

a1 ¼
c0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0
þ 4 k

maxf1;gg

q

2
;

we conclude (from a comparison argument) that lim inf t!1aðtÞ � a1 > c0.

Lemma 11 shows that the relative importance gab
an of the reaction pathways remains bounded

between positive constants.

Lemma 12. Let da = db = 0 and let a0, b0, n0, γ be positive constants and κ = κa = κb> 0. If
the solution (a, n, b) of (11) converges as t!1, then

lim
t!1

aðtÞ ¼ a1; lim
t!1

nðtÞ ¼
k

a1 þ 1
; lim

t!1
bðtÞ ¼

k

ga1ða1 þ 1Þ
;

where a1 is the unique positive solution of

pðaÞ ¼ a3 þ ð1 � c0Þa2 � ðkþ c0Þa �
k

g
¼ 0 ð21Þ

with c0 as in (16).

Proof. The only possible limits for convergent solutions of ODEs are the steady states.

Given c0 2 R, all steady states fulfilling (16) are characterized by the equations given in this

lemma. Among the roots of p exactly one is positive, and according to Lemma 11 this is the

only solution of (21) that could be a limit of a.

Theorem 13. Let da = db = 0 and let a0, b0, n0, γ be positive constants and κ = κa = κb> 0.

Then the solution (a, n, b) of (11) converges, and

lim
t!1

an
gab
¼ a1

with a1 being the root of (21), which is monotone increasing with respect to κ and c0 = a0 − n0 −
b0 and decreasing with respect to γ.

Proof. All possible limits of convergent solutions have been identified in Lemma 12. It

remains to show that all solutions actually converge. We treat different ranges of values of γ
and c0 separately.

Case I: If γ� 1, (17) is a competitive (two-dimensional) system. All of its bounded solutions

(hence, by Lemma 17: all solutions) therefore converge, see [26].

Case II: γ> 1, c0 > �
1

g
: We cover this case with the following Lyapunov type reasoning:

Starting from (18), for arbitrary B> 0 we compute

d
dt

1

2
ða � a1Þ

2
þ

B
2
ðb � b1Þ

2

� �

¼

� ða � a1Þ
2
ða1 þ a � c0 þ ðg � 1ÞbÞ

� ðb � b1Þ
2
ðBþ BgaÞ þ ða � a1Þðb � b1Þðð1 � gÞa1 þ B � Bgb1Þ

where a1 is taken from Lemma 12 and b1 ¼
a1� c0
1þga1

so that 0 = −b1 − c0 + a1 − γa1b1 and
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0 ¼ k � a2
1
þ a1c0 þ ð1 � gÞa1b1. We note that c0 > �

1

g
implies b1 < 1

g
and hence B ¼

ðg� 1Þa1
1� gb1

is positive and satisfies (1 − γ)a1 + B − Bγb1 = 0.

By Lemma 11, there are T> 0 and δ> 0 such that 2(a1 + a(t) − c0 + (γ − 1)b(t))� δ and
2

B ðBþ BgaðtÞÞ > d for all t� T. Therefore, VðtÞ ¼ 1

2
ðaðtÞ � a1Þ

2
þ B

2
ðbðtÞ � b1Þ

2
satisfies

V 0ðtÞ � � dVðtÞ for all t � T;

showing that a(t)! a1 and b(t)! b1 as t!1.

Case IIIa: γ> 1, c0 � �
1

g
: We assume there is some t0� 0 such that bðt0Þ � 1

g
. We note that

b ¼ 1

g
is a subsolution to (19b):

bt ¼ 0 � �
1

g
� c0 þ n � n ¼ � gb2

� gc0b þ n � gbn;

because c0 � �
1

g
. Therefore, by a comparison argument, bðtÞ � 1

g
for all t> t0. On the set

fðn; bÞ 2 R2 j n � 0; b � 1

g
g, system (19) is competitive, and hence its solutions converge

according to Hirsch’s result on two-dimensional cooperative and competitive systems of

ODEs [26].

Case IIIb: γ> 1, c0 � �
1

g
: Now we assume bðtÞ < 1

g
for all t> 0. In this case, according to

(18b),

bt ¼ � b � c0 þ a � gab � � b � c0 þ a � ga
1

g
¼ � b � c0 for all t > 0

and therefore

lim inf
t!1

bðtÞ � � c0:

If c0 < �
1

g
, this contradicts the assumption bðtÞ < 1

g
for all times; if c0 ¼ �

1

g
, then

limt!1bðtÞ ¼ 1

g
and convergence of n or a is easily obtained from (18a) or (19a).

Conclusion

Here, we introduced the reaction-diffusion system (1) and its simplified version (2) to describe

the time-evolution of protein complex assembly via two competing pathways: co-translational

assembly of a mature subunit A and a nascent subunit nascB, and post-translational assembly

by mature protein subunit A and mature protein subunit B forming a protein complex.

Special features of this new system are (i) the presence of terms for spatially inhomogeneous

sources of reacting species A and nascB, (ii) the combination of diffusing species A and B and

immobile species nascB, and (iii) the asymmetric competition for reaction between diffusing

and immobile species. We proved existence and uniqueness of solutions of the spatially inho-

mogeneous system and characterized the long-term behavior for the spatially homogeneous

system. In our analysis, we were not particularly interested in the limit values of the concentra-

tions of the system components. Instead, we studied the ratio of the post- and co-translational

assembly reaction rates, i.e., the assembly pathway dominance. We found that an overproduc-

tion of subunit B, which can only bind mature partners A, leads to a long-term dominance of

post-translational assembly. In contrast, overproduction of subunit A, which can bind both

nascent and mature partners nascB and B, eventually leads to dominance of the co-transla-

tional assembly pathway. Note that these results are independent of the binding rate constants

for post- and co-translational assembly. This implies that a system with an initial post-transla-

tional assembly dominance and overproduction of subunit A eventually shows co-translational
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assembly dominance and, vice versa, assembly is post-translationally dominated in the long

term in a system with an initial co-translational assembly dominance and overproduction of

subunit B. For exactly balanced production of both species A and nascB, the relative impor-

tance of the co- and post-translational assembly pathways remains bounded and its long-term

value is determined by the steady state concentration of subunit A.

Further analyses of the system are needed to investigate the influence of spatially inhomoge-

neous synthesis of species A and nascB on the relative pathway dominance. Of course, our

results are general in the sense that they do not only apply to protein complex assembly but to

any assembly system comprising both diffusing and immobile components.
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