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Lowered symmetry enables access to a wide set of responses not typically accessible in high
symmetry materials. Prime examples are time-reversal forbidden quantum geometric photocurrent
responses (e.g., linear injection and circular shift photocurrents) that are thought to vanish in non-
magnetic materials. Here we argue that polariton-drag processes enable to unblock such quantum
geometric photocurrents even in non-magnetic and centrosymmetric materials. Strikingly, we un-
cover how a cooperative effect between finite q irradiation and the Fermi surface position leads to
a polariton selective photoexcitation (PSP). PSP enables to directly address carriers within tight
momentum resolved windows of the Fermi surface to yield giant enhancements of quantum geomet-
ric photocurrents. This selectivity enables to directly track momentum resolved quantum geometric
quantities along the Fermi surface providing a new tool to interrogate the quantum geometry of
high symmetry materials.

Quantum geometry can play an essential role in light-
matter interaction. A prime example are bulk rectified
currents such as the injection and shift photocurrents:
these have strength determined by quantum geometric
quantities (e.g., Berry curvature), and, as such, are now
actively used as sensitive probes of the structure of Bloch
wavefunctions in quantum materials [1–8]. Access to such
photocurrents, however, requires lowered symmetry. For
instance, circular shift (CS) and linear injection (LI) pho-
tocurrents are odd under time-reversal, T , as well as in-
version, P. They are thought to only manifest in parity
violating magnetic materials [3, 8–10] such as antiferro-
magnets. Consequently, the quantum geometric quanti-
ties associated with LI/CS photocurrents (e.g., quantum
metric/circular shift vector) are typically inaccessible to
photocurrent probes in high symmetry materials.

Here we consider a different strategy to achieve lowered
symmetry: by employing the spatial structure of electro-
magnetic (EM) fields (e.g., in nanophotonics [11–13] or
under oblique incident irradiation). A case in point is the
drag induced by photons or polaritons (e.g. propagating
plasmon with a finite q). In the polariton/photon-drag
(PD) processes, the finite q momentum structure of trav-
elling EM fields can induce non-vertical interband tran-
sitions. Indeed, exploiting PD has a long history: e.g.,
photon drag via direct optical transfer [14–21] or indi-
rect processes [20–22] can be used to drive photocurrents,
nanophotonic confinement can enable access to multipo-
lar transitions [23].

Here we argue that PD strategies can also be used
to induce non-vertical interband transitions and bulk CS
and LI photocurrents even in non-magnetic and inversion
symmetric materials. Interestingly, PD strategies do not
activate all charge quantum geometric photocurrents: we
find PD linear shift and circular injection photocurrents
still vanish in centrosymmetric and non-magnetic materi-
als. This delineation highlights the central role quantum
geometry plays in PD photocurrents: PD photocurrents
depend on both quantum geometry and drag-induced ve-

FIG. 1: PD charge circular shift photocurrent in BLG display-
ing resonant like features close to µ = ±~ω/2; these arise from
(inset) polariton-selective photoexcitation (PSP) wherein car-
ries within a momentum window are excited, see also Fig. 2
and 3. Blue, orange, yellow and purple curves are obtained
at temperatures 10 K, 20 K, 50 K and 100 K. Parameters
used: ~ω = 200 meV, |q| = 0.001nm−1 corresponding to that
to free space photons, |E| = 0.05 V/µm, and φ = π/2. (inset,
middle upper panel) Schematic diagram of BLG irradiated
by an oblique incidence of light. (inset, middle lower panel)
Circular shift current as a function of φ for µ = −100 meV.
The solid (dashed) lines indicate
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locity.
Surprisingly, we find that PD can enable polariton se-

lective photoexcitation (PSP) of carriers: i.e. by tuning
both the polariton energy and its wavevector, only carri-
ers within a selective window of momentum and energy
are photoexcited. As we explain below, PSP produces
a rich phenomenology including resonant enhancements
and Fermi surface dependent photocurrents that arise
from interband transitions (see Figs. 1 and 2). Impor-
tantly, when the momentum selective window of PSP is
tightened, it can enable a photocurrent probe of momen-
tum resolved quantum geometric quantities.

A striking platform to realise strong PD photocurrents
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charge photocurrent linear injection circular injection linear shift circular shift

P-symmetry ∂tjθ(q) = −∂tjθ(−q) ∂tjcir(q) = −∂tjcir(−q) jθ(q) = −jθ(−q) jcir(q) = −jcir(−q)
T -symmetry ∂tjθ(q) = −∂tjθ(−q) ∂tjcir(q) = ∂tjcir(−q) jθ(q) = jθ(−q) jcir(q) = −jcir(−q)

q 6= 0 (T & P symmetry) X 5 5 X
q = 0 (T symmetry only) 5 X X 5

TABLE I: Symmetry relations for PD charge shift and injection photocurrents. Photocurrents for linear polarized irradiation are
denoted θ whereas helicity dependent photocurrents are denoted “cir”. We find that PD q 6= 0 LI and CS charge photocurrents
are allowed in both T and P-preserving materials (indicated by ticks, third row). In contrast, when q = 0 LI and CS
photocurrents vanish in T -preserving but P-breaking materials.

are hybrid plasmonic heterostructures [11–13, 24], where
a quantum material is placed on top of a plasmonic mate-
rial (Fig. 2a). In these, oblique incident light excites the
plasmons in the plasmonic material, and the propagating
EM field of the plasmon in turn induces a PD current
in the quantum material. The wavevector of the plas-
monic field can be tuned by dielectric constant of the sub-
strate [24] or by nanophotonic engineering [12, 13]. Hy-
brid plasmonic heterostructures enable to achieve large
q-wavevectors far larger than that of free space, and, as
we explain below, enhance PD photocurrents.

As a concrete illustration, we show a PSP proto-
col for quantum geometric PD photocurrents in bilayer
graphene (BLG) – a centrosymmetric and non-magnetic
material. We find PSP in BLG can induce large nonlin-
ear susceptibilities with magnitudes comparable to that
of ferroelectric materials [25] (where inversion symme-
try broken) for values of q that can be readily achiev-
able in hybrid plasmonic heterostructures. Strikingly,
we find PD LI photocurrents tracks the momentum-
resolved quantum metric dipole along the Fermi surface
(see Fig. 3). This demonstrates the power of polariton-
drag processes in unblocking and amplifying quantum
geometric photocurrents.

PD injection and shift photocurrents. We be-
gin by considering a material irradiated by incident
finite-q EM fields with electric field profile E(r, t) =
(1/2)

∑
±E±e

±iq·r∓iωt with E± the complex electric
field amplitude where E+ = (E−)∗ = E. The oscillating
EM fields induce real interband electronic transitions. As
a concrete demonstration and for clarity and brevity of
presentation, we focus on a two-band system where EM
radiation induces transitions between the conduction c
and the valence v bands. Considering momentum and
energy conservation, EM radiation induces non-vertical
transitions between pairs of Bloch states |uv(k−)〉 and
|uc(k+)〉, where k− = k − q/2 and k+ = k + q/2.
The transition rates can be readily calculated by Fermi’s
golden rule: W±i→f = (2π/~)|V ±i→f |2fi(1− ff )δ(εf − εi ∓
~ω), where V ±i→f = e/(2ω)〈f |E± · ν̂|i〉 is the interband
transition matrix element, ν̂ is the velocity operator, and

fi(f) and εi(f) are the electron distribution function and
energy for the initial (final) states respectively. Account-
ing for the changes to electron position and velocity upon
interband transition directly produce (interband) quan-
tum geometric photocurrents [8]. In the following, we fo-
cus on the PD photocurrents induced by interband tran-
sitions. These are expected to dominate in the high fre-
quency regime when the polariton frequency ω is much
larger than the carrier scattering rate [26].

To see this, we first examine the shift current that
arises from the real space displacement of electrons
(charge e < 0) that undergo interband transitions [8,
27, 28]. Accounting for the transition rate, the finite-q
shift current is [29]

jshift(q) = C
∑
k

ρ(k,q)|E · νcv(k,q)|2R(k,q), (1)

where C = −e3π/(2~ω2), the occupation factor ρ(k,q) =
fcv(k,q)δ(εcv(k,q) − ~ω), the Fermi function difference
is fcv(k,q) = f(εc(k+)) − f(εv(k−)) with the interband
transition energy εcv(k,q) = εc(k+)− εv(k−), the veloc-
ity matrix element is νcv(k,q) = 〈uc(k+)|ν̂(k)|uv(k−)〉,
and R(k,q) is the real-space displacement [1, 8, 30],
also called the shift vector, when a valence electron
transits to the conduction band. It is directly related
to a Pancharatnam-Berry (geometric) phase R(k,q) =
limδk→0∇δk argW(k, δk,q) accrued during the transi-
tion (see Supplemental Material, SM [31]):

W(k, δk,q) = 〈uv(k−)|uv(k′−)〉[ê · 〈uv(k′−)|ν̂|uc(k′+)〉]
· 〈uc(k′+)|uc(k+)〉〈uc(k+)|uv(k−)〉, (2)

where ê is the polarization, k′− = k− + δk, and k′+ =
k+ + δk.

In the same fashion, the injection current rate arises
from a change of velocity when a carrier undergoes inter-
band transitions [8] and can be written as

∂tj
inj(q) = C

∑
k

ρ(k,q)|E · νcv(k,q)|2∆(k,q), (3)

where ∆(k,q) = vc(k+)−vv(k−) is the change in carrier
velocity. In the same fashion as above, the transition ma-
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trix elements are closely related to an interband quantum
geometric tensor. As we will see below, this fact, together
with PSP, will enable to probe the momentum resolved
quantum geometry of Bloch bands.

We note that Eq. (3) describes a rate of change of in-
jection current. In physical situations, this accumulation
of current is often cut by a finite relaxation time or in
the case of ultra-short pulses of EM radiation where the
pulsewidth duration is shorter than relaxation time, by
the pulsewidth. As such, the injection current can be
estimated as jinj(q) = τ∂tj

inj(q) [2, 32–34], where τ is
an effective time over which the injection photocurrent
relaxes/accumulates. In steady-state measurements, τ is
often approximated by the momentum relaxation time
of the photoexcited hot-carriers [2, 32]; we note, paren-
thetically, that understanding the precise interplay be-
tween relaxation and quantum geometric photocurrents
is a subject of current intense research [33, 35]. The relax-
ation time can even be band and k dependent [14, 19, 20].
In what follows, to highlight the PSP effect, we will focus
on the ultrafast photocurrent regime.

Unblocking time-reversal forbidden photocurrents. As
we now argue, both jshift(q) and jinj(q) in Eq. (1) and
Eq. (3) possess markedly different symmetry properties
as compared to their vertical transition counterparts. We
perform a symmetry analysis to obtain the PD pho-
tocurrent symmetry properties shown in Table 1, see
SM for details. In populating the table, we have de-
noted photocurrents jθ arising from linearly polarized
light E = Eθ = E(x̂ cos θ + ŷ sin θ) with the subscript
index θ. In analysing the circularly polarised irradiation,
we have focused on the photocurrent jcir that depends on
light helicity η [with electric field Eη = E(x̂ + iηŷ)].

Of particular note are the LI and CS photocurrents.
While forbidden when q = 0 in T invariant non-magnetic
materials, non-vertical transitions (PD activated) when
q 6= 0 enable to generate finite PD LI and CS photocur-
rents even in materials with both T and P symmetries
(third row). This is because LI/CS photocurrents display
an odd parity as q→ −q for either T and P symmetries:
q controls the direction of the PD LI/CS photocurrent
generated.

Interestingly, finite q circular injection and linear shift
charge photocurrents vanish in materials possessing both
T and P symmetries: not all photocurrents are enabled
by finite q; this mirrors a similar vanishing in PT sym-
metric parity-violating magnets at q = 0 [3, 8]. We note
that while here we have concentrated on charge photocur-
rent response, PD spin photocurrents are expected to
have different transformation properties from that of Ta-
ble 1 [29]. Lastly, we note that while we have focused on
interband photocurrents, finite q may also unblock intra-
band photocurrents that can depend on extrinsic scatter-
ing processes in non-magnetic and centrosymmetric met-
als [26].

PD CS and LI photocurrents in BLG. As a concrete

demonstration of how non-vertical transitions unblock
quantum geometric photocurrents, we examine CS and
LI photocurrents in gapless BLG. Notably, BLG is a
centrosymmetric semimetal that preserves T -symmetry;
its low energy Hamiltonian can be written as H(p) =
H0(p) +Hw(p) [36], where

H0(p) = − ~2

2m

[
(p2x − p2y)σx + 2ζpxpyσy

]
,

Hw(p) = ~v3(ζpxσx − pyσy). (4)

Here p = k−Kζ is the Bloch wavevector measured from
Kζ points, ζ = ± is the valley index, and m is the effec-
tive mass. Hw(p) describes trigonal warping, consistent
with BLG’s three-fold rotational symmetry Cz3 . Addi-
tionally, BLG also possesses mirror axes (e.g., y-axis act
as a mirror plane).

We first examine the PD CS photocurrent. We eval-
uate Eq. (1) for a circularly polarized beam (~ω = 200
meV) with in-plane photon wavevector q ‖ ŷ along a
mirror axis in BLG. This yields a sizeable PD jshiftcir in
Fig. 1. We note that point group symmetries can greatly
constrain the direction of the PD photocurrents for a
given polarisation. To see this, consider mirror symme-
try My : (x, y)→ (−x, y) with the polariton wavevector
q along the mirror axis. For circularly polarised light, we
find that the momentum resolved transition rate obeys
|Eη · vcv(k,q)|2 = |E−η · vcv(Myk,q)|2, while the shift
vector satisfies (see SM for detailed analysis)

Rηx(k,q) = −R−ηx (Myk,q), Rηy(k,q) = R−ηy (Myk,q).
(5)

As a result, when q is directed parallel to mirror plane, we
find the PD circular shift photocurrent jshiftcir is transverse.
This is verified in the numerical simulation for BLG, as
shown in Fig. 1 inset.

Strikingly, PD CS photocurrents display large peaks
centered at µ = ±~ω/2 (Fig. 1). These resonant peaks
arise from PSP: when the (tilted) interband transition
energy contours [defined by δ(εζcv(p,q) − ~ω)] intersect
with the Fermi surface. In this, the combined action of
the finite-~q momentum transfer as well as the position
of the Fermi surface ensures that only carriers in parts of
the interband transition energy contours δ(εζcv(p,q)−~ω)
are excited [as captured by the joint occupation factor
ρ(p,q) in Eq. (1)]. PSP induces a large asymmetry in
sampling the circular shift vector (see SM) to produce a
giant enhancement of CS photocurrent.

Interestingly, the part of the interband transition en-
ergy contour that is excited depends directly on µ: when
µ is tuned from −~ω/2 → ~ω/2 the allowed excitations
flip (see inset Fig. 1 and SM) thereby sampling a dif-
ferent window of circular shift vector Rη,ζ(p,q), where
η denotes the shift vector induced by light with helicity
η. Indeed, this sampling is angle sensitive: by rotat-
ing azimuthal angle φ, CS photocurrent similarly rotates
[Fig. 1 (inset)] displaying a photocurrent that is locked to
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FIG. 2: PD charge LI photocurrent in BLG. (a) Schematic
diagram of a hybrid quantum material/host plasmonic mate-
rial system, in which the electromagnetic field of the plasmons
in the proximal host material (green) induces non-vertical in-
terband transitions and PD photocurrents in the quantum
material (yellow). (b) |q| dependence of PD LI photocur-
rent for Fermi energies µ = −100 meV (blue) and µ = −110
meV (orange). The solid and dashed lines denote tempera-
tures of 10 K and 50 K. The black and blue stars correspond
to |q| = 0.01 nm−1 (smaller than qc) and |q| = 0.03 nm−1

(i.e. |q| & qc). (inset) Temperature dependence of the PD
LI photocurrent at |q| = 0.01 nm−1 for different Fermi ener-
gies (colour code is the same as in main panel). We have set
|E| = 0.05 V/µm and φ = π/2. (c, d) Schematic illustration
of the transition contours (yellow) for |q| < qc (c) and |q| ∼ qc
(d). The yellow solid (dashed) lines indicate the occupied (un-
occupied) section of the transition contour. The black dotted
line indicates the Fermi surface. The injection photocurrent
can be estimated from the injection rate by accounting for the
relaxation or accumulation time, see description in text.

the symmetry breaking axis determined by q. When µ is
tuned away from ±~ω/2, PD jshiftcir falls steeply (Fig. 1a);
in this regime jshiftcir vanishes due to the presence of c, v
band symmetry in Eq. (4), see SM. We note that such
c, v band symmetry is strongly broken by tuning the
Fermi surface so that it intersects with the interband
transition contour, leading to PSP and large photore-
sponse.

PSP-induced peak features are ubiquitous for PD pho-
tocurrents and also extend to PD LI photocurrents. In-
deed, similar peaks close to µ = ±~ω/2 have been pre-
dicted for oblique incident far-field linearly polarized light
at low-temperature in graphene [16]. We note, in a simi-
lar fashion described above for PD CS photocurrents, the
direction of PD LI photocurrent also exhibits a strong
dependence of high-symmetry axes in the material; in

particular, it is highly sensitive to how light polarisation
is aligned with the mirror axes (see SM for details). To
see this, consider the case when q is along the mirror
axis, so that

∆x(k,q) = −∆x(Myk,q), ∆y(k,q) = ∆y(Myk,q).
(6)

For the special case of light polarised either paral-
lel or perpendicular to the mirror axis, we have |Eθ ·
vcv(k,q)|2 = |Eθ · vcv(Myk,q)|2, yielding PD LI pho-
tocurrent flowing along q. For light polarized away from
these directions, mirror symmetry is broken and PD LI
photocurrents need not flow purely along q, see SM.

In the following, we concentrate on a different regime
for PD LI photocurrents: µ is detuned away from ±~ω/2.
In this detuned situation (red curve Fig. 2b), small val-
ues of |q| � qc do not produce an LI photocurrent since
the transition contour does not intersect the Fermi sur-
face (Fig. 2c); here qc is a threshold wavevector at which
the transition contour (defined by εcv(k,q) = ~ω) just
intersects the Fermi surface (Fig. 2d). In the conduc-
tion/valence band, the transition contour is given by
εc,v(k ± q/2). For small detuning, qc can be estimated
as qc ≈ 2||µ| − ~ω/2|/~ṽ where ṽ = max [ṽc,v · q̂], and

ṽc,v = (1/~)
[
∇kεc,v(k)

∣∣
εc,v=±~ω/2

]
. When |q| & qc, LI

photocurrent rapidly turns on: this arises from a tight
PSP window of photoexcited carriers. As illustrated in
Fig. 2b, for a detuning of ||µ| − ~ω/2| = 10 meV, the
LI photocurrent turns on at qc ≈ 0.03 nm−1 (blue star),
which is about 30 times larger than that of free space
light and can be readily achieved in graphene based plas-
monic materials [24].

This behavior contrasts with that of µ = −~ω/2 case
(blue curve) where PD LI photocurrents flow even for ar-
bitrarily small but finite values of q since qc = 0: even
small q produce a wide window (in momentum space)
of PSP carriers. This difference in PSP windows for
|µ| = ~ω/2 vs µ 6= ~ω/2 leads to contrasting tempera-
ture dependence. When |µ| = ~ω/2 PD LI photocurrents
increase as temperature decreases. In contrast, when
µ 6= ~ω/2, PD LI photocurrents display a complex q-
dependent temperature dependence since q controls the
regions of the interband transition contour that dip below
the Fermi surface. When q is further increased beyond qc,
the LI photocurrent saturates and become relative insen-
sitive to temperature, see Fig. 2b (solid vs dashed). Note
that in Fig. 2b, we have plotted the LI photocurrent for a
range of wavevectors up to |q| = 0.17 nm−1, which corre-
sponds to a plasmonic field confinement of 170 times and
can be achieved via nanophotonic engineering [12, 13].

Strikingly, when µ is detuned away from |µ| = ~ω/2
and by selecting |q| ≈ qc just at threshold, a highly
momentum selective PSP window can be engineered
(Fig. 3a-d where the amplitude of ρ(p,q) is plotted). At
these |q| values, the transition contour just intersects the
Fermi surface. As a result, PSP enables angle-selective
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FIG. 3: PD photocurrent as a momentum resolved tool to probe quantum geometry. (a-d) Partial excitation of charge carriers
near the Fermi surface in k-space (coloured segment). Here p− = p− q/2. (e,g) LI photocurrents as a function of φ at a fixed
magnitude |q| = 0.03 nm−1 and µ = −110 meV for x-polarised (e) and y-polarised (g) light in BLG. Here we have used T =
10 K and |E| = 0.05 V/µm. The photocurrents enable to track the corresponding quantum metric dipoles shown in (f) and
(h) along the Fermi surface (FS); here we have summed over both K and K′ valleys in Eq. (4). We note that for φ = 0, the
charge carriers close to azimuthal angle −π along the FS are sampled.

(controlled by the direction of the polariton wavevec-
tor, φ) excitation of carriers close to the Fermi surface
(dashed black line); this mirrors means of momentum res-
olution found in angle-resolved photoemission. We note
that when µ is tuned from the valence band to the con-
duction band, charge carriers from the opposite side of
the Fermi surface are sampled.

Here we have chosen a Fermi energy detuning of
10 meV away from −~ω/2 and the plasmon polariton
wavevector |q| = 0.03 nm−1. In this regime, kBT (em-
ployed in Fig. 3) is much smaller than the detuning, al-
lowing for a good momentum resolution of PSP. We note
that in principle, such selective photoexcitation can also
be achieved using wavevectors that are smaller (e.g., us-
ing free space photons). However, the corresponding de-
tuning to achieve tight momentum resolution will be sim-
ilarly smaller, making such selectivity highly sensitive to
thermal broadening and easily smeared.

The tight window of PSP-induced excitation en-
ables to probe momentum resolved quantum geom-
etry near the Fermi surface. To see this, con-
sider the PD linear injection current in Eq. (3)

written out in component form as ∂tj
inj
θ (q) =

−e3π/(2~)
∑

k,a,b ρ(k,q)∆(k,q)Gcvba(k,q)EbE
∗
a , where

Gcvba(k,q) = Re
{
rbcv(k,q)[racv(k,q)]∗

}
(7)

is a generalised q-dependent c, v band resolved in-
terband quantum metric (see SM) with racv(k,q) =

~νacv(k,q)/i[εc(k+) − εv(k−)]. Interestingly, in the
two-band limit that we concentrate on [Eq. (4)]
and when polariton wavevector is relatively small,
|q| � |k|, ∆(k,q)Gcvba(k,q) approximates the direct
quantum metric dipole ∆(k, 0)Re

[
rbcv(k, 0)ravc(k, 0)

]
=

−2vv(k)gvba(k) [8], where in the last equality we spe-
cialized to BLG in Eq. (4) and gvba(k)dkadkb = 1 −
|〈uv(k)|uv(k+dk)〉|2 is the valence band quantum metric.
For comparison with the numerical photocurrent simula-
tion in Fig. 3, here we explicitly write down gvxx(p) and
gvyy(p) at each valley:

gvxx(p) =

[(
−~2

m px + ~v3ζ
)

sinϕζ,p + ~2

m ζpy cosϕζ,q

]2
4[d(p)]2

,

gvyy(p) =

[
~2

m py sinϕζ,p +
(

~2

m ζpx + ~v3
)

cosϕζ,p

]2
4[d(p)]2

,

(8)

where d(p) =
√
d21 + d22 is the conduction band energy,

d1 = − ~2

2m (p2x − p2y) + ~v3ζpx, d2 = −~2

m ζpxpy − ~v3py,

and tan−1 ϕζ,p = d2/d1. As we discuss below, the cor-
responding momentum resolved quantum metric dipoles
(Fig. 3f and h) provide a good estimate for the PD LI
photocurrents for the two-band Hamiltonian in Eq. (4).
Of course, in a more general multiband Hamiltonian, PD
LI photocurrents track the generalized interband quan-
tum metric, see Eq. (7).
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Given the tight momentum selective window accessed
in Fig. 3a-d, by fixing the magnitude of q while varying
its direction, the LI photocurrents enables to track the
quantum metric dipole gvba(k)vv(k) distribution along
the Fermi surface. Indeed, Fig. 3e-h provides a com-
parison between the LI photocurrents induced by x- and
y-polarised light (Fig. 3e and g respectively) and the cor-
responding quantum metric dipoles (Fig. 3f and h) along
the Fermi surface. We observe that the LI photocurrents
capture the main features of the quantum metric dipole
as a function of azimuthal angle along the Fermi surface.

PD can be used as a “knob” to turn-on, control,
and amplify quantum geometric photocurrents in a wide
range of high symmetry materials even when either P
or T or both symmetries are intact. Even as we have fo-
cussed on how PSP enables to probe momentum resolved
quantum geometry, from an applied perspective, the se-
lective excitation of carriers enables a novel means of am-
plifying non-linear susceptibilities: by exploiting PSP to
selectively excite carriers with similar group velocities.
As an example, we find PSP enhanced LI susceptibilities
as high as ηyyy(q) ∼ 1010 − 1011 A nmV−2s−1 in BLG
(a P and T preserving material) comparable with those
found in 2D ferroelectrics [25].
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I. Geometric representation of shift and injection current

A. Geometric representation of shift current

The shift photocurrent arises from a real-space displacement R(k,q) when an electron undergoes interband tran-
sition, see Eq. (1) in the main text. The finite-q shift vector R(k,q) can be written as [29]

R(k,q) = Ac(k+)−Av(k−)−∇k arg [ê · νcv(k,q)] , (S1)

where An(k) = 〈un(k)|i∇k|un(k)〉 is the Berry connection and ê is the unit vector for the electric field polarisation.
The shift vector is determined by the quantum geometry of the Bloch bands and the light polarisation. To see this,
we rewrite R(k,q) as a derivative of the Pancharatnam-Berry phase obtained from the Wilson loop associated with
the interband transition, as defined in Eq. (2) of the main text. To uncover the geometric meaning of the shift vector,
we first note that the Berry connection can be written:

Abn(k) = − lim
δkb→0

∂kb arg〈un(k)|un(k + δkb̂)〉 = lim
δkb→0

∂kb arg〈un(k + δkb̂)|un(k)〉, (S2)

where b̂ is the unit vector in direction b = {x, y}. On the other hand, the last term in Eq. S1 can be rewritten as

−∇k arg [ê · νcv(k,q)] = ∇k arg〈uv(k−)|ê · ν̂|uc(k+)〉 = lim
δk→0

∇δk arg〈uv(k− + δk)|ê · ν̂|uc(k+ + δk)〉 (S3)

Therefore, the shift vector can be expressed as the gradient of the Panchanratnam-Berry phase of the Wilson loop

R(k,q) = lim
δk→0

∇δk argW(k, δk,q), (S4)

where

W(k, δk,q) = 〈uv(k−)|uv(k′−)〉[ê · 〈uv(k′−)|ν̂|uc(k′+)〉]〈uc(k′+)|uc(k+)〉〈uc(k+)|uv(k−)〉 (S5)

with k′− = k− + δk, and k′+ = k+ + δk. Here we have introduced 〈uc(k+)|uv(k−)〉 to complete the Wilson loop; we
note that ∇δk arg [〈uc(k+)|uv(k−)〉] = 0 does not contribute to the shift vector. Eq. (S4) and (S5) provide a geometric
interpretation of the shift vector, which corresponds to the gradient of the Pancharatnam-Berry associated with the
interband transitions.

B. Geometric representation of the injection current

In this section, we show that the injection photocurrents depend on the quantum geometric tensor of the material.
To see this, we note that the injection current for an arbitrarily polarised light can be written as

∂tj
inj(q) = C

∑
k,a,b

ρ(k,q)∆(k,q)νbcv(k,q)[νacv(k,q)]∗EbE
∗
a

= −e
3π

2~
∑
k,a,b

ρ(k,q)∆(k,q)Qcvba(k,q)EbE
∗
a (S6)

Here we have defined racv(k,q) = νacv(k,q)/[iωcv(k,q)] and ωcv(k,q) = [εc(k+) − εv(k−)]/~. In the second line of
Eq. S6, we have introduced the c, v band resolved q-dependent interband quantum geometric tensor as

Qcvba(k,q) = rbcv(k,q)[racv(k,q)]∗. (S7)
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For linearly polarised light with polarisation angle θ, the injection current is determined by the real part of Qcvba(k,q):

∂tj
inj
θ (q) = −e

3π

2~
∑
k,a,b

ρ(k,q)∆(k,q)Gcvba(k,q)EbE
∗
a (S8)

with Gcvba(k,q) = Re [Qcvba(k,q)] the q-dependent interband quantum metric. We note parenthentically that the helicity
dependent circular injection current is determined by the imaginary part of the q-dependent interband quantum
geometric tensor multiplied by ∆(k,q). At q = 0, this reduces to interband Berry curvature dipole for vertical
transitions; this reproduces the well-known result for quantised circular injection photocurrents [2, 8].

II. Symmetry Analysis for Polariton-drag (PD) Shift and Injection Currents

In this section, we discuss the symmetry properties of photon drag shift and injection currents induced by linearly or
circularly polarised light. We will demonstrate that properties of the PD injection and shift photocurrents are sensitive
to the symmetry of the material irradiated as well as the light polarisation. These properties can be obtained by
examining how the Bloch wavefunction and velocity matrix elements transform under various symmetry operators.

We begin with the Bloch Hamiltonian H(k) = e−ik·rH(r)eik·r. The Bloch wavefunction |un(k)〉 in band n satisfies
H(k)|un(k)〉 = εn,k|un(k)〉. We proceed by considering how the Bloch hamiltonian and its associated Bloch wave-
functions transform when the material possesses (i) spatial inversion (P) symmetry [so that PH(k)P−1 = H(−k)],
or (ii) time-reversal (T ) symmetry [so that T H(k)T −1 = H(−k)] respectively.

When the material possesses spatial inversion symmetry, the Bloch hamiltonian obeys

PH(k)|un(k)〉 = PH(k)P−1P|un(k)〉 = εn,kP|un(k)〉 = H(−k)P|un(k)〉, (S9)

yielding the following constraints on the energy dispersion and the Bloch wavefunctions:

εn,k = εn,−k, P|un(k)〉 = Cn,k|un(−k)〉, (S10)

where Cn,k is a complex phase factor associated with the P transformation satisfying |Cn,k| = 1. Since P is unitary
and preserves inner product, we have

〈un(−k1)|um(−k2)〉 = 〈C∗n,k1
Pun(k1)|C∗m,k2

Pum(k2)〉 = Cn,k1
C∗m,k2

〈un(k1)|um(k2)〉. (S11)

Furthermore, under spatial inversion symmetry, the velocity operator transforms as Pν̂P−1 = −ν̂. Thus the
velocity matrix element satisfies

〈un(k1)|ν̂|um(k2)〉 = 〈un(k1)|P−1Pν̂P−1P|um(k2)〉 = −C∗n,k1
Cm,k2〈un(−k1)|ν̂|um(−k2)〉. (S12)

In the same fashion as above, when the material possesses time-reversal symmetry, the energy dispersion and Bloch
wavefunctions transform as

εn,k = εn,−k, T |un(k)〉 = C ′n,k|un(−k)〉, (S13)

where C ′n,k is a complex phase factor associated to T operation with |C ′n,k| = 1. In addition, since T is anti-unitary,
the inner product of the wavefunctions satisfies

〈un(−k1)|um(−k2)〉 = 〈C ′∗n,k1
T un(k1)|C ′∗m,k2

T um(k2)〉 = C ′n,k1
C ′∗m,k2

〈un(k1)|um(k2)〉∗. (S14)

The velocity operator transforms as T ν̂T −1 = −ν̂, and thus the velocity matrix element satisfies

〈un(−k1)|ν̂|um(−k2)〉 = 〈C ′∗n,k1
T un(k1)|T (−ν̂)T −1|C ′∗m,k2

T um(k2)〉 = −C ′n,k1
C ′∗m,k2

〈un(k1)|ν̂|um(k2)〉∗. (S15)

The symmetry properties of the Bloch hamiltonian can also be constrained by other point group symmetries
of the crystal. A particularly interesting example is that of mirror symmetry. For example, in the presence of
mirror symmetry along the y-axis, such that MyH(k)M−1y = H(Myk), where My : (x, y) → (−x, y). The energy
dispersion thus satisfies εn,k = εn,Myk. On the other hand, the velocity operator transforms as My ν̂xM−1y = −ν̂x
and My ν̂yM−1y = ν̂y. Following similar arguments as above, we obtain symmetry relations for wavefunctions and
velocity matrix elements in much the same form as above, leading to distinctive properties of the PD injection and
shift photocurrents as discussed in the main text and below.
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A. Symmetry analysis for PD injection current

1. Inversion symmetry

When the material possesses P-symmetry and identifying band indices m, n in Eq. (S12) with c, v, we find that
the interband velocity matrix element νcv(k,q) satisfies νcv(k,q) = −C∗c,k+q/2Cv,k−q/2νcv(−k,−q). Thus, for linear

[denoted as θ] and circularly [denoted as η = ±1] polarised light, the square of the transition matrix element

vθ(η)cv (k,q) = |Eθ(η) · νcv(k,q)|2 (S16)

thus obeys v
θ(η)
cv (k,q) = v

θ(η)
cv (−k,−q).

Next we note when the material possesses P-symmetry, the group velocities in valence and conduction bands
satisfy vc(k+q/2) = −vc(−k−q/2) and vv(k−q/2) = −vv(−k+q/2), we have ∆(k,q) = −∆(−k,−q) odd under
k→ −k, q→ −q. On the other hand, since εn,k is even in k-space, we have ρ(k,q) = ρ(−k,−q).

Therefore, in the presence of inversion symmetry, the injection current (obtained by summing Eq. (3) of the main
text over k-space) obeys

∂tj
inj
θ (q) = −∂tjinjθ (−q), ∂tj

inj
cir(q) = −∂tjinjcir(−q), (S17)

as discussed in Table I of the main text.

2. Time reversal symmetry

When the material possesses T -symmetry, Eq. (S15) gives νcv(k,q) = −C ′c,k+q/2C
′∗
v,k−q/2 [νcv(−k,−q)]

∗
. For

linearly polarised light, since Eθ = (Eθ)∗, we have vθcv(k,q) = vθcv(−k,−q). In contrast, for circularly polarised light,
we have vηcv(k,q) = v−ηcv (−k,−q). This latter relation can be obtained by noting Eη = (E−η)∗ for circularly polarised
irradiation.

We now turn to the carrier velocity vc(v)(k). For T -symmetry preserving materials, we have vc(k+q/2) = −vc(−k−
q/2) and vv(k−q/2) = −vv(−k + q/2). Thus, the change in carrier velocity obeys ∆(k,q) = −∆(−k,−q). Similar
to that discussed above for inversion symmetry, T -symmetry preserving materials also possess energy dispersion
relations that are even in k-space yielding ρ(k,q) = ρ(−k,−q).

As a result, the linear and circular injection current (obtained by summing Eq. (3) of the main text over k-space)
obeys

∂tj
inj
θ (q) = −∂tjinjθ (−q), ∂tj

inj
cir(q) = ∂tj

inj
cir(−q) (S18)

as discussed in Table 1 of the main text.
Combining both Eq. (S17) and Eq. (S18), we conclude that PD linear injection charge photocurrents are in general

allowed in materials with both P- and T -symmetries. In contrast, PD circular injection charge photocurrents (a
photocurrent that depends on the helicity of the incident light) vanishes when both P- and T -symmetries in the
material remain intact.

3. Mirror symmetry

It is also interesting to consider how point group symmetries can also similarly constrain the form of the PD injection
photocurrents. As a simple illustration we focus on PD linear injection photocurrents in a material with a mirror axis
along y. For simplicity, we consider the case where incident light (linear) polarization [E = E0ŷ] as well as non-vertical
transition wavevector q is directed along the mirror axis y. As a result, for q = qŷ, we have Myq = q. In this case,
the square of the transition matrix element obeys vθcv(k,q) = vθcv(Myk,q). On the other hand, the component of
the change in electron group velocity normal to the mirror axis will switch sign ∆x(k,q) = −∆x(Myk,q) while the
component parallel to the mirror axis remains invariant ∆y(k,q) = ∆y(Myk,q) under mirror reflection.

We note that ρ(k,q) = ρ(Myk,q) only depends on the energy dispersion (which is even under mirror reflection).
As a result, the component of the PD linear injection photocurrent normal to q (when it is directed along the mirror

axis) vanishes: [∂tj
inj
θ ]x(q) = 0, while the component parallel to q when it is directed along the mirror axis, [∂tj

inj
θ ]y(q),
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FIG. S1: Polariton drag linear injection photocurrent as a function of light polarisation angle in centrosymmetric BLG. The
plasmon polariton wavevector is fixed at |q| = 0.03 nm−1, and all other parameters are the same as Fig. 2 in the main text.

is allowed. This is verified in Fig. S1, which plots the linear injection photocurrent as a function of light polarisation
angle θ for a fixed q along the y-direction (i.e the mirror axis). We observe that the linear injection current flows
along the mirror plane when the electric field is polarised along or perpendicular to the mirror plane.

B. Symmetry analysis for PD shift photocurrent

1. Inversion symmetry

When the material possesses P-symmetry, the inner product of the wavefunctions follows the relation in Eq. (S11)
while the velocity matrix element obeys Eq. (S12). Since all the Bloch wavefunctions in Eq. (S5) occur in pairs
(guaranteeing its gauge invariance), the phase factors for the wavefunctions resulting from the P transformation fully
compensate with each other. As a result, we find

W(k, δk,q) = −W(−k,−δk,−q), arg [W(k, δk,q)] = arg [W(−k,−δk,−q)] + π. (S19)

Since the shift vector r(k,q) depends on the derivative of arg [W(k, δk,q)], we arrive at

Rθ(η)(k,q) = −Rθ(η)(−k,−q), (S20)

where the shift vector flips direction under k→ −k, q→ −q.

To understand the symmetry properties of the PD shift charge photocurrent, we recall that both v
θ(η)
cv (k,q) and

ρ(k,q) are even under k→ −k, q→ −q [see above]. By summing Eq. (1) of the main text over k-space, we find that
the PD shift photocurrents flow in opposite directions for ±q in P-preserving materials:

jshiftθ (q) = −jshiftθ (−q), jshiftcir (q) = −jshiftcir (−q). (S21)

as shown in Table I of the main text.

2. Time reversal symmetry

Following similar analysis for the injection current, in T -symmetry preserving materials, we have êθ · νcv(k,q) =
−C ′c,k+q/2C

′∗
v,k−q/2 [êθ · νcv(−k,−q)]

∗
for linearly polarised light. Combining with the relation for the Bloch wavec-

functions in Eq. (S14), we obtain

Wθ(k, δk,q) = −
[
W θ(−k,−δk,−q)

]∗
, arg

[
Wθ(k, δk,q)

]
= − arg

[
Wθ(−k,−δk,−q)

]
+ π. (S22)

Here we note that the additional phase factors C ′ that arise under T transformation fully compensate each other
since the Bloch wavefunctions in Eq. (S5) occur in pairs.
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FIG. S2: Polariton selective photoexcitation (PSP) of charge carriers near the Fermi surface for non-vertical interband tran-
sitions and circular shift vector. Importantly, PSP yields an imbalanced sampling of shift vector when carriers close to the
Fermi surface are excited. Weighted PD circular shift vector R̃ζ,η(p,q) for η = +1 with contour line plots (black) indicating
the regions that satisfy energy and momentum conservation. Solid line indicate shift vector regions that are sampled, dashed
indicate regions that are not sampled when chemical potential is fixed at µ = −~ω/2 (a) and µ = ~ω/2 (b) in the K+ (top
panel) and K− (bottom panel) valleys. Parameters used are the same as Fig. 1 of the main text.

By taking the derivative of the phase of Wθ(k, δk,q), we arrive at the symmetry constraint for the shift vector (for
linearly polarized light) in T -preserving materials:

Rθ(k,q) = Rθ(−k,−q), (S23)

where the shift vector is even under k→ −k, q→ −q.
On the other hand, for circularly polarised light, we have êη · νcv(k,q) = −C ′c,k+q/2C

′∗
v,k−q/2 [ê−η · νcv(−k,−q)]

∗
.

Similarly, the Wilson loop satisfies

Wη(k, δk,q) = −
[
W−η(−k,−δk,−q)

]∗
, arg [Wη(k, δk,q)] = − arg

[
W−η(−k,−δk,−q)

]
+ π. (S24)

As a result, we find that the shift vector (for circularly polarized light with helicity η) satisfies

Rη(k,q) = R−η(−k,−q). (S25)

By summing Eq. (1) of the main text over k-space, the PD linear and circular shift charge photocurrents in T -
symmetric materials obey

jshiftθ (q) = jshiftθ (−q), jshiftcir (q) = −jshiftcir (−q). (S26)

Combining with the constraints in Eq. (S21) and (S26), we find that in P- and T -symmetric materials, PD linear
shift charge photocurrent vanishes for all non-vertical wavevectors q while PD circular shift charge photocurrent are
allowed.

3. Mirror symmetry

Here we illustrate how mirror symmetry can constrain the form of the PD circular shift photocurrent. As a simple
illustration we focus on a mirror plane axis along y and consider non-vertical transition wavevector q directed along
the mirror axis y.

For circularly polarised light with polarisation vector êη, the square of the transition matrix element satisfies
vηcv(k,q) = v−ηcv (Myk,q). The Wilson loop obeys

Wη(k, δk,q) = −W−η(Myk,Myδk,q), arg [Wη(k, δk,q)] = arg
[
W−η(Myk,Myδk,q)

]
+ π. (S27)



13

By taking the derivative with respect to δk, we have

Rηx(k,q) = −R−ηx (Myk,q), Rηy(k,q) = R−ηy (Myk,q). (S28)

Since ρ(k,q) = ρ(Myk,q), the y-component of the helicity dependent charge circular shift current vanishes while[
jshiftcir

]
x

is allowed, i.e. PD charge circular shift current in the presence of My-symmetry is purely transverse.

III. Giant enhancement of circular shift photocurrent due to PSP

Non-vertical transitions enable polariton selective photoexcitation of charge carriers near the Fermi surface. In
particular, when µ = ±~ω/2, only half of the interband transition contour (defined by δ(εcv(k,q) − ~ω) can be
photoexcited, leading to giant enhancement in photocurrents. As shown by Fig. 1 of the main text, the PD circular
shift photocurrents exhibits large and opposite peaks at µ = ±~ω. To visualise this PSP induced resonance effect, we
plot the distribution of the weighted shift vector R̃ζ,η(p,q) = vζ,η(p,q)Rζ,η(p,q) [this determines the direction of
the PD CS photocurrent, see Eq. (1)] in Fig. S2. Here the interband transition contours (black) indicate p values that
satisfy δ(εζcv(p,q) − ~ω). When µ = −~ω/2 (in the valence band), the Fermi surface intersects with the interband
transition contour so that only the bottom half of the transition contour contributes to the non-vertical interband
transitions (solid curve in Fig. S2a). These p values correspond to occupied carriers in the valence band so that
fcv(p,q) 6= 0. In contrast, the other half (dashed curve) do not contribute to the non-vertical interband transitions
(fcv(p,q) = 0). This asymmetric sampling of charge carriers on the interband transition contour (enforced by the
occupation factors) avoids cancellation of R̃ζ,η(p,q) in k-space, leading to large PD CS photocurrents. Similarly,
when µ = ~ω/2 is in the conduction band (Fig. S2b), only the top half of the transition contour is available for
interband transitions (solid curve in Fig. S2b); these p values correspond to the region of the conduction band that
is unoccupied thus allowing interband transitions (fcv(p,q) 6= 0). Comparing the directions of the weighted shift
vector, this yields an PSP enhanced jshiftcir that switches sign when the Fermi energy is moved from valence band to
the conduction band.

IV. c, v band symmetry and PD photocurrents in bilayer graphene

In this section, we discuss how a symmetry between the conduction c and valence v bands can emerge in the low-
energy effective hamiltonian for bilayer graphene. As we will show below, this effective c, v band symmetry leads to a
vanishing PD linear injection and circular shift photocurrents at low temperature when the Fermi surface (determined
by µ) does not intersect and are far from the interband transition contours (determined by ~ω).

We consider the low energy Hamiltonian in Eq. (4) in the main text. For a two-band Hamiltonian, we can directly
solve for the eigenenergies and eigenstates. As discussed above, these enable to directly compute the shift vector
rζ,η(p,q) and the change in carrier velocity ∆ζ(p,q) as a carrier is photoexcited between c and v bands. For the
convenience of the reader, we rewrite H(p) as

H(p) = d1σx + d2σy, d1 = − ~2

2m
(p2x − p2y) + ~v3ζpx, d2 = −~2

m
ζpxpy − ~v3py. (S29)

The energy dispersion is given by εζc,v(p) = ±
√
d21 + d22, where the explicit ζ- and p- dependence of d1 and d2 is

suppressed for brevity. The corresponding eigenstates are

|uζc(p)〉 =
1√
2

(
e−iφζ,p

1

)
, |uζv(p)〉 =

1√
2

(
e−iφζ,p

−1

)
, (S30)

where φζ,p = tan−1 (d2/d1). As we now show, for P- and T -symmetric bilayer graphene, there is an additional
emergent symmetry between the conduction and the valence bands that relates the conduction and valence bands in
the separate valleys.

To see this, first we note that (as can be verified by inspection) the energies of the conduction and valence bands
in the separate valleys obey εζc(p) = −εζv(p) = −ε−ζv (−p). This emergent c, v band symmetry yields a non-vertical
interband transition energy: εζcv(p,q) = εζc(p + q/2)− εζv(p− q/2) that obeys

εζcv(p,q) = ε−ζcv (−p,q) (S31)
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This symmetry between c and v bands between valleys also constrains the interband velocity matrix elements.
Using Eq. (S30), we can explicitly compute νζcv(p,q) = 〈uζc(p + q/2)|ν̂|uζv(p− q/2)〉 [where ν̂ = ∇pH(p)/~] as

νζcv,x(p,q) =
1

2

(
− ~
m
px + v3ζ

)[
−eiφζ,p+q/2 + e−iφζ,p−q/2

]
− i

2

~
m
ζpy

[
eiφζ,p+q/2 + e−iφζ,p−q/2

]
νζcv,y(p,q) =

1

2

~
m
py
[
−eiφζ,p+q/2 + e−iφζ,p−q/2

]
− i

2

(
~
m
ζpx + v3

)[
eiφζ,p+q/2 + e−iφζ,p−q/2

]
(S32)

We note that when ζ → −ζ, p→ −p, we have d1 → d1 and d2 → −d2 [see Eq. (S29)]. Thus, φζ,p = −φ−ζ,−p is odd
in k-space, and we have

νζcv(p,q) = ν−ζcv (−p,q). (S33)

As a result, the square of the interband transition matrix for linearly (circularly) polarised light obeys vζ,θ(η)(p,q) =
v−ζ,θ(η)(−p,q).

The above symmetry relations for how velocity matrix element (and the energies) transform as ζ → −ζ, p → −p
can be directly used to determine the the PD circular shift photocurrent. To proceed, we consider the shift vector for
circularly polarized light reproduced here for the convenience of the reader as

Rζ,η(p,q) = [Aζ
c(p + q/2)−Aζ

v(p− q/2)]−∇p arg
(
Eη · νζcv(p,q)

)
(S34)

By direct computation using Eq. (S30), we find the Berry connection in the valence and conduction bands in opposite
valleys satisfy Aζ

c(p) = A−ζv (−p). This means that the difference of Berry connections [square brackets in Eq. (S34)] is
odd when ζ → −ζ, p→ −p, namely: Aζ

c(p+q/2)−Aζ
v(p−q/2) = −

[
A−ζc (−p + q/2)−A−ζv (−p− q/2)

]
. Further,

by applying Eq. (S33) to the last term of Eq. (S34) we find: ∇p arg
(
Eη · νζcv(p,q)

)
is also odd as ζ → −ζ, p→ −p.

Hence, due to the emergent c, v band symmetry, we find that as ζ → −ζ, p → −p the weighted shift vector
R̃ζ,η(p,q) ≡ vζ,θ(η)(p,q)Rζ,η(p,q) obeys

R̃ζ,η(p,q) = −R̃−ζ,η(−p,q) (S35)

This is verified in Fig. S2, which shows the numerical vector plot for R̃ζ,η(p,q). Finally, we note that when the Fermi
surface is far from any interband transition contours such that fζcv(p,q) is a constant for all p, we have

ρζ(p,q) = ρ−ζ(−p,q) (S36)

This can be achieved, for instance, for a large ~ω and chemical potential fixed close to charge neutrality at low
temperature. In this case, by summing the expression for the PD circular shift photocurrent in Eq. (1) of the main
text across all p and both valleys, we find the PD circular shift photocurrent vanishes due to the emergent symmetry
between the valence and the conduction bands.

A similar argument can also be applied to the PD linear injection photocurrent. The change in electron group
velocity ∆ζ(p,q) can be written as ∆ζ(p,q) = ∇pε

ζ
cv(p,q)/~. Since εζcv(p,q) = ε−ζcv (−p,q), we have ∆ζ(p,q) =

−∆−ζ(−p,q). In the same fashion as discussed above, when the Fermi surface is far from any interband transition
contours such that fζcv(p,q) is a constant for all p, we have Eq. (S36). As a result, in such a situation, applying
Eq. (S33), (S36), as well as ∆ζ(p,q) = −∆−ζ(−p,q), and summing the expression for the PD linear injection
photocurrent in Eq. (3) of the main text across all p and both valleys, we find a vanishing PD linear injection current.

This emergent c, v band symmetry can be broken in two ways. As we illustrate in the main text, placing the Fermi
energy in the valence band or conduction band in the vicinity of ±~ω/2 naturally breaks the symmetry between the
conduction and the valence band, leading to fζcv(p,q) that is only nonzero for a selective region in the momentum
space. This is the polariton selective photoexcitation (PSP) case discussed in the main text. Another way to break
the c, v band symmetry is to include a particle-hole asymmetric term in the Bloch Hamiltonian itself, for example, by
considering the next-nearest-neighbour hopping in monolayer graphene [17].
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