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Computational modeling and numerical simulations have become indispensable tools in science,
technology, engineering and mathematics (STEM), and in industrial research and development.
Consequently, there is growing demand for computational skills in undergraduate and postgraduate
students and a need to revise existing curricula. We report from a case study where an existing
materials science module was modified to contain numerical simulation of the materials: students
use simulation software to explore the material’s behavior in simulated experiments. In particular,
the Ubermag micromagnetic simulation software package is used by the students in order to solve
problems computationally that are linked to current research in the field of magnetism. The sim-
ulation software is controlled through Python code in Jupyter notebooks. This setup provides a
computational environment in which simulations can be started and analyzed in the same notebook.
A key learning activity is a project in which students tackle a given task over a period of approx-
imately 2 months in a small group. Our experience is that the self-paced problem-solving nature
of the project work — combined with the freedom to explore the system’s behavior through the
simulation — can facilitate a better in-depth exploration of the course contents. We report feedback
from students and educators both on the training in material science and the Jupyter notebook as
a computational environment for education. Finally, we discuss which aspects of the Ubermag and
the Jupyter notebook have been beneficial for the students’ learning experience and which could be
transferred to similar teaching activities in other subject areas.

I. INTRODUCTION

Traditionally, disciplines such as physics, chemistry
and materials science have been divided into two strongly
interrelated parts, namely theory and experiment. The
experiment constitutes a means to confirm or falsify hy-
potheses that are typically arising from a carefully devel-
oped theory. At the same time, experiments can also ini-
tiate the development of novel theories. More generally,
scientific investigations can be characterized by a cycli-
cal process of connecting experiment and theory [1]. It
may appear natural to reflect the classification into the-
ory and experiment in teaching curricula: We often find
theory-focused classes alongside experimental courses at
university level.

However, significant advances in technology and com-
puting have entailed a novel building block of science,
namely computational modeling and numerical simula-
tions. Not only in the natural sciences, but also within
the engineering community, this new branch has rapidly
evolved into the third fundamental pillar besides theory
and experiment [2]. Both experimentalists and theorists
make use of computational techniques in their research
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activities. Oftentimes, a system of interest is too complex
to be solved analytically or certain experiments cannot
be carried out in a laboratory. In such a case, numerical
studies can help to improve our understanding despite
the above challenges. Prominent examples of computer
simulations include climate and weather forecasting [3],
computational fluid dynamics [4], the modeling of chemi-
cal reactions [5] and most recently the SARS-CoV-2 pan-
demic [6].

In STEM education, computational modeling has an
important role [7] and it is widely argued that more com-
putational content in curricula would be desirable [e.g.
8, 9]. Anecdotal evidence on undergraduate programs
at numerous universities worldwide suggests that com-
putational contents remain severely underrepresented in
the respective curricula [9–12], despite recent studies pre-
senting evidence that computational methods education
in undergraduate coursework may lead to the develop-
ment of multiple essential skills [13, 14]. For example,
the American Association of Physics Teachers (AAPT)
has identified competency in computation to be vital for
success at the workplace or PhD research activities for
physicists and thus recommends the incorporation of ex-
tensive computational physics contents into undergrad-
uate programs [15, 16]. Addressing pre-university ed-
ucation, high school classrooms are being discussed to
make computation a part of science learning [17]. Com-
putational modeling and numerical simulations appear
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crucial for obtaining a complete picture of the modern
STEM disciplines, and therefore adequate ways need to
be found to embed this young branch into teaching cur-
ricula.

In the context of teaching, we can distinguish between
at least two approaches toward incorporating computa-
tional methods in a curriculum [8]: Firstly, there are
modules which solely focus on programming, numerical
methods, or modeling and numerical simulations (e.g.,
a class on computational physics). Secondly, computa-
tional content can also be introduced by embedding it in
existing modules. The latter approach is at the core of
the case study presented in this work.

Here we report on the introduction and implementa-
tion of numerical simulation group projects in an elec-
tive course within the materials science and engineer-
ing curriculum of the University of Illinois at Urbana-
Champaign (UIUC). The course is available to students
in different fields, such as electrical and computer en-
gineering or physics. In more detail, the students set
up and perform micromagnetic simulations by using the
open computational environment [18] Ubermag [19]. In
this article, we describe our methodology, characteristics,
and experiences of Ubermag and related computational
software packages when used in STEM instruction. We
discuss our insights from the teaching delivery, student
evaluations and personal interview surveys.

The paper is structured as follows. In Sec. II, we re-
view the current status of teaching computational mod-
eling and numerical simulations at university level. This
involves several examples of already existing classes and
tools, as well as suggestions for further applications in
undergraduate courses. Section III contains a brief in-
troduction to computational micromagnetics, which is
followed by a detailed description of the fundamental
aspects of the Ubermag software package and its ap-
plication in the classroom at UIUC. Subsequently, in
Sec. IV we present the evaluation of student feedback and
personal interview surveys. Based on the feedback and
our own experience, we then give recommendations for
the implementation of computational projects in other
courses in Sec. V. Finally, we summarize our findings in
Sec. VI.

II. INCORPORATION OF COMPUTATIONAL
METHODS INTO STEM PROGRAMS

There are various ways how computational methods
can be embedded into traditional modules that form an
existing undergraduate or graduate curriculum. In gen-
eral, this may be done in the form of computational as-
signments, computational lectures, computational labo-
ratories and computational research projects [20]. In the
case of physics, an excellent platform for relevant course
materials, teaching approaches, workshops and interac-
tion with fellow teachers has been established by the
Partnership for Integration of Computation into Under-

graduate Physics (PICUP) organization [21]. A further
comprehensive compilation of useful resources on compu-
tational physics can be found in Ref. [22]. In the remain-
der of this section, we will give several examples on how
to embed computational methods into STEM programs.

A popular tool used in introductory STEM classes is
given by Visual Python (VPython), a visual extension of
Python that can be utilized for simulating simple exper-
iments with only a few lines of code [11]. For instance,
VPython has been used in the aerospace engineering pro-
gram at the University of Southampton, where second-
year students were assigned computational projects re-
lated to three-dimensional real time visualization [23].
In physics, VPython has been shown to be particularly
useful for classical mechanics classes and can nowadays
also be run in Jupyter Notebooks and in browsers by
using Web VPython. VPython can also be introduced
simultaneously with an introduction to programming if
students have no prior programming experience [23]. In
a survey conducted by Zhang et al., a majority of materi-
als science and engineering students have indicated that
learning computational skills in the second undergradu-
ate year is optimal [24]. On the other hand, one can ar-
gue that contents which enhance students’ computational
literacy should be conveyed as early as possible so they
can be used, exploited and extended in all parts of the
degree program in the subsequent years. Caballero and
Merner point out that faculty frequently do realize the
importance of computation and programming, however,
the majority is still reluctant to include these topics into
their courses due to a variety of reasons, such as time
constraints and insufficient (perceived) expertise, since
typically most of the faculty do not specialize in compu-
tation [9, 25].

Further examples of computational contents in STEM
curricula are given in the following. In terms of
closed computational environments, Physlets [26] and the
Physics Education Technology (PhET) Interactive Simu-
lations project at the University of Colorado Boulder [27]
are two noteworthy products for introductory physics
courses. A major portion of open computational envi-
ronments are focused on more advanced and specialized
topics, such as the interactive molecular dynamics sim-
ulation code developed at Weber State University [28],
and the nanoHUB platform [29] which is used in the
course “ME 581 – Numerical Methods in Engineering
Using Jupyter Notebooks” at Purdue University [30, 31].
Aside from the aforementioned course, the nanoHUB in-
structional materials are also available as open content
under a Creative Commons license and can be used for
classes anywhere in the world. Various simulation soft-
ware packages are easily accessible and can be controlled
through a graphical user interface. At UIUC, instruc-
tors have started using some of the resources for vari-
ous undergraduate courses [20, 24, 32–34], e.g., in a class
on the “Electronic Properties of Materials” (MSE 304).
This involves several homework assignments where stu-
dents have to hand in reports on solving various com-
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putational problems. In detail, the students use density
functional theory (DFT) to investigate properties such
as the density of states, band structure and effective
masses of electrons and holes in different materials by
utilizing the Quantum Espresso computer code [35, 36]
on nanoHUB. Furthermore, in another assignment, stu-
dents are asked to use abacus (Assembly of Basic Ap-
plications for the Coordinated Understanding of Semi-
conductors) [37] to obtain a qualitative and quantitative
understanding of a semiconducting diode. Aside from
the nanoHUB set of tools, a comprehensive overview of
relevant methods in the context of teaching computa-
tional materials science and engineering can be found in
Ref. [38].

Further advances concerning the inclusion of computa-
tional methods in existing courses will benefit from simu-
lation environments such as Ubermag [19] and the Atom-
istic Simulation Environment (ASE) [39]. ASE is a soft-
ware package for atomistic simulations provided by re-
searchers at the Technical University of Denmark. Uber-
mag is described in more detail in Sec. III. Both Ubermag
and ASE provide a high-level and convenient interface
to multiple simulation packages: Controlling these sim-
ulation packages directly requires more specialized skills
than using the high-level interface. Both ASE and Uber-
mag expose a Python interface to the user and are sup-
ported by extensive documentation, which includes tuto-
rials, frequently asked questions and contents of a work-
shops. A key contribution to the value that these sim-
ulation environments offer for education is the lowering
of the usability barrier : How much of a (often cryptic
and historically grown) syntax does the student need to
know before they can get different simulation results?
The learning takes place through changing the simula-
tion inputs and understanding how the outputs change
in rensponse. This is more efficient if the changes of the
input are concise and cognitively not too demanding.

Other examples of software with high-level interfaces
and thus good potential for teaching include Comsol
Multiphysics [40, 41] and the Einstein Toolkit which of-
fers computational tools for relativistic astrophysics and
gravitational physics applications [42].

There are many ways in which computational activities
can be embedded in our teaching curricula, including in-
corporation of computational exercises into introductory
courses, see for example Refs. [11, 14, 43–47]. In labora-
tory courses experiments can be combined with computer
simulations, for example by using VPython [47], Mathe-
matica [48] or Microsoft Excel [49]. It was reported that
it may be beneficial to establish dedicated computational
physics or engineering laboratories [14]. A further in-
teresting method to embed computational contents into
the curriculum is given by so-called computational es-
says [50]. Originally proposed in a work by diSessa [51],
computational essays consist of a combination of text,
executable code, interactive diagrams and other compu-
tational tools. For the realization of such essays, interac-
tive Jupyter notebooks [52] represent an ideal tool.

Following this overview of previous efforts on incorpo-
rating computational contents into STEM curricula, we
now turn to the specific case of micromagnetic simulation
projects in a materials science and engineering course.

III. MICROMAGNETIC SIMULATION
PROJECTS IN A MATERIALS SCIENCE AND

ENGINEERING COURSE

We present a case study that we conducted within the
framework of a class on “Magnetic Materials and Ap-
plications” in the Department of Materials Science and
Engineering at UIUC. In this context, we utilized the
software package Ubermag [19], developed at the Uni-
versity of Southampton, United Kingdom, and the Max
Planck Institute for the Structure and Dynamics of Mat-
ter, Germany, which provides a Python interface to ex-
isting micromagnetic simulation packages.

We introduced group projects that make use of the
Ubermag simulation package. Small-group computa-
tional projects represent an ideal means to complement
a traditional lecture course by a more student-centered
aspect — it has been shown in previous studies that such
(technology-enabled) active-learning approaches [53] can
give rise to an increased student performance [54–56].
Ubermag offers a simple and easy-to-learn approach to
create, control and run simulation scripts that solve the
underlying partial differential equation which describes
the temporal evolution of the magnetic field in a speci-
fied materials system.

We start with an introduction to (analytical) micro-
magnetic theory in Subsec. III A, followed by the numeri-
cal computation of solutions to the analytical micromag-
netic problem using so-called computational micromag-
netics in Subsec. III B. Subsection III C introduces the
Ubermag software and Subsec. III D describes the teach-
ing activity in detail.

A. Introduction to Micromagnetics

The basis of time-dependent micromagnetics is the
equation of motion of the magnetization vector field
(Landau-Lifshitz-Gilbert, LLG equation) [57]:

dm

dt
= −|γ0|m×Heff(m) + αm× dm

dt
. (1)

Here, γ0 denotes the gyromagnetic constant, α is the
Gilbert damping constant. The entity of interest is the
magnetization vector field m(r, t) ∈ R3 defined as a func-
tion of position r ∈ R3 and time t ∈ R. For a time-
dependent problem, one generally knows an initial mag-
netization vector field m0 = m(t0) at time t0, and wants
to compute m(r, t) for t > t0.

A significant part of the complexity originates from the
effective field, Heff , which is itself a function of the mag-
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netization vector field. The effective field can be com-
puted from the energy E of the system (Heff = − 1

µ0

δE
δm ).

Different phenomena of material physics can be de-
scribed by contributions to the total energy E, for exam-
ple

E(m) = EEx(m) + EZ(m) + EDem(m) (2)

+EAnis(m) + EDMI(m),

where EEx denotes the exchange energy, EZ the Zee-
man energy, EDem the demagnetization energy, EAnis the
anisotropy energy, and EDMI the Dzyaloshinskii-Moriya
interaction (DMI). All energy terms involve integrals over
the volume, some involve vector analysis operators, and
the demagnetization term (EDem) contains a double in-
tegral due the long-range nature of the demagnetization
effects [58].

In summary, the micromagnetic problem — summa-
rized through Eqs. (1) and (2) — is complex. Mathemati-
cally, this is reflected in Eq. (1) being a non-linear integro
partial differential equation. In terms of the physics that
is described by the model, there is a rich variety of phe-
nomena ranging from fundamental physics to applied en-
gineering. It is this complexity and richness which results
in thousands of publications, and that makes the model
a fruitful ground for advanced materials education.

B. Introduction to Computational Micromagnetics

The micromagnetic model can be solved analytically
only for very few cases (often in geometries with partic-
ular symmetries). In general, a numerical approach is
required to obtain a solution.

A typical numerical approach toward the solution of
the LLG equation (1) is given by discretizing it in space
using finite elements or finite differences. The time-
dependent problem then becomes numerically tractable
by solving the spatial partial differential equation for a
time t, then advancing the solution from t to t + ∆t
through solving a set of ordinary differential equations,
and then repeating (where t→ t+∆t). Relevant magne-
tization dynamics phenomena include ferromagnetic res-
onance and spin-wave propagation [59–61]. However, the
LLG can also be used to determine equilibrium configu-
rations of the magnetization field, or conventional energy
minimization can be used.

There are at least two widely used software pack-
ages that solve the complex computational micromag-
netics problem using finite differences: the Object Ori-
ented MicroMagnetic Framework (OOMMF) [62] and
mumax3 [63]. The OOMMF software operates on the
CPU of the utilized computer, whereas mumax3 is a
GPU-accelerated program and requires an Nvidia GPU
card to be installed. OOMMF is written in C++ and
Tcl, mumax3 is based on the programming languages Go
and Cuda. The input scripts for the simulations need
to be defined by the user in Tcl and a Go-like script-
ing language, respectively. The learning curve for either

package is steep; while clearly acceptable in professional
research activities, it is a challenge for occasional users
such as students in an educational setting.

In what follows, we will discuss how Ubermag is related
to the aforementioned simulation packages and how it can
be used for teaching activities.

C. The Ubermag Software and its Utilization in
the Classroom

Ubermag has been developed to provide a Python in-
terface [64] to OOMMF with the goal of providing an
improved environment for researchers to support compu-
tational science investigations of magnetic materials and
devices (recent examples include [65–67]). Later, Uber-
mag was extended to also interface with mumax3 [19].

The Python packages provided by Ubermag allow to
specify micromagnetic models, run simulations, and ana-
lyze as well as visualize data in interactive Jupyter note-
books. Only the computational solving of micromagnetic
problems is delegated to the micromagnetic calculators
(i.e. OOMMF or mumax3), while all other steps are in-
dependent from these simulation packages.

The main Ubermag Python packages that are
typically used for a majority of simulations are
termed micromagneticmodel, discretisedfield,
oommfc and mumax3c. Here, micromagneticmodel
is used to define micromagnetic models (i.e., describ-
ing the energy and dynamics equations that determine
the underlying physics), discretisedfield is used
to construct and visualize finite-difference fields to en-
able and prepare a numerical solution, and oommfc and
mumax3c handle communication with the OOMMF and
mumax3 calculators, respectively.

This structured approach — with the aim of support-
ing scientists — is also beneficial in a teaching context:
The structure of the software interface follows that of the
physics model.

By using Ubermag, students can control and run their
simulations via browser-based interactive Jupyter note-
books in an exploratory manner by re-executing code as
often as it is desired (see Fig. 1). The modular struc-
ture of Jupyter notebooks allows to run blocks of code
(so called “cells”) individually instead of running the
entire simulation script. In general, such a notebook
can contain the problem description, the (triggering of
the) numerical computation as well as data analysis in a
self-contained way. The environment invites exploration
through modification of cells and their repeated and in-
teractive execution: Students can obtain an in-depth un-
derstanding of the underlying physics by iteratively mod-
ifying and probing the system.

In addition to code cells, “Markdown” cells can be
used in Jupyter notebooks to annotate the document.
Markdown is a common markup language used for type
setting. Equations, using LaTeX typesetting, are also
supported in the Markdown cells. 2D, 3D and interac-
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FIG. 1. Screenshot of a Jupyter notebook containing
Ubermag-based micromagnetic simulations used in a web
browser via Binder. This excerpt contains Python code,
Markdown text and two diagrams. See main text for details.

tive plots can be included as well, for example, by us-
ing the (third-party) packages matplotlib, k3d and
pyvista.

An exemplary screenshot of a (part of a) Jupyter note-
book is depicted in Fig. 1. This particular notebook con-
tains Python code, Markdown text, an image to visualize
the magnetic configuration of a nanodisk with a diame-
ter d = 100 nm, and a plot of the time-dependence of the
(spatially averaged) magnetization components mx, my

and mz after excitation by a magnetic field pulse. More
information about this particular simulation project can
be found in the supplementary material [68].

The consistent use of Python in the Ubermag research
environment — for problem definition, execution of sim-
ulations, and data analysis — saves students from hav-
ing to learn multiple programming languages (such as
Tcl and Go). Instead, they can focus on the underly-
ing physics while developing and expanding their skills
in one of the most popular and powerful programming
languages in the world.

The installation of software for teaching purposes can
be a demanding topic: the university’s or the students’
personal laptops may be running a variety of operating
systems (typically Windows, MacOS or Linux) with dif-

ferent versions. More complex simulation software envi-
ronments may need multiple libraries of compatible ver-
sions to be installed simultaneously. For the Ubermag
software, there are fortunately multiple ways to install
it: Using conda-forge the three main operating systems
are supported. An installation using Python’s standard
installation tool pip is also possible, but requires the user
to manually install a micromagnetic calculators (such as
OOMMF or mumax3).

For computational problems that can be computed
within a few minutes on a single-core CPU, there is an-
other zero-install way of using Ubermag through a ser-
vice called MyBinder available at mybinder.org. In
short: Ubermag can be executed in the cloud and con-
trolled from the browser of the student. No installation
on the student’s machine is necessary. This has been
very popular with the students. (We discuss this option
in more detail in section V B 2).

A last aspect we want to mention is the open-source
nature of Ubermag. In contrast to, for example, Com-
sol Multiphysics [40, 41] and other commercial simula-
tion packages, Ubermag and Python-based Jupyter note-
books offer enhanced value, transparency and unlimited
accessibility for students, instructors, and departments:
No licenses need to be purchased as all software is open
source and is available for download [69]. There is also no
tie-in to a particular vendor: Should the university dislike
the way the Ubermag package develops in the future, it
could take the current Ubermag version and either keep
using it as is, or modify it to suit its own needs best.

The ideal scenario is of course that users of the package
feed back any requests for improvements (or actual code
changes that implement these improvements) to the open
source team. There are well established protocols for
such contributions, although it may need skills beyond
those of the average academic. Increasingly, universities
employ research software engineers who can provide such
skills [70].

D. The Elective Course on Magnetic Materials and
Applications

Our case study has been conducted in the framework
of the Magnetic Materials and Applications class (MSE
598/498/464) at UIUC. This elective course is aimed at
both undergraduate and graduate students at the De-
partment of Materials Science and Engineering, but also
other students from the physics, chemical engineering
and electrical engineering departments have been attend-
ing this class in the past. Over the past years, the class
has seen an enrollment of 7 to 15 students per semester.

In the lecture, the fundamental concepts with regard
to the practical use of magnetic materials are introduced.
It is held over the span of about 16 weeks and in the
syllabus it is recommended that students dedicate 6-8
hours per week to working on the course. Aside from the
live lectures, online discussions are encouraged via Can-

mybinder.org
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vas (an online course and learning management system),
weekly homework is assigned, literature review presenta-
tions are delivered by the students and a micromagnetic
simulation project has to be completed successfully.

In total, we have designed five distinct simulation
projects. We ask students to work in groups of two to
four, since each project is divided into several subpro-
jects. Therefore, each student can work on one of the
subprojects. The subprojects are to some extent inde-
pendent of each other, but they do have a certain over-
lap such that it is beneficial for the students to interact
with their peers and discuss their solutions. An exem-
plary timeline of the computational projects in the fall
semester 2021 at UIUC is illustrated in Fig. 2. Before
the problems are handed out to the students, we give an
introduction to Ubermag and micromagnetic simulations
in a 90-minute class. Furthermore, we provide them with
supplementary material such as video tutorials presented
by the Ubermag developers and the accompanying soft-
ware documentation, which is very comprehensive and
includes numerous exemplary Jupyter notebooks. Due
to the students’ diverse background, their exposure to
programming in general and Python in particular prior
to working on the micromagnetic simulation projects has
been vastly different. For instance, the Department of
Materials Science and Engineering at UIUC has compu-
tational methods embedded in several core classes of the
curriculum [20, 24, 32–34], while students from other ma-
jors who attend the course on Magnetic Materials and
Applications may never have written their own code.
Furthermore, it is plausible to assume a discrepancy in
the average computational literacy between undergradu-
ate and graduate students, who are both allowed to at-
tend the class. The extensive Ubermag documentation
and collection of example notebooks has been very ben-
eficial to address this variety of existing skills.

The project reports are due around two months after
the projects have been assigned. After the completion of
the first delivery of the course (fall 2020) into which we
had incorporated the simulation projects, we learned that
it is prudent to set up meetings between students and
the instructor together with a teaching assistant halfway
through the duration of the computational project due to
multiple reasons. Firstly, this discussion allows to pro-
vide preliminary feedback to the students and helps to
prevent them from getting lost in details, which did hap-
pen to one group in the fall semester of 2020. Further-
more, it also enables students to ask questions about the
subject matter, programming in general, and the instruc-
tor’s expectation with regard to their report and presen-
tation. Lastly, it may be perceived as an intermediate
deadline and thereby encourages students to get started
with the projects as early as possible. We also ensured
that students always have the possibility of reaching out
to the teaching assistants via email as well as on a Canvas
discussion forum. A few weeks after the intermediate dis-
cussions, students are required to present their results to
the class and then hand in a project report several days

later. After each presentation, we aimed to stimulate a
technical discussion and then solicited feedback from the
audience on the presentation content and style.

We note that the Ubermag numerical simulations fit
perfectly into the syllabus, since micromagnetic model-
ing had been discussed superficially in our course prior
to the introduction of the simulation projects and is also
typically presented in magnetism courses at other uni-
versities. Due to the complexity of the competing energy
terms presented in Eq. (2), micromagnetic simulations
constitute a rich and instructive playground for the stu-
dents. Furthermore, the simulation projects are carefully
designed such that each calculation runs for a reasonably
short period of time, i.e., seconds to minutes. In com-
bination with the intuitive control of Ubermag through
Jupyter notebooks, students can develop and follow an
exploratory approach by running simulations iteratively
and visualizing their results immediately within the note-
book.

Students work in groups of two to four, and thereby
we encourage collaborations, which have been shown to
enhance the learning outcome of computational prob-
lems [43]. Assigning programming exercises to groups
of students is also expected to circumvent the problem of
unauthorized collaboration and plagiarism, as well as to
increase the student satisfaction [11].

A relatively new package termed mag2exp of Uber-
mag [71] allows to simulate physical quantities identical
to those obtained from experimental techniques that are
used to study magnetism, such as Lorentz transmission
electron microscopy or small angle neutron scattering.
While we have not implemented this in our simulation
projects yet, this approach is expected to further reduce
the gap between experiments and numerical modeling
and thus represents a possible extension of the existing
exercises.

The physics of the simulation projects and the individ-
ual projects are summarized in the supplementary mate-
rial [68]. In the next section, we discuss the learning
experience from the student and teacher perspective.

IV. FEEDBACK ON LEARNING EXPERIENCE

A. Feedback from student interviews

Personal interview surveys were carried out in Octo-
ber 2022 with six students of the classes offered in Fall
2020 and 2021 in order to assess their experience with
the simulation projects. Prior to the interviews, we had
reached out to 20 former students whose email addresses
were still known and received a response by six individu-
als. The conversations took place on a video conferencing
platform and typically lasted around 30 minutes per stu-
dent. The interviews were recorded and then analyzed
in further detail. During the personal interview survey
we asked open-ended questions that touched upon the
following central points:
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INTERMEDIATE DISCUSSION
• Meeting with instructors
• Discuss progress and problems
• Intermediate feedback

PRESENTATIONS
• Presentations
• Feedback from class
• Grading of presentations

REPORTS DUE
• Projects due
• Hand in reports
• Grading of reports

WORK PHASE 2
• Finalizing solutions
• Group members meet
• Use forum for questions

WORK PHASE 1
• First coding efforts
• Group members meet
• Use forum for questions

LECTURE AND DEMONSTRATION
• Lecture on micromagnetics 
• Ubermag introduction
• Assigning projects

SELF-STUDY PHASE
• Watch tutorial videos
• Read documentation
• Study examples

WEEK 3 OF FALL SEMESTER WEEKS 4-6

WEEK 7 OR 9
(WEEK 8: MIDTERM EXAM)

WEEKS 7-11

WEEKS 3-4 WEEK 11

END OF WEEK 11

EXEMPLARY TIMELINE FOR MICROMAGNETIC SIMULATION PROJECTS (FALL 2021, UIUC)

FIG. 2. Exemplary timeline of computational micromagnetics projects from the fall semester 2021.

• Overall experience with simulation projects, posi-
tive and negative aspects, suggestions for improve-
ments;

• Difficulty of projects, taking into account stu-
dents’ proficiency in programming, especially with
Python, and their prior experience in the field of
magnetism;

• Assessment of the importance of computational
methods for research and whether micromagnetic
simulation projects changed students’ attitude;

• Communication and collaboration within the stu-
dent groups as well as the communication between
the students and the instructional staff.

In what follows, we provide an overview of feedback
obtained from the students. Due to the limited number
of students who participated in the class on magnetic
materials and applications over the course of the past
years, a quantitative study is not possible and we focus
on a qualitative analysis.

Several students mentioned that varying the different
micromagnetic energy terms and visualizing the static
and dynamic magnetization states helped them to ob-
tain a better understanding of the subject matter in com-
parison to problem sheets or demonstrations in the lec-
ture. One student with rather limited prior knowledge on
both magnetism and computational methods said that
the simulations gave them a much better understanding
of the basics, which they could not obtain in the conven-
tional lecture due to time constraints and the fact that
the instructor has to cater to the needs of both under-
graduate and graduate students whose levels of under-
standing can be vastly different.

Another student stated that their physical intuition for
magnetism has significantly improved by working on the
computational projects. Interestingly, the micromagnetic

simulation projects and especially the gained experience
on programming with Python became a central topic in
one student’s job interview and appeared to be viewed
as positive by the interviewers. Two students noted
that micromagnetic simulations allowed them to obtain
an experimentalist’s perspective on magnetism without
the need of being in a laboratory environment and, for
example, fabricating expensive thin films or potentially
facing safety issues. They do not think that computa-
tional methods should replace experimental lab courses,
but certainly they are a good addition that does not re-
quire too many resources. One student brought up the
issue that the class is for both undergraduate and gradu-
ate students. Therefore, the students’ background, skills
and prior knowledge (especially with regard to program-
ming) may be too diverse and makes it difficult for the
instructor to provide a successful learning experience to
everybody in the classroom.

The communication within the project groups was
typically perceived to be very good and was facilitated
through students setting up virtual meetings, writing
emails or sending text messages. One student mentioned
that sometimes it was more convenient to ask the instruc-
tor or teaching assistants for help, since they would have
a better background knowledge about programming and
the underlying physics.

Different groups had different approaches to solving
the problems. Some groups frequently exchanged ideas,
comments and concerns about the different subtasks, but
there was also one case where students had assigned tasks
to each other initially and then no further significant
interaction occurred. The communication between the
students and the instructor as well as the teaching as-
sistants was assessed positively. It was pointed out by
several students that especially the intermediate discus-
sions were highly useful for them to obtain preliminary
feedback and talk about potential issues. Some students
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said that they would have preferred a more detailed in-
troduction to the Ubermag software package within the
actual classroom environment in contrast to our com-
parably brief presentation and the subsequent reference
to YouTube tutorials and the Ubermag documentation.
Another session with the teaching assistants that could
include short exercises prior to the assignment of the ac-
tual simulation projects may be beneficial in the future.
Another suggestion given by a student is to design sev-
eral smaller projects instead of one large computational
project, as it is the case in the course on electronic prop-
erties of materials that is taught at UIUC. This would
enable students to work on more than just one specific
topic.

One student had been intimidated by computational
methods a few years ago, but the micromagnetic sim-
ulation projects turned out to be a major reason why
the student became more comfortable with the underly-
ing concepts and numerical approaches. Moreover, some
students have learned to recognize the importance of
computational methods in science after working on the
simulation projects, while other students stated that the
projects are relatively limited in terms of their scope and
duration, and thus their mindset has not changed sig-
nificantly. We note that the Department of Materials
Science and Engineering at UIUC has already incorpo-
rated computational methods into several core classes
of the undergraduate curriculum and therefore students
in this program may have a clearer picture with regard
to the importance of computational methods in research
compared to students at other departments and univer-
sities. A majority of students were slightly more engaged
for the simulation projects than for other parts of the
class. The underlying reason was not only the students’
interest in computational methods, but also, for exam-
ple, peer pressure (they did not want to disappoint their
group members) and the relevance for their final grade.
Overall, the students appeared to enjoy working on the
simulation projects. For instance, one student wanted to
explore another project that they were not assigned to on
their own time. The student said that this other project
also sounded very interesting and that they wanted to
explore it in their free time. This is just an example of
some students wanting to go beyond what is required of
them.

One interviewee suggested that it would be beneficial
to discuss in more detail the capabilities and limitations
of computational methods. For instance, this student
would have been interested to learn about the validity of
computational methods, the approximations and correc-
tions that are required, and whether artifacts such as the
choice of the simulation cell size play an important role.
Another student with prior experience in both OOMMF
and mumax3 noted that Ubermag is more suitable as a
teaching tool compared to the other software packages.
Its intuitive handling and straightforward visualization
capabilities make discussions with other group members
and the instructor considerably easier.

B. Feedback from student questionnaires

In preparation for a future quantitative analysis, we
also conducted an anonymous and paper-based survey
among the participants of the class in the fall semester of
2022. Seven students in the class participated and were
asked questions similar to those in the above-mentioned
personal interview surveys.

We carried out two distinct surveys throughout the
semester: One survey was conducted before assigning the
simulation projects and another slightly modified survey
was done after the completion of the two-month projects.
The motivation for using questionnaires at two differ-
ent points in time was to get a first idea about possi-
ble changes and trends in the students’ perception and
knowledge as a result of carrying out the computational
projects. In the following, we briefly summarize the feed-
back and results.

Prior to working on the micromagnetic simulation
projects, most students indicated that they were only
barely or somewhat familiar with numerical methods,
but on average reasonably comfortable with program-
ming, especially with Python. All respondents recog-
nized that computational methods are important in to-
day’s research landscape and could elaborate on the rel-
evance of numerical approaches in research. A major
portion of students claimed to have a very limited expe-
rience with magnetism. This semester’s class was com-
posed of students who gave a mixed response on whether
they prefer experimental or theoretical research, under-
lining the diverse background of the participants. After
having completed the simulation projects, a majority of
students now respond that they are fairly or even very
familiar with numerical methods. There is a slight trend
towards being more comfortable with programming and
comparably stronger indications for a perceived increase
in the students’ knowledge of magnetism. Nearly all stu-
dents thought that Python is well suitable for such a
project and, more specifically, indicate a similar attitude
towards Jupyter notebooks and Ubermag. Almost all
students stated that the difficulty of the projects was just
right. Strikingly, each respondent said that the projects
were much more enjoyable than regular problem sheets
assigned in the class. An open-ended question on the stu-
dents’ overall experience was answered in a similar way to
the personal interview surveys. Most people clearly en-
joyed the projects and working with Ubermag. One per-
son criticized ambiguity in some questions and another
person suggested balancing out the difficulty of the var-
ious subprojects. Two people said that they would have
preferred to install a local version of Ubermag, since they
viewed the online version as buggy.

C. Feedback from Teaching Staff

Initially, the design of the five simulation projects from
scratch was laborious and time-consuming for the teach-
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ing assistants. Suitable problems had to be developed
and example solutions needed to be tested carefully in
Jupyter notebooks. Once we had a reasonable problem
sheet and solution for each computational project, it be-
came easier in the subsequent years, since everything can
be reused while gradually improving possible issues that
were found in previous semesters. It was noticed that
even slight ambiguities in the description of the problems
may lead to students being confused or getting lost in
rather irrelevant details. This is one of the main reasons
why we introduced the intermediate discussions when we
had students working on the projects for the second time
(fall 2021). One of the teaching assistants mentioned that
this type of meeting was helpful for them to identify a
minor mistake in the problem definition that had caused
students to obtain erroneous simulation results. Despite
the challenging circumstances in the fall 2020 and 2021
semesters due to the COVID-19 pandemic, we felt that
the communication between the instructional team and
students as well as among the students themselves was
better and more intensive than in courses without such
computational projects. By working on these projects,
students were encouraged to actively discuss about the
subject matter and ask questions to their peers as well
as instructors. Therefore, the instructional team regards
these computational projects as a successful realization of
a technology-enabled active-learning approach and a suit-
able supplement to the traditional lecture format. Apart
from designing the projects, leading intermediate discus-
sions and moderating the session with the students’ final
presentations, the work load for the teachers was not ex-
ceedingly high compared to other courses. Therefore,
we have decided to further pursue and optimize this ap-
proach.

Overall the simulation projects (see supplementary
material [68]) were designed to relate directly to current
research topics, as well as distinct topics of the regular
lectures. For example, synthetic antiferromagnets are in-
tegral components of modern spintronics devices to min-
imize complications from stray fields. Similarly, the com-
plex gyrotropic nature of magnetization dynamics gives
rise to complex phenomena such as Walker breakdown for
moving domain walls, or distinct chiralities in the motion
of topological solitons such as vortices and skyrmions.

Unfortunately, given the extended timeframe of the mi-
cromagnetic simulation projects lasting two months, it
was not always possible to align the projects well with
when these concepts are discussed in class. We consider
the use of small example notebooks and shorter home-
work problems to achieve that alignment in the future.
For instance, at the moment the projects do not include
any current-driven dynamics, since spin transfer torques
are only discussed in class after the conclusion of the mi-
cromagnetic simulation projects.

D. Summary feedback

In conclusion, the micromagnetic simulation projects
have seen a mostly positive perception by the students
that were interviewed. This leads us to the hypothesis
that such computational projects help students to obtain
a better understanding and intuition of the underlying
physics.

Computational micromagnetics with Ubermag consti-
tutes a suitable approach to strengthen and develop stu-
dents’ programming skills while at the same time facili-
tating a more in-depth understanding of the subject mat-
ter. We hope to conduct a more quantitative investiga-
tion in the future to examine the hypothesis that micro-
magnetic simulation projects based on Ubermag are a
valuable addition to the syllabus of a course on magnetic
materials and applications.

V. RECOMMENDATIONS FOR
COMPUTATIONAL PROJECTS

The feedback we have obtained from students and
teachers on the course suggests that computational
projects and computational problem solving can improve
the learning experience and effectiveness. In this section,
we discuss the teaching setup with the objective to ex-
tract insights that could be used and built on in other
subjects (i.e., outside micromagnetics and materials sci-
ence more generally).

We want to comment on three points here: the choice
of programming language (V A), the opportunities from
the Jupyter Notebook for use in education (V B), and
aspects of the Ubermag design that are beneficial for its
use in teaching (V C).

A. Choice of Programming Language

The use of Python as the language to both drive the
simulation and to carry out the data analysis appears to
be a good choice. The Python language is widely used,
some students did know it already, others will benefit
from learning about it. It can be argued that out of
the widely used languages, Python is one that is easy to
learn yet very powerful [72, 73]. Of particular relevance
is the wide set of libraries available for science and engi-
neering — including sophisticated data analysis and data
visualization tools — which can be used immediately in
Python.

The use of the same language to direct the computa-
tion (here using a Python interface to an existing simu-
lation package) and the data analysis is also useful, as it
reduces the cognitive load on the students.
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B. Project Jupyter Tools for Education

The Jupyter notebook [74] emerged from the Interac-
tive Python (IPython) [75] environment. A recent re-
view [52] by the original authors makes the observation
that the notebook has been designed to help scientists
think. As such, it is perhaps not suprising that the
Jupyter notebook has become the defacto standard in
data science [76], and is increasingly used in science for
data exploration and analysis [77]. Students can benefit
in similar ways as data scientists and scientists from the
Jupyter notebook. Jupyter notebooks are increasingly
used in educational settings [78, 79].

1. Jupyter Notebook

The combination of computer code (as input) and the
output from the execution (be it textual, or visualiza-
tions, for example), together with equations typeset in
LaTeX and free-text in one document helps the think-
ing process. Part of this is that the notebook captures
exactly the protocol that was used (i.e., order of com-
mands for simulation and analysis) to achieve a certain
result [80]. The ability to re-execute a command or simu-
lation easily (because the relevant commands are readily
available in the document) encourages exploration and
verification, and thus supports a learning process that
is driven by experimentation and exploration [52] of the
behavior of a complex system.

While we have not seen this done by our students,
it is also possible to author a project report within the
Jupyter notebook. It is thus possible to transition grad-
ually from a set of instructions for the simulation to run
and data to be plotted to a report that puts those activi-
ties and results in context. We hypothesize that this may
lower the barrier towards starting the report writing. We
know from research settings that using a notebook as the
document to create a report or publication provides good
reproducibility [80].

We find that interactive Jupyter notebooks (using the
programming language Python in our study), represent
an effective tool for students to craft and execute numer-
ical simulations individually or in groups and thereby
develop a functional understanding of STEM topics.

2. Binder can provide the computational environment

In our study, we have made use of the Binder soft-
ware [81], which is part of Project Jupyter. There is a
service running the Binder software that is publicly ac-
cessible and free to use at mybinder.org, and which
we have used for our teaching delivery.

The Binder software takes the URL of a data reposi-
tory [82], scans the repository for files that specify which
software is required to install, installs this software —
together with a Jupyter notebook server — in a Docker

container, and then connects the notebook server with
the user’s browser on the user’s computer. The user’s
computer is connected to the Binder service via the net-
work. All the technical steps described above are not vis-
ible to the user: after selecting the appropriate URL [83],
it takes a couple of minutes until the desired notebooks
session appears in the user’s browser.

The major benefit for our teaching experience is that
students can connect to a Binder session from their desk-
top, laptop or mobile device, and access the computa-
tional environment in which to experiment (numerically)
from their browser. This is in particular useful because
(i) they do not need to install any software and (ii) they
can use a variety of computer devices as long as a web
browser is available.

The public MyBinder service comes with some limita-
tions: For example a notebook session that is idle (i.e. no
computation and no user activity) for 10 minutes will be
stopped from the MyBinder site and all changes created
in the notebooks and on the file system of the container
will be lost. The notebook and other files can be down-
loaded before the session is stopped (and later uploaded
if a continuation of the work is desired). However, for
ongoing and extended studies a local install of Ubermag
on the student’s computer would be more convenient.

Furthermore, the computing hardware offered by My-
Binder is relatively weak (for example at most two CPU
cores). Those measures of restricted session length and
restricted CPU cores are taken by the MyBinder team
to keep the global service they offer as economic as pos-
sible. MyBinder is financed through donations [84] and
sponsorship from companies [85].

Despite these limitations, MyBinder has been very use-
ful for our teaching experience in providing a zero-install
computational environment: Most students have carried
out all of their simulation computation on the MyBinder
service, while others have installed the Ubermag soft-
ware on their own computer. The reason the MyBinder
service works well for our projects is that the computa-
tion required for the student exercises is relatively modest
and can be completed within minutes to hours on single-
core CPUs. If one wanted to offer the same no-install
computational environment for projects that have more
substantial computational demands, the university could
run their own Binder service: the BinderHub [81] is de-
signed for this. However, the skills required to set this
up exceed those of most academics, and help from the
local computing or IT team is likely to be required. A
local install of Ubermag is possible, and some students
have chosen to follow this path.

C. Using Simulation Software in Education —
Design of Ubermag

Our hypothesis is that the use of simulation packages in
advanced STEM classes can have educational value. We
had a positive experience using the Ubermag software.

mybinder.org
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In this section, we try to describe which aspects of the
Ubermag design have been helpful. Ubermag provides
a separation of multiple concerns which is beneficial for
the systematic teaching and learning of computational
science. Before we provide a more detailed analysis, we
need to provide some context.

1. Concepts in simulation driven problem solving

When a computer simulation is used to study a sci-
ence or engineering problem, there are multiple layers of
decision making and simplifications of the problem tak-
ing place (we assume that the model equations include
differential equations):

1. Decide on model to be used, and express model in
equations.

2. Discretize model in some form (on grid).

3. Solve discretized equation.

Many simulation packages are written for a particular
model description and provide all the steps 1 to 3. In
particular, the separation between these different aspects
is not visible to the user of the software. This is an aspect
of Ubermag’s design where this separation of concerns is
more clearly exposed and accessible, and thus the mean-
ing of the individual steps is easier to understand for the
learner:

1. Decide on physics approximations and the model
to be used (this determines the relevant equa-
tions): Within the Ubermag framework, the user
selects the relevant physics through terms that
contribute to the energy and dynamics of the
system from the micromagneticmodel Python
package. This creates a machine-readable def-
inition of a micromagnetic problem. Com-
puter scientists would express this so that the
micromagneticmodel Python package provides
a Domain Specific Language for micromagnetic
models of the real world [19].

2. Discretize the model in some form: This re-
quires splitting space into smaller parts such as
cuboidal cells for finite difference discretization and
a wider choice of geometrical objects for finite
elements. Within the Ubermag framework, the
discretisedfield package is used to define a
(finite difference) discretization of space, and scalar
and vector fields defined on that discretized space.

3. Using the micromagnetic model definition together
with the discretization, the problem can be solved
numerically. Ubermag translates the information
from the micromagnetic model and the discretized
field into a configuration file that is understood by
one of the micromagnetic calculators that it sup-
ports (currently OOMMF and mumax3). Using the

OOMMF Calculator (oommfc) or the mumax3 Cal-
culator (mumax3c) Python package, Ubermag then
delegates the actual numerical solution to OOMMF
or mumax3.

Through the use of different packages — with clearly
defined and orthogonal concerns — the concepts of com-
putational science become easier to grasp than if all of
those aspects are grouped together in the black-box sim-
ulation software.

2. Specifying the simulation problem to solve

Many simulation packages show similar traits: They
may have developed over many years or decades; often
by scientists who may not have expected that the soft-
ware would be used for decades. The user interface is
often some kind of configuration file. Sometimes the con-
figuration file uses the syntax of a language or protocol
that was fashionable at the time of inception of the sim-
ulation package. Or the configuration file uses a set of
syntax rules that were invented by the simulation pack-
age developers; sometimes being extended over time as
the capabilities of the package grew beyond initial plans.

A potential user of the software needs to learn and un-
derstand what physics model choice and discretization
is implemented in the software, and needs to learn how
to instruct the software through the configuration file to
use the right model, and to combine this with the re-
quired geometry, material and other parameters, initial
configuration, time-dependent or spatially resolved ex-
ternal effects, etc. Generally, the required configuration
file syntax is simulation package dependent: A scientist
(or student) thus needs to learn this syntax for every new
simulation package they want to use.

The Ubermag framework provides an abstraction
from the specific simulation package configuration
file syntax in the domain of micromagnetics. The
micromagneticmodel package provides the machine
readable definition of the problem using a syntax that
scientists appear to perceive as somewhat intuitive, and
Ubermag can automatically translate this into the pack-
age specific configuration file syntax. It is thus much eas-
ier to define a micomagnetic problem with Ubermag than
it would be if the packages OOMMF and mumax3 were
used directly. We believe this reduction in complexity
(of specifying a problem in a particular syntax) makes it
possible to explore a much wider set of topics within the
teaching module and the computational projects. This
idea — to provide a “user-friendly” high-level interface
to existing simulation software — is certainly transfer-
able to other domains. At least in the domain of atomic
simulation there is a related effort (the atomic simulation
environment Ase) which also provides a (Python-based)
abstraction layer and can delegate computation to mul-
tiple simulation packages [39].
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D. Recommendation Summary

We recommend the use of the Jupyter notebook: It
helps thinking and documenting the studies, and encour-
ages experimentation. Using the notebook, there is the
option to provide a zero-install computational environ-
ment using Binder. The choice of Python for the data
analysis seems reasonable as there are many libraries that
allow students to achieve a lot with very few commands,
the language is wide spread, easy to learn and power-
ful if required. Ubermag’s design helps to understand
the different steps taken in computational science, going
from a real-world problem to a particular numerical solu-
tion. For the use of simulation software, we see value in
Ubermag’s approach of providing a high-level instruction
language to drive the simulation packages; in particular
where the packages may require a very specific syntax
otherwise.

VI. CONCLUSIONS

We report from the modification of an existing teach-
ing module in higher education where we have introduced
group projects based on the use of computer simulation
software (Sec. III): The Ubermag micromagnetic simula-
tion environment has been used to solve self-paced group
project challenges in the area of magnetic materials ed-
ucation and research.

Qualified teaching assistants (e.g., experienced PhD
students) or even a dedicated staff member can support
the course instructor with the implementation of such
projects. At the Department of Materials Science and
Engineering at UIUC, the computational curriculum is
supported by such a dedicated assistant who provides
support for the development of modules, computational
lecture delivery and supplementary office hours [20, 24].
More generally, the growing movement of Research Soft-
ware Engineers at Universities [70] may provide oppor-
tunities to contribute software expertise into design and
delivery of teaching activities with computational com-
ponents.

For the magnetic materials course under consideration
here, the course instructor’s research group typically has
one or two scientists that utilize micromagnetic simu-
lations in their own research. Therefore, they can also
contribute to the success of the computational projects
in the course on magnetic materials and applications.

Feedback from students and teachers suggests the
change was an improvement to the learning experience
(Sec. IV). Students value the ability to explore a com-
plex system (that is the magnetic material here) through
the medium of computer simulation, where properties of
the material and the environment can be changed arbi-
trarily by the student, and the response of the material
can be investigated (by executing the simulation calcu-
lation). Students also reported that the programming
skills they have developed along the way are an impor-

tant enhancement of their skill set. Teachers enjoy the
enthusiasm of the students, and the possibility to align
the student exercises — albeit at different levels — with
topics of current research questions by using a simulation
tool used by researchers routinely.

Attempting to look beyond the particular study and
generalize, we make the following observations (Sec. V):

• Simulation can provide a virtual experiment and
thus offer the learning experience of carrying out
experiments in order to better understand a sys-
tem.

• Simulations are often more controllable than a real
experiment (within limitations of the underlying
model assumption), cheaper and safer.

• It is important to empower the students to con-
trol the simulation effectively within the time frame
available in the educational setting:

– Fine grained control of parameters is good.

– Simulation configuration through written
commands or configuration files are preferred
over use of graphical user interfaces (GUIs).
This way all inputs are recorded, reproducible
and can be retrospectively linked to the out-
puts.

– The cognitive load for expressing inputs for
the simulation should be kept minimal (so stu-
dents can focus on the main content of the
module rather than the — potentially com-
plex — syntax of the simulation package).

• We have used Python as the programming language
(Sec. V A):

– Python is perceived as easy to learn by scien-
tists; yet it is a very powerful language.

– There are many scientific libraries — this
makes the use of the language much more ef-
fective.

– The use of the same language for instructing
the simulation and analyzing the outputs is
beneficial.

– Python is also fashionable at the moment:
Some competency in using it is a benefit to
the students’ skills for the modern employ-
ment market.

• In the simulation based experiments, the Jupyter
notebook (Sec. V B) can replace the traditional ex-
periment logbook. By design, it can support the
thinking and learning process.

• The Binder software — as a part of Project Jupyter
— allows zero-install provisioning of the simulation
environment. However, this is only practical where
the simulation times are short (and thus the public
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mybinder.org instance can be used), or where
there is local IT know-how available to, for exam-
ple, set up a university-wide BinderHub instance.

• Where a well structured interface to the simulation
exists (such as in Ubermag with the breakdown
of simulation packages into model definition, nu-
merical discretization, and numerical solver), this
can support achieving of the learning objectives
(Sec. V C).

We note that the Jupyter-notebook based interface
lends itself straightforwardly to the learning (and as-
sessment) method of computational essays [50, 51]. We
may consider this in the future if, for example, time con-
straints do not allow for the assignment of more extensive
simulation projects, or a self-paced learning method for
individual students is sought in addition to the group
projects.
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