

View

Online

Export
Citation

PAPERS | OCTOBER 01 2024

Numerical simulation projects in micromagnetics with
Jupyter
Martin Lonsky; Martin Lang; Samuel Holt; Swapneel Amit Pathak; Robin Klause; Tzu-Hsiang Lo; Marijan Beg;
Axel Hoffmann; Hans Fangohr

Am. J. Phys. 92, 794–800 (2024)
https://doi.org/10.1119/5.0149038

 24 Septem
ber 2024 08:35:01

https://pubs.aip.org/aapt/ajp/article/92/10/794/3312285/Numerical-simulation-projects-in-micromagnetics
https://pubs.aip.org/aapt/ajp/article/92/10/794/3312285/Numerical-simulation-projects-in-micromagnetics?pdfCoverIconEvent=cite
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
https://crossmark.crossref.org/dialog/?doi=10.1119/5.0149038&domain=pdf&date_stamp=2024-10-01
https://doi.org/10.1119/5.0149038
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2279030&setID=592934&channelID=0&CID=836688&banID=521589952&PID=0&textadID=0&tc=1&rnd=5925683379&scheduleID=2199326&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fajp%22%5D&mt=1727166901525555&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faapt%2Fajp%2Farticle-pdf%2F92%2F10%2F794%2F20154884%2F794_1_5.0149038.pdf&hc=261a22897d740b0fbce6e0080a452e61ede4c446&location=

Numerical simulation projects in micromagnetics with Jupyter

Martin Lonsky,1,2,a) Martin Lang,3,4,b) Samuel Holt,3,4,c) Swapneel Amit Pathak,3,4,d)

Robin Klause,1,e) Tzu-Hsiang Lo,1,f) Marijan Beg,5,g) Axel Hoffmann,1,h)

and Hans Fangohr3,4,6,i)

1

Materials Research Laboratory and Department of Materials Science and Engineering,
University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
2

Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt, Germany
3

Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
4

Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ,
United Kingdom
5

Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, United Kingdom
6

Center for Free-Electron Laser Science, 22761 Hamburg, Germany

(Received 3 March 2023; accepted 15 July 2024)

We report a case study where an existing materials science course was modified to include numerical

simulation projects on the micromagnetic behavior of materials. The Ubermag micromagnetic

simulation software package is used in order to solve problems computationally. The simulation

software is controlled through the Python code in Jupyter notebooks. Our experience is that the self-

paced problem-solving nature of the project work can facilitate a better in-depth exploration of the

course contents. We discuss which aspects of the Ubermag and the project Jupyter ecosystem have

been beneficial for the students’ learning experience and which could be transferred to similar

teaching activities in other subject areas. # 2024 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1119/5.0149038

I. INTRODUCTION

Traditionally, science curricula at the university level con-
sist of theory-focused classes and experimental courses.
However, not only in the natural sciences but also within the
engineering community, computation has emerged as a third
fundamental methodology.1 Both experimentalists and theo-
rists make use of computational techniques in their activities.
Oftentimes, a system of interest is too complex to be solved
analytically, or certain experiments cannot be carried out in
a laboratory. In such cases, numerical studies can help to
improve our understanding.

In STEM education, computational modeling has an impor-
tant role,2 and it is widely argued that more computational
content in curricula would be desirable [e.g., Ref. 3]
Anecdotal evidence on undergraduate programs at numerous
universities worldwide suggests that computational contents
remain severely underrepresented in the respective curric-
ula,3,4 despite recent studies presenting evidence that compu-
tational methods education in undergraduate coursework may
lead to the development of multiple essential skills.5,6 For
example, the American Association of Physics Teachers
(AAPT) has identified competency in computation to be vital
for success at the workplace or PhD research activities for
physicists.7,8 Computational modeling and numerical simula-
tions appear crucial for obtaining a complete picture of the
modern STEM disciplines, and therefore, adequate ways need
to be found to embed this branch into teaching curricula.

We can distinguish between at least two approaches
toward incorporating computational methods in a curricu-
lum:9 first, there are courses that solely focus on program-
ming, numerical methods, modeling, and simulations.
Second, computational content can also be introduced by
embedding it in existing courses. The latter approach is at
the core of this case study.

Here, we report on the introduction and implementation of
numerical simulation group projects in an elective course

within the materials science and engineering curriculum of
the University of Illinois Urbana-Champaign (UIUC). The
course is also available to students in other fields, such as
electrical and computer engineering or physics, and requires
basic knowledge in condensed matter physics. The students
set up and perform micromagnetic simulations by using the
open computational environment* Ubermag.11 In this article,
we describe our experiences using Ubermag and related
computational software packages in STEM instruction. We
discuss our insights from the teaching delivery, student eval-
uations, and personal interview surveys.

This paper is structured as follows: Section II contains a
description of the course on magnetic materials and applica-
tions at UIUC, a brief introduction to computational micromag-
netics, and a detailed presentation of the Ubermag software and
its application in the classroom. Based on the students’ feed-
back and our own experience, we give recommendations for
the implementation of computational projects in other courses
in Sec. III. We provide supplementary material along with this
article, including a general overview on the incorporation of
computational contents into STEM programs; a description of
simulation projects and the corresponding problem sheets;
additional practical considerations; and a thematic analysis of
the feedback from students and the teaching staff.

II. MICROMAGNETIC SIMULATION PROJECTS IN

A MATERIALS SCIENCE AND ENGINEERING

COURSE

There exist many approaches to integrating computational
contents into undergraduate or graduate STEM degree cur-
ricula (see Sec. I of the supplementary material). Here, we

*Open computational environments allow students to directly see and con-

trol the underlying algorithm of the computational model, while closed

computational environments such as simulation applets are considered as a

black box with no or little information about the exact model.10

794 Am. J. Phys. 92 (10), October 2024 http://aapt.org/ajp VC Author(s) 2024. 794

 24 Septem
ber 2024 08:35:01

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1119/5.0149038
https://doi.org/10.60893/figshare.ajp.c.7349842
https://doi.org/10.60893/figshare.ajp.c.7349842
http://crossmark.crossref.org/dialog/?doi=10.1119/5.0149038&domain=pdf&date_stamp=2024-09-10

present a case study that we conducted within the framework
of a class on “Magnetic Materials and Applications.” We uti-
lized the software package Ubermag,11 developed at the
University of Southampton, United Kingdom, and the Max
Planck Institute for the Structure and Dynamics of Matter,
Germany, which provides a Python interface to existing
micromagnetic simulation packages.

We introduced group projects that make use of the
Ubermag software package. Ubermag offers an easy-to-learn
approach to create, control, and run simulation scripts that
solve the underlying partial differential equation that
describes the temporal evolution of the magnetic field in a
specified materials system.

In Subsection II A, we begin with a detailed description of
the Magnetic Materials and Applications course in which we
have conducted our case study. This is followed by an intro-
duction to (analytical) micromagnetic theory in Subsection
II B and the numerical computation of solutions in
Subsection II C. Finally, Subsection II D introduces the
Ubermag software.

A. The elective course on magnetic materials and
applications

The Magnetic Materials and Applications class (MSE
598/498/464) at UIUC is an elective course aimed at both
undergraduate and graduate students at the Department of
Materials Science and Engineering, but other students from
the physics, chemical engineering, and electrical engineering
departments have also attended this class. The total enroll-
ment ranges from 7 to 15 students per semester.

The lecture introduces the fundamental concepts with
regard to the practical use of magnetic materials. The course
objectives are:

• Understand how different magnetic interactions determine
static and dynamic magnetic properties.

• Quantify essential magnetic materials properties.
• Design components of magnetism-based devices.
• Use basic micromagnetic simulations.

The class is held over the span of about 16 weeks, and it is
recommended that students dedicate 6–8 hours per week to
working on the course. Aside from the live lectures, online
discussions are encouraged via Canvas (an online course and
learning management system), weekly homework is
assigned, literature review presentations are delivered by the
students, and a micromagnetic simulation project has to be
completed successfully.

We have designed five distinct simulation projects.
Students are asked to work in groups of two to four, since
each project is divided into several subprojects, which are
mostly independent of each other but do have a certain over-
lap such that it is beneficial for the students to interact with
their peers and discuss their solutions. More detailed infor-
mation about the contents of the projects and problem sheets
can be found in Sec. II of the supplementary material. A
sample timeline of the projects is illustrated in Fig. 1. Before
the problems are handed out to the students, we give a brief
introduction (about 30 min) to Ubermag as part of a standard
90-min class that focuses on micromagnetic simulations.
Furthermore, we provide them with additional materials such
as video tutorials by the Ubermag developers and the accom-
panying software documentation, which is very comprehen-
sive and includes numerous examples of Jupyter notebooks
that enable to run Ubermag. Due to the students’ diverse
backgrounds, their exposure to programming in general and
Python in particular prior to working on the computational
micromagnetics projects has been vastly different. For
instance, the Department of Materials Science and
Engineering at UIUC has computational methods embedded
in several core classes of the curriculum,12–16 while students
from other majors who attend our course may never have
written their own code. Furthermore, it is reasonable to
assume a discrepancy in the average computational literacy
between undergraduate and graduate students in the class.

Project reports are due around two months after the proj-
ects have been assigned. It is prudent to set up meetings
between students and the instructor together with a teaching
assistant halfway through the duration of the computational
project. First, this provides preliminary feedback to the stu-
dents and helps to prevent them from getting lost in detail.
Furthermore, it also enables students to ask questions about
the subject matter, programming in general, and the instruc-
tor’s expectation with regard to their report and presentation.
Finally, it may be perceived as an intermediate deadline and
thereby encourages students to get started with the projects
as early as possible. We also ensure that students always
have the possibility of reaching out to the teaching assistants
via email as well as on a Canvas discussion forum. A few
weeks after the intermediate discussions, students are
required to present their results to the class and then hand in
a project report a few days later. After each presentation, we
aim to stimulate a technical discussion and then solicit feed-
back from the audience on the presentation content and
style.

Fig. 1. (Color online) Example timeline for the computational micromagnetics projects.

795 Am. J. Phys., Vol. 92, No. 10, October 2024 Lonsky et al. 795

 24 Septem
ber 2024 08:35:01

https://doi.org/10.60893/figshare.ajp.c.7349842

B. Introduction to micromagnetics

Micromagnetics is concerned with magnetization pro-
cesses on length scales large enough to overlook atomic
structure details of a material but small enough to resolve
magnetic textures like domain walls. Examples of relevant
applications include magnetic data storage devices and nano-
particles for medical purposes. The basis of time-dependent
micromagnetics is the equation of motion of the magnetiza-
tion vector field (Landau–Lifshitz–Gilbert, LLG equation)17

dm

dt
¼ �jc0jm�HeffðmÞ þ am� dm

dt
: (1)

Here, c0 denotes the gyromagnetic constant, and a is the
Gilbert damping constant. The entity of interest is the mag-
netization vector field mðr; tÞ 2 R3 defined as a function of
position r 2 R3 and time t 2 R. For a time-dependent prob-
lem, one generally knows an initial magnetization vector
field m0 ¼ mðt0Þ at time t0 and wants to compute mðr; tÞ for
t > t0.

A significant part of the complexity originates from the
effective field, Heff , which is itself a function of the magneti-
zation vector field. The effective field can be computed from
the energy E of the system,

Heff ¼ �
1

l0

dE

dm
: (2)

Different phenomena of material physics can be described
by including different contributions to the energy E, for
example,

EðmÞ ¼ EExðmÞ þ EZðmÞ þ EDemðmÞ
þEAnisðmÞ þ EDMIðmÞ; (3)

where EEx denotes the exchange energy, EZ is the Zeeman
energy, EDem is the demagnetization energy, EAnis is the
anisotropy energy, and EDMI is the Dzyaloshinskii–Moriya
interaction (DMI). All energy terms involve integrals over
the volume, some involve vector analysis operators, and the
demagnetization term contains a double integral over the
volume due to the long-range nature of demagnetization
effects.

In summary, the micromagnetic problem—summarized
through Eqs. (1) and (3)—is complex. Mathematically, this
is reflected in Eq. (1) being a non-linear integro-partial dif-
ferential equation. A rich variety of phenomena are
described by this model, ranging from dynamic effects such
as ferromagnetic resonance and spin-wave propagation18–20

to static equilibrium configurations of the magnetization field
such as magnetic domains and vortices. It is this complexity
and richness that makes the model a fruitful ground for
advanced materials physics education.

C. Introduction to computational micromagnetics

The micromagnetic model can only be solved analytically
for a small number of cases (often in geometries with partic-
ular symmetries). In general, a numerical approach is
required to obtain a solution. A typical numerical approach
toward the solution of the LLG equation (1) is given by dis-
cretizing it in space using finite elements or finite differ-
ences. The time-dependent problem then becomes

numerically tractable by solving the spatial partial differen-
tial equation for a time t, then advancing the solution from t
to tþ Dt through solving a set of ordinary differential equa-
tions. We note that this iterative solution over steps in time
is algorithmically similar to the time integration method that
is frequently used in VPython simulations.

There are at least two widely used software packages that
solve the complex computational micromagnetics problem
using finite differences and relying on the same physical
model: the Object Oriented MicroMagnetic Framework
(OOMMF)21 and mumax3.

22

The OOMMF software operates
on the computer’s CPU, whereas mumax3 is GPU-
accelerated and requires an Nvidia GPU card to be installed.
OOMMF is written in Cþþ and Tcl, and mumax3 is based
on the programming languages Go and CUDA. The input
scripts for the simulations need to be defined by the user in
Tcl and a Go-like scripting language. The learning curve for
either package is long; while clearly acceptable in profes-
sional research activities, it is a challenge for occasional
users such as students in an educational setting. In the
remainder of this article, we will demonstrate that the
Ubermag software has a significantly shorter learning curve,
making it more suitable for educational use. Ubermag has
been developed to offer a Python interface

23

to OOMMF
with the goal of providing an improved environment for
researchers to support computational science investigations
of magnetic materials and devices. Later, Ubermag was
extended to also interface with mumax3.

24

In what follows,
we will provide more detailed information on Ubermag, and
how it can be used for teaching activities.

D. The Ubermag software and its utilization in the
classroom

The Python packages provided by Ubermag allow the user
to specify micromagnetic models, run simulations, and ana-
lyze and visualize data in interactive Jupyter notebooks, see
Fig. 1 of the supplementary material. Only the computational
solving of micromagnetic problems is delegated to the
micromagnetic calculators (i.e., OOMMF or mumax3), while
all other steps are independent from these simulation
packages.

The Ubermag Python packages (Sec. III C 1) are struc-
tured to mirror the computational modeling concepts: define
a physics model (micromagneticmodel), discretize
space (discretisedfield), and compute the numerical
solution (oommfc and mumax3c).

Students can control and run their Ubermag simulations
via browser-based interactive Jupyter notebooks. The modu-
lar structure of Jupyter notebooks allows running blocks of
code (so-called “cells”) individually instead of running the
entire simulation script. Students can obtain an in-depth
understanding of the underlying physics by iteratively modi-
fying and exploring the system (Sec. III B 1).

The installation of software for teaching purposes can be
challenging: the university’s or the students’ personal laptops
may be running a variety of operating systems (typically
Windows, MacOS or Linux) with different versions. More
complex simulation software environments may need multi-
ple libraries of compatible versions to be installed simulta-
neously. For the Ubermag software, there are fortunately
multiple ways to install it: using conda-forge, the three main
operating systems are supported. An installation using
Python’s standard installation tool pip is also possible but

796 Am. J. Phys., Vol. 92, No. 10, October 2024 Lonsky et al. 796

 24 Septem
ber 2024 08:35:01

https://doi.org/10.60893/figshare.ajp.c.7349842

requires the user to manually install a micromagnetic calcu-
lator (such as OOMMF or mumax3).

All simulation projects in our course are carefully
designed such that each calculation runs for a reasonably
short period of time, i.e., seconds to minutes. For computa-
tional problems that can be computed within a few minutes
on a single-core CPU, there is another zero-install way of
using Ubermag through a service called MyBinder available
at mybinder.org. In short: Ubermag can be executed in
the cloud and controlled from any browser; no installation
on the computer is necessary. This has been very popular
with students (see Sec. III B 2 for more details).

We discuss the value of using open-source software in
education in Sec. III of the supplementary material.
Furthermore, we present a qualitative thematic analysis of
the learning experience from the student and teacher per-
spective in Sec. IV of the supplementary material. In the fol-
lowing section, we offer suggestions for embedding
computational projects into other courses based on the feed-
back and our experience.

III. RECOMMENDATIONS FOR COMPUTATIONAL

PROJECTS

The feedback we have obtained from students and teach-
ers suggests that computational problem solving can improve
the learning experience. In this section, we discuss the teach-
ing setup with the objective to extract insights that could be
useful in other subjects (i.e., outside micromagnetics and
materials physics more generally). We want to comment on
three points here: The choice of programming language
(Sec. III A), the opportunities from the Jupyter Notebook for
use in education (Sec. III B), and aspects of the Ubermag
design that are beneficial for teaching (Sec. III C).

A. Choice of programming language

The use of Python as the language to both drive the simu-
lation and to carry out the analysis of the data extracted from
the simulations appears to be a good choice. Python is easy
to learn yet very powerful.25 Of particular relevance is the
wide set of Python libraries available for science and engi-
neering—including sophisticated data analysis and data visu-
alization tools.

B. Project Jupyter tools for education

The Jupyter notebook26 emerged from the Interactive
Python (IPython)27 environment. A recent review28 by the
original authors makes the observation that the notebook has
been designed to help scientists think. As such, it is perhaps
not surprising that the Jupyter notebook has become the stan-
dard in data science29 and is increasingly used in science for
data exploration and analysis.30 Students can benefit in similar
ways as data scientists and scientists from the Jupyter note-
book, which is increasingly used in educational settings.31,32

1. Jupyter notebook

The combination of computer code (as input) and the out-
put from the execution (be it textual, or visualizations, for
example) together with equations typeset in LaTeX and free-
text in one document helps the thinking process. The note-
book captures exactly the protocol that was used (i.e., order of
commands for simulation and analysis) to achieve a certain

result.33 The ability to re-execute a command or simulation
easily (because the relevant commands are readily available
in the document) encourages exploration and verification and,
thus, supports a learning process that is driven by experimen-
tation and exploration28 of the behavior of a complex system.

While we have not seen this done by our students, it is
also possible to author a project report within the Jupyter
notebook. It is, thus, possible to transition gradually from a
set of instructions for the simulation to run and data to be
plotted to a report that puts those activities and results in
context. We hypothesize that this may lower the barrier
toward starting the report writing. Moreover, as demon-
strated in previous reports,34 Jupyter notebooks represent a
platform that supports and fosters students’ epistemic agency
as well as reproducibility of the result.33

2. Zero-install software provision with Binder

In our study, we have made use of the publicly accessible
and free Binder software,35 which is part of project Jupyter.†

The Binder software takes the URL of a data repository,‡

scans the repository for files that specify which software is
required, installs this software—together with a Jupyter note-
book server—in a (Docker) container image, starts the con-
tainer, and connects the notebook server from the container
with the user’s browser. None of the technical steps
described above is visible to the user: After selecting the
appropriate URL,§ it takes a couple of minutes until the
desired notebooks session appear in the browser. The major
benefit for our teaching experience is that students can con-
nect to a Binder session from their desktop, laptop, or mobile
device and access the computational environment in which
to experiment (numerically) from their browser, which helps
lowering the usability barrier.

The public MyBinder service, which hosts the hardware on
which the container is executed, comes with some limitations:
For example, a notebook session that is idle (i.e., no computa-
tion and no user activity) for 10 min will be stopped from the
MyBinder site, and all changes will be lost. The notebook and
other files can be downloaded before the session is stopped
(and later uploaded if a continuation of the work is desired).
The computing hardware offered by MyBinder is relatively
weak (for example at most two CPU cores).

Despite these limitations, MyBinder has been very useful
for our teaching experience in providing a zero-install compu-
tational environment: Most students have carried out all of
their simulation computation on the MyBinder service. The
reason the MyBinder service works well for our projects is
that the computation required for the student exercises is rela-
tively modest and can be completed within minutes to hours
on single-core CPUs. If one wanted to offer the same no-
install computational environment for projects that have more
substantial computational demands, the university could host
and run their own Binder service: the BinderHub35 is
designed for this.** However, the skills required to set this up

†URL: https://mybinder.org/.
‡Ubermag repository https://github.com/ubermag/tutorials on Github.
§Ubermag on mybinder.org: https://mybinder.org/v2/gh/ubermag/tutorials/

latest.
**We note that JupyterHub is the part of BinderHub responsible for running

the server (after BinderHub builds the image), and that—given appropri-

ate skill sets—it can be configured to have additional functionality, such

as required user authentication, persistent storage, or control of one or

more software environments that can be launched.

797 Am. J. Phys., Vol. 92, No. 10, October 2024 Lonsky et al. 797

 24 Septem
ber 2024 08:35:01

https://doi.org/10.60893/figshare.ajp.c.7349842
https://doi.org/10.60893/figshare.ajp.c.7349842
https://mybinder.org/
https://github.com/ubermag/tutorials
https://mybinder.org/v2/gh/ubermag/tutorials/latest
https://mybinder.org/v2/gh/ubermag/tutorials/latest

exceed those of most academics, and help from the local com-
puting or IT team is likely to be required.

A local install of Ubermag on the student’s computer is
also possible, and some students have chosen to follow this
path. Once the installation is completed, this is more conve-
nient for ongoing and extended studies.

3. Zero-install and zero-hosting with JupyterLite

Looking ahead, the just emerging JupyterLite project††

circumvents the shortcomings of the MyBinder service.
JupyterLite makes it possible to execute Jupyter notebooks
and many Python packages in the user’s browser (using
WebAssembly) and holds great potential for the use of soft-
ware in the classroom in the future: (i) like Binder,
JupyterLite is a zero-install approach, and (ii) the JupyterLite
approach does not need other centralized computing resources
(i.e., it is a zero-hosting approach).

In the JupyterLite set up, the complete and pre-
configured software environment is provided for the learn-
ers on a (static) web page. Once the webpage is opened by
the learner, the software environment is executed in the
browser of the learner’s own device (computer, laptop,
chromebook, etc.), which provides the computing power.
Such consumer devices are generally powerful enough and
have no limit in run-time, and there is no dependency on
cloud-hosted or other compute resources. (At the moment,
the micromagnetic simulation software is not available as
WebAssembly.)

C. User interface design for simulation software
in education

Our hypothesis is that the use of simulation packages in
advanced STEM classes can have educational value. We had
a positive experience using the Ubermag software. In this
section, we describe two important aspects of the user inter-
face design.

1. Expose concepts of computational modeling

When a computer simulation is used to study a science or
engineering problem, there are multiple layers of decision
making and simplifications of the problem taking place (we
assume that the model equations include differential
equations):

(1) Decide on the model to be used and express the model in
equations.

(2) Discretize the model in some form (on grid).
(3) Solve the discretized equation.

Many simulation packages are written for a particular
model description and provide all the steps 1–3. In particular,
the separation between these different aspects is not visible
to the user. In Ubermag, this separation of concerns is more
clearly exposed and accessible, and, thus, the meaning of the
individual steps is easier for the learner to understand:

(1) Decide on physics approximations and the model to be
used: Within the Ubermag framework, the user selects
the relevant physics through the terms that contribute to
the energy and dynamics of the system from the
micromagneticmodel Python package. This creates

a machine-readable definition‡‡ of a micromagnetic
problem. Computer scientists would express this so that
the micromagneticmodel Python package provides
a Domain Specific Language for micromagnetic models
of the real world.11

(2) Discretize the model in some form: This requires split-
ting space into smaller parts such as cuboidal cells for
finite difference discretization and a wider choice of
geometrical objects for finite elements. Within the
Ubermag framework, the discretisedfield pack-
age is used to define a (finite difference) discretization
of space, and scalar and vector fields defined on that
discretized space.

(3) Using the micromagnetic model definition together with
the discretization, the problem can be solved numeri-
cally. Ubermag translates the information from the
micromagnetic model and the discretized field into a
configuration file that is understood by one of the micro-
magnetic calculators that it supports. Using the OOMMF
Calculator (oommfc) or the mumax3 Calculator
(mumax3c) Python package, Ubermag then delegates
the actual numerical solution to OOMMF or mumax3.

Through the use of different packages—with clearly
defined and orthogonal concerns—the concepts of computa-
tional science become easier to grasp than if all of those
aspects are grouped together in the black-box simulation
software.

2. Focus on physics, not the package-specific syntax

A potential user of the software needs to learn and under-
stand what physics model choice and discretization is imple-
mented in the software and needs to learn how to instruct the
software (often through a configuration file) to use the right
model, and to combine this with the required geometry,
material and other parameters, initial configuration, time-
dependent or spatially resolved external effects, etc.
Generally, the required configuration file syntax is simula-
tion package dependent: A scientist (or student), thus, needs
to learn this syntax for every new simulation package they
want to use, which contributes to the usability barrier.

The Ubermag framework provides an abstraction from the
specific simulation package configuration file syntax in the
domain of micromagnetics. The micromagneticmodel
package provides the machine-readable definition of the
problem using a syntax that scientists perceive as somewhat
intuitive, and Ubermag can automatically translate this into
the package-specific configuration file syntax. It is, thus,
much easier to define a micromagnetic problem with
Ubermag than it would be if the packages OOMMF and
mumax3 were used directly. We believe this reduction in
complexity (of specifying a problem in a particular syntax)
makes it possible to explore a much wider set of topics
within the teaching module and the computational projects.
This idea—to provide more “user-friendly” high-level inter-
face to existing simulation software—is certainly

††https://jupyterlite.readthedocs.io (accessed May 5, 2023).

‡‡The machine-readable problem definition means that a computer (or

researcher, educator, or learner) can read it and extract all needed infor-

mation to fully define the physics problem of interest. For the learning

context, the machine-readability ensures completeness of information. In

a research and industry context, machine-readability is a pre-requisite for

increasing automation of simulation-based work. It also supports

reproducibility.

798 Am. J. Phys., Vol. 92, No. 10, October 2024 Lonsky et al. 798

 24 Septem
ber 2024 08:35:01

https://jupyterlite.readthedocs.io

transferable to other domains. Examples include the atomic
simulation environment (ASE)

36

and the materials science
workflow tool AiiDA.37

IV. CONCLUSIONS

We have introduced computer simulation into a materials
science class and describe approaches we found beneficial
for the learning experience. It would be interesting to evalu-
ate these in the context of different subject areas and educa-
tional settings:

• Choice of Python as one language for simulation and anal-
ysis, with broad library support.

• Design and use of user interfaces that focus on the
learner’s interest: expose modeling concepts and hide
peculiarities and complexity of underlying simulation
engines.

• Use of Jupyter Notebooks to encourage interactive explo-
ration of the (simulated) system under study.

• Binder capabilities of project Jupyter, which make it pos-
sible to execute simulations in the cloud rather than on the
students’ computers. This overcomes the (sometimes sig-
nificant) challenge of installing the software locally.

Extensions of work described here include combinations
of Jupyter based simulation teaching with computational
essays,34,38 the “nbgrader”’ tool supporting the grading in
Jupyter notebooks,32 and the opportunities for the
JupyterLite (Sec. III B 3) based zero-install zero-hosting pro-
visioning of software at scale.

SUPPLEMENTARY MATERIAL

Please click on this link to access the supplementary mate-
rial, which includes a detailed overview of five simulation
projects, the problem sheets, a general overview of computa-
tional methods in education, a thematic analysis of student
and teacher feedback on the computational projects, and
additional practical considerations. Print readers can see the
supplementary material at https://doi.org/10.60893/
figshare.ajp.c.7349842

ACKNOWLEDGMENTS

The authors would like to thank Thomas Wilhelm
(Goethe University Frankfurt) for fruitful discussions on
numerical methods in higher education and Min Ragan-
Kelley for helpful discussions on the project Jupyter.
M.L. acknowledges the financial support by the German
Science Foundation (Deutsche Forschungsgemeinschaft,
DFG) through the research fellowship LO 2584/1-1 for
the development of the simulation projects 1 and 2, the
implementation of student interviews and questionnaires
as well as the manuscript preparation. S.H., S.P., and
H.F. were supported by the Engineering and Physical
Sciences Research Council’s United Kingdom Skyrmion
Programme Grant (EP/N032128/1). The development of
the MSE 598/498/464 course and specifically the
simulation projects 3 and 4 as well as the efforts from
R.K. and A.H. were partially supported by the NSF
through the University of Illinois Urbana-Champaign
Materials Research Science and Engineering Center
Grant No. DMR-1720633. The development of the
simulation project 5 by T-HL was supported by the U.S.

Department of Energy, Office of Science, Materials
Science and Engineering Division, under Contract No.
DE-SC0022060.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

a)Electronic mail: lonskymartin@gmail.com, ORCID: 0000-0002-8955-

3095.
b)ORCID: 0000-0001-7104-7867.
c)ORCID: 0000-0003-3323-8958.
d)ORCID: 0000-0003-3840-955X.
e)ORCID: 0000-0001-9878-041X.
f)ORCID: 0000-0003-3747-2979.
g)ORCID: 0000-0002-6670-3994.
h)ORCID: 0000-0002-1808-2767.
i)Electronic mail: hans.fangohr@mpsd.mpg.de, ORCID: 0000-0001-5494-

7193.
1B. Skuse, “The third pillar,” Phys. World 32(3), 40–43 (2019).
2J. Weber and T. Wilhelm, “The benefit of computational modelling in

physics teaching: A historical overview,” Eur. J. Phys. 41(3), 034003

(2020).
3M. D. Caballero and L. Merner, “Prevalence and nature of computational

instruction in undergraduate physics programs across the United States,”

Phys. Rev. Phys. Educ. Res. 14(2), 020129 (2018).
4G. Kortemeyer, “Incorporating computational exercises into introductory

physics courses,” J. Phys. 1512(1), 012025 (2020).
5A. L. Graves and A. D. Light, “Hitting the ground running: Computational

physics education to prepare students for computational physics research,”

Comput. Sci. Eng. 22(4), 50–60 (2020).
6D. M. Cook, “Computation in undergraduate physics: The Lawrence

approach,” Am. J. Phys. 76(4), 321–326 (2008).
7L. McNeil and P. Heron, “Preparing physics students for 21st-century

careers,” Phys. Today 70(11), 38–43 (2017).
8AAPT Undergraduate Curriculum Task Force, “AAPT recommendations for

computational physics in the undergraduate physics curriculum” Report

(2016); available at http://www.aapt.org/Resources/upload/AAPT_UCTF_

CompPhysReport_final_B.pdf.
9N. Chonacky and D. Winch, “Integrating computation into the undergrad-

uate curriculum: A vision and guidelines for future developments,” Am. J.

Phys. 76(4), 327–333 (2008).
10M. D. Caballero, M. A. Kohlmyer, and M. F. Schatz, “Implementing and

assessing computational modeling in introductory mechanics,” Phys. Rev.

ST Phys. Educ. Res. 8(2), 020106 (2012).
11M. Beg, M. Lang, and H. Fangohr, “Ubermag: Toward more effective

micromagnetic workflows,” IEEE Trans. Magn. 58(2), 7300205 (2022).
12A. Kononov, P. Bellon, T. Bretl, A. Ferguson, G. Herman, K. Kilian, J.

Krogstad, C. Leal, R. Maass, A. Schleife, J. Shang, D. Trinkle, and M.

West, “Computational curriculum for MatSE undergraduates,” in ASEE

Annual Conference & Exposition Proceedings, 2017.
13R. Mansbach, A. Ferguson, K. Kilian, J. Krogstad, C. Leal, A. Schleife, D.

R. Trinkle, M. West, and G. L. Herman, “Reforming an undergraduate

materials science curriculum with computational modules,” J. Mater.

Educ. 38, 161–174 (2016); available at https://icme.unt.edu/journal.
14R. Mansbach, G. Herman, M. West, D. Trinkle, A. Ferguson, and A. Schleife,

“WORK IN PROGRESS: Computational modules for the MatSE undergradu-

ate curriculum,” ASEE Annual Conference & Exposition Proceedings, 2016.
15X. Zhang, A. Schleife, A. Ferguson, P. Bellon, T. Bretl, G. Herman, J.

Krogstad, R. Maass, C. Leal, D. Trinkle, J. Shang, and M. West,

“Computational curriculum for MatSE undergraduates and the influence on

senior classes,” in ASEE Annual Conference & Exposition Proceedings, 2018.
16C.-W. Lee, A. Schleife, D. Trinkle, J. Krogstad, R. Maass, P. Bellon, J.

Shang, C. Leal, M. West, T. Bretl, G. Herman, and S. Tang, “Impact of

computational curricular reform on non-participating undergraduate

courses: Student and faculty perspective,” in ASEE Annual Conference &

Exposition Proceedings, 2019.
17T. L. Gilbert, “Classics in magnetics a phenomenological theory of damp-

ing in ferromagnetic materials,” IEEE Trans. Magn. 40(6), 3443–3449

(2004).

799 Am. J. Phys., Vol. 92, No. 10, October 2024 Lonsky et al. 799

 24 Septem
ber 2024 08:35:01

https://doi.org/10.60893/figshare.ajp.c.7349842
https://doi.org/10.60893/figshare.ajp.c.7349842
https://doi.org/10.60893/figshare.ajp.c.7349842
mailto:lonskymartin@gmail.com
mailto:hans.fangohr@mpsd.mpg.de
https://doi.org/10.1088/2058-7058/32/3/33
https://doi.org/10.1088/1361-6404/ab7a7f
https://doi.org/10.1103/PhysRevPhysEducRes.14.020129
https://doi.org/10.1088/1742-6596/1512/1/012025
https://doi.org/10.1109/MCSE.2019.2963670
https://doi.org/10.1119/1.2834739
https://doi.org/10.1063/PT.3.3763
http://www.aapt.org/Resources/upload/AAPT_UCTF_CompPhysReport_final_B.pdf
http://www.aapt.org/Resources/upload/AAPT_UCTF_CompPhysReport_final_B.pdf
https://doi.org/10.1119/1.2837811
https://doi.org/10.1119/1.2837811
https://doi.org/10.1103/PhysRevSTPER.8.020106
https://doi.org/10.1103/PhysRevSTPER.8.020106
https://doi.org/10.1109/TMAG.2021.3078896
https://icme.unt.edu/journal
https://doi.org/10.1109/TMAG.2004.836740

18M. Lonsky and A. Hoffmann, “Dynamic excitations of chiral magnetic

textures,” APL Mater. 8(10), 100903 (2020a).
19M. Lonsky and A. Hoffmann, “Coupled Skyrmion breathing modes in syn-

thetic ferri- and antiferromagnets,” Phys. Rev. B 102(10), 104403 (2020).
20M. Lonsky and A. Hoffmann, “Dynamic fingerprints of synthetic antiferro-

magnet nanostructures with interfacial Dzyaloshinskii–Moriya inter-

action,” J. Appl. Phys. 132(4), 043903 (2022).
21M. J. Donahue and D. G. Porter, “OOMMF User’s Guide, Version 1.0,”

Interagency Report No. NISTIR 6376 (National Institute of Standards and

Technology, Gaithersburg, MD, 1999).
22A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez,

and B. V. Waeyenberge, “The design and verification of MuMax3,” AIP

Adv. 4(10), 107133 (2014).
23M. Beg, R. A. Pepper, and H. Fangohr, “User interfaces for computational

science: A domain specific language for OOMMF embedded in Python,”

AIP Adv. 7(5), 056025 (2017).
24H. Fangohr, M. Lang, S. J. R. Holt, S. A. Pathak, K. Zulfiqar, and M. Beg,

“Vision for unified micromagnetic modeling (UMM) with Ubermag,” AIP

Adv. 14(1), 015138 (2024).
25H. Fangohr, “A comparison of C, MATLAB, and Python as teaching

languages in engineering,” in Computational Science – ICCS 2004,
Lecture Notes in Computer Science, edited by M. Bubak, G. D. van

Albada, P. M. A. Sloot, and J. Dongarra (Springer, 2004), Vol. 3039.
26T. Kluyver, B. Ragan-Kelley, F. P�erez, B. Granger, M. Bussonnier, J.

Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila,

S. Abdalla, and C. Willing, “Jupyter notebooks—A publishing format for

reproducible computational workflows,” in Positioning and Power in
Academic Publishing: Players, Agents and Agendas, edited by F. Loizides

and B. Schmidt (IOS Press, 2016), pp. 87–90.
27F. Perez and B. E. Granger, “IPython: A system for interactive scientific

computing,” Comput. Sci. Eng. 9(3), 21–29 (2007).
28B. E. Granger and F. Perez, “Jupyter: Thinking and storytelling with code

and data,” Comput. Sci. Eng. 23(2), 7–14 (2021).
29J. M. Perkel, “Why Jupyter is data scientists’ computational notebook of

choice,” Nature 563(7729), 145–146 (2018).
30H. Fangohr, M. Beg, M. Bergemann, V. Bondar, S. Brockhauser, A.

Campbell, C. Carinan, R. Costa, F. Dall’Antonia, C. Danilevski, J. E, W.

Ehsan, S. Esenov, R. Fabbri, S. Fangohr, E. F. del Castillo, G. Flucke, C.

Fortmann-Grote, D. F. Marsa, G. Giovanetti, D. Goeries, A. G€otz, J. Hall,

S. Hauf, D. Hickin, T. H. Rod, T. Jarosiewicz, E. Kamil, M. Karnevskiy, J.

Kieffer, Y. Kirienko, A. Klimovskaia, T. Kluyver, M. Kuster, L. L.

Guyader, A. Madsen, L. Maia, D. Mamchyk, L. Mercadier, T. Michelat, I.

Mohacsi, J. M€oller, A. Parenti, E. Pellegrini, J. Perrin, M. Reiser, J.

Reppin, R. Rosca, D. R€uck, T. R€uter, H. Santos, R. Schaffer, A. Scherz, F.

Schl€unzen, M. Scholz, M. Schuh, J. Selknaes, A. Silenzi, G. Sipos, M.

Spirzewski, J. Sztuk, J. Szuba, J. Taylor, S. Trojanowski, K. Wrona, A.

Yaroslavtsev, and J. Zhu, “Data exploration and analysis with Jupyter

notebooks,” in Proceedings of the 17th International Conference on
Accelerator and Large Experimental Physics Control Systems,
ICALEPCS’19 (JACoW Publishing, Geneva, Switzerland, 2020), pp.

799–806.
31L. A. Barba, L. J. Barker, D. S. Blank, J. Brown, A. Downey, T. George,

L. J. Heagy, K. Mandli, J. K. Moore, D. Lippert, K. Niemeyer, R.

Watkins, R. West, E. Wickes, C. Willling, and M. Zingale (2022).

“Teaching and learning with Jupyter,” Figshare. https://doi.org/10.6084/

m9.figshare.19608801.v1
32P. Jupyter, D. Blank, D. Bourgin, A. Brown, M. Bussonnier, J. Frederic, B.

Granger, T. Griffiths, J. Hamrick, K. Kelley, M. Pacer, L. Page, F. P�erez,

B. Ragan-Kelley, J. Suchow, and C. Willing, “nbgrader: A tool for creat-

ing and grading assignments in the Jupyter notebook,” J. Open Source

Educ. 2(11), 32 (2019).
33M. Beg, J. Taka, T. Kluyver, A. Konovalov, M. Ragan-Kelley, N. M.

Thiery, and H. Fangohr, “Using Jupyter for reproducible scientific work-

flows,” Comput. Sci. Eng. 23(2), 36–46 (2021).
34T. O. B. Odden, D. W. Silvia, and A. Malthe-Sørenssen, “Using computa-

tional essays to foster disciplinary epistemic agency in undergraduate sci-

ence,” J. Res. Sci. Teach. 60(5), 937–977 (2023).
35Project Jupyter, Matthias Bussonnier, Jessica Forde, Jeremy Freeman,

Brian Granger, Tim Head, Chris Holdgraf, Kyle Kelley, Gladys Nalvarte,

Andrew Osheroff, M. Pacer, Yuvi Panda, Fernando Perez, Benjamin

Ragan Kelley, and Carol Willing, “Binder 2.0—Reproducible, interactive,

sharable environments for science at scale,” in Proceedings of the 17th
Python in Science Conference, edited by Fatih Akici, David Lippa, Dillon

Niederhut, and M. Pacer (2018), pp. 113–120.
36A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen,

M. Dułak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P.

C. Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J.

Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson, T. Olsen,

L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Sch€utt, M. Strange,

K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W.

Jacobsen, “The atomic simulation environment—A Python library for

working with atoms,” J. Phys. 29(27), 273002 (2017).
37S. P. Huber, S. Zoupanos, M. Uhrin, L. Talirz, L. Kahle, R. H€auselmann,

D. Gresch, T. M€uller, A. V. Yakutovich, C. W. Andersen, F. F. Ramirez,

C. S. Adorf, F. Gargiulo, S. Kumbhar, E. Passaro, C. Johnston, A. Merkys,

A. Cepellotti, N. Mounet, N. Marzari, B. Kozinsky, and G. Pizzi, “AiiDa

1.0, a scalable computational infrastructure for automated reproducible

workflows and data provenance,” Sci. Data 7, 300 (2020).
38A. diSessa, Changing Minds: Computers, Learning, and Literacy

(MITPress, Cambridge, MA, 2000).

800 Am. J. Phys., Vol. 92, No. 10, October 2024 Lonsky et al. 800

 24 Septem
ber 2024 08:35:01

https://doi.org/10.1063/5.0027042
https://doi.org/10.1103/PhysRevB.102.104403
https://doi.org/10.1063/5.0101522
https://doi.org/10.1063/1.4899186
https://doi.org/10.1063/1.4899186
https://doi.org/10.1063/1.4977225
https://doi.org/10.1063/9.0000661
https://doi.org/10.1063/9.0000661
https://doi.org/10.1007/978-3-540-25944-2_157
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.6084/m9.figshare.19608801.v1
https://doi.org/10.6084/m9.figshare.19608801.v1
https://doi.org/10.21105/jose.00032
https://doi.org/10.21105/jose.00032
https://doi.org/10.1109/MCSE.2021.3052101
https://doi.org/10.1002/tea.21821
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1038/s41597-020-00638-4

