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S1. MODEL SYSTEM

In this work, we map a half-filled chain of spinless fermions interacting through nearest neighbor Coulomb repulsion
onto a corresponding spin Hamiltonian. The initial model Hamiltonian is given by:

Ĥ(t) = −J
2

∑
j

(ĉ†j ĉj+1 +H.c.) + V (t)
∑
j

ñj ñj+1, (1)

where ĉ†j (ĉj) is a fermionic creation (annihilation) operator at site j, ñj = ĉ†j ĉj−1/2 is the number operator relative to

half filling, J is a constant hopping amplitude, and V (t) is a time-dependent, nearest-neighbor Coulomb interaction.
Through the Jordan-Wigner transformation [1], this charge Hamiltonian maps onto an equivalent spin-1/2 anisotropic
Heisenberg (XXZ) chain (Fig. 1a in the main text):
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where Ŝ±
j = 1

2

(
Ŝx
j ± Ŝy

j

)
and Ŝα

j (α = x, y, z) are the usual spin operators defined in terms of the Pauli matrices

Ŝα = 1
2 σ̂α. In this picture, the hopping amplitude J becomes the exchange coupling while ∆(t) = V (t)/J quantifies

the anisotropy of the spin interactions.
At equilibrium, this dual quantum chain exhibits well-known quantum phase transitions. Upon increasing ∆ = V/J ,

the fermionic chain evolves from a gapless Luttinger liquid (LL) phase with short-range correlations to a charge density
wave (CDW) phase with long-range correlations. The XXZ chain instead undergoes two separate transitions into an
Ising ferromagnet (∆ < −1) and antiferromagnet (∆ > 1), while for (|∆| < 1) it exhibits an XY phase [1]. Since
the dual charge and spin formulations are one-to-one equivalent, we choose to study the time-dependent dynamics
of the quantum spin chain using exact diagonalization (ED). The ED calculations for finite-size chains extending up
to L = 24 sites are performed using the QuSpin [2, 3] as well as the HPhi [4] packages. The antiferromagnetic XXZ
ground state in a finite-size system contains a mixture of nearly-degenerate states (notably |↑↓ . . . ↑↓⟩ ± |↓↑ . . . ↓↑⟩).
In order to break this near degeneracy, which turns into complete degeneracy in the thermodynamic limit, we also
introduce a small staggered magnetic field Ĥext =

∑
j(−1)jhzŜ

z
j to select a specific spin configuration (cf. next

section). This ensures that the disconnected part of the spin correlation function in Eq. (2) in the main text vanishes
in the limit ∆ → ∞. Our spin sector quench dynamics is then benchmarked for selected conditions against real-time
density matrix renormalization group (DMRG) calculations [5] of the time evolution of an infinite chain.

S2. FINITE-SIZE EFFECTS ON THE QUANTUM FISHER INFORMATION CALCULATIONS

In the antiferromagnetic (AFM) Ising limit ∆ → ∞, the ground state of the XXZ chain in the spin sector is
degenerate in the thermodynamic limit (L→ ∞) and is given by the two possible Néel states |↑↓↑↓ . . .⟩ and |↓↑↓↑ . . .⟩,
related to each other via a site translation. At finite L, the two lowest-energy spin configurations |↑↓↑↓ . . .⟩±|↓↑↓↑ . . .⟩
are split by a finite energy gap that decreases as ∝ e−αL with increasing system size (with α > 0). For the AFM
ground state at finite L, the disconnected part of the spin correlation function in Eq. (2) of the main text, i.e.∑

l,k(−1)l+k
〈
Ŝz
l

〉〈
Ŝz
k

〉
, vanishes, leading to an asymptotically finite value of the QFI FQ. In order to reinstate
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the proper behaviour of the QFI certified by the DMRG calculations in the charge sector, we introduce a staggered
degeneracy-breaking magnetic field term Ĥext =

∑
j(−1)jhzŜ

z
j to select a specific Néel component of the ground state

and restore the proper limit of FQ. Consequently, the position of the maximum of the equilibrium QFI density shown
in Fig. 1b of the main text thus becomes dependent on the magnitude hz of this additional term. In addition, both
the magnitude of the QFI maximum as well as its position are dependent on the chain length L. In Fig. S1, we plot
the equilibrium QFI density in the spin sector as a function of the staggered magnetic field for a fixed chain length
(panel a) and as a function of the system size for a fixed hz.

(a) (b)

FIG. S1. (a) Equilibrium QFI density fQ for a spin chain with L = 10 for different values of the staggered magnetic field hz.
(b) QFI density as a function of the chain length for a fixed hz = 1.414.

S3. TIME-FREQUENCY ANALYSIS OF THE NON-EQUILIBRIUM QFI

In Fig. 2 of the main text and the accompanying discussion, we outline the main features of the nonequilibrium
QFI dynamics. Upon crossing the critical point ∆ = 1, the driven system passes through a more entangled state
compared to the initial condition. Depending on the ramp velocity, the QFI density fQ(t) = FQ(t)/L either maps
onto the equilibrium phase diagram, thereby decaying asymptotically to zero as t→ ∞, or exhibits a rich oscillatory
behaviour when the driving protocol reaches the impulsive limit at sufficiently high velocities. In this section, we
focus on origin of the oscillatory dynamics, while the transition between adiabatic and impulsive regimes is discussed
in Sec. S5.

We start by focusing our attention on the 1D linecuts of fQ(t) plotted in Fig. 2c of the main text. In panel a of
Fig. S2, we present three of these curves as a function of physical time instead of the time-dependent nearest-neighbour
Coulomb repulsion V (t). Both representations are related through the transformation t = V (t)/v. The time-domain
representation allows us to better appreciate characteristic dynamical features of the non-adiabatic regime (v > 3.5).
First, all curves in Fig. S2a reveal a slow oscillation at νosc ∼ 0.36, independent of the driving speed. Furthermore, all
curves also contain very fast oscillations, evident at early times and featuring a pronounced chirp. In order to isolate
the different frequency contributions and characterize the change of the non-stationary contributions as a function
of time, we perform a short-time Fourier transform (STFT) analysis. In the resulting spectrogram, a stationary
frequency manifests itself as a horizontal line, whereas a linear change of the frequency over time corresponds to a
linear chirp.

In panels b-d of Fig. S2, we plot the spectrograms corresponding to the three velocities v = 2.0, v = 10.0, and
v = 40.0. The v-independent oscillations correspond to the low-frequency mode at νosc ∼ 2π∆01 ≈ 0.36. The fast
oscillations show a linear chirp, which emerges outside of the adiabatic limit, with a slope given by b ∼ v

2π .

We now discuss the microscopic origin of these features with the aid of Fig. S3. By analyzing the energy level
diagram of the L = 10 chain (with hz fixed at 0.005), we can attribute the νosc ∼ 0.36 oscillation to a transition
between the ground and the first excited level. The corresponding energy separation ∆01 is shown as a function
of the nearest-neighbour Coulomb repulsion for different chain sized in Fig. S3a. For L = 10 and sufficiently large
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(a) (b)

(c) (d)

FIG. S2. (a) Linecuts from Fig. 2c in the main text, plotted as a function of time. (b) - (d) spectrograms of the time-dependent
QFI density for three selected velocities: v = 2 (b), v = 10 (c), and v = 40 (d). Note that the color scale is logarithmic. Thick
dashed lines indicate the dominant chirp mode b ∼ v

2π
, while a thin dotted line indicates a second chirp mode with a slope of

2b for v = 2.

anisotropies (∆ > 3), the gap size assumes an asymtoptic value of 0.314
2π , hence, the oscillation frequency in the

spectrograms in Fig. S2 is largely time-independent.

The second dominant feature, the linearly-chirped rapid oscillations, has its origin in a transition between the
ground state and one of the higher-lying excited levels (j = 5). The corresponding gap ∆05 increases linearly with
V (see Fig. S3b), its slope for L = 10 matches well the slope of the corresponding feature in the short-time Fourier

transform. The relationship between the two is b
v ∼ 1

2π
d∆05

dV . The excitation to this (and others) specific state(s)
occurs while driving the system through the critical point ∆ = 1. In panel c of Fig. S3, we plot the projection of
the time-evolved initial pure state ψ0(t) (coinciding with the GS of the LL-model at t0 = 0) onto the jth-eigenstate

of the time-dependent Hamiltonian Ĥ(t) (denoted by ψ
(j)
t ) at the end of the time evolution tmax. Apart from the

nearly-degenerate low-lying states with j = 1, 2, only the state with j = 5 has a significant contribution, and beatings

with the ψ0(t) dominate the time-frequency structure of the non-equilibrium QFI. The state ψ
(j=5)
t is dominated

by spin configurations featuring two domain walls (e.g. |↑↑↓↑↑↓↑↓↑↓⟩) for all values of t, whereas the time-evolved
ψ0(t), especially after crossing ∆ = 1, becomes progressively dominated by the defect-free two Nèel configurations.
The projection of ψ0(t) onto the initial state at t0, plotted as a dark purple line in Fig. S3c, exhibits an interesting
dynamics consisting of a decay followed by multiple revivals. For completeness, in panel d of the same figure we show

the temporal evolution of several matrix elements bij =
〈
ψ
(i)
t |ψ0(t)⟩ ⟨ψ0(t)

∣∣∣ψ(j)
t

〉
, i.e. the projection of ψ0(t) over

the instantaneous eigenstate at each t. These results imply that the non-equilibrium QFI in the impulsive regime is
determined by the non-adiabatic excitation of multiple states at the critical point and the associated increased domain
wall density.
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(a) (b)

(c) (d)

(e)

FIG. S3. (a)-(b) Energy separations between the ground state and the first (a) resp. the fifth (b) excited states of the chain,
plotted as a function of the nearest-neighbour Coulomb repulsion for different chain lengths. A staggered magnetic field value
of hz = 0.005 has been used. Grey vertical lines in (a) indicate the positions of the critical points. (c) Projection of the time-

evolved state ψ0(t) onto selected eigenstates of the time-dependent Hamiltonian at the end of the time-evolution Ĥ(t = tmax).
The dark-purple curve shows the projection of ψ0 onto the initial state at t0. Panel (d) Time-dependence of selected matrix
elements bij , given by products of overlaps of the time-propagated ψ0(t) with the eigenstates of the instantaneous Hamiltonian

Ĥ(t) at time t. Panel (e) energy diagram showing the relevant energy levels dominating the dynamics. Some of the energy
levels are degenerate.

S4. LINDBLAD MASTER EQUATION

In Fig. S4, we present calculation results showcasing the influence of the decoherence rate on the QFI during non-
unitary time evolution (L = 10, hz = 0.005). The main non-equilibrium QFI features, i.e. the broad QFI maximum
and the subsequent oscillatory dynamics, are preserved for coupling strengths up to γ ∼ 0.1, and progressively fade
when γ > 0.1. The dissipative Lindblad jump operator acting on each site l is given by L̂(l) ≡ L̂z = σ̂z

l .

The QFI in the presence of decoherence is calculated by first propagating the density matrix ρ̂(t) obeying the initial
condition:

ρ̂(t0) = |ψ0(t0)⟩ ⟨ψ0(t0)| . (3)

The QFI is obtained as [6]:

FQ(t) = 2
∑
i,j

(
ϵit − ϵjt

)2

ϵit + ϵjt

∣∣∣⟨φi
t| Ôπ |φj

t ⟩
∣∣∣2 , (4)

where ϵit and |φi
t⟩ are the eigenvalues and the eigenvectors of ρ̂ at time t.
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50 0 50 0

FIG. S4. (a)-(c) Density matrix purity as a function of effective nearest-neighbour Coulomb repulsion and ramp speed. The
decoherence rate is set to γ = 0.005 in panels (a)/(d), to γ = 0.05 in (b)/(e), and to γ = 0.1 in (c)/(f). (d)-(f) Non-equilibrium
QFI in the presence of decoherence for three different decoherence rates γ, displayed as a function of the effective nearest-
neighbour Coulomb repulsion and ramp speed. The colormap is normalized with respect to the unitary QFI density, shown in
Fig. 2a of the main text.

S5. KIBBLE-ZUREK ANALYSIS OF THE NONEQUILIBRIUM QFI

The nonequilibrium QFI dynamics (see. Fig. 2a of the main text) of the spinless fermion chain subject to a linear
ramp can be broadly divided into three regions depending on the ramp velocity. These regimes can be delineated
by tracking the time (t∗) or the effective nearest-neighbour Coulomb interaction (V (t∗)) which maximize the time-
dependent fQ at a given ramp speed v . The resulting curve (s. white line in Fig. 2a or Fig. S5a-c) effectively tracks
the position of the main QFI “crest” as it propagates towards larger V (t∗) (smaller t∗) on increasing the ramp speed.
The positions of the maxima are extracted by fitting a skewed Voigt distribution to the time profile of fQ at each
velocity in a region centered around the main peak.

The two limiting cases are defined by the adiabatic (v < 0.03, cf. Fig. S5a) and the nonadiabatic (v > 3.5, cf.
Fig. S5b-c) limits, separated by an intermediate region. Whereas the onset of the non-adiabatic region is rather
sudden and well-marked by a “kink” in the v−V (t∗) resp. v− t∗ plots in Fig. S5b-c, the separation between adiabatic
and intermediate regions is rather fluid. In the deep adiabatic regime, the position of the fQ-maximum is weakly
dependent on the driving speed, and the driven system essentially traces out the equilibrium phase diagram. This
regime (illustrated for v = 0.001 in Fig. S5d) holds as long as excitations to the first excited state on crossing the
critical point ∆ = 1 can be neglected, i.e. bij ≈ δ0,iδ0,j for the entire time evolution. Examining the time-resolved data
underlying Fig. 2a, we estimate a value of v∗,1 ∼ 0.03 for the maximum ramp speed that warrants purely adiabatic
evolution before oscillations due to excitations to the first excited state develop. Invoking simple Landau-Zener (LZ)

arguments, we can estimate the corresponding excitation probability to the first excited state as P01 = 1− e−
πδ̃∆2

01
2v ,

where δ̃ is a constant related to the rate of change of the gap at ∆ = 1 as a function of the critical parameter V (t). The
threshold for the breakdown of adiabaticity in the LZ picture (∆2

01 ≈ v|d∆01/dV |), however, largely overestimates
v∗,1, indicating a more complex behaviour.

For ramp velocities above v∗,1 but not exceeding v∗,2, the dynamics falls into the intermediate regime, characterized
by an extensive scaling of the QFI density fQ ∼ L in the unitary evolution case. Due to the rapidly oscillating and
saturating behaviour of fQ, the corresponding maxima could not be extracted for velocities ranging from 0.175 up to
shortly before the onset of the non-adiabatic region v∗,2 ∼ 3.5 (cf. square/diamond symbols in Fig. S5b-c). Here, the
dynamics are mainly governed by the ground and the first excited states of the system, as one can deduce from the
dominant bij-coefficients in Fig. S5e. Recalling that in the presence of the staggered magnetic field of amplitude hz
the ground state at t0 is dominated by one of the two Néel configurations, creating excitations across the gap mixes
the wavefunction with the state where the other Néel is dominant. The resulting superposition contains these two
components with a similar amplitude, hence the growth of the entanglement.

The non-adiabatic regime has a sharply delineated onset, marked by a rapid change of the slopes of ∆v/∆V (t∗)
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(a) (c)

(d) (f)

(b)

(e)

FIG. S5. (a)-(c) Positions of the maxima of the time-dependent QFI density fQ as a function of the ramp velocity, displayed as a
function of the effective nearest-neighbour Coulomb repulsion [panels (a) and (b)] or time (c). Points falling into the adiabatic
and (partially) to the “intermediate” regime are shown in panel (a). Panels (b) and (c) show the “intermediate” and the
non-adiabatic regions on a double-logarithmic scale. The onset of the non-adiabatic regime is manifested by a marked change
in the slope of the curves (see text). The symbols indicate the positions of the three different ramp velocities corresponding to
the data in the bottom row. (d)-(f) Time-dependent matrix elements bij , given by products of overlaps of the time-propagated

ψ0(t) with the eigenstates of the instantaneous Hamiltonian Ĥ(t) at time t, shown for three different velocities (see legends).

resp. ∆v/∆t∗. The nonadiabatic limit commences when the probability of an excitation to the higher-lying states (in
particular j = 5 for the L = 10 chain) exceeds the corresponding excitation fraction to the first excited state j = 1
(cf. Fig. S5f), leading to proliferation of defects. As visible in Fig. S6, the dynamics of the defect proliferation closely
follows the dynamical QFI, and we therefore we track the temporal maximum of fQ as a function of the ramp velocity
and interpret the results with the aid of a KZ scaling analysis. In this regime, the maximum of the QFI density follows
a regular behaviour, and its functional dependence can be extracted by fitting the corresponding slopes in Fig. S5b-c:
V (t∗) ∝

√
v resp. t∗ ∝ v−1/2. The exact values of the slopes are 0.5295± 0.0009 and −0.5937± 0.0019, respectively.

With the aid of the critical exponents of the system at ∆ = 1, we can relate the scaling of the entanglement jet to
the corresponding scaling of the density of defects in a Kibble-Zurek type of analysis:

dKZ ∝ a0
ξ0

(τ0v)
1/2

, (5)

where a0, ξ0, τ0 are the characteristic length scale, correlation length, and relaxation rate of the system. Note that
a KZ-analysis has a limited validity at the phase transition at the ∆ = 1 critical point is of BKT type instead of a
second-order one.
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(a) (b)

(c) (d)

FIG. S6. Relation of the dynamical QFI density to the time evolution of the integrated density of states for four representative
ramp velocities: v = 0.005 (a), v = 2.0 (b), v = 10.0 (c), and v = 50.0 (d). Each panel shows the integrated density of defects
(color) plotted against the corresponding fQ(t) at that velocity (black).

S6. NONEQUILIBRIUM QFI IN PRESENCE OF NEXT-NEAREST-NEIGHBOR INTERACTIONS

Finally, we corroborate the stability (or universality) of the nonequilibrium QFI features by also considering the
role of additional interactions, that break integrability in the infinite system [7]. We specifically study the dynamical
QFI for the spinless fermion chain at half-filling (Eq. (1)) with the inclusion of next-nearest-neighbor interactions of

the form Ĥ(2) = V (2)
∑

l ñlñl+2. The results presented in Fig. S7c for a second-order coupling of V (2) = 2 illustrate
that the main traits of the nonequilibrium QFI dynamics are preserved. Importantly, this observation underscores
the generic character and robustness of our main findings and suggests that they should be observable across many
different experimental platforms, irrespective of microscopic details.

(a) (b)

FIG. S7. (a) Non-equilibrium QFI for a Heisenberg chain featuring additional next-nearest neighbour interaction term Ĥ(2)

as a function of the nearest-neighbour Coulomb repulsion and the ramp speed. (b) Selected 1D line cuts for several ramp
velocities.
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S7. DYNAMICAL QFI AND ORDER PARAMETER

In this section, we compare the dynamical QFI density to the time evolution of the order parameter of the LL →
CDW phase transition, i.e. the staggered magnetization Mstagg(t). In Fig. S8, we present the dynamical behaviour
of Mstagg(t) for a L = 10 chain subject to a time-dependent nearest-neighbor linear interaction ramp V (t) and
including a small staggered magnetic field hz = 0.005. We choose four representative ramp velocities spanning the
adiabatic, intermediate, and impulsive interaction regimes. The behaviour of the two quantities fQ(t) and Mstagg(t)
displays qualitative similarities in the intermediate and impulsive regions, but vast discrepancies in the adiabatic limit.

(a) (b)

(c) (d)

v=0.05 v=0.175

v=10.0 v=50.0

FIG. S8. Relation of the dynamical QFI density to the time evolution of the order parameter of the LL → CDW phase transition
for four representative ramp velocities: v = 0.05 (a), v = 0.175 (b), v = 10.0 (c), and v = 50.0 (d). Each panel shows the
staggered magnetization Mstagg(t) (color) plotted against the corresponding fQ(t) at that velocity (black). The calculations
are performed for a chain of size L = 10 and a staggered magnetic field of hz = 0.005.

Due to the presence of the additional staggered magnetization term hz, Mstagg(t) saturates to a finite asymptotic
value in the CDW phase and does not exhibit a maximum at the critical point for adiabatic ramps (cp. Fig. S8a). In
the absence of an additional staggered magnetic field, Mstagg(t) evaluates to zero irrespective of the ramp velocity
due to the canceling contributions from the degenerate Néel states.

Overall, the staggered magnetization reaches its maximum value for adiabatic ramps. In the intermediate, “critical”
region, where fQ is superextensive (fQ ∼ L), Mstagg saturates at a lower value with respect to the adiabatic case
(Fig. S8b). In the impulsive limit (panels c and d), the position of the first QFI crest is mirrored in a maximum in the
staggered magnetization. The subsequent fast oscillations of the two quantities are phase-synchronized at first, but
slowly go out of phase with progressing time. Furthermore, the periodicity of the slow oscillatory motion is completely
different in both cases. More importantly, for fast ramps v ≥ 40, the staggered magnetization remains very small
(Mstagg < 0.05) throughout the entire time evolution. In contrast, the QFI density reaches values exceeding the
classical bound for all considered ramp velocities.

S8. QFI DYNAMICS AT FINITE TEMPERATURE

While the numerical results included in the main follow the evolution of a pure initial state, this assumption is
rarely fulfilled in macroscopic physical systems, where the starting point is often represented by a mixed state at
thermal equilibrium. To demonstrate the validity of our results also in the experimentally-relevant situation of mixed
initial states, we have calculated the dynamical evolution of the QFI under a linear interaction ramp starting from



S9
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(d) (e) (f)

FIG. S9. Non-equilibrium QFI for thermal states at various temperatures. Panels (a), (b), and (c) display the distribution of
the Boltzmann factors over the eigenstates of a L = 10 spinless fermionic chain for three different temperatures T/J : 0.01, 0.1,
and 0.25. Panels (d) - (f) show the non-equilibrium QFI density fQ for selected temperatures for the following three velocities:
v = 2.0 (d), v = 10.0 (e), and v = 40.0 (f). Note that the dynamics at T/J = 0.001 and T/J = 0.01 follow closely the pure
state dynamics such that the three curves are nearly coincident.

a thermal ensemble. In Fig. S9, we present numerical results for the Liouville-von-Neumann evolution of a L = 10
spinless fermionic chain subject to a nearest-neighbour Coulomb interaction quench at varying ensemble temperatures
(reported in terms of the ratio T/J) and for three representative ramp velocities. From these results, we can deduce
the following: first and most important, the main features of the pure-state QFI dynamics, i.e. the initial rise
of the system entanglement, the broad maximum, and the subsequent oscillatory structure – are preserved in this
mixed-state case, and the initial population of higher-lying states generally reduces the QFI density. For temperatures
up to T/J ∼ 0.01, this decrease is negligible. At higher temperatures (up to T/J ∼ 0.1), the QFI is increasingly
suppressed (while still exceeding the classical bound) and the features of its temporal evolution (such as the phase
of the oscillations) are preserved. Above T/J ∼ 0.2 the QFI decreases below the classical bound, thus preventing its
use as a multipartite entanglement witness.

These thermal states are directly relevant to real condensed-matter systems, where the mixed-state QFI can be
extracted via an integral of the dynamical susceptibility [6] as measured e.g. in inelastic neutron scattering experiments
[8, 9]. Typical values of the exchange constant J for the Mott-insulating model systems considered in this work
are on the order of few tenths of eV: e. g., 0.1 eV for ET− F2TCNQ [10], 0.17 eV for Sr2CuO3 [11], or 0.26 eV
for [Ni (chxn)2 Br]Br2 [11]. Given the thermal energy of 0.025 eV, this leads to T/J-values of 0.1 − 0.25 at room
temperature. At cryogenic temperatures (< 30 K), T/J can be suppressed by an order of magnitude. Thus, depending
on the exact material, the mixed state QFI for a thermal initial state under experimentally-relevant temperature
conditions closely follows the prototypical pure state evolution discussed in the main text.
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