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The Three Terms Task - an open 
benchmark to compare human and 
artificial semantic representations
V. Borghesani   1,2 ✉, J. Armoza1,2,3, M. N. Hebart   4,5, P. Bellec1,2 & S. M. Brambati1,2

Word processing entails retrieval of a unitary yet multidimensional semantic representation (e.g., a 
lemon’s colour, flavour, possible use) and has been investigated in both cognitive neuroscience and 
artificial intelligence. To enable the direct comparison of human and artificial semantic representations, 
and to support the use of natural language processing (NLP) for computational modelling of human 
understanding, a critical challenge is the development of benchmarks of appropriate size and 
complexity. Here we present a dataset probing semantic knowledge with a three-terms semantic 
associative task: which of two target words is more closely associated with a given anchor (e.g., is 
lemon closer to squeezer or sour?). The dataset includes both abstract and concrete nouns for a total of 
10,107 triplets. For the 2,255 triplets with varying levels of agreement among NLP word embeddings, 
we additionally collected behavioural similarity judgments from 1,322 human raters. We hope that 
this openly available, large-scale dataset will be a useful benchmark for both computational and 
neuroscientific investigations of semantic knowledge.

Background & Summary
A key aspect of human intelligence is the ability to store and retrieve knowledge on objects, facts, and people, via 
symbols: reading the word lemon activates a multidimensional yet unitary concept which includes its physical 
attributes (e.g., a lemon is yellow and roundish) but also its relations to other concepts (e.g., you can use a squeezer 
to get juice out of a lemon)1. Cognitive neuroscience investigations of the behavioural correlates and neural sub-
strates of semantic representations have focused on probing biological agents with carefully designed semantic 
paradigms and thoroughly selected stimuli, often inferring representational content and structure from seman-
tic judgments on pairs of words2,3. Similarly, in natural language processing (NLP), models are often compared 
against curated benchmarks using behavioural data as ground truth4.

However, while NLP models progressively approximate human-like language performance, it is increas-
ingly challenging to evaluate the nature of their internal representations and how closely they align with those 
supporting human understanding. Virtually all currently used benchmarks, i.e., a task and its related dataset of 
stimuli and responses, suffer from one or more of the following limitations (Table 1). First, they are rather lim-
ited in size, typically offering not more than a thousand stimuli. For instance, WordSim-353, a dataset including 
pairs of words linked by either semantic similarity (cup-mug) or semantic relatedness (cup-coffee)5, contains only 
353 word pairs6. SimLex-999, a dataset specifically targeting semantic similarity, includes a total of 999 pairs7. 
The size of the stimuli dataset is critical to enable future applications in settings with data-hungry models8.

Second, available benchmarks have typically undergone minimal behavioural validation (e.g., surveying about 
10 raters), and they often offer only aggregate measures (e.g., average scores over all the raters). For example, ratings 
of semantic closeness were collected in 6 volunteers for the verbs pairs in YP-1309, and in 10 for the nouns and 
verbs pairs in WS-3536. Providing fine-grained information on human performance is critical if the goal is that of 
approximating (or learning more about) the neuro-cognitive substrate of semantic representations in humans10,11.

Third, most benchmarks targeting semantic representations have used similarity or association-based tasks 
comparing two words at a time, often including rather common and frequently used words. While explicit attempts 
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have been made to cover more complex and less frequent words12, the overwhelming majority of these datasets 
does not cover the breadth and depth of human semantic knowledge. Recently, researchers at Google and OpenAI 
have launched Beyond the Imitation Game Benchmark (BIG-bench, https://github.com/google/BIG-bench)13,  
a collaborative multi-task benchmark to probe large language model performance. Most of the tasks included 
cover aspects of language such as syntax and grammar, but some tap into semantic knowledge as they require to 
determine similarity among words and concepts. While taking a major step forward, most of the tasks included 
in this collection lack behavioural validation, and the stimulus sets are relatively small (for a recent survey of 
word embedding evaluations via word semantic similarity task, see14).

Overall, thus, the field would benefit from large and appropriately validated benchmark datasets to enable 
fair comparison of artificial and human semantic representations15. Such benchmarks would not only foster 
the improvement of computational models but also be an instrumental tool in empirical investigation of the 
neuro-cognitive correlates of semantic representations (e.g.16).

Here, we present a large-scale benchmark probing semantic knowledge with an associative task: an anchor 
term (e.g., lemon) is associated with two candidate targets (e.g., squeezer, sour). We built a total of 10,107 tri-
plets, for a total of 6,433 unique words, including both abstract and concrete words, and spanning not only 
various semantic categories but also a broad range of length, frequency of use and familiarity, imaginability, and 
age-of-acquisition. For 2,555 triplets we provide a human ground-truth: the choices made by at least 17 human 
raters, randomly pulled from a total of 1,322 evaluators.

Methods
Semantic task design.  The task is modelled after common neuropsychological tests of associative semantic 
knowledge, such as the Pyramids and Palm Trees Test (PPTT; Howard & Patterson, 1992) and the Camel and 
Cactus test17. Semantic representations are probed by presenting three English words and asking to determine 
which of the two target words is closer in semantic space to the anchor, hence the name: Three Term Task or 
3TT. Please note that in this setting no explicit distinction is made between relations based on features similarity 
(e.g., cup – mug18) vs. associative links (e.g., cup - coffee), often further broken down into, for instance, domain 
vs. function similarity19. Contrary to previous tasks relying on the direct comparison of pairs of words/concepts, 

# Task Name # of Words Pairs Kind of Words Pairs Measure Provided # of Raters per pair Ratings Reference

1 8-8-8 8** nouns aggregate 8 detect the outlier Camacho-Collados and 
Navigli, 2016

27

2 MC 30 nouns (subset of RG) aggregate 38 5-point scale from 
0 to 4 Miller and Charles, 1991 55

3 RG 65 nouns aggregate 51 5-point scale from 
0 to 4

Rubenstein and 
Goodenough, 1965

56

4 YP-130 130 verbs aggregate 6 5-point scale from 
0 to 4 Yang and Powers, 2006 9

5 Verbs-143 143 verbs aggregate 10 10-point scale from 
1 to 10 Baker et al., 2014 57

6 WS-353-REL 252
nouns + verbs aggregate and 

individual score 13 or 16***** 11-point scale from 
0 to 10 Agirre et. al., 2009 5

7 WS-353-SIM 203

8 MTurk-287 287 nouns, verbs, adjectives aggregate 10 5-point scale from 
1 to 5 Radinsky et al., 2011 58

9 WS-353 353 nouns + verbs aggregate and 
individual score 13 or 16 11-point scale from 

0 to 10 Finkelstein et al., 2001 6

10 SemEval-2017 500* nouns aggregate 3 5-point scale from 
0 to 4

Camacho-Collados et al.,  
2017

59

11 WikiSem500 500*** nouns aggregate (and only 
of a subset) 6 detect the outlier Blair et al., 2016 26

12 MTurk-771 771 nouns + verbs aggregate and 
individual score (at least) 20 5-point scale from 

1 to 5 Halawi et al., 2012 60

13 SimLex-999 999 nouns, verbs, adjectives aggregate 36 11-point scale from 
0 to 10 Hill et al., 2014 7

14 SCWS 2003**** nouns, verbs, adjectives aggregate and 
individual score 10 11-point scale from 

0 to 10 Huang et al., 2014 61

15 Rare-Word 2034 nouns, verbs, adjectives aggregate and 
individual score 10 11-point scale from 

0 to 10 Luong et al., 2013 12

16 MEN 3000 nouns + verbs aggregate 50 relative comparison 
to other pairs Bruni et al., 2014 62

17 SimVerb-3500 3500 verbs aggregate and 
individual score 10 7-point scale from 

0 to 6 Gerz et al., 2016 63

Table 1.  Commonly used similarity-based benchmarks. Fifteen benchmarks available in the field of Natural 
Language Processing to investigate semantic representations with similarity-based tasks. Benchmarks are sorted by 
size (i.e., number of word pairs available). Notes: (*) each monolingual dataset (English, German, Spanish, Italian, 
Farsi) has 500 pairs, the size of the multilingual varies from 912 (Italian-German) to 978 (English-Spanish); (**) 8 
clusters of 8 related words and 8 outliers each; (***) at least 400 cluster for each language, each cluster with at least 7 
related words and 3 outliers; (****) words are presented in sentences, 241 pairs are same-word pairs (e.g., ready to 
pack his bags vs. another pack of zombies); (*****) same as in WS-353, manually split by two annotators.
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we require simultaneous comparison of three elements, which has two benefits. First, this task promotes deep 
semantic processing: different features and dimensions (e.g., real-world size, prototypical location, associated 
movement) need to be considered at the same time. Second, triplets allow for minimal context effect: e.g., given 
the word coffee, cup will be considered the right choice if the alternative is plate, but the choice would change if the 
other candidate is bean. Finally, the forced-choice procedure provides a method that is free of drifts in response 
criterion within participants, eliminating differences between participants caused by different use of scales  
(as would be the case for explicit similarity judgments on a Likert scale).

Alternative tasks that have been used to compare distributional model of semantic knowledge include: (a) syn-
onym detection20, i.e., given one word (e.g., levied) choose the appropriate synonym among four candidates (e.g., 
imposed, believed, requested, correlated); (b) concept categorization21,22, i.e., given one word (e.g., screwdriver) choose 
the appropriate taxonomic category (e.g., tools); (c) selection preference23,24, i.e., how plausible a given noun (e.g. bike) 
is as subject/object of a verb (e.g. ride); (d) analogy25, i.e., solve problems of the form “A is to B as C is to?”; and (e) out-
lier detection26,27, i.e., given a set of words, identify the one not semantically associated with the group.

It should be noted that a benchmark that is useful for computational linguistics does not necessarily respond 
to the needs of empirical investigations in cognitive neuroscience of language and semantics. As human rep-
resentations have been shown to be complex and multidimensional28, any task loading disproportionally on 
one aspect or the other would be limiting. For instance, synonyms detection and concept categorization tasks 
over-emphasize the above-mentioned taxonomic reactions (e.g., cup - mug) which are better captured by 
feature-based models (i.e., focusing on the number of sensory-motor features shared). On the contrary, selection 
preference tasks stress thematic reactions (e.g., drink - cup) which are better captured by distributional models 
looking at word co-occurrence and relative frequencies. Overall, similarity-based tasks (including analogies 
resolutions) are the best proxy for the depth and breadth of human semantic processing: as long as proper 
behavioural data and an adequate sample size are provided, the aspects of these tasks that have been previously 
criticised become their strengths29.

Triplets generation.  To generate the triplets, we developed in-house code (see Code Availability) requiring, at 
minimum, three inputs: the list of words to be used as anchor, words concreteness ratings, and a pre-trained word 
embedding to be used to define word distances. Our anchor words were the 1,854 concepts from the THINGS data-
base30, given their comprehensive semantic coverage of nameable concrete objects. Concreteness ratings were taken 
from the crowdsourcing norming study conducted by Brysbaert and colleagues on 37,058 generally known English 
lemmas31, and the pre-trained word embedding selected was a fasttext model trained on WikiNews (1-million-word 
vectors trained on Wikipedia 2017, UMBC web-based corpus, and statmt.org news dataset; 16B tokens32).

The code can accommodate multiple triplet templates each defining different criteria for each word (anchor, 
potential target 1, potential target 2). To generate our triplets, we defined two templates: (1) all three words need to 
be nouns with a concreteness rating higher than 4.5 (n = 10,000), thus selecting only concrete nouns; or (2) all three 
words need to be nouns with a concreteness rating higher than 1, thus also selecting abstract nouns (n = 2,000).

Here we briefly describe the sampling strategy for both anchors and candidate targets (Fig. 1 - step 1, algo-
rithm 1). Necessarily arbitrary choices were made with one goal in mind: to sample widely the semantic space, 
producing a large collection of diverse triplets. Note that unused or less frequently used words are prioritised 
by tracking the number of times a given word is used, and the method used to define proximity in a given word 
embedding model is the 3CosMul33 method adopted by gensim (https://tedboy.github.io/nlps/generated/gen-
erated/gensim.models.Word2Vec.most_similar_cosmul.html). For each template provided, the anchor word is 
selected from the source list given the template filtering criteria (e.g., all three words need to be nouns with a 
concreteness rating higher than 1), using the following steps:

	 1.	 A first attempt is made, strictly adhering to the criteria provided.
	 2.	 If an appropriate word is not found, a second sampling attempt tries to locate the most concrete noun from 

the anchor source list.
	 3.	 Finally, if that fails, an anchor word is randomly chosen among the unused or least used candidate words 

that have already been sampled for previously generated triplets.

To select the first of two candidate target words, we look at words closest to the anchor word in the embed-
ding model that match that candidate’s filter criteria, specifically:

	 1.	 Randomly select a minimum (nmin) and maximum (nmax) distanced index from the anchor in that list of 
words, nmin words away or nmax words away, respectively.

	 2.	 Randomly choose the closer or further list index and choose a random word within a set delta = 5 words 
around that index.

Then, to select the second of two candidate target words:

	 1.	 Calculate the vector formed by the difference between the anchor and first candidate word vectors in the 
embedding model;

	 2.	 Produce a list of words closest to that vector in the model;
	 3.	 Constrain the list based on the filter criteria for the second candidate word.
	 4.	 Attempt to randomly pick a word;
	 5.	 If no words match these criteria, attempt to choose the most concrete noun;
	 6.	 If that fails, choose a random word from the list of candidate words already used in previously generated triplets.
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Finally, all triplets are randomly shuffled so the different types defined by the filters in the template are 
intermixed.

The resulting 12,000 triplets were cleaned from duplicates (1,635), and cases where the same word appeared as 
anchor and target word 1 (n = 175) or anchor and target word 2 (n = 66). Hence, the final dataset included 10,107 
triplets, for a total of 6,433 unique words. The full list of triplets can be found in Triplets_10107.csv, while the list 
of unique words, along with their main psycholinguistic variables derive from the South CarOlina Psycholinguistic 
mEtabase (SCOPE34). are in Triplets_unique_words.csv. For each word, we also included its synsets in WordNet35, 
and then, for each synset, the synonyms, holonyms, meronyms, hyponyms, hypernyms, and entailments. These psy-
cholinguistic variables, known to affect word form (e.g., number of letters), lexical (e.g., frequency of use), or seman-
tics (e.g., concreteness) aspects of word processing, can be used to sub-select the triplets depending on the use-case 
(see Usage Note section). Some key variables are reported in Table 2: number of letters (ranging from 2 to 19, mean 
7.06, std 2.33), number of phonemes (ranging from 0 to 17, mean 5.81, std 2.06), number of orthographic neighbours 
(ranging from 0 to 7.5, mean 2.51, std 1.13), number of phonological neighbours (ranging from 0 to 9.5, mean 2.45, 
std 1.28), frequency of use (ranging from 0 to 14.79, mean 2.30, std 2.30), familiarity (ranging from 2.42 to 6.94, mean 
5.33, std 0.89), concreteness (ranging from 1.33 to 5, mean 4.11, std 0.84), age-of-acquisition (ranging from 1,58 to 
17.4, mean 8.78, std 2.78). Please note that not all measures are available for all words (Fig. 2a).

NLP Embeddings selection.  NLP word embeddings have become a central tool for understanding the 
semantic relationship between different words and how this relates to behaviour and the brain (e.g.36). To evaluate 
how these models would fare in the 3TT dataset, we chose embeddings derived from different NLP models and 
trained on different corpora (Table 3). It should be noted that, as a result, the embeddings do not share the same 
reference semantic space, i.e., a given word might be present in one but missing in another.

In total, fourteen different embeddings were selected. Five GloVe37 models trained on Wikipedia 2014 and 
English Gigaword Fifth Edition, four with 6B tokens yet different dimensions - 50,100,200, and 300d respec-
tively, and one with 42B tokens and 300d. Four additional GloVe models trained on Twitter with different 
dimensions - 25,50,100,200d respectively. A sense2vec38 model trained on Reddit comments. A fasttext32 model 
trained on Common Crawl with subword information. Finally, three additional fasttext32,39,40 models trained on 
Amazon reviews, Yahoo answers, and Yelp reviews respectively.

NLP Embeddings comparison.  Would NLP word embeddings agree on the solution to a given triplet? To 
answer this question, we examined each triplet across all 14 embeddings with the following steps. First of all, for 
each embedding, we checked that all three words were present in the embedding-specific semantic space, otherwise,  

Fig. 1  Schematic overview of the step of the benchmark creation. The first step was the generation of 10107 
triplets (6,433 unique words). The second step was the collection of the solution chosen by the different NLP 
embeddings models (n = 14) and the calculation of the NLP embeddings consensus response. The third and 
final step was the behavioural validation of a subset of triplets (n = 2,555).
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that embedding was skipped for that particular triplet. Second, we assessed the distance in the embedding-specific 
semantic space between anchor and target word 1 (Δ1), anchor and target word 2 (Δ2), and target word 1 and tar-
get word 2 (Δ3). The solution chosen by each embedding was then determined by the comparison of Δ1 and Δ2  
(Fig. 1 - step 2, algorithm 2). Finally, two measures were considered at the group level: which target words had been 
selected by most of the embeddings (NLP word embedding consensus choice) and how strong was the agreement across 
embeddings. The agreement index was calculated by first computing the delta between the number of embeddings  
choosing target word 1 and those choosing target word 2 and then computing the percentage of this value relative to 
the total number of embeddings tested for that triplet (Fig. 1 - step 2, algorithm 3). For instance, the triplet [anchor: 
gurney - target word 1: ambulance - target word 2: dishtowel] could be evaluated only in 6 embeddings, which split 
equally between the two target words leading to an agreement of 0%. In contrast, the triplet [anchor: mallet - target 
word 1: chainsaw - target word 2: tambourine] could be evaluated in all 14 embeddings, all of which selected the target 
word 1 leading to perfect agreement (100%, see Table 4 for more examples).

Online behavioural testing.  Does the NLP word embedding consensus choice match the solution chosen 
by human raters? To answer this question, a subset of triplets was selected for behavioural validation. We chose 
those triplets that (1) had been evaluated by at least 6 of the above-mentioned embeddings, to ensure reliable 
coverage of the NLP models semantic space; (2) appeared in Lancaster Sensorimotor Norms41, a database includ-
ing 39,707 concepts rated along 11 sensory-motor dimensions, to ensure wider future adoption in cognitive 
neuroscience; (3) spanned the model agreement range to ensure inclusion of both non-controversial and highly 
controversial triplets42. Non-controversial triplets show high agreement between embeddings, such as for [anchor: 
mallet - target word 1: chainsaw - target word 2: tambourine] for which all 14 embeddings chose target word 1. 
While controversial triplets are those that are solved differently by NLP embeddings, for instance, given the anchor 
[arrow], seven embeddings chose the target word [pellet] while the other seven the target word [toolbox]. Of 
the total of 2,555 triplets submitted for behavioural validation, 17.85% were non-controversial (i.e, percentage of 
agreement >70, n = 456), while 54.64% were controversial (i.e, percentage of agreement <30, n = 1396).

Among the selected triplets, there were a total of 3,630 unique words (1,041 unique anchor, 1,908 unique 
target word 1, 2,011 target word 2). Of the unique words used as anchors, 211 appear as such in at least 4 triplets, 
allowing the study of minimal context effect. Table 4 illustrates examples of triplets with high and low NLP 
embedding agreement, as well as examples of triplets sharing the same anchor. The full list of triplets that under-
went behavioural validation can be found in Triplets_behavioral_2555.csv.

We generated one png image per selected triplet, with the anchor always being displayed on the top while ran-
domising whether the target word would appear on the left or right side of the image (Fig. 1 - step 3). A Qualtrics 
(Qualtrics 2020; https://www.qualtrics.com) survey was built and distributed via the crowdsourcing platform 
Amazon Mechanical Turk (Mturk43, https://www.mturk.com) between May and November 2021. All experimental 
procedures complied with the Centre de Recherche Institut Universitaire de Gériatrie de Montréal (CRIUGM) Ethics 
Committee and the Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l’Île-de-Montréal 
requirements (CÉR-VN: Comité d’Éthique de la Recherche- Vieillissement et Neuroimagerie), in line with the princi-
ples expressed in the Declaration of Helsinki. Ethical approval was obtained before the start of the study (CER VN 
20-21-29), and all participants read and agreed to the corresponding informed consent. Participants received mon-
etary compensation for their participation. Raters were required to be physically located in the US or Canada, have 
a MTurk approval rate greater than 96% and have a number of MTurk tasks approved higher than 50. Moreover, 
before beginning the experiment, raters were asked to provide basic demographic details: gender, age, educational 
level, hand preference, country of origin, country of residence, native language, and any other language spoken. 
The total number of raters involved in the study was 1,322. Each triplet was evaluated by a variable number of raters 
ranging from a minimum of 17, to a maximum of 49, with a mean of 25.63 and standard deviation 4.39 (the full 
information is stored in Response_Summary.csv, column number_of_resp).

Raters were then presented with one triplet at a time and asked to determine which of the words at the bottom was 
closer in meaning to the word at the top (Fig. 1 - step 3). Immediately afterwards, they were asked to declare whether 
they knew the meaning of each of the three words or not. They were also offered the chance of flagging a given word 
as offensive or inappropriate. Finally, they were asked to indicate how close in meaning they perceived each pairwise 

Number of 
Letters

Number of 
Phonemes

Orthographic 
Neighbors

Phonological 
Neighbors Frequency Familiarity Concreteness

Age of 
Acquisition

# 5,156 5,156 5,156 5,156 5,156 1,604 5,144 4,878

mean 7.06 5.82 2.51 2.46 6.76 5.33 4.12 8.78

std 2.34 2.07 1.13 1.28 2.3 0.9 0.84 2.78

max 19 17 7.5 9.5 14.79 6.94 5 17.4

min 2 0 0 0 0 2.42 1.33 1.58

25% 5 4 1.75 1.55 5.25 4.8 3.67 6.67

50% 7 6 2.45 2.25 6.79 5.5 4.46 8.75

75% 9 7 3.3 3.35 8.35 6 4.76 10.84

Table 2.  Psycholinguistic properties of the words included in the benchmark. We report mean, standard 
deviation (std), higher and lower values (max, min), as well as 25, 50, and 75 percentiles of eight key variables 
known to affect word form (i.e., number of letters and of phonemes), lexical (i.e, orthographic neighbours, 
phonological neighbours, frequency of use), or semantics (i.e., concreteness, familiarity, age of acquisition) 
aspects of word processing.
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combination of the three words on a continuous scale (with no labels attached, but implicitly converted to a 0-to-9 
scale). Raters were instructed to provide the first answer that came to their mind, attempting a guess whenever needed. 
Raters were asked to evaluate 45 triplets, but they were free to interrupt testing at any given time.

As for the word embeddings (Fig. 1 - step 2, algorithm 3), two measures were considered at the group level: 
which target words had been selected by most of the raters (human raters consensus choice) and how strong was 
the agreement across raters. The agreement index was calculated by computing the delta between the number of 
raters choosing target word 1 and those choosing target word 2, and then computing the percentage of this value 
relative to the total number of raters that evaluated that triplet. For instance, the triplet [anchor: abacus - target 
word 1: chopstick - target word 2: calculator] was rated by 24 humans, 22 of which selected target word 2, thus 
leading to 83.3% agreement index [calculate via: (22-2)/24*100]. We also quantified how easy each triplet was as 
the delta between the average similarity between anchor and target word 1 vs. anchor and target word 2 as rated 
on the continuous scale: the closer the two similarities are, the harder to adjudicate between the two targets. 
Following the previous example, the average similarity between abacus and chopstick was 2.25, between abacus 
and calculator 7.08, thus making this an easy triplet to solve. This situation can be compared with the triplet 
[anchor: jean - target word 1: pant - target word 2: denim], rated by 36 humans who chose target 1 15 times, and 
target 2 21 times (agreement index = 12.67%): in this case the average similarity between jean and pant was 7.41, 
between jean and denim 7.66.

Data Records
All data are available at https://osf.io/at8cs/44. The data repository contains the full dataset (all the triplets gener-
ated and basic descriptors of the unique words included) as well as the behavioural dataset (the subset of triplets 
for which human behavioural ratings were collected). The same repository also includes the supporting doc-
umentation (e.g., the ethics committee of CRIUGM and CÉR-VN approval letter), the analysis code prepared 
for this study, and all related metadata (e.g., subjects’ instructions). The file variables_descriptions.md helps 
navigating the different columns of each datasets described below.

Full dataset.  The full 3TT dataset includes the set of 10,107 triplets generated (Triplets_10107.csv) along 
with detailed information on each of the 6,433 unique words they contain (Triplets_unique_words.csv). We 
provide several neuropsychological and linguistic variables of interest, such as number of letters, frequency of 
use, familiarity, concreteness, imaginability, age-of-acquisition, as available from South CarOlina Psycholinguistic 
mEtabase (SCOPE34). Moreover, for each word, we also included its synsets and then, for each synset, the syno-
nyms, holonyms, meronyms, hyponyms, hypernyms, and entailments as per WordNet35.

Fig. 2  Key stimuli and raters information. Distribution of basic neuropsychological variables across all the 
unique words included (a) and of basic demographic information on the raters (b).

https://doi.org/10.1038/s41597-023-02015-3
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Behavioural dataset.  The 3TT behavioural dataset includes four csv files. First, the 2,555 triplets (for a total 
of 3,630 unique words) that have undergone behavioural validation (Triplets_behavioral_2555.csv).

Second, basic demographics and performance information on the raters (Results_Demographics_1322.csv).  
It should be noted that the two tables, containing raw anonymized individual subject data (i.e., participant demo-
graphics, Results_Demographics_1322.csv, and individual’s ratings for each stimuli, Results_Responses_1322.
csv) will be accessible only after registration with the CNeuromod databank (https://docs.cneuromod.ca/
en/2020-alpha2/ACCESS.html) due to ethical considerations. These data can be used to decide to exclude given 
raters based on their performance and/or characteristics: **RandID** ensure raters identification while pre-
serving their anonymity. For each rater we report: gender, age, education, handedness, native language, country 
of origin, current country, whether they speak languages other than English. We also include information on 
mean (and standard deviation) of the reaction times (in second), total test time (in minutes), number of “not 
sure I know the word” and “the word is possibly offensive”.

Third, the raw yet anonymized responses for each of the 2,555 triplets and 1,322 raters (Results_
Responses_1322.csv), and the summary of the results (Results_Summary.csv), where for each triplet we report 
a number of statistics regarding the identity of anchor and target words, the number of responses collected for 
each, the choice, percentage of agreement, response times (mean and standard deviation), as well as the mean 
and standard deviation of all the pairwise distances between three items as rated on the continuous scale.

Technical Validation
NLP Embeddings comparison.  On average, for a given triplet 12.48 (std 2.77) out of the 14 NLP embed-
dings could be evaluated, since not all words were present in all NLP embeddings. While 2 triplets could not be 
covered by any NLP embeddings, these triplets are still included as other or possibly future embeddings might 
include all relevant words. Overall, across embeddings, the agreement was 49.38% (std: 23.75%), ranging from 
perfect (100%) to null (0%). In 6,808 triplets, the two target words were more similar to each other than to the 
target in at least half of the embeddings they were compared on. For instance, given [anchor: bag - target word 1: 
pharmacy - target word 2: lump], the two target words are judged closer to each other than either of them to the 
anchor by 13 (out of 14) NLP word embedding models.

Online behavioural testing.  We collected responses from 1,322 MTurk workers (Fig. 2b) Of these,  
742 identified as male, 570 as female, 6 as non-binary, and 3 preferred not to say. There were 1,189 right-handers, 
103 left-handers, 26 ambidextrous, and 3 forced right-handers. Mean age was 39.62 years, std 11.29, ranging 
from 19 to 79 years old. Mean education was 15.62 years (conversion adopted: high school/GED = 12, college’s 
degree = 16, master’s degree = 18, Ph.D. = 20) with std = 1.99. Given our criteria, raters were located either in the 
USA (n = 1,306), or in Canada (n = 15). The countries of origin were the USA in the overwhelming majority of 
the cases (n = 1,248), with additional 16 raters from Canada and the remaining 57 raters coming from a range 
of 36 different countries. While all were fluent in English, 334 raters spoke at least one other language, with  
32 cases in which the native language was other than English: Arabic (n = 4), Armenian, Finnish, French, 
German, Hindi (n = 3), Korean, Mandarin (n = 3), Nepali, Persian, Romanian, Russian, Spanish (n = 10), Swahili, 

# Name Model Trained on Dimensions Tokens Vocabulary size Reference

0* WikiNews fasttext Wikipedia 2017, UMBC 
corpus and statmt.org news 300d 16B tokens 1 M Mikolov et al., 2017 32

1 WiGi50d GloVe Wikipedia 2014 and English 
Gigaword Fifth Edition 50d 6B tokens 400k Pennington et al., 2014 37

2 WiGi100d GloVe Wikipedia 2014 and English 
Gigaword Fifth Edition 100d 6B tokens 400k Pennington et al., 2014 37

3 WiGi200d GloVe Wikipedia 2014 and English 
Gigaword Fifth Edition 200d 6B tokens 400k Pennington et al., 2014 37

4 WiG300d GloVe Wikipedia 2014 and English 
Gigaword Fifth Edition 300d 6B tokens 400k Pennington et al., 2014 37

5 WiG300d42B GloVe Common Crawl 300d 42B tokens 1.9 M Pennington et al., 2014 37

6 Twitter25d GloVe Twitter (2B tweets) 25d 27B tokens 1.2 M Pennington et al., 2014 37

7 Twitter50d GloVe Twitter (2B tweets) 50d 27B tokens 1.2 M Pennington et al., 2014 37

8 Twitter100d GloVe Twitter (2B tweets) 100d 27B tokens 1.2 M Pennington et al., 2014 37

9 Twitter200d GloVe Twitter (2B tweets) 200d 27B tokens 1.2 M Pennington et al., 2014 37

10 Reddit sense2vec Reddit comments 2019 3.3 M Trask et al., 2015 38

11 CCsub fasttext Common Crawl 300d 600B tokens 2 M Mikolov et al., 2017 32

12 Amazon fasttext Amazon reviews 2016 1.4 M Joulin et al., 2016a; Joulin et al., 2016b 39,40

13 Yahoo fasttext Yahoo answers 2016 1.9 M Joulin et al., 2016a; Joulin et al., 2016b 39,40

14 Yelp fasttext Yelp reviews 2016 500k Joulin et al., 2016a; Joulin et al., 2016b 39,40

Table 3.  Key characteristics of the NLP word embeddings included in the benchmark. For each embedding 
used in the current study, we include the underlying model (i.e. fasttext, glove, sense2vec), the corpora it was 
trained on, and its dimensions. The index 0* denotes the embedding model used to generate the triplets, not 
included in the following analyses.
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Tamil. All triplets were judged by at least 15 raters, but users of the benchmark might decide to screen responses 
based on specific criteria (see section Usage Note).

Here, we report basic analyses supporting the technical quality of the dataset. (All steps can be found in the 
supporting notebook ColabNotebook_3TT.) First, we excluded triplets that contained words judged as offen-
sive (n = 30) or declared as unknown (n = 68) by more than 8 raters. This arbitrary threshold was chosen after 
inspecting the histogram of all responses and observing that it fell on the 98th percentile of the distribution 
(Fig. 3a). Thus, a total of 2,457 triplets entered further analyses.

The selected triplets were rated by an average of 25.46 raters (std 4.25, min = 17, max = 42), and the overall 
agreement index was 64.28% (std: 26.47), ranging from perfect (100%) to null (0%). As it can be appreciated in 
Fig. 3b on the left, both human and NLP embedding agreement spanned the whole range from very high to very 
low. Unsurprisingly, human agreement correlated with the estimated easiness in solving the triplet, defined as the 
absolute distance between the two candidate targets (r = 0.8, Fig. 3b, on the right). It should be noted that the wide 
range of human agreements allows for a double dissociation between triples hard to solve by human consensus vs. 
by NLP embedding models’ consensus. For instance, [anchor: coffeemaker - target word 1: creamer - target word 
2: hairdryer] appears to be a controversial triplet for NLP embeddings (8 vs 6 split), but not for humans (90% 
agreement on target word 1). Similarly, triplets might be controversial for humans but not NLP embeddings: for 
example, given [anchor: candle - target word 1: lamp - target word 2: candlelight] human raters are split (10 chose 
target word 1, 23 target word 2), while the choice of embeddings is unanimous (14 for target word 2).

Considering only the subset for which the models reach a consensus (n = 2137), the solution chosen by the major-
ity of human raters overlapped with the NLP embeddings’ choices only for 21.15% of the triplets. Conversely, human 
raters and the neuro-cognitive inspired model Lancaster Sensorimotor Norms agree 74.54% of times. It should be 
noted that this does not mean that any single NLP embedding is anti-correlated with the human raters. Rather, trying 
to reach a consensus decision based on the embeddings here included leads to a very poor performance.

We investigated potential age effects by splitting the human raters in 4 demographic groups: young (<30 years,  
n = 286), adults (30–40 years, n = 501), old adults (40–50 years, n = 279), older adults (>50 years, n = 251). To 
create a null distribution of the agreement level between human raters, we randomly assigned participants to 
two groups of 200 raters and computed their agreement, repeating the procedure 1,000 times. The results indi-
cate an average agreement of 83.63% (std = 3.88), ranging from 65.28% to 94.31%. In Fig. 4a, we illustrate how 
all age groups fall well between the distribution of the random splits of raters, while the sensorimotor norms 
results fall below the 2 percentiles, and the NLP embeddings are outside of the distribution support.

As a final sanity check, we evaluated how other measures capturing only one lexico-semantic aspect at a time 
would fare: emotional valence (i.e., the pleasantness of a stimulus45), contextual diversity (i.e, how many different 
passages a word is found in46), body-object interaction (i.e., the ease with which the human body can interact with a 
words’ referent47), age of acquisition48, familiarity49, and semantic diversity (i.e., the variance in context associated with 
a given word50). All these variables fell short of sensorimotor norms, with performances around chance level: emo-
tional valence (48.67%, n = 900), context density (48.95%, n = 1,667), body-object interaction (53.41%, n = 1,084), age 
of acquisition (49.49% n = 1,580), familiarity (49.03%, n = 1,703), and semantic diversity (55.47%, n = 759) (Fig. 4b).

Examples of Anchor Target 1 Target 2
# models 
choosing 1

# models 
choosing 2

% 
agreement

# raters 
choosing 1

# raters 
choosing 2

% 
agreement

“hard” triplets for 
NLP embeddings

arrow pellet toolbox 7 7 0 1 25 92.3

chandelier ballroom candlestick 7 7 0 13 13 0

abacus chopstick calculator 7 7 0 2 22 83.33

coffeemaker kitchenette thermos 7 7 0 13 12 4

broom fern janitor 7 7 0 6 22 51.14

sheep alpaca people 7 7 0 23 3 76

“easy” triplets for 
NLP embeddings

mallet chainsaw tambourine 14 0 100 14 5 47.37

candle lamp candlelight 0 14 100 10 23 39.39

cream ice lavender 0 14 100 27 1 92.86

radio broadcaster telephonic 0 13 100 20 2 81.81

ship deck courier 0 12 100 19 5 58.33

fire flood charcoal 0 12 100 3 28 80.65

Same anchor, 
different targets

trolley carousel grocery 7 7 0 22 7 51.72

trolley monorail farmhouse 4 10 42 19 3 72

trolley railway lollipop 1 13 85 30 2 87.5

trolley sidewalk ejector 1 12 84 22 5 62.96

trolley streetcar basket 1 13 85 25 7 56.25

trolley streetcar shelf 6 8 14 32 1 93.94

Table 4.  Examples of various triplets and their solution according to NLP embedding models and human 
raters. The first 6 rows present triplets that are controversial for NLP models (no consensus decision can be 
reached), while the following 6 rows list triplets where NLP models perfectly agree. The last 6 rows illustrate 
cases of triplets with the same anchor but different target words 1 and 2. The human raters’ choices are listed on 
the right as a comparison.
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To further illustrate the potential of this dataset as a benchmark for NLP models, we present the results for 
each of the 14 NLP embeddings here considered. The overall ranking indicates that the sense2vec model trained 
on Reddit is the best at approximating the human ratings (Table 5), the only one outperforming the sensorimo-
tor norms results (Fig. 4c). It should be noted that the Reddit model is not only the most recent and with the 
largest vocabulary, but it is also the only sense2vec model included. Compared to glove and word2vec models, 
it allows senses disambiguation (e.g., bank as a financial establishment vs. piece of land alongside water38). 
Overall, it appears that a combination of training dataset, vocabulary size, and model kind determines the ability 
to match human choices. First, fasttext models outperform glove ones, except for the fasttext model trained on 
Common Crawl. As a matter of fact, the two models trained on the web archive achieve the lowest performance 
(WiG300d42B and CCsub). Second, glove models trained on Twitter achieve better results than those trained 
on Wikipedia. Third, given the same model, training set, and vocabulary size, fewer dimensions seem to lead 
to better results. Figure 4d further illustrates the clustering of NLP embeddings according to their responses to 
each triplet.

Overall, we believe these analyses demonstrate that our task and dataset are a good benchmark as they are 
(1) accurately and unambiguously annotated reflecting human semantic representations, (2) of sufficiently large 
size as to allow deployment in several machine learning settings, (3) controversial enough to make it difficult 
(or impossible) for NLP embedding to converge on one solution. We show that NLP embeddings are still far 
from reaching human-like semantic representations and thus saturating this benchmark, while neuro-cognitive 
oriented models taking into account sensory-motor information can successfully guide such endeavours51. It 
should be noted that sensory-motor information alone is not sufficient to reach inter-human level of agreement, 
suggesting a margin for improvement of neuro-cognitive models as well, perhaps complementing the experien-
tial information they cover with distributional information28.

Finally, it should be noted that our unique datasets included both abstract and concrete terms, which have 
been shown to be cognitively and neurally dissociable52, thus opening the way to studies addressing, for instance, 
the role of experiential and distributional information in warping the semantic distance between these two dif-
ferent words classes.

Usage Note
The full dataset can be freely downloaded from https://osf.io/at8cs/. We also provide a notebook to perform 
basic exploration of the dataset and the analysis here reported: ColabNotebook_3TT. It should be noted that 
the two tables containing raw anonymized individual subject data (i.e., participant demographics, Results_
Demographics_1322.csv, and individual’s ratings for each stimuli, Results_Responses_1322.csv) will be accessi-
ble only after proper registration with the CNeuromod databank (https://docs.cneuromod.ca/en/2020-alpha2/
ACCESS.html) due to ethical considerations.

Fig. 3  Behavioural validation of the dataset. (a) Histogram of the words declared as unknown (left) or judged as 
offensive (right), the dotted line at the number 8 indicates the 98th percentile of the distribution. (b) Scatterplot 
of the human agreement index vs. the NLP embedding agreement index (left) and of the human agreement 
index vs. the estimated easiness in solving the triplet, defined as the absolute distance between the two candidate 
targets (right).
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Data provided in Results_Demographics_1322.csv can be used to remove raters based on, for instance, 
their native language, country of origin, or performance. We would recommend against using reaction times as 
the collection of such a measure through MTurk is inherently noisy. Instead, we would suggest removing triplets 
in which at least one word has been judged offensive or was not known by 8 or more raters.

Fig. 4  Assessment of the benchmark. (a) Percentage of agreement of solutions based on the consensus among 
NLP embeddings (red), the Lancaster Sensorimotor Norms (green), as well as the pairwise comparison of 
different demographic groups (blue scale). The four demographic groups are defined as 4 demographic groups: 
young (<30 years, n = 286), adults (30–40 years, n = 501), old adults (40–50 years, n = 279), older adults 
(>50 years, n = 251). The black histogram indicates agreement levels between randomly assigned groups of 
human raters (200 raters per group, procedure repeated 1,000 times). (b) As in (a) but showing the percentage 
of agreement of solutions based on single measures capturing one lexico-semantic aspect at a time. (c) As in 
(a) but showing the percentage of agreement of 4 representative NLP embeddings (the best, the worst, and 
two intermediate ones). (d) Hierarchically clustered heatmap of the NLP embeddings (rows) based on their 
responses to each triplet (columns).

Name

Agreement with Humans

# of triplets percentage

Reddit 1960 79.77

Yahoo 1424 57.96

Amazon 1301 52.95

Yelp 1148 46.72

Twitter25d 996 40.54

Twitter50d 880 35.82

Twitter100d 786 31.99

Twitter200d 729 29.67

WiGi50d 652 26.54

WiGi100d 612 24.91

WiGi200d 560 22.79

WiG300d 546 22.22

WiG300d42B 434 17.66

CCsub 317 12.90

Table 5.  Ranking of the NLP word embeddings. For each embedding used in the current study, we computed 
the number of triplets for which there is agreement with the human ratings and the corresponding percentage.
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We believe that this dataset will be useful, in years to come, to compare NLP models of word meaning with 
human semantic representations. As noted by Schnabel and colleagues53, NLP embedding models rankings 
might vary depending on the benchmark chosen. In particular, item-based evaluations (e.g., pairwise similar-
ities) might diverge from set-based evaluations (e.g., intrusion task), suggesting that (1) global measures are 
necessary to shed light into the differences between embeddings, and (2) the more benchmarks the better.

Here we focused on word vector models, which have been shown to learn relationships between words as 
they are deployed in the corpora they are trained on. One might wish to extend the study to large language mod-
els, for instance quantifying semantic similarity between human raters and different layers of GPT3. While the 
rise of large language models holds promise for models reaching human-like language performance, it remains 
difficult to evaluate whether what is learned by these models aligns with human understanding. Are they mem-
orising shallow linguistic information or accessing human-like representational knowledge? Currently, con-
textual, experiential information captured by norms such as LSN is missing from virtually all NLP models: our 
observations might guide the enhancement of these models and our dataset will be the perfect benchmark for 
such efforts.

Code availability
The code used to generate the triplets and compare the embeddings is made available at https://osf.io/at8cs/. 
The code to generate triplets [code/compare_triplets] requires, at a minimum, three inputs: the list words 
to be used as anchor, words concreteness ratings, and the pre-trained embedding to be used to define word 
distances. This code can be used to generate novel triplets fitting other experimental goals, for instance triplets 
at fixed distances between target words or triplets with only abstract (or concrete) terms. The code to compare 
embeddings [code/generate_triplets] requires the generated triplets and the embeddings one wishes to use to 
solve the triplet task. It can easily be adapted to test novel embeddings (e.g., with different training samples 
or vocabulary sizes). We also provide a notebook to perform basic exploration of the dataset including all the 
analysis here reported: ColabNotebook_3TT (available on the OSF repository as well). All analysis can be 
reproduced with the data directly available on the OSF repository safe for the two requiring individual subject 
data: Results_Demographics_1322.csv and Results_Responses_1322.csv will be accessible only after proper 
registration with the CNeuromod databank (https://docs.cneuromod.ca/en/2020-alpha2/ACCESS.html) due to 
ethical considerations. The OSF repository includes also the datasheet for the dataset54: https://osf.io/echny. Data 
and code are released under Creative Commons Attribution 4.0 International Public Licence (CC-BY 4.044).
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