
Unboundedness problems for machines with
reversal-bounded counters

Pascal Baumann1[0000−0002−9371−0807], Flavio D’Alessandro2, Moses
Ganardi1[0000−0002−0775−7781], Oscar Ibarra3, Ian McQuillan4, Lia

Schütze1[0000−0003−4002−5491], and Georg Zetzsche1[0000−0002−6421−4388]

1 Max Planck Institute for Software Systems (MPI-SWS), Germany
2 Dept. of Mathematics G. Castelnuovo, Sapienza University of Rome, Italy

3 Dept. of Computer Science, University of California, Santa Barbara, CA, USA
4 Dept. of Computer Science, University of Saskatchewan, Saskatoon, Canada

Abstract. We consider a general class of decision problems concerning
formal languages, called “(one-dimensional) unboundedness predicates”,
for automata that feature reversal-bounded counters (RBCA). We show
that each problem in this class reduces—non-deterministically in polyno-
mial time—to the same problem for just finite automata. We also show
an analogous reduction for automata that have access to both a push-
down stack and reversal-bounded counters (PRBCA).
This allows us to answer several open questions: For example, we show
that it is coNP-complete to decide whether a given (P)RBCA language
L is bounded, meaning whether there exist words w1, . . . , wn with L ⊆
w∗

1 · · ·w∗
n. For PRBCA, even decidability was open. Our methods also

show that there is no language of a (P)RBCA of intermediate growth.
This means, the number of words of each length grows either polynomi-
ally or exponentially. Part of our proof is likely of independent interest:
We show that one can translate an RBCA into a machine with Z-counters
in logarithmic space, while preserving the accepted language.

Keywords: Formal languages · Decidability · Complexity · Counter au-
tomata · Reversal-bounded · Pushdown · Boundedness · Unboundedness

1 Introduction

A classic idea in the theory of formal languages is the concept of boundedness
of a language. A language L over an alphabet Σ is called bounded if there ex-
ists a number n ∈ N and words w1, . . . , wn ∈ Σ∗ such that L ⊆ w∗1 · · ·w∗n.
What makes boundedness important is that a rich variety of algorithmic prob-
lems become decidable for bounded languages. For example, when Ginsburg and
Spanier [26] introduced boundedness in 1964, they already showed that given
two context-free languages, one of them bounded, one can decide inclusion [26,
Theorem 6.3]. This is because if L ⊆ w∗1 · · ·w∗n for a context-free language, then
the set {(x1, . . . , xn) ∈ Nn | wx1

1 · · ·wxnn ∈ L} is effectively semilinear, which
permits expressing inclusion in Presburger arithmetic. Here, boundedness is a

ar
X

iv
:2

30
1.

10
19

8v
1

 [
cs

.F
L

]
 2

4
Ja

n
20

23

2 P. Baumann et al.

crucial assumption: Hopcroft has shown that if L0 ⊆ Σ∗ is context-free, then
the problem of deciding L0 ⊆ L for a given context-free language L is decidable
if and only if L0 is bounded [36, Theorem 3.3].

The idea of translating questions about bounded languages into Presburger
arithmetic has been applied in several other contexts. For example, Esparza,
Ganty, and Majumdar [20] have shown that many classes of infinite-state systems
are perfect modulo bounded languages, meaning that the bounded languages form
a subclass that is amenable to many algorithmic problems. As another example,
the subword ordering has a decidable first-order theory on bounded context-
free languages [46], whereas on languages Σ∗, even the existential theory is
undecidable [34]. This, in turn, implies that initial limit Datalog is decidable for
the subword ordering on bounded context-free languages [6]. Finally, bounded
context-free languages can be closely approximated by regular ones [16].

This raises the question of how one can decide whether a given language
is bounded. For context-free languages this problem is decidable [26, Theo-
rem 5.2(a)] in polynomial time [25, Theorem 19].

Boundedness for RBCA. Despite the importance of boundedness, it had been
open for many years [8, 17]5 whether boundedness is decidable for one of the most
well-studied types of infinite-state systems: reversal-bounded (multi-)counter au-
tomata (RBCA). These are machines with counters that can be incremented,
decremented, and even tested for zero. However, in order to achieve decidability
of basic questions, there is a bound on the number of times each counter can re-
verse, that is, switch between incrementing and decrementing phases. They were
first studied in the 1970s [2, 37] and have received a lot of attention since [7–11,
13, 18, 23, 29, 33, 34, 40–42, 59]. The desirable properties mentioned above for
bounded context-free languages also apply to bounded RBCA. Furthermore, any
bounded language accepted by an RBCA (even one augmented with a stack) can
be effectively determinized [39] (see also [8, 10]), opening up even more avenues
to algorithmic analysis. This makes it surprising that decidability of boundedness
remained open for many years.

Decidability of boundedness for RBCA was settled in [15], which proves
boundedness decidable even for the larger class of vector addition systems with
states (VASS), with acceptance by configuration. However, the results from [15]
leave several aspects unclarified, which we investigate here:

Q1: What is the complexity of deciding boundedness for RBCA? The algorithm
in [15] employs the KLMST decomposition for VASS [44, 47, 49, 51, 55],
which is well-known to incur Ackermannian complexity [50].

Q2: Is boundedness decidable for pushdown RBCA (PRBCA) [37]? These are
automata which, in addition to reversal-bounded counters, feature a stack.
They can model recursive programs with numeric data types [33]. Whether
boundedness is decidable was stated as open in [17, 18].

Q3: Are there languages of RBCA of intermediate growth? As far as we know,
this is a long-standing open question in itself [38]. The growth of a language

5 Note that [8] is about Parikh automata, which are equivalent to RBCA.

Unboundedness problems for machines with reversal-bounded counters 3

L ⊆ Σ∗ is the counting function gL : N → N, where gL(n) is the number
of words of length n in L. This concept is closely tied to boundedness:
For regular and context-free languages, it is known that a language has
polynomial growth if and only if it is bounded (and it has exponential
growth otherwise). A language is said to have intermediate growth if it has
neither polynomial nor exponential growth.

Contribution I: We prove versions of one of the main results in [15], one for
RBCA and one for PRBCA. Specifically, the paper [15] not only shows that
boundedness is decidable for VASS, but it introduces a general class of un-
boundedness predicates for formal languages. It is then shown in [15] that any
unboundedness predicate is decidable for VASS if and only if it is decidable for
regular languages. Our first two main results are:

MR1: Deciding any unboundedness predicate for RBCA reduces in NP to de-
ciding the same predicate for regular languages.

MR2: Deciding any unboundedness predicate for PRBCA reduces in NP to de-
ciding the same predicate for context-free languages.

However, it should be noted that our results only apply to those unboundedness
predicates from [15] that are one-dimensional. Fortunately, these are enough for
our applications. These results allow us to settle questions (Q1)–(Q3) above and
derive the exact complexity of several other problems. It follows that bounded-
ness for both RBCA and PRBCA is coNP-complete, thus answering (Q1) and
(Q2). Furthermore, the proof shows that if boundedness of a PRBCA does not
hold, then its language has exponential growth. This implies that there are no
RBCA languages of intermediate growth (thus settling (Q3)), and even that the
same holds for PRBCA. In particular, deciding polynomial growth of (P)RBCA
is coNP-complete and deciding exponential growth of (P)RBCA is NP-complete.
We can also derive from our result that deciding whether a (P)RBCA language
is infinite is NP-complete (but this also follows easily from [33], see Section 2).
Finally, our results imply that it is PSPACE-complete to decide if an RBCA
language L ⊆ Σ∗ is factor universal, meaning it contains every word of Σ∗ as a
factor (i.e. as an infix). Whether this problem is decidable for RBCA was also
left as an open problem in [17, 18] (under the name infix density).

We prove our results (MR1) and (MR2) by first translating (P)RBCA into
models that have Z-counters instead of reversal-bounded counters. A Z-counter
is one that can be incremented and decremented, but cannot be tested for zero.
Moreover, it can assume negative values. With these counters, acceptance is
defined by reaching a configuration where all counters are zero (in particular,
the acceptance condition permits a single zero-test on each counter). Here, finite
automata with Z-counters are called Z-VASS [30]. Z-counters are also known as
blind counters [27] and it is a standard fact that RBCA are equivalent (in terms
of accepted languages) to Z-VASS [27, Theorem 2].

Despite the equivalence between RBCA and Z-VASS being so well-known,
there was apparently no known translation from RBCA to Z-VASS in polynomial

4 P. Baumann et al.

Problem Z-VASS/RBCA Z-grammars/PRBCA

Boundedness coNP-complete coNP-complete
Finiteness coNP-complete coNP-complete
Factor universality PSPACE-complete undecidable

Table 1. Complexity results. The completeness statements are meant with respect to
deterministic logspace reductions.

time. Here, the difficulty stems from simulating zero-tests (which can occur an
unbounded number of times in an RBCA): To simulate these, the Z-VASS needs
to keep track of which counter has completed which incrementing/decrementing
phase, using only polynomially many control states. It is also not obvious how
to employ the Z-counters for this, as they are only checked in the end.

Contribution II: As the first step of showing (MR1), we show that

MR3: RBCA can be translated (preserving the language) into Z-VASS in loga-
rithmic space.

This also implies that translations to and from another equivalent model, Parikh
automata [42], are possible in polynomial time: It was recently shown that Parikh
automata (which have received much attention in recent years [5, 7–9, 13, 22])
can be translated in polynomial time into Z-VASS [31]. Together with our new
result, this implies that one can translate among RBCA, Z-VASS, and Parikh
automata in polynomial time. Furthermore, our result yields a logspace trans-
lation of PRBCA into Z-grammars, an extension of context-free grammars with
Z-counters. The latter is the first step for (MR2).

2 Main Results: Unboundedness and (P)RBCA

Reversal-bounded counter automata and pushdowns. A pushdown au-
tomaton with k counters is a tuple A = (Q,Σ, Γ, q0, T, F) where Q is a finite
set of states, Σ is an input alphabet, Γ is a stack alphabet, q0 ∈ Q is an initial
state, T is a finite set of transitions (p, w, op, q) ∈ Q×Σ∗×Op×Q, and F ⊆ Q
is a set of final states. Here Op is defined as

Op = {inci, deci, zeroi, nzi | 1 ≤ i ≤ k} ∪ Γ ∪ Γ̄ ∪ {ε},

containing counter and stack operations. Here Γ̄ = {γ̄ | γ ∈ Γ} is a disjoint copy
of Γ . A configuration is a tuple (p, α,v) ∈ Q × Γ ∗ × Nk. We write (p, α,u)

w−→
(p′, α′,u′) if there is a (p, w, op, p′) ∈ T such that one of the following holds:

– op = inci, u′ = u + ei, and α′ = α where ei ∈ Nk is the i-th unit vector,
– op = deci, u′ = u− ei, and α′ = α,
– op = zeroi, u[i] = 0, u′ = u, and α′ = α

Unboundedness problems for machines with reversal-bounded counters 5

– op = nzi, u[i] 6= 0, u′ = u, and α′ = α,
– op = γ ∈ Γ , u′ = u, and α′ = αγ,
– op = γ̄ ∈ Γ̄ , u′ = u, and α′γ = α,
– op = ε, u′ = u, and α′ = α.

We extend this notation to longer runs in the natural way.
A (k, r)-PRBCA (pushdown reversal-bounded counter automaton) (A, r)

consists of a pushdown automaton with k counters A and a number r ∈ N,
encoded in unary. A counter ci reverses if the last (non-test) operation affect-
ing it was inci and the next operation is deci, or vice versa. A run is r-reversal
bounded if every counter reverses at most r times. The language of (A, r) is

L(A, r) = {w ∈ Σ∗ | ∃q ∈ F, r-reversal bounded run (q0, ε,0)
w−→ (q, ε,0)}.

A (k, r)-RBCA (reversal-bounded counter automaton) is a (k, r)-PRBCA
where A only uses counter operations. We denote by RBCA and PRBCA the
class of (P)RBCA languages.

Notice that we impose the reversal bound externally (following [33]) whereas
in alternative definitions found in the literature the automaton has to ensure
internally that the number of reversals on every (accepting) run does not ex-
ceed r, e.g. [37]. Clearly, our definition subsumes the latter one; in particular,
Theorem 1 also holds for (P)RBCAs with an internally checked reversal bound.

A d-dimensional Z-VASS (Z-vector addition system with states) is a tuple
V = (Q,Σ, q0, T, F), where Q is a finite set of states, Σ is an alphabet, q0 ∈ Q
is an initial state, T is a finite set of transitions (p, w,v, p′) ∈ Q×Σ∗ ×Zd ×Q,
and F ⊆ Q is a set of final states. A configuration of a Z-VASS is a tuple
(p,v) ∈ Q × Zd. We write (p,u)

w−→ (p′,u′) if there is a transition (p, w,v, p′)
such that u′ = u+v. We extend this notation to longer runs in the natural way.
The language of the Z-VASS is defined as

L(V) = {w ∈ Σ∗ | ∃q ∈ F : (q0,0)
w−→ (q,0)}.

A (d-dimensional) Z-grammar is a tuple G = (N,Σ, S, P) with disjoint finite
sets N and Σ of nonterminal and terminal symbols, a start nonterminal S ∈ N ,
and a finite set of productions P of the form (A, u,v) ∈ N × (N ∪Σ)∗×Zd. We
also write (A → u,v) instead of (A, u,v). We call v the (counter) effect of the
production (A→ u,v). For words x, y ∈ (N ∪Σ)∗, we write x ⇒v y if there is
a production (A → u,v) such that x = rAs and y = rus. Moreover, we write
x ∗⇒v y if there are words x1, . . . , xn ∈ (N ∪ Σ)∗ and v1, . . . ,vn ∈ Zd with
x ⇒v1 x1 ⇒v2 · · · ⇒vn xn = y and v = v1 + · · ·+vn. We use the notation ⇒
if the counter effects do not matter: We have x ⇒ y if there exists v such that
x ⇒v y; and similarly for ∗⇒ . If derivations are restricted to a subset Q ⊆ P of
productions, we write ⇒Q (resp. ∗⇒Q).

The language of the Z-grammar G is the set of all words w ∈ Σ∗ such that
S ∗⇒0 w. In other words, if there exists a derivation S ∗⇒ w where the effects
of all occurring productions sum to the zero vector 0. Z-grammars of dimension
d are also known as valence grammars over Zd [21].

6 P. Baumann et al.

For our purposes it suffices to assume a unary encoding of the Zd-vectors
(effects) occurring in Z-VASS and Z-grammars. However, this is not a restriction:
Counter updates with n-bit binary encoded numbers can be easily simulated with
unary encodings at the expense of dn many fresh counters (see Appendix A.1).

Conversion results. The following is our first main theorem:

Theorem 1. RBCA can be converted into Z-VASS in logarithmic space.
PRBCA can be converted into Z-grammars in logarithmic space.

By convert, we mean a translation that preserves the accepted (resp. generated)
language. There are several machine models that are equivalent (in terms of
accepted languages) to RBCA. With Theorem 1, we provide the last missing
translation:

Corollary 1. The following models can be converted into each other in logarith-
mic space: (i) RBCA, (ii) Z-VASS, (iii) Parikh automata with ∃PA acceptance,
and (iv) Parikh automata with semilinear acceptance.

Roughly speaking, a Parikh automaton is a machine with counters that can
only be incremented. Then, a run is accepting if the final counter values be-
long to some semilinear set. Parikh automata were introduced by Klaedtke and
Rueß [42], where the acceptance condition is specified using a semilinear rep-
resentation (with base and period vectors), yielding (iv) above. As done, e.g.,
in [34], one could also specify it using an existential Presburger formula (briefly
∃PA), yielding the model in (iii) above. Theorem 1 proves (i)⇒(ii), whereas
(ii)⇒(i) is easy (a clever and very efficient translation is given in [41, Theorem
4.5]). Moreover, (ii)⇒(iii) and (ii)⇒(iv) are clear as well. For (iii)⇒(ii), one can
proceed as in [31, Prop. V.1], and (iv)⇒(ii) is also simple.

Unboundedness predicates. We shall use Theorem 1 to prove our second
main theorem, which involves unboundedness predicates as introduced in [15].
In [15], unboundedness predicates can be one-dimensional or multi-dimensional,
but in this work, we only consider one-dimensional unboundedness predicates.

Let Σ be an alphabet. A (language) predicate is a set of languages over Σ. If
p is a predicate and L ⊆ Σ∗ is a language, then we write p(L) to denote that p
holds for the language L (i.e. L ∈ p). A predicate p is called a (one-dimensional)
unboundedness predicate if the following conditions are met for all K,L ⊆ Σ∗:

(U1) If p(K) and K ⊆ L, then p(L).
(U2) If p(K ∪ L), then p(K) or p(L).

(U3) If p(K · L), then p(K) or p(L).
(U4) p(L) if and only if p(F (L)).

Here F (L) = {v ∈ Σ∗ | ∃u,w ∈ Σ∗ : uvw ∈ L} is the set of factors of L
(sometimes also called infixes). In particular, the last condition says that p only
depends on the set of factors occurring in a language.

For an unboundedness predicate p and a class C of finitely represented lan-
guages (such as automata or grammars), let p(C) denote the problem of deciding
p for a given language L from C. Formally, p(C) is the following decision problem:

Unboundedness problems for machines with reversal-bounded counters 7

Given A language L from C.
Question Does p(L) hold?

For example, p(RBCA) is the problem of deciding p for reversal-bounded multi-
counter automata and p(NFA) is the problem of deciding p for NFAs. We mention
that the axioms (U1)–(U4) are slightly stronger than the axioms used in [15],
but the resulting set of decision problems is the same with either definition
(since in [15], one always decides whether p(F (L)) holds). Thus, the statement of
Theorem 2 is unaffected by which definition is used. See Appendix A.2 for details.

The following examples of (one-dimensional) unboundedness predicates for
languages L ⊆ Σ∗ have already been established in [15]. We mention them here
to give an intuition for the range of applications of our results:

Not being bounded Let pnotb(L) if and only if L is not a bounded language.
Non-emptiness Let p6=∅(L) if and only if L 6= ∅.
Infinity Let p∞(L) if and only if L is infinite.
Factor-universality Let pfuni(L) if and only if Σ∗ ⊆ F (L).

It is not difficult to prove that these are unboundedness predicates, but proofs
can be found in [15]. The following is our second main theorem:

Theorem 2. Let p be a one-dimensional unboundedness predicate. There is an
NP reduction from p(PRBCA) to p(PDA). Moreover, there is an NP reduction
from p(RBCA) to p(NFA).

Here, an NP reduction from problem A ⊆ Σ∗ to B ⊆ Σ∗ is a non-deterministic
polynomial-time Turing machine such that for every input word w ∈ Σ∗, we
have w ∈ A iff there exists a run of the Turing machine producing a word in B.

Let us now see some applications of Theorem 2, see also Table 1. The following
completeness results are all meant w.r.t. deterministic logspace reductions.

Corollary 2. Boundedness for PRBCA and for RBCA is coNP-complete.

For Corollary 2, we argue that deciding non-boundedness is NP-complete. To
this end, we apply Theorem 2 to the predicate pnotb and obtain an NP upper
bound, because boundedness for context-free languages is decidable in polyno-
mial time [25]. The NP lower bound follows easily from NP-hardness of the
non-emptiness problem for RBCA [29, Theorem 3] and thus PRBCA.

Corollary 3. Finiteness for PRBCA and for RBCA is coNP-complete.

We show Corollary 3 by proving that checking infinity is NP-complete. The upper
bound follows from Theorem 2 via the predicate p∞. As above, NP-hardness is
inherited from the non-emptiness problem for RBCA and PRBCA.

The results in Corollary 3 are, however, not new. They follow directly from
the fact that for a given PRBCA (or RBCA), one can construct in polynomial
time a formula in existential Presburger arithmetic (∃PA) for its Parikh image,
as shown in [37] for RBCA and in [33] for PRBCA. It is a standard result about
∃PA that for each formula ϕ, there exists a bound B such that (i) B is at most

8 P. Baumann et al.

exponential in the size of ϕ and (ii) ϕ defines an infinite set if and only if ϕ
is satisfied for some vector with some entry above B. For example, this can be
deduced from [54]. Therefore, one can easily construct a second ∃PA formula ϕ′
such that ϕ defines an infinite set if and only if ϕ′ is satisfiable.

Corollary 4. Factor universality for RBCA is PSPACE-complete.

Whether factor universality is decidable for RBCA was left as an open problem
in [17, 18] (there under the term infix density). Corollary 4 follows from Theo-
rem 2 using pfuni, because factor universality for NFAs is PSPACE-complete: To
decide if Σ∗ ⊆ F (R), for a regular language R, we can just compute an automa-
ton for F (R) and check inclusion in PSPACE. For the lower bound, one can reduce
the PSPACE-complete universality problem for NFAs, since for R ⊆ Σ∗, the lan-
guage (R#)∗ ⊆ (Σ∪{#})∗ is factor universal if only if R = Σ∗. Note that factor
universality is known to be undecidable already for one-counter languages [18],
and thus in particular for PRBCA. However, it is decidable for pushdown au-
tomata with a bounded number of reversals of the stack [18].

Beyond pushdowns. Theorem 2 raises the question of whether for any class
M of machines, one can reduce any unboundedness predicates forM extended
with reversal-bounded counters to the same predicate for justM. This is not the
case: For example, consider second-order pushdown automata, short 2-PDA. If
we extend these by adding reversal-bounded counters, then we obtain 2-PRBCA.
Then, the infinity problem is decidable for 2-PDA [35] (see [3, 4, 14, 32, 53, 57]
for stronger results). However, the class of 2-PRBCA does not even have decid-
able emptiness, let alone decidable infinity. This is shown in [58, Proposition 7]
(see [43, Theorem 4] for an alternative proof). Thus, infinity for 2-PRBCA can-
not be reduced to infinity for 2-PDA.

Growth. Finally, we employ the methods of the proof of Theorem 2 to show
a dichotomy of the growth behavior of languages accepted by RBCA. For an
alphabet Σ, we denote by Σ≤m the set of all words over Σ of length at most m.
We say that a language L ⊆ Σ∗ has polynomial growth6 if there is a polynomial
p(x) such that |L∩Σ≤m| ≤ p(m) for all m ≥ 0. Languages of polynomial growth
are also called sparse or poly-slender. We say that L has exponential growth if
there is a real number r > 1 such hat |L∩Σ≤m| ≥ rm for infinitely manym. Since
a language of the form w∗1 · · ·w∗n clearly has polynomial growth, it is well-known
that bounded languages have polynomial growth. We show that (a) within the
PRBCA languages (and in particular within the RBCA languages), the converse
is true as well and (b) all other languages have exponential growth (in contrast
to some models, such as 2-PDA [28], where this dichotomy does not hold):

Theorem 3. Let L be a language accepted by a PRBCA. Then L has polynomial
growth if and only if L is bounded. If L is not bounded, it has exponential growth.
6 In [25], polynomial and exponential growth are defined with Σm in place of Σ≤m,
but this leads to equivalent notions, see Appendix D

Unboundedness problems for machines with reversal-bounded counters 9

3 Translating reversal-bounded counters into Z-counters

Reducing the number of reversals to one. In this section we prove Theo-
rem 1, the conversion from RBCA to Z-VASS. In [29, Lemma 1], it is claimed
that given a (k, r)-RBCA, one can construct in time polynomial in k and r a
(kd(r + 1)/2e, 1)-RBCA that accepts the same language. The reference [2] that
they provide does include such a construction [2, proof of Theorem 5]. The con-
struction in [2] is only a rough sketch and makes no claims about complexity,
but by our reading of the construction, it keeps track of the reversals of each
counter in the state, which would result in an exponential blow-up.

Instead, we proceed as follows. Consider a (k, r)-RBCA with counters
c1, . . . , ck. Without loss of generality, assume r = 2m − 1. We will construct
an equivalent (2k(r + 1), 1)-RBCA. Looking at the behavior of a single counter
ci, we can decompose every r-reversal bounded run into subruns without rever-
sals. We call these subruns phases and number them from 1 to at most 2m. The
odd (even) numbered phases are positive (negative), where ci is only incremented
(decremented). We replace ci bym one-reversal counters ci,1, . . . , ci,m, where ci,j
records the increments on ci during the positive phase 2j − 1.

However, our machine needs to keep track of which counters are in which
phase, in order to know which of the counters ci,j it currently has to use. We
achieve this as follows: For each of the k counters ci, we also have an additional
set of 2m = r+ 1 “phase counters” pi,1, . . . , pi,2m to store which phase we are in.
This gives km+ k(r + 1) ≤ 2k(r + 1) counters in total. We encode that counter
ci is in phase j by setting pi,j to 1 and setting pi,j′ to 0 for each j′ 6= j. Since
we only ever increase the phase, the phase counters are one-reversal as well.

Using non-zero-tests, at any point, the automaton can nondeterministically
guess and verify the current phase of each counter. This allows it to pick the
correct counter ci,j for each instruction. When counter ci is in a positive phase
2j − 1, then increments and decrements on ci are simulated as follows:

increment increment ci,j
decrement go into the next (negative) phase 2j; then non-deterministically

pick some ` ∈ [1, j] and decrement ci,`. We cannot simply decrement ci,j as
we might have switched to phase j while ci had a non-zero value and hence
it is possible that ci could be decremented further than just ci,j allows.

When counter ci is in a negative phase 2j, then we simulate increments and
decrements as follows:

increment go into the next phase 2j + 1 (unless j = m; then the machine
blocks) and increment ci,j+1.

decrement non-deterministically pick some ` ∈ [1, j] and decrement ci,`.

Finally, to simulate a zero-test on ci, we test all counters ci,1, . . . , ci,m for zero,
while for the simulation of a non-zero-test on ci we non-deterministically pick
one of the counters ci,1, . . . , ci,m to test for non-zero.

Correctness can be easily verified by the following properties. If at some point
ci is in phase 2j − 1 or 2j then (i)

∑j
`=1 ci,` = ci, (ii) the counters ci,1, . . . , ci,j

10 P. Baumann et al.

have made at most one reversal, and (iii) the counters ci,j+1, . . . , ci,m have not
been touched (in particular, they are zero). Furthermore, if ci is in a positive
phase 2j − 1 then ci,j has made no reversal yet.

Note that this construction replaces every transition of the original system
with O(r) new transitions (and states). Our construction therefore yields only a
linear blowup in the size of the system (constant if r is fixed). See Appendix B
for the details of the construction.

From 1-reversal to Z-counters. We now turn the (k, 1)-RBCA into a Z-
VASS. The difference between a 1-reversal-bounded counter and a Z-counter
is that (i) a non-negative counter should block if it is decremented on counter
value 0, and (ii) a 1-reversal-bounded counter allows (non-)zero-tests. Observe
that all zero-tests occur before the first increment or after the last decrement.
All non-zero-tests occur between the first increment and the last decrement.

If the number k of counters is bounded, then the following simple solution
works. The Z-VASS stores the information which of the counters has not been
incremented yet and which counters will not be incremented again in the future.
This information suffices to simulate the counters faithfully (in terms of the
properties (i) and (ii) above) and increases the state space by a factor of 2k · 2k.
The latter information needs to be guessed (by the automaton) and is verified
by means that all counters are zero in the end.

In the general case we introduce a variant of Z-VASS that can guess poly-
nomially many bits in the beginning and read them throughout the run. A
d-dimensional Z-VASS with guessing (Z-VASSG) has almost the same format
as a d-dimensional Z-VASS, except that each transition additionally carries a
propositional formula over some finite set of variables X. A word w ∈ Σ∗ is
accepted by the Z-VASSG if there exists an assignment ν : X → {0, 1} and an
accepting run (q0,0)

w−→ (q,0) for some q ∈ F such that all formulas appearing
throughout the run are satisfied by ν.

We have to eliminate zero- and non-zero-tests of the (k, 1)-RBCA. Whether
a (non-)zero-test is successful depends on which phase a counter is currently
in (and whether in the end, every counter is zero; but we assume that our
acceptance condition ensures this). Each counter goes through at most 4 phases:

1. before the first increment,
2. the “increment phase”,

3. the “decrement phase”, and
4. after the last decrement.

Hence, every run can be decomposed into 4k (possibly empty) segments, in which
no counter changes its phase. The idea is to guess the phase of each counter
in each segment. Hence, we have propositional variables pi,j,` for i ∈ [1, 4k],
j ∈ [1, k], and ` ∈ [1, 4]. Then pi,j,` is true iff in segment i, counter j is in phase `.
We will have to check that the assignment is admissible for each counter, meaning
that the sequence of phases for each counter adheres to the order described above.

We modify the machine as follows. In its state, it keeps a number i ∈ [1, 4k]
which holds the current segment. At the beginning of the run, the machine checks
that the assignment ν is admissible using a propositional formula: It checks that

Unboundedness problems for machines with reversal-bounded counters 11

(i) for each segment i and each counter j there exists exactly one phase ` so
that pi,j,` is true, and (ii) the order of phases above is obeyed. Then, for every
operation on a counter, the machine checks that the operation is consistent with
the current segment. Moreover, if the current operation warrants a change of the
segment, then the segment counter i is incremented. For example, if a counter
in phase 1 is incremented, it switches to phase 2 and the segment counter is
incremented; or, if a counter in phase 3 is tested for zero, it switches to phase 4
and the segment counter is incremented.

With these modifications, we can zero-test by checking variables correspond-
ing to the current segment: A zero-test can only succeed in phase 1 and 4.
Similarly, for a non-zero-test, we can check if the counter is in phase 2 or 3.

Turning a Z-VASSG into a Z-VASS. To handle the general case mentioned
above, we need to show how to convert Z-VASSG into ordinary Z-VASS. In a
preparatory step, we ensure that each formula is a literal. A transition labeled by
a formula ϕ is replaced by a series-parallel graph: After bringing ϕ in negation
normal form by pushing negations inwards, we can replace conjunctions by a
series composition and disjunctions by a parallel composition (non-determinism).

The Z-VASS works as follows. In addition to the original counters of the Z-
VASSG, it has for each variable x ∈ X two additional counters: x+ and x−. Here,
x+ (x−) counts how many times x is read with a positive (negative) assignment.
By making sure that either x+ = 0 or x− = 0 in the end, we guarantee that we
always read the same value of x.

Thus, in order to check a literal, our Z-VASS increments the corresponding
counter. In the end, before reaching a final state, it goes through each variable
x ∈ X and either enters a loop decrementing x+ or a loop decrementing x−.
Then, it can reach the zero vector only if all variable checks had been consistent.

From PRBCA to Z-grammars. It remains to convert in logspace an (r, k)-
PRBCA into an equivalent Z-grammar. Just as for converting an RBCA into
a Z-VASS, one can convert a PRBCA into an equivalent Z-PVASS (pushdown
vector addition system with Z-counters). Afterwards, one applies the classical
transformation from pushdown automata to context-free grammars (a.k.a. triple
construction), cf. [1, Lemma 2.26]: We introduce for every state pair (p, q) a
nonterminal Xp,q, deriving all words which are read between p to q (starting
and ending with empty stacks). For example, we introduce productions Xp,q →
aXp′,q′b for all push transitions (p, a, γ, p′) and pop transitions (q′, b, γ̄, q). The
counter effects of transitions in the Z-PVASS (vectors in Zk) are translated into
effects of the productions, e.g. the effect of the production Xp,q → aXp′,q′b above
is the sum of the effects of the corresponding push- and pop-transition.

4 Deciding unboundedness predicates

Proof overview. In this section, we prove Theorem 2. Let us begin with a
sketch. Our task is to take a PRBCA A and non-deterministically compute a

12 P. Baumann et al.

PDA A′ so that L(A) satisfies p if and only if some of the outcomes for A′ satisfy
p. It will be clear from the construction that if the input was an RBCA, then
the resulting PDA will be an NFA. Using Theorem 1 we will phrase the main
part of the reduction in terms of Z-grammars, meaning we take a Z-grammar G
as input and non-deterministically compute context-free grammars G′.

The idea of the reduction is to identify a set of productions in G that, in
some appropriate sense, can be canceled (regarding the integer counter values)
by a collection of other productions. Then, G′ is obtained by only using a set of
productions that can be canceled. Moreover, these productions are used regard-
less of what counter updates they perform. Then, to show the correctness, we
argue in two directions: First, we show that any word derivable by G′ occurs as
a factor of L(G). Essentially, this is because each production used in G′ can be
canceled by adding more productions in G, thus yielding a complete derivation of
G. Thus, we have that L(G′) ⊆ F (L(G)), which by the axioms of unboundedness
predicates means that p(L(G′)) implies p(L(G)). Second, we show that L(G) is
a finite union of products (i.e. concatenations) Pi = L1 ·L2 · · ·Lk such that each
Li is either finite or included in L(G′) for some G′ among all non-deterministic
outcomes. Again, by the axioms of unboundedness predicates, this means that
if p(L(G)), then p(L(G′)) must hold for some G′.

Unboundedness predicates and finite languages. Before we start with the
proof, let us observe that we may assume that our unboundedness predicate is
only satisfied for infinite sets. First, suppose p is satisfied for {ε}. This implies
that p = p6=∅ and hence we can just decide whether p(L) by deciding whether
L 6= ∅, which can be done in NP [33]. From now on, suppose that p is not
satisfied for {ε}. Consider the alphabet Σ1 := {a ∈ Σ | p({a})}. Now observe
that if K ⊆ Σ∗ is finite, then by the axioms of unboundedness predicates, we
have p(K) if and only if some letter from Σ1 appears inK. Thus, if L ⊆ (Σ\Σ1)∗,
then p(L) can only hold if L is infinite. This motivates the following definition.
Given a language L ⊆ Σ∗, we define

L0 = L ∩ (Σ \Σ1)∗, L1 = L ∩Σ∗Σ1Σ
∗.

Then, p(L) if and only if p(L0) or p(L1). Moreover, p(L1) is equivalent to L1 6= ∅.
Therefore, our reduction proceeds as follows. We construct (P)RBCA for L0

and for L1. This can be done in logspace, because intersections with regular
languages can be done with a simple product construction. Then, we check in
NP whether L1 6= ∅. If yes, then we return “unbounded”. If no, we regard p as an
unboundedness predicate on languages over Σ \Σ1 with the additional property
that p is only satisfied for infinite languages. Thus, it suffices to prove Theorem 2
in the case that p is only satisfied for infinite sets.

Pumps and cancelation. In order to define our notion of cancelable produc-
tions, we need some terminology. We will need to argue about derivation trees
for Z-grammars. For any alphabet Γ and d ∈ N, let TΓ,d be the set of all fi-
nite trees where every node is labeled by both (i) a letter from Γ and (ii) a

Unboundedness problems for machines with reversal-bounded counters 13

vector from Zd. Suppose G = (N,Σ,P, S) is a d-dimensional Z-grammar. For
a production p = (A → u,v), we write ϕ(p) := v for its associated counter
effect. To each derivation in G, we associate a derivation tree from TN∪Σ,d as for
context-free grammars. The only difference is that whenever we apply a produc-
tion (A→ u,v), then the node corresponding to the rewritten A is also labeled
with v. As in context-free grammars, the leaf nodes carry terminal letters; their
vector label is just 0 ∈ Zd.

We extend the map ϕ to both vectors in NP and to derivation trees. If u ∈ NP ,
then ϕ(u) =

∑
p∈P ϕ(p)·u[p]. Similarly, if τ is a derivation tree, then ϕ(τ) ∈ Zd is

the sum of all labels from Zd. A derivation tree τ for a derivation A ∗⇒ u is called
complete if A = S, u ∈ Σ∗ and ϕ(τ) = 0. In other words, τ derives a terminal
word and the total counter effect of the derivation is zero. For such a complete
derivation, we also write yield(τ) for the word u. A derivation tree τ is called a
pump if it is the derivation tree of a derivation of the form A ∗⇒ uAv for some
u, v ∈ Σ∗ and A ∈ N . A subset M ⊆ N of the non-terminals is called realizable
if there exists a complete derivation of G that contains all non-terminals in M
and no non-terminals outside of M .

A production p in P is calledM -cancelable if there exist pumps τ1, . . . , τk (for
some k ∈ N) such that (i) p occurs in some τi and (ii) ϕ(τ1)+ · · ·+ϕ(τk) = 0, i.e.
the total counter effect of τ1, . . . , τk is zero and (iii) all productions in τ1, . . . , τk
only use non-terminals from M . We say that a subset Q ⊆ P is M -cancelable if
all productions in Q are M -cancelable.

The reduction. Using the notions of M -cancelable productions, we are ready
to describe how the context-free grammars are constructed. Suppose that M is
realizable, that Q ⊆ P is M -cancelable, and that A ∈M . Consider the language

LA,Q = {u, v ∈ Σ∗ | ∃ derivation A ∗⇒Q uAv}.

Thus LA,Q consists of all words u and v appearing in derivations (whose counter
values are not necessarily zero) of the form A ∗⇒ uAv, if we only use M -
cancelable productions. The LA,Q will be the languages L(G′) mentioned above.

It is an easy observation that we can, given G and a subset Q ⊆ P , construct
a context-free grammar for LA,Q:

Lemma 1. Given a Z-grammar G, a non-terminal A, and a subset Q ⊆ P , we
can construct in logspace a context-free grammar for LA,Q. Moreover, if G is
left-linear, then the construction yields an NFA for LA,Q.

We provide details in Appendix C. Now, our reduction works as follows:

1. Guess a subset M ⊆ N and an A ∈M ; verify that M is realizable.
2. Guess a subset Q ⊆ P ; verify that Q is M -cancelable.
3. Compute a context-free grammar for LA,Q.

Here, we need to show that steps 1 and 2 can be done in NP:

14 P. Baumann et al.

Lemma 2. Given a subsetM ⊆ N , we can check in NP whetherM is realizable.
Moreover, given M ⊆ N and p ∈ P , we can check in NP if p is M -cancelable.

Both can be done using the fact that for a given context-free grammar, one
can construct a Parikh-equivalent existential Presburger formula [56] and the fact
that satisfiability of existential Presburger formulas is in NP. See Appendix C for
details. This completes the description of our reduction. Therefore, it remains
to show correctness of the reduction. In other words, to prove:

Proposition 1. We have p(L(G)) if and only if p(LA,Q) for some subset Q ⊆ P
such that there is a realizable M ⊆ N with A ∈M and Q being M -cancelable.

Proposition 1 will be shown in two lemmas:

Lemma 3. If M is realizable and Q is M -cancelable, then LA,Q ⊆ F (L(G)) for
every A ∈M .

Lemma 4. L(G) is included in a finite union of sets of the form K1 ·K2 · · ·Km,
where each Ki is either finite or a set LA,Q, where Q is M -cancelable for some
realizable M ⊆ N , and A ∈M .

Let us see why Proposition 1 follows from Lemmas 3 and 4.

Proof (Proposition 1). We begin with the “if” direction. Thus, suppose p(LA,Q)
for A and Q as described. Then by Lemma 3 and the first and fourth axioms of
unboundedness predicates, this implies p(L(G)).

For the “only if” direction, suppose p(L(G)). By the first axiom of unbound-
edness predicates, p must hold for the finite union provided by Lemma 4. By
the second axiom, this implies that p(K1 · · ·Km) for a finite product K1 · · ·Km

as in Lemma 4. Moreover, by the third axiom, this implies that p(Ki) for some
i ∈ {1, . . . ,m}. If Ki is finite, then by assumption, p(Ki) does not hold. There-
fore, we must have p(Ki) for some Ki = LA,Q, as required. ut

Flows. It remains to prove Lemmas 3 and 4. We begin with Lemma 3 and for
this we need some more terminology. Let Σ be an alphabet. By Ψ : Σ∗ → NΣ ,
we denote the Parikh map, which is defined as Ψ(w)(a) = |w|a for w ∈ Σ∗ and
a ∈ Σ. In other words, Ψ(w)(a) is the number of occurrences of a in w ∈ Σ∗. If
Γ ⊆ Σ is a subset, then πΓ : Σ∗ → Γ ∗ is the homomorphism with πΓ (a) = ε for
a ∈ Σ \ Γ and πΓ (a) = a for a ∈ Γ . We also call πΓ the projection to Γ .

Suppose we have a Z-grammar G = (N,Σ,P, S) with non-terminals N and
productions P . For a derivation tree τ , we write Ψ(τ) for the vector in NP that
counts how many times each production appears in τ . We introduce a map ∂,
which counts how many non-terminals each production consumes and produces.
Formally, ∂ : NP → ZN is the monoid homomorphism that sends the production
p = A → w to the vector ∂(p) = −A + Ψ(πN (w)). Here, −A ∈ ZN denotes the
vector with −1 at the position of A and 0 everywhere else. A vector u ∈ NP is a
flow if ∂(u) = 0. Observe that a derivation tree τ is a pump if and only if Ψ(τ)
is a flow. In this case, we also call the vector u ∈ NP with u = Ψ(τ) a pump.

Unboundedness problems for machines with reversal-bounded counters 15

The following lemma will provide an easy way to construct derivations. It is
a well-known result by Esparza [19, Theorem 3.1], and has since been exploited
in several results on context-free grammars. Our formulation is slightly weaker
than Esparza’s. However, it is enough for our purposes and admits a simple
proof, which is inspired by a proof of Kufleitner [45].

Lemma 5. Let f ∈ NP . Then f is a flow if and only if it is a sum of pumps.

Proof. The “if” direction is trivial, because every pump is clearly a flow. Con-
versely, suppose f ∈ NP is a flow. We can clearly write f = Ψ(τ1) + · · ·+Ψ(τn),
where τ1, . . . , τn are derivation trees: We can just view each production in f as
its own derivation tree. Now suppose that we have f = Ψ(τ1) + · · · + Ψ(τn) so
that n is minimal. We claim that then, each τi is a pump, proving the lemma.

Suppose not, then without loss of generality, τ1 is not a pump. Since τ1 is
a derivation, this means Ψ(τ1) cannot be a flow and thus there must be a non-
terminal A with ∂(τ1)(A) 6= 0.

Let us first assume that ∂(τ1)(A) > 0. This means there is a non-terminal
A occurring at a leaf of τ1 such that A is not the start symbol of τ1. Since
f = Ψ(τ1)+· · ·+Ψ(τn) is a flow, we must have ∂(Ψ(τ2)+· · ·+Ψ(τn))(A) < 0. This,
in turn, is only possible if some τj has A as its start symbol. We can therefore
merge τ1 and τj by replacing τ1’s A-labelled leaf by the new subtree τj . We
obtain a new collection of n− 1 trees whose Parikh image is f , in contradiction
to the choice of n. If ∂(τ1)(A) < 0, then there must be a τj with ∂(τj)(A) > 0
and thus we can insert τ1 below τj , reaching a similar contradiction. ut

Constructing derivations. Using flows, we can now prove Lemma 3.

Proof. Suppose there is a derivation τ : A ∗⇒Q uAv with A ∈M and u, v ∈ Σ∗.
We have to show that both u and v occur in some word w ∈ L(G). Furthermore,
if G is in Chomsky normal form, we can choose w such that |w| is linear in |u|
and |v|. Our goal is to construct a derivation of G in which we find u and v as
factors. We could obtain a derivation tree by inserting τ into some derivation tree
for G (at some occurrence of A), but this might yield non-zero counter values.
Therefore, we will use the fact that Q is M -cancelable to find other pumps that
can be inserted as well in order to bring the counter back to zero.

Since M ⊆ N is realizable, there exists a complete derivation τ0 that derives
some word w0 ∈ L(G) and uses precisely the non-terminals in M . Since Q ⊆ P
is M -cancelable, we know that for each production p ∈ Q, there exist pumps
τ1, . . . , τk such that (i) p occurs in some τi, (ii) ϕ(τ1) + · · · + ϕ(τk) = 0 and
(iii) all productions in τ1, . . . , τk only use non-terminals in M . This allows us
to define fp := Ψ(τ1) + · · · + Ψ(τk). Observe that fp contains only productions
with non-terminals from M , we have fp[p] > 0, and ϕ(fp) = 0. We can use the
flows fp to find the desired canceling pumps. Since by Lemma 5, every flow can
be decomposed into a sum of pumps, it suffices to construct a particular flow.
Specifically, we look for a flow fτ ∈ NP such that:

1. any production p with fτ [p] > 0 uses only non-terminals from M , and

16 P. Baumann et al.

2. ϕ(fτ + Ψ(τ)) = 0.

The first condition ensures that all the resulting pumps can be inserted into τ0.
The second condition ensures that the resulting total counter values will be zero.
We claim that with

fτ =

∑
p∈Q

Ψ(τ)[p] · fp

− Ψ(τ), (1)

we achieve these conditions. First, observe that fτ ∈ NP : We have

fτ [q] ≥ Ψ(τ)[q] · fq[q]− Ψ(τ)[q] = Ψ(τ)[q] · (fq[q]− 1)

which is at least zero as fq[q] must be non-zero by definition. Second, note that
fτ is indeed a flow, because it is a Z-linear combination of flows. Moreover, all
productions appearing in fτ also appear in fp for some p ∈ Q or in τ , meaning
that all non-terminals must belong to M . Finally, the total counter effect of
fτ + Ψ(τ) is zero as fτ + Ψ(τ) =

∑
p∈Q Ψ(τ)[p] · fp is a sum of flows each with

total counter effect zero.
Now, since fτ is a flow, Lemma 5 tells us that there are pumps τ ′1, . . . , τ ′m

such that fτ = Ψ(τ ′1) + · · · + Ψ(τ ′m). Therefore, inserting τ and τ ′1, . . . , τ ′m into
τ0 must yield a derivation of a word that has both u and v as factors and also
has counter value

ϕ(τ0)︸ ︷︷ ︸
=0

+ϕ(τ) + ϕ(τ ′1) + · · ·ϕ(τ ′m)︸ ︷︷ ︸
=ϕ(τ)+ϕ(fτ)=0

= 0.

Thus, we have a complete derivation of G. Hence LA,Q ⊆ F (L(G)). ut

Decomposition into finite union. It remains to prove Lemma 4. For the
decomposition, we show that there exists a finite set D0 of complete derivations
such that all complete derivations of G can be obtained from some derivation in
D0 and then inserting pumps that produce words in LA,Q, for some appropriate
A andQ. Here, it is key that the setD0 of “base derivations” is finite. Showing this
for context-free grammars would just require a simple “unpumping” argument
based on the pigeonhole principle as in Parikh’s theorem [52]. However, in the
case of Z-grammars, where D0 should only contain derivations that have counter
value zero, this is not obvious. To achieve this, we employ a well-quasi ordering on
(labeled) trees. Recall that a quasi ordering is a reflexive and transitive ordering.
For a quasi ordering (X,≤) and a subset Y ⊆ X, we write Y ↑ for the set
{x ∈ X | ∃y ∈ Y : y ≤ x}. We say that (X,≤) is a well-quasi ordering (WQO) if
every non-empty subset Y ⊆ X has a finite subset Y0 ⊆ Y such that Y ⊆ Y0 ↑.

We define an ordering on all trees in TN∪Σ,d. A tree s is a subtree of t if there
exists a node x in t such that s consists of all nodes of t that are descendants of x.
If τ1, . . . , τn are trees, then we denote by r[τ1, . . . , τn] the tree with a root node r
and the subtrees τ1, . . . , τn directly under the root. Now let τ = (A,u)[τ1, . . . , τn]

Unboundedness problems for machines with reversal-bounded counters 17

and τ ′ = (B,v)[σ1, . . . , σm] be trees in TN∪Σ,d. We define the ordering � as
follows. If n = 0 (i.e. τ consists of only one node), then we have τ � τ ′ if and
only if A = B and m = 0. If n ≥ 1, then we define inductively:

τ � τ ′ ⇐⇒ A = B and ∃ subtree τ ′′ = (A,u′)[τ ′1, . . . , τ
′
n] of τ ′

with τi � τ ′i for i = 1, . . . , n

Based on �, we define as slight refinement: We write τ v τ ′ if and only if τ � τ ′
and the set of non-terminals appearing in τ is the same as in τ ′.

Lemma 6. (TN∪Σ,d,v) is a WQO.

Proof. In [48, Lemma 3.3], it was shown that � is a WQO. Then v is the product
of equality on a finite set, which is a WQO, and the WQO �. ut

Lemma 6 allows us to decompose L(G) into a finite union: For each complete
derivation τ of G, we define

Lτ (G) = {w ∈ Σ∗ | ∃ complete derivation τ ′ with τ v τ ′ and yield(τ ′) = w}.

Lemma 7. There exists a finite set D0 ⊆ TN∪Σ,d of complete derivations of G
such that L(G) =

⋃
τ∈D0

Lτ (G).

Proof. Since (TN∪Σ,d,v) is a WQO, the set D ⊆ TN∪T,d of all complete deriva-
tions of G has a finite subset D0 with D ⊆ D0 ↑. This implies the lemma. ut

Decomposition into finite product. In light of Lemma 7, it remains to be
shown that for each tree τ , we can find a productK1 ·K2 · · ·Km of languages such
that Lτ (G) ⊆ K1 ·K2 · · ·Km and each Ki is either finite or is of the form LA,Q.
We construct the overapproximation of Lτ (G) inductively as follows. LetM ⊆ N
and Q ⊆ P be subsets of the non-terminals and the productions, respectively.
If τ has one node, labeled by a ∈ Σ, then we set AppQ(τ) := {a}. Moreover, if
τ = (A,u)[τ1, . . . , τn] for A ∈ N and trees τ1, . . . , τn, then we set

AppQ(τ) := LA,Q ·AppQ(τ1) ·AppQ(τ2) · · ·AppQ(τn) · LA,Q.

Finally, we set App(τ) := AppQ(τ), where Q ⊆ P is the set of all M -cancelable
productions, whereM is the set of all non-terminals appearing in τ . Now clearly,
each App(τ) is a finite product K1 ·K2 · · ·Km as desired: This follows by induc-
tion on the size of τ . Thus, to prove Lemma 4, the following suffices:

Lemma 8. For every complete derivation tree τ of G, we have Lτ (G) ⊆ App(τ).

Proof. Suppose w ∈ Lτ (G) is derived using a complete derivation tree τ ′ with
τ v τ ′. Then, the set of non-terminals appearing in τ must be the same as in
τ ′; we denote it by M . Let Q ⊆ P be the set of all M -cancelable productions.
Moreover, since τ � τ ′, we can observe that there exist pumps τ1, . . . , τn with
root non-terminals A1, . . . , An and nodes x1, . . . , xn in τ such that τ ′ can be
obtained from τ by replacing each node xi by the pump τi.

18 P. Baumann et al.

Since both τ and τ ′ are complete derivations of G, each must have counter
effect 0. Thus, ϕ(τ1)+· · ·+ϕ(τn) = ϕ(τ ′)−ϕ(τ) = 0. Hence, the pumps τ1, . . . , τn
witness that the productions appearing in τ1, . . . , τn areM -cancelable. Thus, the
derivation corresponding to τi uses only productions inQ and thus τi corresponds
to Ai ∗⇒Q uiAvi for some ui, vi and we have ui, vi ∈ LA,Q. ut

5 Growth

In this section, we prove Theorem 3. Since clearly, a bounded language has
polynomial growth, it remains to be shown that if L is accepted by a PRBCA and
L is not bounded, then it has exponential growth. For two languages L1, L2 ⊆
Σ∗, we write L1 ↪→lin L2 if there exists a constant c ∈ N such that for every
word w1 ∈ L1, there exists w2 ∈ L2 with |w2| ≤ c · |w1| and w1 is a factor of w2.
It is not difficult to observe that for two languages L1, L2 ⊆ Σ∗, if L1 ↪→lin L2

and L1 has exponential growth, then so does L2.
In order to show Theorem 3, we need an adapted version of Lemma 3. A

Z-grammar is in Chomsky normal form if all productions are of the form (A→
BC,v) or (A → a,v) with A,B,C ∈ N , a ∈ Σ, and u,v ∈ Zk. In other
words, the context-free grammar obtained by forgetting all counter vectors is
in Chomsky normal form. Fernau and Stiebe [21, Proposition 5.12] have shown
that every Z-grammar has an equivalent Z-grammar in Chomsky normal form.
Lemma 9. If G = (N,Σ,P, S) is a Z-grammar in Chomsky normal form, M ⊆
N is realizable, Q ⊆ P is M -cancelable, and A ∈M , then LA,Q ↪→lin L(G).
This is shown essentially the same way as Lemma 3. Let us now show that if a
language L accepted by a PRBCA is not bounded, then it must have exponential
growth. We have seen above that as a PRBCA language, L is generated by
some Z-grammar. As shown by Fernau and Stiebe [21, Proposition 5.12], this
implies that L = L(G) for some Z-grammar G in Chomsky normal form. Since
L is not bounded, Lemma 4 yields A and Q such that LA,Q is not a bounded
language. It is well-known that any context-free languages that is not bounded
has exponential growth (this fact has apparently been independently discovered
at least six times, see [25] for references). Thus, LA,Q has exponential growth.
By Lemma 9, we have LA,Q ↪→lin L and thus L has exponential growth.

Acknowledgments We are grateful to Manfred Kufleitner for sharing the
manuscript [45] before it was publicly available. It provides an alternative proof
for constructing an existential Presburger formula for the Parikh image of a
context-free grammar. The latter was also shown in [19, 56]. We use it in
Lemma 5, which could also be derived from [19, Theorem 3.1]. However, we
provide a simple direct proof of Lemma 5 inspired by Kufleitner’s proof.

This work is funded by the European Union (ERC, FINABIS, 101077902).
Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Research Coun-
cil Executive Agency. Neither the European Union nor the granting authority
can be held responsible for them.

Unboundedness problems for machines with reversal-bounded counters 19

References

[1] Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation,
and compiling. 1: Parsing. Prentice-Hall, 1972. isbn: 0139145567. url:
https://www.worldcat.org/oclc/310805937.

[2] Brenda S Baker and Ronald V Book. “Reversal-bounded multipushdown
machines”. In: Journal of Computer and System Sciences 8.3 (1974), pp. 315–
332. doi: 10.1016/S0022-0000(74)80027-9.

[3] David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Pawel Parys.
“Cost Automata, Safe Schemes, and Downward Closures”. In: 47th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP
2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference). Ed.
by Artur Czumaj, Anuj Dawar, and Emanuela Merelli. Vol. 168. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 109:1–109:18.
doi: 10.4230/LIPIcs.ICALP.2020.109.

[4] David Barozzini, Pawel Parys, and Jan Wroblewski. “Unboundedness for
Recursion Schemes: A Simpler Type System”. In: 49th International Col-
loquium on Automata, Languages, and Programming, ICALP 2022, July
4-8, 2022, Paris, France. Ed. by Mikolaj Bojanczyk, Emanuela Merelli, and
David P. Woodruff. Vol. 229. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022, 112:1–112:19. doi: 10.4230/LIPIcs.ICALP.2022.112.

[5] Alin Bostan, Arnaud Carayol, Florent Koechlin, and Cyril Nicaud. “Weakly-
Unambiguous Parikh Automata and Their Link to Holonomic Series”. In:
47th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Con-
ference). Vol. 168. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020, 114:1–114:16. doi: 10.4230/LIPIcs.ICALP.2020.114.

[6] Toby Cathcart Burn, Luke Ong, Steven J. Ramsay, and Dominik Wagner.
“Initial Limit Datalog: a New Extensible Class of Decidable Constrained
Horn Clauses”. In: 36th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE,
2021, pp. 1–13. doi: 10.1109/LICS52264.2021.9470527.

[7] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. “Affine Parikh au-
tomata”. In: RAIRO Theor. Informatics Appl. 46.4 (2012), pp. 511–545.
doi: 10.1051/ita/2012013.

[8] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. “Bounded Parikh
Automata”. In: Int. J. Found. Comput. Sci. 23.8 (2012), pp. 1691–1710.
doi: 10.1142/S0129054112400709.

[9] Michaël Cadilhac, Andreas Krebs, and Pierre McKenzie. “The Algebraic
Theory of Parikh Automata”. In: Theory Comput. Syst. 62.5 (2018), pp. 1241–
1268. doi: 10.1007/s00224-017-9817-2.

[10] Arturo Carpi, Flavio D’Alessandro, Oscar H Ibarra, and Ian McQuillan.
“Relationships between bounded languages, counter machines, finite-index
grammars, ambiguity, and commutative regularity”. In: Theoretical Com-
puter Science 862 (2021), pp. 97–118. doi: 10.1016/j.tcs.2020.10.006.

https://www.worldcat.org/oclc/310805937
https://doi.org/10.1016/S0022-0000(74)80027-9
https://doi.org/10.4230/LIPIcs.ICALP.2020.109
https://doi.org/10.4230/LIPIcs.ICALP.2022.112
https://doi.org/10.4230/LIPIcs.ICALP.2020.114
https://doi.org/10.1109/LICS52264.2021.9470527
https://doi.org/10.1051/ita/2012013
https://doi.org/10.1142/S0129054112400709
https://doi.org/10.1007/s00224-017-9817-2
https://doi.org/10.1016/j.tcs.2020.10.006

20 P. Baumann et al.

[11] Tat-hung Chan. “Pushdown Automata with Reversal-Bounded Counters”.
In: J. Comput. Syst. Sci. 37.3 (1988), pp. 269–291. doi: 10.1016/0022-
0000(88)90008-6.

[12] Laura Ciobanu and Susan Hermiller. “Conjugacy growth series and lan-
guages in groups”. In: Transactions of the American Mathematical Society
366.5 (2014), pp. 2803–2825.

[13] Lorenzo Clemente, Wojciech Czerwinski, Slawomir Lasota, and Charles Pa-
perman. “Regular Separability of Parikh Automata”. In: 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland. Vol. 80. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017, 117:1–117:13. doi: 10.4230/LIPIcs.
ICALP.2017.117.

[14] Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz.
“The Diagonal Problem for Higher-Order Recursion Schemes is Decidable”.
In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016. Ed. by
Martin Grohe, Eric Koskinen, and Natarajan Shankar. ACM, 2016, pp. 96–
105. doi: 10.1145/2933575.2934527.

[15] Wojciech Czerwinski, Piotr Hofman, and Georg Zetzsche. “Unbounded-
ness Problems for Languages of Vector Addition Systems”. In: 45th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP
2018, July 9-13, 2018, Prague, Czech Republic. Ed. by Ioannis Chatzigian-
nakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella. Vol. 107.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 119:1–
119:15. doi: 10.4230/LIPIcs.ICALP.2018.119.

[16] Flavio D’Alessandro and Benedetto Intrigila. “On the commutative equiva-
lence of bounded context-free and regular languages: The semi-linear case”.
In: Theor. Comput. Sci. 572 (2015), pp. 1–24. doi: 10.1016/j.tcs.2015.01.
008. url: https://doi.org/10.1016/j.tcs.2015.01.008.

[17] Joey Eremondi, Oscar H. Ibarra, and Ian McQuillan. “On the Density
of Context-Free and Counter Languages”. In: Developments in Language
Theory - 19th International Conference, DLT 2015, Liverpool, UK, July
27-30, 2015, Proceedings. Ed. by Igor Potapov. Vol. 9168. Lecture Notes
in Computer Science. Springer, 2015, pp. 228–239. doi: 10.1007/978-3-
319-21500-6_18.

[18] Joey Eremondi, Oscar H. Ibarra, and Ian McQuillan. “On the Density of
Context-Free and Counter Languages”. In: Int. J. Found. Comput. Sci.
29.2 (2018), pp. 233–250. doi: 10.1142/S0129054118400051.

[19] Javier Esparza. “Petri nets, commutative context-free grammars, and basic
parallel processes”. In: Fundamenta Informaticae 31.1 (1997), pp. 13–25.

[20] Javier Esparza, Pierre Ganty, and Rupak Majumdar. “A Perfect Model for
Bounded Verification”. In: Proceedings of the 27th Annual IEEE Sympo-
sium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June
25-28, 2012. IEEE Computer Society, 2012, pp. 285–294. doi: 10.1109/
LICS.2012.39.

https://doi.org/10.1016/0022-0000(88)90008-6
https://doi.org/10.1016/0022-0000(88)90008-6
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
https://doi.org/10.4230/LIPIcs.ICALP.2017.117
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.4230/LIPIcs.ICALP.2018.119
https://doi.org/10.1016/j.tcs.2015.01.008
https://doi.org/10.1016/j.tcs.2015.01.008
https://doi.org/10.1016/j.tcs.2015.01.008
https://doi.org/10.1007/978-3-319-21500-6_18
https://doi.org/10.1007/978-3-319-21500-6_18
https://doi.org/10.1142/S0129054118400051
https://doi.org/10.1109/LICS.2012.39
https://doi.org/10.1109/LICS.2012.39

Unboundedness problems for machines with reversal-bounded counters 21

[21] Henning Fernau and Ralf Stiebe. “Sequential grammars and automata with
valences”. In: Theor. Comput. Sci. 276.1-2 (2002), pp. 377–405. doi: 10.
1016/S0304-3975(01)00282-1.

[22] Emmanuel Filiot, Shibashis Guha, and Nicolas Mazzocchi. “Two-Way Parikh
Automata”. In: 39th IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2019, De-
cember 11-13, 2019, Bombay, India. Vol. 150. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, 40:1–40:14. doi: 10.4230/LIPIcs.
FSTTCS.2019.40.

[23] Alain Finkel and Arnaud Sangnier. “Reversal-Bounded Counter Machines
Revisited”. In: Mathematical Foundations of Computer Science 2008, 33rd
International Symposium, MFCS 2008, Torun, Poland, August 25-29, 2008,
Proceedings. Ed. by Edward Ochmanski and Jerzy Tyszkiewicz. Vol. 5162.
Lecture Notes in Computer Science. Springer, 2008, pp. 323–334. doi:
10.1007/978-3-540-85238-4_26.

[24] Moses Ganardi. “Language recognition in the sliding window model”. PhD
thesis. University of Siegen, Germany, 2019. url: https://dspace.ub.uni-
siegen.de/handle/ubsi/1523.

[25] Pawel Gawrychowski, Dalia Krieger, Narad Rampersad, and Jeffrey O.
Shallit. “Finding the Growth Rate of a Regular or Context-Free Language
in Polynomial Time”. In: Int. J. Found. Comput. Sci. 21.4 (2010), pp. 597–
618. doi: 10.1142/S0129054110007441.

[26] Seymour Ginsburg and Edwin H Spanier. “Bounded ALGOL-like lan-
guages”. In: Transactions of the American Mathematical Society 113.2
(1964), pp. 333–368.

[27] Sheila A. Greibach. “Remarks on Blind and Partially Blind One-Way Mul-
ticounter Machines”. In: Theor. Comput. Sci. 7 (1978), pp. 311–324. doi:
10.1016/0304-3975(78)90020-8.

[28] Rostislav Grigorchuk and A. Machì. “An example of an indexed language
of intermediate growth”. In: Theoretical computer science 215.1-2 (1999),
pp. 325–327.

[29] Eitan M. Gurari and Oscar H. Ibarra. “The complexity of decision prob-
lems for finite-turn multicounter machines”. In: Journal of Computer and
System Sciences 22.2 (1981), pp. 220–229. issn: 0022-0000. doi: https :
//doi.org/10.1016/0022-0000(81)90028-3.

[30] Christoph Haase and Simon Halfon. “Integer Vector Addition Systems with
States”. In: Reachability Problems - 8th International Workshop, RP 2014,
Oxford, UK, September 22-24, 2014. Proceedings. Ed. by Joël Ouaknine,
Igor Potapov, and James Worrell. Vol. 8762. Lecture Notes in Computer
Science. Springer, 2014, pp. 112–124. doi: 10.1007/978-3-319-11439-2_9.

[31] Christoph Haase and Georg Zetzsche. “Presburger arithmetic with stars,
rational subsets of graph groups, and nested zero tests”. In: 34th An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,
Vancouver, BC, Canada, June 24-27, 2019. IEEE, 2019, pp. 1–14. doi:

https://doi.org/10.1016/S0304-3975(01)00282-1
https://doi.org/10.1016/S0304-3975(01)00282-1
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.40
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.40
https://doi.org/10.1007/978-3-540-85238-4_26
https://dspace.ub.uni-siegen.de/handle/ubsi/1523
https://dspace.ub.uni-siegen.de/handle/ubsi/1523
https://doi.org/10.1142/S0129054110007441
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/https://doi.org/10.1016/0022-0000(81)90028-3
https://doi.org/https://doi.org/10.1016/0022-0000(81)90028-3
https://doi.org/10.1007/978-3-319-11439-2_9

22 P. Baumann et al.

10.1109/LICS.2019.8785850. url: https://doi.org/10.1109/LICS.2019.
8785850.

[32] Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. “Unbound-
edness and downward closures of higher-order pushdown automata”. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016. ACM, 2016, pp. 151–163. doi: 10 .1145/
2837614.2837627.

[33] Matthew Hague and Anthony Widjaja Lin. “Model Checking Recursive
Programs with Numeric Data Types”. In: Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-
20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer.
Vol. 6806. Lecture Notes in Computer Science. Springer, 2011, pp. 743–
759. doi: 10.1007/978-3-642-22110-1_60.

[34] Simon Halfon, Philippe Schnoebelen, and Georg Zetzsche. “Decidability,
complexity, and expressiveness of first-order logic over the subword order-
ing”. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer
Society, 2017, pp. 1–12. doi: 10.1109/LICS.2017.8005141.

[35] Takeshi Hayashi. “On Derivation Trees of Indexed Grammars—An Ex-
tension of the uvwxy-Theorem”. In: Publications of the Research Institute
for Mathematical Sciences 9.1 (1973), pp. 61–92. doi: 10 .2977/prims/
1195192738.

[36] John E. Hopcroft. “On the equivalence and containment problems for
context-free languages”. In:Mathematical systems theory 3.2 (1969), pp. 119–
124.

[37] Oscar H. Ibarra. “Reversal-Bounded Multicounter Machines and Their De-
cision Problems”. In: J. ACM 25.1 (1978), pp. 116–133. doi: 10 .1145/
322047.322058.

[38] Oscar H. Ibarra and Bala Ravikumar. “On Sparseness, Ambiguity and
other Decision Problems for Acceptors and Transducers”. In: STACS 86,
3rd Annual Symposium on Theoretical Aspects of Computer Science, Or-
say, France, January 16-18, 1986, Proceedings. Ed. by Burkhard Monien
and Guy Vidal-Naquet. Vol. 210. Lecture Notes in Computer Science.
Springer, 1986, pp. 171–179. doi: 10.1007/3-540-16078-7_74.

[39] Oscar H. Ibarra and Shinnosuke Seki. “Characterizations of Bounded semi-
linear Languages by One-Way and Two-Way Deterministic Machines”. In:
Int. J. Found. Comput. Sci. 23.6 (2012), pp. 1291–1306. doi: 10.1142/
S0129054112400539.

[40] Oscar H. Ibarra, Jianwen Su, Zhe Dang, Tevfik Bultan, and Richard A.
Kemmerer. “Counter Machines and Verification Problems”. In: Theor. Com-
put. Sci. 289.1 (2002), pp. 165–189. doi: 10.1016/S0304-3975(01)00268-7.

[41] Matthias Jantzen and Alexy Kurganskyy. “Refining the hierarchy of blind
multicounter languages and twist-closed trios”. In: Inf. Comput. 185.2
(2003), pp. 159–181. doi: 10.1016/S0890-5401(03)00087-7.

https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1145/2837614.2837627
https://doi.org/10.1145/2837614.2837627
https://doi.org/10.1007/978-3-642-22110-1_60
https://doi.org/10.1109/LICS.2017.8005141
https://doi.org/10.2977/prims/1195192738
https://doi.org/10.2977/prims/1195192738
https://doi.org/10.1145/322047.322058
https://doi.org/10.1145/322047.322058
https://doi.org/10.1007/3-540-16078-7_74
https://doi.org/10.1142/S0129054112400539
https://doi.org/10.1142/S0129054112400539
https://doi.org/10.1016/S0304-3975(01)00268-7
https://doi.org/10.1016/S0890-5401(03)00087-7

Unboundedness problems for machines with reversal-bounded counters 23

[42] Felix Klaedtke and Harald Rueß. “Monadic Second-Order Logics with Car-
dinalities”. In: Proceedings of ICALP 2003. Ed. by Jos C. M. Baeten, Jan
Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger. Berlin, Hei-
delberg: Springer, 2003, pp. 681–696.

[43] Naoki Kobayashi. “Inclusion between the frontier language of a non-deterministic
recursive program scheme and the Dyck language is undecidable”. In:
Theor. Comput. Sci. 777 (2019), pp. 409–416. doi: 10.1016/j.tcs.2018.
09.035.

[44] S. Rao Kosaraju. “Decidability of Reachability in Vector Addition Systems
(Preliminary Version)”. In: STOC 1982, May 5-7, 1982, San Francisco,
California, USA. 1982, pp. 267–281.

[45] Manfred Kufleitner. Yet another proof of Parikh’s Theorem. Oct. 6, 2022.
arXiv: 2210.02925.

[46] Dietrich Kuske and Georg Zetzsche. “Languages Ordered by the Subword
Order”. In: Foundations of Software Science and Computation Structures -
22nd International Conference, FOSSACS 2019, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings. Ed. by Mikolaj Bo-
janczyk and Alex Simpson. Vol. 11425. Lecture Notes in Computer Science.
Springer, 2019, pp. 348–364. doi: 10.1007/978-3-030-17127-8_20.

[47] Jean-Luc Lambert. “A Structure to Decide Reachability in Petri Nets”. In:
Theor. Comput. Sci. 99.1 (1992), pp. 79–104.

[48] Jérôme Leroux, M. Praveen, Philippe Schnoebelen, and Grégoire Sutre.
“On Functions Weakly Computable by Pushdown Petri Nets and Related
Systems”. In: CoRR abs/1904.04090 (2019). arXiv: 1904.04090.

[49] Jérôme Leroux and Sylvain Schmitz. “Demystifying Reachability in Vec-
tor Addition Systems”. In: 30th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015. IEEE
Computer Society, 2015, pp. 56–67. doi: 10.1109/LICS.2015.16.

[50] Jérôme Leroux and Sylvain Schmitz. “Reachability in Vector Addition Sys-
tems is Primitive-Recursive in Fixed Dimension”. In: 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24-27, 2019. IEEE, 2019, pp. 1–13. doi: 10 .1109/LICS.
2019.8785796.

[51] Ernst W. Mayr. “An Algorithm for the General Petri Net Reachability
Problem”. In: STOC 1981, May 11-13, 1981, Milwaukee, Wisconsin, USA.
1981, pp. 238–246.

[52] Rohit J Parikh. “On context-free languages”. In: Journal of the ACM
(JACM) 13.4 (1966), pp. 570–581.

[53] Pawel Parys. “The Complexity of the Diagonal Problem for Recursion
Schemes”. In: 37th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2017, December
11-15, 2017, Kanpur, India. Ed. by Satya V. Lokam and R. Ramanujam.
Vol. 93. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017,
45:1–45:14. doi: 10.4230/LIPIcs.FSTTCS.2017.45.

https://doi.org/10.1016/j.tcs.2018.09.035
https://doi.org/10.1016/j.tcs.2018.09.035
https://arxiv.org/abs/2210.02925
https://doi.org/10.1007/978-3-030-17127-8_20
https://arxiv.org/abs/1904.04090
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.45

24 P. Baumann et al.

[54] Loic Pottier. “Minimal Solutions of Linear Diophantine Systems: Bounds
and Algorithms”. In: Rewriting Techniques and Applications, 4th Interna-
tional Conference, RTA-91, Como, Italy, April 10-12, 1991, Proceedings.
Ed. by Ronald V. Book. Vol. 488. Lecture Notes in Computer Science.
Springer, 1991, pp. 162–173. doi: 10.1007/3-540-53904-2_94.

[55] George S. Sacerdote and Richard L. Tenney. “The decidability of the
reachability problem for vector addition systems (preliminary version)”.
In: STOC 1977. ACM. 1977, pp. 61–76.

[56] Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. “On the
Complexity of Equational Horn Clauses”. In:Automated Deduction - CADE-
20, 20th International Conference on Automated Deduction, Tallinn, Esto-
nia, July 22-27, 2005, Proceedings. Ed. by Robert Nieuwenhuis. Vol. 3632.
Lecture Notes in Computer Science. Springer, 2005, pp. 337–352. doi:
10.1007/11532231_25.

[57] Georg Zetzsche. “An Approach to Computing Downward Closures”. In:
Automata, Languages, and Programming - 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II. Ed.
by Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina
Speckmann. Vol. 9135. Lecture Notes in Computer Science. Springer, 2015,
pp. 440–451. doi: 10.1007/978-3-662-47666-6_35.

[58] Georg Zetzsche. “An approach to computing downward closures”. In: CoRR
abs/1503.01068 (2015). arXiv: 1503.01068.

[59] Georg Zetzsche. “The Complexity of Downward Closure Comparisons”.
In: 43rd International Colloquium on Automata, Languages, and Program-
ming, ICALP 2016, July 11-15, 2016, Rome, Italy. Ed. by Ioannis Chatzi-
giannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi.
Vol. 55. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016,
123:1–123:14. doi: 10.4230/LIPIcs.ICALP.2016.123.

https://doi.org/10.1007/3-540-53904-2_94
https://doi.org/10.1007/11532231_25
https://doi.org/10.1007/978-3-662-47666-6_35
https://arxiv.org/abs/1503.01068
https://doi.org/10.4230/LIPIcs.ICALP.2016.123

Unboundedness problems for machines with reversal-bounded counters 25

A Additional material on Section 2

A.1 Counter updates

Here we argue that for d-dimensional Z-VASS we can without loss of generality
assume unary encoded counter updates. In particular, we show that counter
updates comprised of n-bit binary encoded numbers can be simulated by ones
comprised of unary encoded numbers. Moreover, we also mention how to extend
this result to the case of Z-grammars, which uses a very similar construction.
The general idea is to replace each counter by n many counters and to replace
each number in a counter update by its binary representation.

Let V = (Q,Σ, q0, T, F) be a d-dimensional Z-VASS with binary encoded
counter updates using at most n bit per number. We construct a dn-dimensional
Z-VASS V ′ = (Q,Σ, q0, T

′, F) with unary encoded counter updates as follows:

– For every transition (p, w, (v1, . . . , vd), p
′) ∈ T add the transition

(p, w, (bin(v1), . . . , bin(vd)), p
′) to T ′, where bin : Z → {−1, 0, 1} maps an

n-bit number to its binary representation, while keeping the sign.
– For every i ∈ [1, d], every j ∈ [1, n− 1] and every state p ∈ Q add the loops

(p, ε, (u1, . . . , udn), p) and (p, ε, (v1, . . . , vdn), p) to T ′, where u(i−1)n+j = −2,
u(i−1)n+j+1 = 1, v(i−1)n+j = 2, v(i−1)n+j+1 = −1, and uk = vk = 0 for every
k /∈ {(i− 1)n+ j, (i− 1)n+ j + 1}.

Here the first set of transitions applies the binary representations as counter ef-
fects, while the loops of the second set ensure the correct relationship among each
set of n counters simulating a single counter of V. In particular, the loops make
sure that each such counter represents one of the n bits, with each successive bit
being twice as significant as the previous one.

Let us now briefly talk about the construction for Z-grammars. The idea
is the same, but instead of replacing transitions, we replace productions. Then
instead of the loops, we add for each non-terminal A productions that replace
A by itself. In both cases the counter updates are exactly the same as in the
Z-VASS construction, and the proof is very similar as well.

To prove the construction correct in the Z-VASS case we show by induc-
tion on run length that there is a run (q, u1, . . . , un)

w−→ (p, v1, . . . , vn) of V if
and only if there is a run (q, u′1, . . . , u

′
dn)

w−→ (p, v′1, . . . , v
′
dn) of V ′ with ui =∑n

j=1 2j−1u′(i−1)n+j and vi =
∑n
j=1 2j−1v′(i−1)n+j . The base case is immediate

from the starting configuration in both Z-VASS.
For the inductive case let us firstly assume that there is a run (q, u1, . . . , un)

w−→ (p, v1, . . . , vn)
w′

−→ (r, x1, . . . , xn) of V such that the second part is due to a
single transition (p, w′,x − v, r) ∈ T . Then by induction hypothesis there is a
run (q, u′1, . . . , u

′
dn)

w−→ (p, v′1, . . . , v
′
dn) of V ′ with ui =

∑n
j=1 2j−1u′(i−1)n+j and

vi =
∑n
j=1 2j−1v′(i−1)n+j . Furthermore we have (p, w′, (bin(x1−v1), . . . , bin(xd−

vd)), r) ∈ T ′ by construction. Appending this transition to the run of V ′ ending
in (p,v′) leads to the configuration (r, y′1, . . . , y

′
dn), where y′(i−1)n+j = v′(i−1)n+j+

bin(xi − vi)j for i ∈ [1, d] and j ∈ [1, n]. Here bin(−)j refers to the jth digit in

26 P. Baumann et al.

the binary representation, which corresponds to the (j − 1)th power of 2. This
gives us the following relationship between x and y′, as required:

n∑
j=1

2j−1y′(i−1)n+j =

n∑
j=1

2j−1v′(i−1)n+j + 2j−1bin(xi − vi)j

= (xi − vi) +

n∑
j=1

2j−1v′(i−1)n+j = (xi − vi) + vi = xi.

Secondly, let us now assume that there is a run (q, u′1, . . . , u
′
dn)

w−→
(p, v′1, . . . , v

′
dn)

w′

−→ (r, y′1, . . . , y
′
dn) of V ′ such that the second part is due to a

single transition t′ = (p, w′,y′ − v′, r) ∈ T ′. Then by induction hypothesis there
is a run (q, u1, . . . , un)

w−→ (p, v1, . . . , vn) of V with ui =
∑n
j=1 2j−1u′(i−1)n+j and

vi =
∑n
j=1 2j−1v′(i−1)n+j . Now we need to distinguish two cases:

– If t′ was added to T ′ based on a transition t ∈ T , then we have t =

(p, w′,
(∑n

j=1 2j−1(y′j − v′j), . . . ,
∑n
j=1 2j−1(y′(d−1)n+j − v′(d−1)n+j)

)
, r) by

construction. Appending this transition to the run of V ending in (p,v) leads
to the configuration (r, x1, . . . , xd), where xi = vi +

∑n
j=1 2j−1(y′(i−1)n+j −

v′(i−1)n+j) for i ∈ [1, d]. This gives us the following relationship between x

and y′, as required:

xi = vi +

n∑
j=1

2j−1(y′(i−1)n+j − v
′
(i−1)n+j)

= (vi − vi) +

n∑
j=1

2j−1y′(i−1)n+j =

n∑
j=1

2j−1y′(i−1)n+j .

– If t′ is one of the loops in T ′ that was no based on a transition of T , then we
have w′ = ε, p = r, and the counter effect y′−v′ changes the value v′(i−1)n+j
by 2, and the value v′(i−1)n+j+1 by 1, for some i ∈ [1, d], j ∈ [1, n − 1].
Since all other values are not changed by this effect, it only affects the sum∑n
j=1 2j−1v′(i−1)n+j . Since the change by 2 and the change by 1 always have

opposite signs, this sum is also not affected. Therefore the run of V ending
in (p,v) is already as required.

For language equivalence between V and V ′, we still need to show that if V
reaches 0 then V ′ can simulate this by reaching exactly 0 as well. Formally we
show that there is a run (q0,0)

w−→ (p,0) of V if and only if there is a run
(q0,0)

w−→ (p,0) of V ′.
The “only if”-direction follows directly from the statement we just proved.

For the “if”-direction we get that there is a run (q0,0)
w−→ (p,v′) of V ′ with∑n

j=1 2j−1v′(i−1)n+j = 0 for every i ∈ [1, d]. Assume that for some i ∈ [1, d] there
is a maximal j ∈ [1, n] such that v′(i−1)n+j 6= 0. Then j > 1, because the above
sum must evaluate to 0, so there must be a smaller j′ ∈ [1, n] with v′(i−1)n+j′ 6= 0

Unboundedness problems for machines with reversal-bounded counters 27

as well. Consider the loop ` = (p, ε, (u1, . . . , udn), p) ∈ T ′ where u(i−1)n+j−1 =
−2, u(i−1)n+j = 1 if v(i−1)n+j < 0, or u(i−1)n+j−1 = 2, u(i−1)n+j = −1 if
v(i−1)n+j < 0. Appending ` |v(i−1)n+j | many times to the run ending in (p,v′)
will change the value v(i−1)n+j to 0, and otherwise only changes values v′(i−1)n+j′′
with j′′ ∈ [1, n] and j′′ < j. However, this run extension does not alter the sum∑n
j=1 2j−1v′(i−1)n+j . Meaning if we do this iteratively for every j and i, we

eventually arrive at 0.

A.2 Unboundedness predicates

We comment here on the relationship between the notion of one-dimensional
unboundedness predicates in [15] and the notion used here. The set of axioms in
[15] is as follows, for any languages K,L ⊆ Σ∗:

(O1) If p(K) and K ⊆ L, then p(L).
(O2) If p(K ∪ L), then p(K) or p(L).
(O3) If p(F (K · L)), then p(F (K)) or p(F (L)).

Moreover, in [15], the resulting decision problem is defined as:

Input Language L ⊆ Σ∗.
Question Does p(F (L)) hold?

Note that in this definition, one decides whether p(F (L)), in contrast to the
definition in Section 2, where we decide whether p(L).

1. The definition (U1)–(U4) is slightly stronger. Observe that a predicate p
that satisfies (U1)–(U4) also satisfies (O1)–(O3). However, there are some
(pathological) examples of predicates that satisfy (O1)–(O3), but not (U1)–
(U4). For example, the predicate p¬a with

p¬a(L) ⇐⇒ L is non-empty and L 6= {a}

satisfies (O1)–(O3), but not (U4). The latter is because F ({a}) = {ε, a}
satisfies p¬a, but {a} itself does not.

2. Although (U1)–(U4) are slightly stronger, they yield the same set of decision
problems. Indeed, suppose p is a predicate that satisfies (O1)–(O3). Define
the predicate p′ with p′(L) ⇐⇒ p(F (L)). Then, p′ satisfies (U1)–(U4).
Moreover, the decision problem induced by p and p′ is the same: In each
case, we decide whether p(F (L)).

3. Thus, the set of decision problems induced by the axiom sets (O1)–(O3) and
(U1)–(U4) is the same, and hence Theorem 2 is independent of which set of
axioms is used.

The reason the axioms (O1)–(O3) were used in [15] is that if one also intro-
duces multi-dimensional unboundedness predicates, the axioms (O1)–(O3) fit
more nicely with the general case. The slight disadvantage of the definition in
[15] is that one has to decide p(F (L)) instead of p(L), which is why here, we
opted for (U1)–(U4).

28 P. Baumann et al.

B Additional material on Section 3

Translating transitions of (k, r)-RBCA to (k′, 1)-RBCA. We provide an
explicit construction for the four transition types inci, deci, zeroi, and nzi.

Let us first consider a transition (p, a, inci, q) (Fig. 1). We start with a se-
quence of tests (marked in blue) for pi,j to identify which phase we are currently
in. If pi,j is non-zero for an odd j, we know we are in an positive phase and
simply increment the corresponding program counter ci, j+1

2
. Otherwise we are

in a negative phase. Thus we need to switch to an positive phase, decrement-
ing pi,j and incrementing pi,j+1, before incrementing the corresponding program
counter ci, j2+1.

Observe that the state f can never be reached in an r-reversal bounded
run. As the phase counters pi,1 to pi,2m−1 have all tested negative, we must
be in phase r = 2m. As this is an even number, it must be descending, and
incrementing would mean adding another reversal, breaking the bound.

p . . . f qa

p
i,1

=
0?

p
i,2

=
0?

p
i,2m

−
1
=
0?

p
i,1 6=

0?

ci,1 += 1

p
i,2 6=

0?

p
i,2

-=
1

p
i,3

+=
1

c
i,2

+=
1

Fig. 1. Transition structure to replace an incrementing transition (p, a, inci, q).

Next, let us consider a transition (p, a, deci, q) (Fig. 2). Similarly to the pre-
vious construction, we again first identify the current phase in the state sequence
marked in blue. This time, we change the phase counter if we are currently in
a positive (odd) phase and move to a negative phase. Once the phase counter
is updated, we change to the states marked in green, which allow us to non-
deterministically decrement one of the program counters (recall that if we are in
phase j, we choose one of the counters ci,1, . . . , ci,d j2 e to decrement).

Finally, we consider the zero- (Fig. 3) and non-zero-tests (Fig. 4). We test a
counter ci for zero by making sure all partial counters ci,j are zero: we test a
counter ci for non-zero by testing if any partial counter ci,j is non-zero.

Unboundedness problems for machines with reversal-bounded counters 29

p . . .

q

. . .

a

p
i,1

=
0?

p
i,2

=
0?

p
i,2m

−
2
=
0?

p
i,2m

−
1
=
0?

p
i,1 6=

0?

p
i,1

-=
1

p
i,2

+=
1

c
i,1 -=

1

p
i,2 6=

0?

ε

p
i,2m

−
1 6=

0?

p
i,2m

−
1
-=

1

p
i,2m

+=
1

ε

c
i,m

-=
1

ε

c
i,2 -=

1

ε

c
i,m

−
1 -=

1

εε

Fig. 2. Transition structure to replace a decrementing transition (p, a, deci, q).

p . . . qa

c
i,1 =

0?

c
i,2 =

0?

c
i,m

−
1 =

0?

c
i,m

=
0?

Fig. 3. Transition structure to replace a zero-test (p, a, zeroi, q).

p . . .

q

a

c
i,1 6=

0?

c
i,2 6=

0?

ε

c
i,m
6=
0?

ε ε

Fig. 4. Transition structure to replace a non-zero-test (p, a, nzi, q).

30 P. Baumann et al.

C Additional material on Section 4

Let us first observe that one can, given a subsetQ, compute in logspace a context-
free grammar for LA,Q. To compute this language, we construct two grammars
(one for the u part of A ∗⇒Q uAv, one for the v part). Then LA,Q is the union
of those two grammars. We present the construction of the u-grammar here, the
other can be constructed symmetrically.

Intuitively, for each production in Q, we will attempt to guess which of its
resulting non-terminals will produce the subtree with the dangling A. All non-
terminals to the left will be evaluated normally, everything to the right (including
terminals) will be discarded, and the selected non-terminal will continue guessing
which of its children will be responsible for producing A.

Formally, we construct a grammar as follows:

1. The set of non-terminals is duplicated, N := M ∪ {X̂ | X ∈M}
2. All the original productions are kept, and additionally, we introduce the

following productions: If X → w is a production from Q with at least one
non-terminal in w, then for all ways uY v to split w along a non-terminal,
we introduce the production X̂ → uŶ .

3. Introduce a production Â→ ε.
4. The start symbol is Â.

Observe that any marked non-terminal X̂ can only ever occur as the right-
most symbol in any (partial) derivation. It can only be removed by the produc-
tion Â → ε. Therefore, a word u is produced by this new grammar if and only
if there is a derivation A ∗⇒Q uAv in Q.

We also remark the following fact about the structure of the new grammar:

Remark 1. If all productions of the original grammar are left-linear (or all are
right-linear) then we also get left-linear (respectively right-linear) grammars for
the languages LA,Q. We can therefore construct NFAs for LA,Q, which yields
better complexity results for Z-VASS.

Lemma 2. Given a subsetM ⊆ N , we can check in NP whetherM is realizable.
Moreover, given M ⊆ N and p ∈ P , we can check in NP if p is M -cancelable.

Proof. We begin by showing that we can decide realizability of a set M ⊆ N in
NP. In [56], it was shown that one can compute in polynomial time an existential
Presburger formula ψ such that a vector u ∈ NP satisfies ψ if and only if u
corresponds to a terminal derivation of a context-free grammar. We augment this
formula with constraints that state that for all A ∈M some production A→ w
occurs, and no productions A → w with A /∈ M occur; as well as a constraint
that the total counter effect should be zero, then check for satisfiability.

In order to check M -realizability of a production p, we first construct a
second grammar G′. The grammar G′ simulates pumps of G. More precisely,
G′ simulates some pump A1

∗⇒ u1A1v1, then some pump A2
∗⇒ u2A2v2, etc,

and stops after simulating finitely many pumps. However, instead of producing

Unboundedness problems for machines with reversal-bounded counters 31

the terminals that these pumps generate, it uses P as its set of terminals and
produces the letter p′ ∈ P whenever it applies the production p′. Then, since P
is the terminal alphabet of G′, we have for every u ∈ NP :

u ∈ Ψ(L(G′)) ⇐⇒ ∃k ∈ N, pumps τ1, . . . , τk : u = Ψ(τ1) + · · ·+ Ψ(τk)

Such a grammarG′ can clearly be computed in polynomial time. Given the gram-
mar G′, we apply again the result of [56] to compute an existential Presburger
formula ψ that defines Ψ(L(G′)). With this, we observe that p is M -realizable if
and only if there exists some u ∈ Ψ(L(G′)) such that

1. u(p) > 0,
2. ϕ(u) = 0, and
3. all productions occurring in u belong to M .

Since with ψ, the existence of such a u can easily expressed in another existential
Presburger formula ψ′, it remains to check satisfiability of ψ′, which can be done
in NP. ut

D Additional material on Section 5

The relation ↪→lin and growth Let us show here the following fact used in
the main text:

Lemma 10. If L1 ↪→lin L2 and L1 has exponential growth, then L2 has expo-
nential growth as well.

Proof. We first claim that there exists c > 0 with |L1 ∩ Σ≤m| ≤ cm(m + 1) ·
|L2 ∩ Σ≤cm|. Since L1 ↪→lin L2, there exists a c > 0 such that for every word
w1 ∈ L1, there exists a word w2 ∈ L2 such that |w2| ≤ c · |w1| and w1 is a factor
of w2. This allows us to construct an injection

fm : L1 ∩Σ≤m → (L2 ∩Σ≤cm)× {1, . . . , cm} × {0, . . . ,m},

which sends each word w1 ∈ L1 ∩ Σ≤m to (w2, r, |w1|), where w2 ∈ L2 ∩ Σ≤cm
is the word existing due to L1 ↪→lin L2 and r ∈ {1, . . . , cm} is a position in w2

at which w1 appears. Then fm must clearly be injective. Since the set on the
right-hand side has cardinality cm(m+ 1) · |L2 ∩Σ≤cm|, this proves the claim.

We can now deduce that L2 has exponential growth: Since L1 has exponential
growth, there is some real r > 1 such that |L1 ∩Σ≤m| ≥ rm for infinitely many
m. By our claim, this implies |L2 ∩ Σ≤cm| ≥ rm

cm(m+1) for infinitely many m.
Since rm

cm(m+1) ≥ (2c
√
r)cm for almost all m, we have in particular |L2 ∩Σ≤cm| ≥

(2c
√
r)cm for infinitely many m. Thus, L2 has exponential growth. ut

32 P. Baumann et al.

Proof of Lemma 9

Proof. We proceed as in the proof of Lemma 3. However, we need to show that
each word u,v can be found as a factor of some word w ∈ L(G) that is at most
linear in |u| or |v|, respectively. We show this for u, the case of v is analogous.
First, choose ` ∈ N so that for every non-terminal B ∈ M , there is a word
x ∈ Σ∗ with B ∗⇒Q x and |x| ≤ `. Then since A ∗⇒Q uAv, we can also find
a derivation A ∗⇒Q uAv′, where |v′| ≤ ` · |N | · (|u| + 1). This is because in the
derivation A ∗⇒Q uAv, the path from A to the A-leaf has at most |u| nodes
that are left-branching (meaning: branch to the left). By cutting out pumps, we
may assume that between any two left-branching nodes (and above the first,
and below the last), there are at most |N | nodes. Thus, we arrive at a derivation
tree for A ∗⇒Q uAv′′ with at most |N | · (|u| + 1) right-branching nodes. Then,
replacing each subtree under a right-branching node by a tree deriving a word
of length ≤ ` yields the derivation A ∗⇒Q uAv′.

Now we apply the proof of Lemma 3 to the derivation A ∗⇒Q uAv′. Observe
that the total number of productions used in τ0, τ ′1, . . . , τ ′m and τ is bounded by
O(|u|+ |v′|) = O(|u|): First, note that τ0 and the flows fp are independent of u
and v′. The total number of productions in fτ = Ψ(τ ′1) + · · ·+Ψ(τ ′m) is bounded
linearly in the number of productions of τ by (1). The latter in turn is bounded
by |u|+ |v′| if G is in Chomsky normal form. ut

Notions of polynomial and exponential growth In [25], polynomial growth
for a language L ⊆ Σ∗ is defined as the existence of a polynomial p(x) such that
|L ∩ Σm| ≤ p(m) for every m ≥ 0. Moreover, exponential growth is defined
as the existence of a real r > 1 such that |L ∩ Σm| ≥ rm for infinitely many
m ≥ 0. This differs slightly from our definition, which is also sometimes called
cumulative growth [12]. One can show that in fact both definitions are equivalent
with respect to polynomial and exponential growth, see e.g. [24, Lemma 2.3]. In
the following we provide a proof for completeness.

First, if there is a polynomial p(x) with |L ∩ Σm| ≤ p(m) for all m, then
we also have |L ∩ Σ≤m| ≤

∑m
i=0 |L ∩ Σi| ≤

∑m
i=0 p(i) ≤ (m + 1) · p(m), which

is also a polynomial bound. (Note that we may clearly assume that x 7→ p(x)
is a monotone function). Thus, L has polynomial growth by our definition. The
converse is trivial.

Second, suppose there is a real r > 1 such that |L∩Σ≤m| ≥ rm for infinitely
many m. We claim that then |L ∩ Σm| ≥

√
r
m for infinitely many m. Towards

a contradiction, suppose that there is a k ≥ 0 such that for all m ≥ k, we have
|L ∩Σm| <

√
r
m. This implies

rm ≤ |L ∩Σ≤m| =
m∑
i=0

|L ∩Σi| < M +

m∑
i=0

√
r
i

= M +

√
r
m+1 − 1√
r − 1

(2)

Unboundedness problems for machines with reversal-bounded counters 33

for all m ≥ k, where M is the constant
∑k
i=0 |L ∩ Σi| −

√
r
i. The last equality

follows from the induction

√
r
0

= 1 =

√
r − 1√
r − 1

and
m+1∑
i=0

√
r
i IH

=

√
r
m+1 − 1√
r − 1

+
√
r
m+1

=

√
r
m+2 − 1√
r − 1

.

However, Eq. (2) is clearly violated for large enough m. Again, the converse is
obvious: If |L ∩Σm| ≥ rm, then clearly also |L ∩Σ≤m| ≥ rm.

	Unboundedness problems for machines with reversal-bounded counters

