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a b s t r a c t 

Response inhibition and interference resolution are often considered subcomponents of an overarching inhibi- 

tion system that utilizes the so-called cortico-basal-ganglia loop. Up until now, most previous functional magnetic 

resonance imaging (fMRI) literature has compared the two using between-subject designs, pooling data in the 

form of a meta-analysis or comparing different groups. Here, we investigate the overlap of activation patterns 

underlying response inhibition and interference resolution on a within-subject level, using ultra-high field MRI. 

In this model-based study, we furthered the functional analysis with cognitive modelling techniques to provide 

a more in-depth understanding of behaviour. We applied the stop-signal task and multi-source interference task 

to measure response inhibition and interference resolution, respectively. Our results lead us to conclude that 

these constructs are rooted in anatomically distinct brain areas and provide little evidence for spatial overlap. 

Across the two tasks, common BOLD responses were observed in the inferior frontal gyrus and anterior insula. 

Interference resolution relied more heavily on subcortical components, specifically nodes of the commonly re- 

ferred to indirect and hyperdirect pathways, as well as the anterior cingulate cortex, and pre-supplementary motor 

area. Our data indicated that orbitofrontal cortex activation is specific to response inhibition. Our model-based 

approach provided evidence for the dissimilarity in behavioural dynamics between the two tasks. The current 

work exemplifies the importance of reducing inter-individual variance when comparing network patterns and 

the value of UHF-MRI for high resolution functional mapping. 
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. Introduction 

Response inhibition is defined as the global inhibition of a planned

r already initiated response, commonly investigated using the stop-

ignal task (SST; Aron, 2011 ; Logan & Cowan, 1984 ). Interference res-

lution is a selective inhibition process that functions to suppress pre-

otent but suboptimal behaviour and is required for tasks such as the

ulti-source interference task (MSIT; Bush et al., 2003 ). Although both

onstructs are placed under the umbrella of inhibition-related function-

ng, concrete knowledge on their overlap in neural implementation is

acking ( Isherwood, et al., 2021 ; Nee et al., 2007 ; Schmidt et al., 2020 ;

wick et al., 2011 ). Both the SST and MSIT have yielded robust results

n functional magnetic resonance imaging (fMRI) studies and lend them-

elves well to cognitive modelling, although the neural architectures un-
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erlying behaviour in the tasks have not been directly compared ( Bush

 Shin, 2006 ; de Hollander et al., 2017 ; Deng et al., 2018 ; Mileti ć et al.,

020 ). 

Accumulating evidence indicates response inhibition is executed

ia a complex cortico-basal-ganglia network which is also involved

n action planning and initiation ( Albin et al., 1989 ; DeLong, 1990 ;

ahanshahi et al., 2015 ; Wessel & Aron, 2017 ), though some work has re-

ealed inconsistencies in this theory ( de Hollander et al., 2017 ; Mileti ć

t al., 2020 ). Through these intricate subcortical-cortical connections

he idea is that the direct pathway plays a pivotal role in the initia-

ion of movement (see Fig. 1 ). It is generally accepted that two separate

athways, the indirect and hyperdirect , work in tandem to pause or in-

ibit planned or already initiated movement ( Diesburg & Wessel, 2021 ;

chmidt & Berke, 2017 ). While the role of this network in response in-
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Figure 1. The direct, indirect and hyperdirect pathways in humans (adapted from Diesburg & Wessel, 2021 ). Glutamatergic connections are represented as green 

lines, GABAergic connections as red and a reduction in signaling as dotted. IFG, inferior frontal gyrus; preSMA, pre-supplementary motor area; GPe, globus pallidus 

externa; GPi, globus pallidus interna; SNr, substantia nigra pars reticulata; STN, subthalamic nucleus. 
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ibition has been widely investigated, its role in interference resolution

emains elusive. With the idea that interference resolution is a type of

elective inhibition, and response inhibition a more global method of

nhibition, we sought to investigate to what extent they share common

eural substrates within and outside of these canonical inhibitory path-

ays. 

Previous meta-analyses and original studies indicate that the two

ypes of inhibitory control utilize several distinct brain areas, namely

he pre-supplementary motor area (preSMA) and subthalamic nucleus

STN) in response inhibition and the anterior cingulate cortex (ACC),

uperior parietal lobule (SPL) and striatum in interference resolution

 Cieslik et al., 2015 ; Hung et al., 2018 ). However, overlapping activation

as been found in the anterior insula (aI), preSMA, and inferior frontal

yrus ( Cieslik et al., 2015 ; Hung et al., 2018 ; Isherwood, et al., 2021 ).

hese studies also suggest that response inhibition recruits a more right-

ateralized, and interference resolution a more left-lateralized network.

ombined, these studies found little evidence of common subcortical in-

olvement across the tasks. It is important to note that almost all meta-

nalyses are based mostly on 1.5T or 3T data and may lack the signal

uality (in terms of signal-to-noise ratios) necessary to uncover acti-

ation in deeper parts of the brain. As such, there is an abundance of

tudies investigating both response inhibition and interference resolu-

ion in isolation, but few that have focused on intra-individual overlaps

 Sebastian et al., 2013 ), especially at higher field strengths. 

In addition to a lack of within-subject studies, model-based imaging

pproaches are missing ( Sebastian et al., 2018 ; van Maanen et al., 2015 ).

uch an approach allows us to further understand the algorithmic level

nderlying behaviour as well as the implementation level in the brain

 Marr, 1982 ), giving us the tools to gain mechanistic understanding. For

xample, if a parameter of a cognitive model correlates with brain ac-

ivity in a specific region, there is an indication that the region could be

nvolved in the specific process that parameter defines. To gain a deeper

nderstanding of the neural signatures of response inhibition and inter-

erence resolution, here we apply both a well-established and a novel

ethod of cognitive modelling to the two tasks ( Matzke et al., 2013 ,

017 ). The stop-signal reaction time (SSRT) is the canonical marker

f behavioural stopping ability during the SST and can be estimated

sing several methods ( Logan et al., 1984 ; Matzke et al., 2018 ). This

arker has been shown to correlate negatively with nodes of the in-

irect pathway including the rIFG, caudate nucleus, and STN activity

 Aron & Poldrack, 2006 ; Li et al., 2006 ; Whelan et al., 2012 ). To the best

f our knowledge, there are no model-based fMRI studies of the MSIT.

ere, we apply an evidence accumulation model, the racing Wald, to

dentify whether we can capture behaviour during interference resolu-

ion in terms of changes in drift rate, threshold or non-decision time

 Logan et al., 2014 ; Stevenson et al., 2022 ). 

To accurately compare these two tasks, we employed ultra-high field

agnetic resonance imaging (UHF-MRI) to acquire within-subject fMRI

ata of the SST and MSIT. UHF-MRI allowed us to obtain high resolu-
2 
ion and optimized contrasts in deep subcortical areas as well as main-

aining sufficient signal in the cortex ( Isherwood et al., 2021 ; Mileti ć

t al., 2020 ). The echo time is important for optimal BOLD-sensitivity

nd should be equal to the T2 ∗ of the tissue of interest, for the STN and

Pe this is around 14 ms ( Posse et al., 1999 ). We therefore ‘tailored’ the

equence to the subcortex, by choosing a TE more optimal for it ( Mileti ć

t al., 2020 ). This, of course, results in a suboptimal TE for imaging cor-

ical regions (which is around 30 ms). Due to the increased signal you

chieve in the cortex, simply from being closer to the MRI head coils, we

hose to focus on increasing sensitivity to subcortical BOLD responses

hich are widely underrepresented in functional studies. 

We fit both whole-brain and region of interest (ROI) based general

inear models (GLMs) for each participant of the study and compared

heir activation patterns. As the precise delineation of smaller subcorti-

al structures is crucial for accurate statistical analysis, we here used the

ulti-contrast anatomical subcortical structures parcellation (MASSP)

lgorithm to directly obtain individual masks for each participant ( Bazin

t al., 2020 ). To better understand the mechanisms underlying observed

ehaviour in each task, we utilized separate cognitive modelling tech-

iques. Based on previous literature, we expected to replicate findings

f cortical overlap of response inhibition and interference resolution in

he aI, preSMA, and IFG. Additionally, by using the high-resolution sub-

ortical masks derived we aimed to explore possible commonalities in

asal ganglia structures that constitute canonical inhibitory pathways. 

. Methods 

.1. Participants 

A total of 37 participants (20 female; mean age 26.3 ± 5.6; age range

9 – 39 years) completed the study, which was approved by the ethi-

al committee at the University of Amsterdam, the Netherlands, and

he Regional Committees for Medical and Health Research Ethics, Nor-

ay. Written informed consent and MRI screening forms were obtained

rom all participants. The participants were recruited from the Norwe-

ian University of Science and Technology and had corrected-to-normal

ision and no history of epilepsy or overt clinical neuropsychiatric dis-

ase. 

.2. Scanning protocols 

Each participant was scanned in a total of four MR sessions as part

f a larger project on a Siemens MAGNETOM TERRA (Tesla (T) = 7;

radient strength = 80 mT/m at 200 T/m/s) with a 32-channel head

oil. Here, we only describe the sessions that acquired the high resolu-

ion anatomical images and the SST and MSIT experimental data. The

natomical session acquired a multi-echo gradient recalled echo scan

GRE; TR = 31.0 ms, TE1 = 2.51 ms, TE2 = 7.22 ms, TE3 = 14.44

s, TE4 = 23.23 ms, FA = 12°, FOV = 240 × 240 × 168 mm) and an
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Figure 2. Task design of the SST (left) and MSIT (right). Trials in the SST lasted 7 seconds and were either go or stop trials: a) shows an example of a stop trial, where 

the participant should have attempted to inhibit responding to the right facing arrow. Trials in the MSIT also lasted 7 seconds. b) An example of an incongruent trial, 

where the correct response is 2 (middle finger on the button box). 
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Figure 3. Conditions and stimuli presented in the MSIT. Possible stimuli are 

shown left or right of the conditions. There were three possible stimuli in the 

CON condition, six possible stimuli in the SIM and FLA conditions, and twelve 

possible stimuli in the INC condition. Each subject was presented with three 

selected stimuli from each condition during the experiment. CON, congruent; 

SIM, Simon; FLA, Flanker; INC, incongruent. 
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P2RAGE scan (TR = 4300 ms; TE = 1.99 ms; inversions TI1 = 840

s, TI2 = 3270 ms; flip angle 1 = 5°, flip angle 2 = 6°Field of

iew (FOV) = 240 × 240 × 168 mm; bandwidth (BW) = 250 Hz/Px;

arques et al., 2010 ). The experimental session consisted of four func-

ional echo-planar imaging runs with subsequent acquisition of 4 EPI

olumes with opposite phase encoding direction for susceptibility dis-

ortion purposes. The functional data was collected using a single

cho 2D-EPI BOLD sequence (TR = 1380 ms; TE = 14 ms; MB = 2;

RAPPA = 3; voxel size = 1.5 mm isotropic; partial Fourier = 6/8; flip

ngle = 60°; MS mode = interleaved; FOV = 192 × 192 × 128 mm; ma-

rix size = 128 × 128; BW = 1446 Hz/Px; slices = 82; phase encoding

irection = A >> P; echo spacing = 0.8 ms). Each task had a total of 2

uns, each with a 13:27 min acquisition time, for a total of 4 runs and

3:48 min functional scanning. 

.3. Physiological data 

Physiological data (heart and breathing rate) were recorded for all

articipants in order to estimate the effects of physiological noise on the

MRI data. An 18 regressor RETROICOR model was fit ( Glover et al.,

000 ). This included a fourth order phase Fourier expansion of the

eart rate signal, second order phase expansion of the respiration sig-

al, and a second order phase Fourier expansion of the interaction be-

ween heart rate and respiration ( Harvey et al., 2008 ). Additional re-

ressors were used to model heart rate variability (HRV; Chang et al.,

009 ), and respiratory volume per time unit (RVT; Birn et al., 2008 ;

arrison et al., 2021 ).The PhysIO toolbox ( Kasper et al., 2017 ) as exe-

uted in the TAPAS software ( Frässle et al., 2021 ) was used for physio-

ogical regressor estimation. 

.4. Experimental Paradigms 

.4.1. Stop Signal Task (SST) 

To test response inhibition, we used the SST( Logan & Cowan, 1984 ;

erbruggen, et al., 2019 ). Participants were presented with a right or

eft-facing arrow surrounded by a white circle in the middle of the

creen. They were instructed to respond to the direction of the arrow

s quickly and as accurately as possible, using the index finger on their

eft or right hand (see Fig. 2 ). 25% of the trials were ‘stop’ trials, where

he circle surrounding the stimulus turned red. The other 75% of the

rials are termed ‘go’ trials, where the circle remains white. When pre-

ented with a stop trial, participants were instructed to inhibit their re-

ponse to the direction of the arrow. On go trials, participants should

espond to the arrow as initially instructed. The time delay between the

resentation of the arrow stimulus on stop trials and the visual stop sig-

al (the red circle), is defined as the stop signal delay (SSD). The SSD

as adjusted to the stopping ability of the participant by means of a

taircase procedure, where the SSD is increased 50ms if the participant
3 
uccessfully stopped and decreased by 50ms when the participant failed

o stop. The SSD was initially set at 200ms for all participants. For anal-

sis, trials were categorized into go trials (GO; no visual stop signal cue),

uccessful stops (SS; visual cue presented, and response inhibited) and

ailed stops (FS; visual cue presented but response still initiated). 

.4.2. Multi-source Interference Task (MSIT) 

To test interference resolution, we used the MSIT ( Bush et al., 2003 ).

articipants were presented with three numbers inside a white circle in

he middle of the screen (see Fig. 2 ). Of these three numbers, two were

dentical and one differed. These numbers could either be a 0, 1, 2 or 3.

articipants responded by indicating the identity, but not the position,

f the number that was the odd one out as quickly and accurately as

ossible using the index, middle and ring fingers of their right hand.

or example, the correct response to the stimulus ‘1 3 1’ was to press

he button corresponding to the number 3. There were four conditions;

ongruent (CON), Simon (SIM), Flanker (FLA), and incongruent (INC;

ee Fig. 3 ). 

CON trials incurred stimuli such as ‘1 0 0’ or ‘0 2 0’, in which the

orrect responses were 1 and 2, respectively, and include a congruency

etween position and identity of the correct response. SIM trials con-

ained stimuli such as ‘0 0 1’ or ’2 0 0’, where the correct responses were

lso 1 and 2, respectively. The Simon effect caused an inconsistency be-

ween the position and identity of the correct answer, increasing the

ifficulty of the choice. FLA trials contained stimuli such as ‘1 2 2’ or ‘3

 3’, in which the correct responses were 1 and 2, respectively. FLA tri-

ls also include a congruency between the position and identity of the

orrect response, but this response was surrounded by goal-irrelevant

timuli which act as distractors, which further increases choice diffi-

ulty, known as the Flanker effect. Finally, INC trials contained stimuli
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Figure 4. Schematic representation of the horse-race model ( Heathcote et al., 2019 ). The horse-race model treats go RTs and SSRTs as independent random variables, 

defining the finishing times of either the go or the stop process. The signal-response RT (SRRT) distribution (grey) is treated as a censored Go RT distribution. If the 

go RT on any given trial is longer than SSD + SSRT, the response is successfully inhibited. SRRTs occur when the go RT on the given trial is shorter than SSD + SSRT. 

Figure available at tinyurl.com/5hnyzz2w under CC-BY 2.0 license ( https://creativecommons.org/licenses/by/2.0/ ). 
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uch as ‘3 3 1’ or ‘1 1 2’, with correct answers as 1 and 2, respectively.

n INC trials, both the Simon and Flanker effects were present. We de-

ned interference effects as a bias towards a possible choice option that

s incorrect, the CON condition therefore had no interference effects, as

he zeros did not bias participants towards a potential or valid response

ption. As there were different numbers of possible stimuli in each con-

ition (e.g., three for the CON condition but twelve for the INC condi-

ion), each participant was pseudorandomly assigned three stimuli from

ach condition as to harmonize any learning effects. After the response

indow, feedback of either ‘in time’ (responses less than 600ms), ‘too

low’ (responses between 600 – 900ms) or ‘very slow’ (for response more

han 900ms) was shown. This feedback was aimed to keep participants

esponding quickly. 

.5. Behavioural Analyses 

For both runs of the SST, median reaction times (RTs) on go and

top trials, the mean stop-signal delay (SSD) and proportion of successful

tops (SS) were calculated. For each participant, the main measure of

esponse inhibition, the stop-signal reaction time (SSRT) were calculated

sing modelling techniques described below. For both runs of the MSIT,

edian RTs and accuracy were calculated for all four conditions. Bayes

actors (BFs) were computed using the BayesFactor package ( Morey &

ouder, 2015 ). 

.6. Cognitive Modelling 

.6.1. SST 

The SST was modelled using the Bayesian Estimation of Ex-Gaussian

top-Signal (BEESTS) reaction time distributions method ( Matzke et al.,

013 , 2017 ). The aim of modelling the SST is to estimate the efficiency

f the unobservable stopping response, commonly defined as the stop

ignal reaction time (SSRT). The model is based on the standard horse-

ace model (see Fig. 4 ), where the go process, initiated upon presentation

f the stimulus, and the stop process, initiated by the presentation of

he visual stop signal, independently race against each other. If the go
4 
rocess finishes the race first, the prepared action is executed. If the

top process finishes first, this action is inhibited. This can be further

ormalized, if the go RT is faster than the SSD + SSRT on a given trial,

hen the go process wins and a signal-response RT (SRRT) is observed.

f the go RT is slower than the SSD + SSRT, then the stop process wins,

nd the action is inhibited. The RT distribution derived from failed stop

rials are estimated as a partially known (censored) go RT distribution.

he race model assumes that, on average, these SRRTs are quicker than

o RTs. Due to the simplicity of the go choice, incorrect response on go

rials were removed from the analysis (0.24% of all go data). 

By using a Bayesian parametric approach (BPA), the entire distribu-

ion of SSRTs is estimated, as opposed to using the mean or median ap-

roach, which provides only a summary measure. The BPA assumes that

o RTs and SSRTs follow an ex-gaussian distribution ( Matzke & Wagen-

akers, 2009 ; Ratcliff & Murdock, 1976 ). Such a distribution is defined

y three parameters, the mean of the gaussian component ( 𝜇), the stan-

ard deviation of the gaussian component ( 𝜎) and the mean of the ex-

onential component ( 𝜏). The BPA model simultaneously estimates the

o ( 𝜇go , 𝜎go , 𝜏go ) and stop ( 𝜇stop , 𝜎stop , 𝜏stop ) RT distribution parameters.

he mean of the ex-gaussian distribution is the sum of the 𝜇 and 𝜏 pa-

ameters, 𝜇go + 𝜏go derives the mean go RT and 𝜇stop + 𝜏stop derives the

ean SSRT. Posterior distributions for these go and stop parameters are

stimated using Markov chain Monte Carlo sampling ( Gilks et al., 2003 ).

roper convergence of these chains during sampling is diagnosed using

he Gelman-Rubin statistic, where values of 1.1 or lower indicate the

hains have converged ( Gelman & Rubin, 1992 ). The stop signal data

s analyzed hierarchically, therefore assuming that subject-level go and

top signal parameters are drawn from group-level distributions. Both

roup-level and subject-level parameters are estimated simultaneously,

here the group-level distributions define the between-subject variabil-

ty of the subject-level parameters ( Gelman & Hill, 2006 ). Hierarchical

ethods allow adjustment or “shrinkage ” of extreme or unlikely param-

ters estimates towards the group mean. 

Attentional failures are captured by the model by means of trigger

ailures (tf), where the stop process is not initiated and go failures (gf),

here the go process is not initiated. The overall probability of stopping

https://creativecommons.org/licenses/by/2.0/
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emains the same, as stopping and trigger failures are, by definition, mu-

ually exclusive. Similarly, go responses are not observed upon the man-

festation of a go -failure. The priors used for the population-level param-

ters of the model were truncated normal distributions, constrained be-

ween 0 and 1000ms for the go and stop parameters and normal distribu-

ions between -6 and 6 for P(tf) and P(gf) parameters. The priors for the

roup-level means and group-level standard deviations are weakly in-

ormative uniform distributions, as in ( Matzke et al., 2017 ). After model

stimation, an inverse probit transformation that simultaneously consid-

rs the population-level mean and the population-level standard devi-

tion was applied to the P(tf) and P(gf) parameters to convert them to

he probability scale. The described model is therefore comprised of 8

arameters ( 𝜇go , 𝜎go , 𝜏go , 𝜇stop , 𝜎stop , 𝜏stop , P(tf), P(gf)). 

.6.2. MSIT 

There have been few attempts to investigate the MSIT within a

odel-based framework. Here, we use a process-orientated approach

eveloped by Stevenson et al., (2022) to model participant behaviour

uring the task. Through cognitive modelling, the aim is to disentangle

he individual contribution that both the Simon and Flanker effects have

n behaviour, as well as their cumulative effects when both are present.

he evidence accumulation model we used was the racing Wald model

 Logan et al., 2014 ). This model is characterized by three parameters:

he rate of evidence accumulation (drift rate), the decision threshold

B) and non-decision time (t0). We assume that evidence accumulates

uring each trial of the task at some rate until evidence for a certain deci-

ion reaches a threshold, upon which a decision is triggered. The model

ssumes that most of the between-condition effects can be put down

o differences in drift rates. Since there are three potential responses,

here are three accumulators racing on each trial. As a reminder, there

re four conditions in this task, a CON condition (no Simon or Flanker),

IM condition (Simon only), FLA condition (Flanker only) and INC con-

ition (both Simon and Flanker). We hypothesized that the drift rate for

ach choice is jointly driven by an urgency component and the evidence

upporting that choice. The drift rate for any choice is therefore an ad-

ition of the urgency component ( 𝜈0 ), target evidence ( 𝜈Target ), Simon

vidence ( 𝜈Simon ), and Flanker evidence ( 𝜈Flank ). Furthermore, we also

ound that response time and accuracy were influenced by the position

f the target, possibly due to left to right reading effects ( Stevenson et al.,

022 ). We therefore modified the drift rate of the accumulator corre-

ponding to the target based on position of the target. Additionally, the

vidence accumulation process is subject to Gaussian noise W, with stan-

ard deviation 𝜎, defining within-trial variation in drift rate, was fixed

o 1 to satisfy scaling constraints. Consequently, the drift rate in our

SIT model can be described as: 

𝑥 𝐴 = 

[
𝑉 0 + 𝑣 𝐹 𝑙𝑎𝑛𝑘 + 𝑣 𝑆𝑖𝑚𝑜𝑛 + 𝑣 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 

]
𝑑𝑡 + σ𝑊 

here, v Correct is equal to the summation of v Target and the positional

rift rate modifier, which can vary among positions (1, 2 or 3). The

ositional drift rate modifier 𝜈pos3 was fixed to 0, by which the other

ositional modifiers ( 𝜈pos1 and 𝜈pos2 ) were relative. In total our MSIT

odel comprised 8 estimated parameters ( 𝜈Flank , 𝜈Simon , 𝜈Target , 𝜈pos1 ,

pos2 , 𝜈0 , B, t0). The above-described model was selected after model

omparison against competing models as in Stevenson et al., (2022) .

ninformed priors were used for all parameters constituting a Gaussian

istribution centred on 0 with a standard deviation of 1. 

.7. Procedure and exclusions 

Prior to the MRI session, all participants completed a practice ver-

ion of the two tasks to ensure that the task instructions were correctly

nderstood. Each trial of the functional tasks lasted 7 seconds. For the

ST, six participants were excluded on the basis of having (1) more than

0 go-omissions (non-responsive during Go trials) across both runs. One

f these participants also had (2) a stopping accuracy of less than 35%
5 
r more than 65%. No participants were excluded for having (3) a go-

ccuracy of less than 95%. Two of the already excluded participants had

4) mean signal respond RTs that were longer on average than go RTs

inconsistent with the race model; ( Logan et al., 1984 ). For the MSIT,

articipants were excluded if they performed below chance level (33%)

n any of the four conditions. One subject was excluded for using in-

orrect response buttons. Based on these exclusions the final sample for

he analysis was a total of 31 participants for the SST (17 female; mean

ge 26.7 ± 5.9; age range 19 -39) and 36 participants for the MSIT (19

emale; mean age 26.4 ± 5.7; age range 19 - 39). 

.8. fMRI preprocessing pipeline 

fMRIPrep was used to preprocess all acquired anatomical and func-

ional data ( Esteban et al., 2018 , 2020 ). For each of the 2 BOLD runs

ound per task per subject, the following preprocessing was performed.

irst, a reference volume and its skull-stripped version were gener-

ted by aligning and averaging 1 single-band references (SBRefs). A

0-nonuniformity map (or fieldmap ) was estimated based on two echo-

lanar imaging (EPI) references with opposing phase-encoding direc-

ions, with 3dQwarp (Cox and Hyde, 1997; AFNI 20160207). Based

n the estimated susceptibility distortion, a corrected EPI (echo-planar

maging) reference was calculated for a more accurate co-registration

ith the anatomical reference. The BOLD reference was then co-

egistered to the T1w reference using bbregister (FreeSurfer) which

mplements boundary-based registration ( Greve & Fischl, 2009 ). Co-

egistration was configured with six degrees of freedom. Head-motion

arameters with respect to the BOLD reference (transformation matri-

es, and six corresponding rotation and translation parameters) are es-

imated before any spatiotemporal filtering using mcflirt (FSL 5.0.9,

enkinson et al., 2002 ). BOLD runs were slice-time corrected using 3dT-

hift from AFNI 20160207 (Cox and Hyde, 1997; RRID:SCR_005927).

irst, a reference volume and its skull-stripped version were gener-

ted using a custom methodology of fMRIPrep . The BOLD time-series

including slice-timing correction when applied) were resampled onto

heir original, native space by applying a single, composite trans- form

o correct for head-motion and susceptibility distortions. These resam-

led BOLD time-series will be referred to as preprocessed BOLD in orig-

nal space , or just preprocessed BOLD . Several confounding time-series

ere calculated based on the preprocessed BOLD : framewise displace-

ent (FD), DVARS (the spatial standard deviation of difference images),

nd three region-wise global signals. FD was computed using two formu-

ations following Power (absolute sum of relative motions, Power et al.,

014 ) and Jenkinson (relative root mean square displacement between

ffines, Jenkinson et al., 2002 ). FD and DVARS are calculated for each

unctional run, both using their implementations in Nipype (following

he definitions by Power et al., 2014 ). The three global signals are

xtracted within the CSF, the WM, and the whole-brain masks. Addi-

ionally, a set of physiological regressors were extracted to allow for

omponent-based noise correction ( CompCor , Behzadi et al., 2007 ). Prin-

ipal components are estimated after high-pass filtering the preprocessed

OLD time-series (using a discrete cosine filter with 128 s cut-off) for the

wo CompCor variants: temporal (tCompCor) and anatomical (aComp-

or). tCompCor components are then calculated from the top 2% vari-

ble voxels within the brain mask. For aCompCor, three probabilistic

asks (CSF, WM and combined CSF + WM) are generated in anatomi-

al space. The implementation differs from that of Behzadi et al. in that

nstead of eroding the masks by 2 pixels on BOLD space, the aComp-

or masks are subtracted a mask of pixels that likely contain a volume

raction of GM. This mask is obtained by dilating a GM mask extracted

rom the FreeSurfer’s aseg segmentation, and it ensures components are

ot extracted from voxels containing a minimal fraction of GM. Finally,

hese masks are resampled into BOLD space and binarized by thresh-

lding at 0.99 (as in the original implementation). Components are also

alculated separately within the WM and CSF masks. For each CompCor

ecomposition, the k components with the largest singular values are re-
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a  
ained, such that the retained components’ time series are sufficient to

xplain 50 percent of variance across the nuisance mask (CSF, WM, com-

ined, or temporal). The remaining components are dropped from con-

ideration. The head-motion estimates calculated in the correction step

ere also placed within the corresponding confounds file. The confound

ime series derived from head motion esti- mates and global signals were

xpanded with the inclusion of temporal derivatives and quadratic terms

or each ( Satterthwaite et al., 2013 ). Frames that exceeded a threshold

f 0.5 mm FD or 1.5 standardised DVARS were annotated as motion out-

iers. All resam- plings can be performed with a single interpolation step

y composing all the pertinent transformations (i.e. head-motion trans-

orm matrices, susceptibility distortion correction when available, and

o-registrations to anatomical and output spaces). Gridded (volumetric)

esamplings were performed using antsApplyTransforms (ANTs), con-

gured with Lanczos interpolation to minimize the smoothing effects of

ther kernels ( Lanczos, 1964 ). Non-gridded (surface) resamplings were

erformed using mri_vol2surf (FreeSurfer). Many internal operations of

MRIPrep use Nilearn 0.6.2 ( Abraham et al., 2014 , RRID:SCR_001362),

ostly within the functional processing workflow. 

.9. fMRI analyses 

.9.1. General Linear Models (GLMs) 

GLM analyses were performed at both a whole-brain voxel-wise and

egion-specific level. A canonical double gamma hemodynamic response

unction (HRF) with temporal derivative was used as the basis set for

oth tasks and both methods of analysis ( Glover, 1999 ). The design ma-

rix consisted of either the three experimental conditions for the SST

GO, FS, SS) or the four for the MSIT (CON, SIM, FLA, INC). Func-

ional data were first spatially smoothed using SUSAN (kernel size full

idth half maximum = 1.5 mm) and high-pass filtered before GLM

nalysis ( Smith & Brady, 1997 ). In addition to the task-specific regres-

ors, six motion parameters were also included (three translational and

hree rotational) as well as DVARS and framewise displacement esti-

ated during preprocessing. 20 physiological regressors obtained from

ETROICOR estimations were also included in the design matrix. For

wo participants on the second runs of the SST physiological data were

ot collected due to technical reasons, the first 20 aCompCor compo-

ents were used instead ( Behzadi et al., 2007 ). Therefore, a total of 31

r 32 regressors were used in the model, depending on the task being

nalyzed (SST or MSIT, respectively). The SST consists of three possible

ontrasts: FS - GO, FS - SS and SS - GO. The MSIT consists of six possible

ontrasts: INC - CON, INC - SIM, INC - FLA, SIM - CON, SIM - FLA and

LA - CON. 

Whole-brain analyses were computed using the FILM method from

SL FEAT ( Jenkinson et al., 2012 ; Woolrich et al., 2001 ), accounting for

utocorrelated residuals. Fixed effects analyses were used to combine

he resulting run-level GLMs per task. Group-level models were subse-

uently estimated using FLAME1 and FLAME2 from FSL ( Woolrich et al.,

001 ). Statistical parametric maps (SPMs) were generated to visualize

he resulting group-level models. The maps were corrected for the false

iscovery rate (FDR) using critical value of q < 0.05 ( Yekutieli & Ben-

amini, 1999 ). 

Region of interest (ROI) analyses were then performed. Timeseries

ere extracted from each subcortical region of interest using probabilis-

ic masks provided by MASSP ( Bazin et al., 2020 ), each voxels con-

ribution to the mean signal of the region was therefore weighted by

ts probability of belonging to the region. Cortical regions parcellations

ere provided by the Harvard-Oxford cortical atlas ( Rizk-Jackson et al.,

011 ). The timeseries were subsequently converted to percentage signal

hange by dividing each timepoint by the mean timeseries signal, mul-

iplying by 100 and subtracting 100. These timeseries were extracted

rom unsmoothed data so to ensure regional specificity. Runs were con-

atenated within task. We only infer from positive BOLD responses due

o the discrepancy around negative BOLD responses ( Schridde et al.,

008 ; Wade, 2002 ). 
6 
.9.2. Comparisons 

To investigate the similarities and differences in neural implementa-

ion during the two tasks, we performed both a conjunction and subtrac-

ion analysis on the GLMs. To do this, we first had to define a contrast

or both tasks that best fits the inhibition construct we were measuring.

he SS - GO contrast of the SST represents the triggering and successful

mplementation of the global inhibition pathway, and therefore is the

aseline definition of the network behind canonical response inhibition.

he INC – CON contrast of the MSIT exemplifies the highest cognitive

oad of selective inhibition in the task and was therefore used for these

nalyses. A conjunction map was generated by overlaying the FDR cor-

ected group-level z-maps of the two contrasts and keeping only voxels

hat survived significance in both instances. For the subtraction analy-

is, we calculated a voxel-wise comparison of the contrasts by nullifying

oxels on the FDR corrected group-level z-map in the MSIT contrast that

lso survived thresholding in the SST contrast, and vice versa. 

In addition to brain-level comparisons, we also investigated

ehavioural-level associations. To do this, we correlated the model es-

imates derived from the independent modelling techniques described

bove. The mean of the group-level parameter estimates were corre-

ated with one another using Pearson’s r and FDR corrected to account

or multiple comparisons ( Pearson, 1895 ). 

. Results 

.1. Cognitive modelling 

.1.1. SST 

To assess the goodness of fit of the model to the data, we plot aver-

ged simulated posterior predictive data and the raw data averaged over

ll participants (see Fig. 5 ). The cumulative density functions (CDFs)

how the average cumulative probability of observing a correct RT.

he sum of each asymptote in each condition equals the probability

f making a response. In stop trials, this was around 0.5 due to the

requency of successful stops, where no response is observed. Overall,

he model fits the data very well, though it slightly overestimates the

T in STOP conditions. In addition to CDFs referenced above, we also

lot the group level inhibition function and median signal-respond RTs

SRRTs). To account for individual differences in participant-specific

SDs, we normalized the inhibition function by averaging equal per-

entile ranges of SSDs for each participant. As expected, the inhibition

unction increases with SSD, suggesting that the probability of respond-

ng increases as the SSD increases. Additionally, the median SRRTs in-

reased as a function of SSD as expected. The median estimated param-

ter values and 95% credible intervals for the SST model are as follows;

go = 0.54 (0.48, 0.59), 𝜎go = 0.08 (0.05, 0.11), 𝜏go = 0.09 (0.07, 0.11),

stop = 0.21 (0.20, 0.22), 𝜎stop = 0.01 (0.0068, 0.031), 𝜏stop = 0.018

0.0098, 0.043), P(tf) = 0.0062 (0.0019, 0.021), P(gf) = 0.018 (0.011,

.029), SSRT = 0.23 (0.21, 0.24). 

.1.2. MSIT 

To assess goodness of fit of the model and the MSIT data, we com-

ared the average posterior predictive data to the average observed data

ollected from each participant (see Fig. 6 ). For accuracy estimates, the

odel fits each condition relatively well, though it slightly underesti-

ates the accuracy in the INC condition. Estimates for the three quan-

iles of RT data fit very well, though also underestimating RTs in the

NC condition and overestimating the spread of RTs in the SIM con-

ition. Due to the small number of errors in the task, RT data for in-

orrect responses had a more variable model fit. The mean parameter

alues and 95% credible intervals for the MSIT model are as follows;

Flanker = 1.25 (1.06, 1.44), 𝜈Simon = 1.31 (1.09, 1.52), 𝜈Target = 3.32

3.00, 3.66), 𝜈pos1 = 0.46 (0.25, 0.68), 𝜈pos2 = 0.068 (-0.09, 0.24), 𝜈0 = -

.08 (-0.34, 0.19), B = 1.69 (1.57, 1.84), t0 = 0.27 (0.24, 0.29). As

hown from the parameter estimates, the 𝜈Flanker and 𝜈Simon parameters

re of similar values suggesting that both types of interference introduce
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Figure 5. Goodness of fit graphs for the SST. a) Cumulative distribution functions. The data are shown with thick lines, with open points marking the 10th, 30th, 

50th, 70th, and 90th percentiles. Model predictions are shown with thin lines and solid points, with the clusters of grey dots showing the uncertainty in the percentiles 

from 100 randomly selected samples from the joint posterior. b) Average inhibition function across all participants, as a function of nine equal percentile ranges. 

c) Average median signal response RTs across all participants, as a function of nine time intervals over the range of SSDs for each participant. The data are shown 

with solid points. The uncertainty of the model predictions resulting from 100 randomly selected samples from the joint posterior is shown with violin plots, with 

the white dots indicating the median of the predictions. 
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 similar amount of conflict to resolve. These results indicate that both

ypes of interference biased participants equally. 

.1.3. Comparisons 

To identify behavioural associations between the two tasks, we cor-

elated the estimated model parameters within-subject. Fig. 7 shows the

esults of this analysis. There were no significant correlations in param-

ter estimates between models after multiple comparison correction.

his suggests that the parameters we estimated by decomposing the be-

avioural data in the two tasks are not linearly dependent. 

.2. Behavioural analyses 

.2.1. SST 

The Go RTs for correct responses were within normal range for fMRI

tudies of response inhibition ( Mileti ć et al., 2020 ; Verbruggen et al.,

019 ). Overall, participants had a mean stopping accuracy of 54 ± 1%.

o omissions and Go errors were slightly higher than previous studies

 de Hollander et al., 2017 ; Mileti ć et al., 2020 ). SSRT was calculated

sing the modelling parameters estimated with BEESTS where SSRT is

qual to the addition of 𝜇stop and 𝜏stop . Median Go RT did not correlate
7 
ith estimates of SSRTs when corrected for trigger failures, in accor-

ance with the independence assumption of the independent race model

 Aron & Poldrack, 2006 ; Logan et al., 1984 ). 

.2.2. MSIT 

Table 2 illustrates the differences in RTs and accuracy between the

our conditions. All RTs and accuracies were significantly different be-

ween conditions based on BFs and FDR correct p-values. Based on FDR-

orrected p-values and BFs the differences in RT and accuracy between

ll conditions were highly significant (p < 0.001; BF > 1e3) with the

xception of the SIM – FLA comparisons (RT: p = 0.003, BF = 2.1e1;

ccuracy: p = 0.006, BF = 9.7). 

.3. GLMs: Whole-brain analyses 

.3.1. SST 

.3.1.1. Task-related activity. For the FS - GO contrast (see Fig. 8 ) we

bserved many areas that show significant BOLD responses, in line with

revious findings ( de Hollander et al., 2017 ; Mileti ć et al., 2020 ; Li et al.,

008 ). Cortically, these regions included the IFG, preSMA, ACC, and aI.

ubcortically, significant differences between the FS and GO trials were

ound in the caudate nucleus (CN), putamen (PUT), thalamus (Tha),
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Figure 6. Model fit for accuracy, RTs on correct trials and RTs on error trials in the MSIT. The accuracy graph displays group-level accuracy for each of the four 

conditions. The RT figures display the 10 th , 50 th and 90 th percentiles for the correct (middle) and error (right) trials. Black denotes the acquired data; shaded grey 

denotes the model predictions. The uncertainties of the model estimates resulting from 100 randomly selected samples from the joint posterior are denoted by the 

spread of the shaded area. 

Figure 7. Correlation heatmap depicting associations within and between models for the SST and MSIT. Darker colours indicate larger correlations, grey denotes 

correlations that were non-significant (p > 0.05 FDR corrected). Between-model correlations are shown within a black box. 

Table 1 

Group-level descriptive statistics of the main quantitative aspects of the SST. Standard errors are given. 

Median go RT (ms) Median failed stop RT (ms) Go omissions (%) Go errors (%) Mean SSRT (ms) Median SSD (ms) Mean stopping accuracy (%) 

626 ± 25 543 ± 22 1.9 ± 0.4 2.2 ± 0.4 251 ± 6 350 ± 30 54 ± 1 

Table 2 

Group-level median RTs and mean accuracies for each con- 

dition in the MSIT. Standard errors are given. 

Median RT (ms) Mean accuracy (%) 

CON 536 ± 10 99.3 ± 0.3 

SIM 604 ± 12 90.4 ± 1.7 

FLA 630 ± 12 95.5 ± 0.8 

INC 702 ± 15 78.1 ± 2.5 
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TN, and SN. For the FS - SS contrast, we observed similar activation

atterns as with the former contrast, both cortically and subcortically.

or the SS - GO contrast, we found significant cluster differences in four

ortical regions; the aI, M1, IFG, and occipital fusiform gyrus, and two

ubcortical regions; the CN and Tha. 

.3.2. MSIT 

.3.2.2. Task-related activity. For our main measure of interference res-

lution, the INC – CON contrast, we observe marked differences in re-

ruitment of the ACC, insula, Tha, and VTA (see Fig. 9 ). We also observe

arger recruitment of the ACC and insula in the FLA - CON contrast, but

ot for the SIM - CON contrast, suggesting these regions are more en-

aged when resolving the Flanker effect. The SIM - FLA contrast does

ot display significant differences in activation patterns in the voxel-
8 
ise GLMs and is therefore not included in Fig. 9 . The contrasts com-

aring the FLA and SIM conditions to the INC condition display similar

ifferences in the recruitment of the ACC and insula, though to a much

esser extent. 

.3.2.3. Conjunction analysis. To investigate the overlap between re-

ponse inhibition and interference resolution on a network-level, we cal-

ulated a conjunction map between the SS - GO and INC – CON contrasts

f the SST and MSIT, respectively. The conjunction map was calculated

sing the minimum FDR corrected z-score of each contrasts group-level

odel (see Fig. 10 ). Notable overlap of activation patterns between the

wo tasks includes the bilateral aI and rIFG. 

.3.2.4. Subtraction analysis. To observe regions of the brain recruited

pecifically for response inhibition or interference resolution, we com-

ared the statistically significant activation of the SS - GO contrast from

he SST and the INC - CON contrast from the MSIT. Fig. 11 shows sig-

ificant activation in the INC condition that were not significant in the

S condition (MSIT - SST) and vice versa (SST - MSIT). The MSIT - SST

ubtraction map indicates a number of significant clusters including the

CC, preSMA, lIFG, anterior supramarginal gyrus (aSG), and Tha. The

ST - MSIT subtraction map shows significant activation in the posterior

G (pSG), orbitofrontal cortex, and occipital fusiform gyrus. 
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Figure 8. Group-level SPMs of the three main 

contrasts of the SST. Activation colours indi- 

cate FDR thresholded (q < 0.05) z-values. Sagit- 

tal (top), axial (middle) and a zoomed in coro- 

nal (bottom) view are shown. Coloured contour 

lines indicate regions of interest (CN in dark 

blue, PUT in red, STN in light blue, GPe in dark 

green, GPi in light green, VTA in black, rIFG in 

white, and SN in pink. The background tem- 

plate and coordinates are in MNI2009c (1mm); 

slices are drawn through x = 51 (top), y = -13 

(bottom), and z = 2 (middle). 

Figure 9. Group-level SPMs of five of the six contrasts of the MSIT. Activation colours indicate FDR thresholded (q < 0.05) z-values. Sagittal (top), axial (middle) 

and a zoomed in coronal (bottom) view are shown. Coloured contour lines indicate regions of interest (CN in dark blue, PUT in red, STN in light blue, GPe in dark 

green, GPi in light green, VTA in black, rIFG in white, and SN in pink. The background template and coordinates are in MNI2009c (1mm), where x = 0, y = -13, and 

z = 2. 

Figure 10. Conjunction analysis between ac- 

tivation from the SS – GO contrast in the SST 

and INC – CON contrast in the MSIT. Activation 

colours indicate FDR thresholded (q < 0.05) z- 

values. The background template and coordi- 

nates are in MNI2009c (1mm). 

9 
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Figure 11. Subtraction analyses between activation from the SS – GO contrast in the SST and INC - CON contrast in the MSIT. The MSIT - SST subtraction map is 

shown on the top, and the SST - MSIT subtraction map on the bottom. Activation colours indicate FDR thresholded (q < 0.05) z-values. The background template 

and coordinates are in MNI2009c (1mm). 

Figure 12. ROI analyses for all contrasts in the SST. The y-axis displays percent signal change and the x-axis, ROIs. T-value significance are FDR corrected (q < 

0.05). Error bars depict the 95% confidence intervals for each region. Left hemisphere is shown in dark blue, and right in light blue. Asterisks denotes significance. 

FS, failed stops; SS, successful stops; ACC, anterior cingulate cortex; IFG, inferior frontal gyrus; Ins, insula; M1, motor cortex 1; pSG, posterior supramarginal gyrus; 

SMA, pre-supplementary motor area; SPL, superior parietal lobule; CN; caudate nucleus; GPe, globus pallidus externa; GPi, globus pallidus interna; PUT; putamen; 

RN, red nucleus; SN, substantia nigra; STN, subthalamic nucleus; Str, striatum; Tha, thalamus; VTA, ventral tegmental area. Orange denotes cortical regions, red, 

subcortical. 
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.4. GLMs: ROI analyses 

.4.1. SST 

To statistically quantify the different activation patterns within each

rial type and contrast of the SST, we fit a set of GLMs using the canoni-

al HRF to the timeseries extracted from each ROI (see Fig. 12 ). t-values

ere calculated per run, per ROI for each participant against baseline.

n line with previous work ( de Hollander et al., 2017 ; Mileti ć et al.,

020 ), significant bilateral STN activation was found in FS and GO tri-
10 
ls and right STN activation in SS trials (see Supplementary Fig. 1).

ther nodes of the direct, indirect, and hyperdirect pathways also showed

ignificant activation in all trial types (rIFG, preSMA, aI, SN, and Tha).

urning to the contrasts of interest, we replicated previous findings that

howed that FS trials drive a large portion of activation in the subcor-

ex ( de Hollander et al., 2017 ; Mileti ć et al., 2020 ). Indeed, the only

ignificant differences in activation found between SS and GO trials in

ur ROIs were the bilateral IFG, pSG and M1, and right insula. Although

S trials displayed a largely bilateral recruitment of ROIs, the analysis
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Figure 13. ROI analyses for all contrasts in the MSIT. The y-axis displays percent signal change and the x-axis, ROIs. T-value significance are FDR corrected (q < 

0.05). Error bars depict the 95% confidence intervals for each region. Left hemisphere is shown in dark blue, and right in light blue. Asterisks denotes significance.INC, 

incongruent; FLA, Flanker; SIM, Simon; CON, congruent; ACC, anterior cingulate cortex; IFG, inferior frontal gyrus; Ins, insula; M1, motor cortex 1; pSG, posterior 

supramarginal gyrus; SMA, pre-supplementary motor area; SPL, superior parietal lobule; CN, caudate nucleus; GPe, globus pallidus externa; GPi, globus pallidus 

interna; PUT, putamen; RN, red nucleus; SN, substantia nigra; STN, subthalamic nucleus; Str, striatum; Tha, thalamus; VTA, ventral tegmental area. Orange denotes 

cortical regions, red, subcortical. 
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rovided evidence of some type of right-lateralized network in the IFG,

nsula, GPe, GPi, RN, and STN. In the FS – GO contrast, significantly

arger activation was found in the ACC, rIFG, r-insula, pSG, preSMA,

CN, rGPe, RN, SN, rSTN, Tha, and VTA. Both cortically and subcorti-

ally, similar activation profiles for the FS – GO and FS – SS contrasts

ere found, with the notable exception of the IFG, pSG, and lCN which

howed similar recruitment on both types of stop trials. 

.4.2. MSIT 

The same ROI analysis was performed for the MSIT (see Fig. 13 ).

ompared to baseline, all trial types displayed significant activation in

ost if not all cortical and subcortical ROIs (see Supplementary Fig.

). Cortically, significant differences in activation between the INC and

ON trial types appeared in the ACC, IFG, insula, and preSMA, replicat-

ng previous studies of the MSIT ( Deng et al., 2018 ). Subcortically, we

ound regions that have not been previously observed in this task. Sub-

ortical contribution to the INC - CON contrast included the lRN, rSN,

STN, Tha, and VTA. All of the INC, SIM and FLA trial types displayed

 significant difference in the preSMA from the easiest of the conditions

ON, suggesting the cortical region plays an important role in the Si-

on, Flanker, and joint Simon and Flanker types of interference. For

he SIM and FLA conditions, no significant activation differences were

ound. 
11 
.5. Model-based analyses 

.5.1. SST 

To gain insight into which regions code for inhibition, we correlated

OI-based brain activation with our SST model parameters, zooming

n on SSRTs (see Fig. 14 ). No significant correlations between ROI ac-

ivity and model parameters were found. We did not replicate previ-

us findings showing a negative correlation between SSRTs and brain

ctivation in SS > GO trials in the STN and the rIFG ( Aron & Pol-

rack, 2006 ; Li et al., 2006 ; Whelan et al., 2012 ). The same is also

rue when correlating SSRT with brain activity on SS trial or the FS

 SS contrast (see Supplementary Fig. 3). In order to compare these

esults to previous literature, we have also correlated brain activity dur-

ng the SST with SSRTs calculated using the mean method ( Logan &

owan, 1984 ; see Supplementary Fig. 4) This method calculates SSRT

y subtracting the mean SSD from the mean RT of each individual.

hen correlating SSRT (calculated by the mean method) with the con-

rast of SS > GO we do not find any significant correlations, in con-

ention to previous work ( Aron & Poldrack, 2006 ; Li et al., 2006 ). In

ddition, as the modelling method of SSRT estimation we use here

akes significantly more behavioural information into account, and al-

ows the estimation of the entire distribution of SSRTs, we make infer-

nces only based on these SSRTs, not SSRTs calculated using the mean

ethod. 
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Figure 14. Group-level correlations between GLM betas on the SS > Go contrast and SSRTs in the SST. Significance is FDR corrected. r denotes the Pearson correlation, 

with p the corresponding p -value. Left hemisphere is shown in dark blue. Right hemisphere is shown in light blue. 

Figure 15. Group-level correlations between GLM betas on INC trials and the drift rate of INC trials in the MSIT. Significance is FDR corrected. p denotes the 

significance level; r denotes the Pearson correlation. Left hemisphere is shown in dark blue. Right hemisphere is shown in light blue. 
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.5.2. MSIT 

To observe which regions may code for aspects of interference res-

lution, we correlated the MSIT model parameters with ROIs that are

heorized to be involved in selective inhibition (see Fig. 15 ). For this, we

sed the difference in drift rate between the incongruent and congruent

onditions, which results in 𝜈Simon + 𝜈Flank for each participant sepa-

ately. For our measure of neural activity, we calculated the difference

n activation in each ROI on incongruent and congruent trials. After

ultiple comparison correction, we found that these cognitive model

arameters correlated positively with activation in the right ACC and

ight IFG. We did not find significant correlations in the left ACC, left

FG, or bilateral CN. 

. Discussion 

This study aimed to gain insights into the neural and behavioural

verlap of response inhibition and interference resolution using a

ithin-subject design. To do so, we tested participants on two tasks,

he SST and MSIT, to tap into these subcomponents of inhibition and

dentify areas of similarities or differences that inter-individual and

eta-analytical techniques may miss. Using ultra-high field (UHF) mag-

etic resonance imaging (MRI), tailored sequences and a high voxel

esolution, we were able to obtain robust results, especially in smaller,

eeper regions of the brain with a higher SNR than using canonical fMRI

t lower fields. Additionally, we used a model-based cognitive neuro-

cience approach to tap into the latent level of response inhibition and

nterference control. The results provide evidence of a common network

or inhibition-based decision-making as well as the existence of distinc-

ive activation patterns. The whole-brain conjunction map shows that

hared activation was found in one central region of the canonical in-

ibition network, the rIFG, as well as in the aI. Divergent activation

egions were found in the main contrast of the MSIT including the ACC,

reSMA, lIFG, aSG, and Tha. Inhibition during the SST also involved the

ecruitment of regions not required for interference resolution, namely

he pSG, orbitofrontal cortex (OFC), and occipital fusiform gyrus. The

OI-based analysis is largely in accordance with these whole-brain find-

ngs, while suggesting that the posterior division of the supramarginal
12 
yrus may be recruited both in interference resolution and response in-

ibition. 

First, we will discuss the findings of each task separately and

ompare them to previous task-specific findings before turning to the

etween-task comparison. For the SST, we replicate recent imaging find-

ngs that call into question the idea of the classical inhibitory pathway

nderlying response inhibition in humans ( de Hollander et al., 2017 ;

ahfari et al., 2011 ; Mileti ć et al., 2020 ; Li et al., 2008 ). Our whole-

rain and ROI analyses indicate that neither the STN, nor any other

asal ganglia regions displayed heightened activity when comparing SS

rials to GO trials, in contrast to much of the literature on response inhi-

ition ( Aron et al., 2014 ; Aron & Poldrack, 2006 ; Eagle et al., 2008 ). A

arge-scale pattern of greater activation in the basal ganglia nuclei when

omparing FS trials to GO trials was observed. This suggests that the act

f stopping does not drive the recruitment of the canonical indirect or

yperdirect pathway, but that activation in these subcortical regions is

riven by a failure to inhibit one’s actions. Contrasting FS trials with

S and GO trials displays an almost identical network of heightened ac-

ivity in the ACC, IFG, insula, preSMA, STN, SN, VTA, Tha, and RN. It

s however worth noting that SS and GO trials do recruit these nodes

hen compared to baseline, but to a much lesser extent than FS tri-

ls (see Supplementary Fig. 1). Significant bilateral IFG activation was

bserved when comparing both types of stop trials (FS and SS) to GO

rials, suggesting the region may play a role in the detection and inte-

ration of the salient stop signal, which is a role that has been theorized

efore and may not be specific to inhibition tasks ( Aron et al., 2004 ;

ampshire et al., 2009 , 2010 ; Miller & Cohen, 2001 ; Shallice et al.,

008 ; Wessel & Aron, 2013 ). Although it seems that the BOLD response

n this region does not differentiate between successful and failed stop-

ing, electrocorticography has shown increased signaling in successful

s failed stopping ( Swann et al., 2009 ; Wessel et al., 2013 ). 

For the MSIT, group-level model estimates of the 𝜈Simon and 𝜈Flank 

arameters are comparable, suggesting that participants are equally bi-

sed by the Simon and Flanker effects during the task. In addition, the

OI-based analyses observed no differences in activation between the

IM and FLA conditions at the group-level in any ROI, suggesting that

hese interference types are rooted in similar brain regions and that they
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Data will be made available on request. 
re recruited to a similar degree. Due to the similarity in the two con-

tructs, it may be that a greater number of trials or higher field strength

ay be required to observe neural differences in their implementation.

ontrasting the SIM and FLA conditions with the INC condition display

imilar responses, with greater activation found in the IFG, preSMA, and

PL for both. For the INC – CON contrast, we observed a marked recruit-

ent of both cortical and subcortical regions that appear to be required

or interference resolution. A recent meta-analysis found activation dif-

erences in the ACC, preSMA, IFG, insula and putamen when contrasting

hese conditions ( Deng et al., 2018 ) Here, we replicate these findings as

ell as provide evidence that a larger network including the SPL, pSG,

Pi/e, STN, SN, RN, Tha, and VTA are also activated during interference

esolution. In contrast to other previous findings, we did not see signifi-

ant activation of the CN during interference resolution ( Schmidt et al.,

020 ). 

We performed both conjunction and subtraction analyses of the

wo tasks to observe common and distinct brain areas involved in re-

ponse inhibition and interference resolution, respectively. The con-

unction analysis indicates an overlap in the rIFG and bilateral aI.

e do not observe significant differences in lateralization patterns

cross the two tasks, in contention to previous meta-analytical findings

 Isherwood, Keuken, et al., 2021 ). Multiple regions were identified that

re recruited during interference resolution and not response inhibition,

amely the ACC, preSMA, lIFG, aSG, and Tha. The ACC and preSMA are

ighly connected and potentially work together to resolve interference

n the environment ( Nachev et al., 2008 ). We also found evidence that

he OFC and occipital fusiform gyrus play a role in response inhibition

ut not interference resolution. Many studies have associated the OFC

ith the ability to inhibit ( Adnan Majid et al., 2013 ; Eagle et al., 2008 ;

ringelbach & Rolls, 2004 ). Although the OFC appears to be recruited

uring response inhibition, the activation does not appear inhibition-

pecific as it is observed in a wide variety of roles including value-based

ecision-making ( Montague & Berns, 2002 ; O’Doherty, 2014 ), predic-

ion error signaling ( Schultz & Dickinson, 2000 ; Sul et al., 2010 ) and

ssociative representations ( Bechara et al., 1997 , 2001 ). The activation

f the occipital fusiform gyrus is usually not associated with response

nhibition specifically, but does play a role in colour processing ( Bartels

 Zeki, 2000 ). This finding may reflect the presentation of the red stop

ignal in the SST, as it is the only aspect of the two tasks that differ in

olour. 

The findings presented here paint a picture of largely divergent

etworks underlying interference resolution and response inhibition in

umans. This demonstrates the need for more intra-individual studies

hen comparing psychological constructs, owing to the minimization

n measurement differences, physiological differences (as all task data

s derived on the same day) and the possible impact of large individ-

al variation when using different groups. The extent to which these

ndings provide evidence for the canonical cortico-basal-ganglia loop

s mixed. For the SST, this study provides evidence against the recruit-

ent of the indirect or hyperdirect pathway during successful response

nhibition, as both would implicate increased activity in the STN. These

esults are in contention to both older and more recent models of re-

ponse inhibition implementation ( Aron et al., 2014 ; Diesburg & Wes-

el, 2021 ; Schmidt & Berke, 2017 ). Resolution of the combined Simon

nd Flanker effect does appear to recruit nodes of the indirect and hyper-

irect pathways. The IFG, rSTN, lSN, and Tha are active during interfer-

nce resolution, but we do not find evidence of the GPe/GPi or striatum

n the network, both at a whole-brain and ROI level. 

Our model-based analysis of the MSIT revealed that the drift rate

ifference between INC and CON conditions positively correlated with

he difference in activity between INC and CON conditions in the right

CC and right IFG. Since a larger difference in drift rate between the

wo trial types indicates a greater level of susceptibility to the Simon or

lanker effect, it appears that activity in these two regions somewhat

ndicate the degree to which participants resolve conflicting stimuli.

he ACC has long been suggested to play a role in conflict monitor-
13 
ng ( Van Veen & Carter, 2005 ; Wiecki & Frank, 2013 ) and these results

ay indicate that the region encodes the degree of detected conflict. The

FG has been implicated in many roles, but the evidence of drift rate en-

oding found here suggests it and the ACC are a major requirement for

nterference resolution. Interestingly, we did not find any evidence of

egions encoding for our behavioural measure of response inhibition 

SSRT). 

Bringing the findings of this study together, it appears that interfer-

nce resolution and response inhibition recruit markedly separate neural

ystems. On top of this, the lack of correlation between modelling pa-

ameter estimations supports the dissimilarity between processes on a

ehavioural level. There is therefore little evidence that we should see

hese two phenomena as two sides of the same inhibition coin. Despite

hat, the IFG and pSG appear to play a pivotal role in some aspect of

oth tasks. In view of previous literature, it is likely that the IFG plays a

ore domain general role in specific types of signal/conflict detection

nd that it is needed to make the choice of what behavioural step to

erform. The continued lack of evidence that the hyperdirect and indi-

ect pathway are solely engaged in successful response inhibition raises

erious concerns. We therefore argue that the pathways involved in suc-

essful stopping and successful going are integrated and that the nodes

onstituting these pathways play task-general roles. Considering that re-

ions of basal ganglia display greater activation for failed stopping, this

oints towards a general network not specific to global response inhibi-

ion. 
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