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Quench-drive spectroscopy and high-harmonic generation in BCS superconductors
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In pump-probe spectroscopies, THz pulses are used to quench a system, which is subsequently probed by
either a THz or optical pulse. In contrast, third-harmonic generation experiments employ a single multicycle
driving pulse and measure the induced third harmonic. In this work, we analyze a spectroscopy setup where
both a quench and a drive are applied and two-dimensional spectra as a function of time and quench-drive
delay are recorded. We calculate the time evolution of the nonlinear current generated in the superconductor
within an Anderson-pseudospin framework and characterize all experimental signatures using a quasiequilibrium
approach. We analyze the superconducting response in Fourier space with respect to both the frequencies
corresponding to the real time and the quench-drive delay time. In particular, we show the presence of a transient
modulation of higher harmonics, induced by a wave mixing process of the drive with the quench pulse, which
probes both quasiparticle and collective excitations of the superconducting condensate.
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I. INTRODUCTION

The superconducting state of matter is characterized by
a variety of collective modes: These include, among others,
Higgs, Leggett, bi-plasmon, and Bardasis-Schrieffer modes
[1–11]. The study of these modes is currently being estab-
lished as a new field of collective mode spectroscopy, in the
sense that bosonic excitations of the condensate reveal in-
formation about the underlying superconducting ground state
and symmetry properties of the condensate itself [7,10,12,13].
The Higgs mode, for instance, can be used as a spectroscopic
tool to distinguish between different gap symmetries of un-
conventional superconductors [10].

The experimental study of collective superconducting
modes poses significant challenges. Due to particle-hole
symmetry, they generally cannot couple linearly to electro-
magnetic fields in the spatially homogeneous limit [3,14].
Instead, they are activated in a two-photon Raman-like pro-
cess [15,16]. Thus, the main signature of collective modes
consists of a renormalization of the nonlinear susceptibility,
which can be probed by nonlinear spectroscopic techniques,
such as high-harmonic generation, optical Kerr effect, and
nonlinear optical conductivity measurements [17–19].
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Generally, two distinct approaches exist to excite collective
oscillations of a superconductor: The first is to apply a short-
duration quench pulse, τ� < 1 (τ being the pulse duration
and � the energy gap), to suddenly shrink the supercon-
ducting gap and excite the system into an out-of-equilibrium
state [10]. The second approach uses a single longer pulse,
τ� � 1, to drive the material into a quasisteady excited state
[10,18,20].

Higher-dimensional spectroscopy techniques have been
used to study the nonlinear response of various materials
[21–24], but they have rarely been applied to superconduc-
tors [25]. Instead, for superconductors, most time-resolved
spectroscopies and theoretical studies have focused only on
either short quench pulses or a multicycle driving pulse
[5,26], without mixing them simultaneously. In the present
work, we study the full evolution of the nonlinear current in
the BCS superconducting state subjected to a spectroscopic
setup where both a quench and a drive pulse are applied
[Fig. 1(a)]. We show how the spectroscopic data can be clearly
analyzed in two-dimensional (2D) Fourier space (ω,ω�t ),
where the two frequency variables correspond to conjugates
of real time t and the pump probe delay �t , respectively.
While these spectra reduce to the aforementioned pump-probe
and third-harmonic generation (THG) experiments in certain
limits, we argue that quench-drive spectroscopy provides a
comprehensive way to experimentally extract information of
the nonlinear optical susceptibility and the spectrum of su-
perconducting collective modes. We stress that one of the
experimental advantages of the proposed quench-drive spec-
troscopy is that pulse frequencies need not be continuously
scanned across a range of frequencies to probe the system, in
contrast to simple driving protocols [27]. Instead, to achieve
frequency resolution and collective mode resonance, only the
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FIG. 1. Quench-drive spectroscopy. (a) Quench-drive spec-
troscopy setup. A single-cycle quench pulse and a multicycle drive
pulse excite both Higgs mode and quasiparticles, resulting in a third-
harmonic generation (THG) and a dynamical modulation of higher
harmonics. In addition, the driving pulse effectively quenches the
system, launching Higgs oscillations. In this illustration we show
the asymmetric driving pulse. (b) Representation of the frequency
spectrum of the quench pulse Aq(ω) (orange), centered at ω = ωq,
and the sum (SFG) and difference frequency generated (DFG) pulses
A2(ω) (green), centered at ω = 0 and ω = 2ωq, respectively. The
grey vertical line represents the position of the critical value 2�. In
the inset the real-time quench pulse is shown.

time delay between quench and drive pulses needs to be
swept.

To solve the equations of motion for a superconductor we
employ a pseudospin model, extended to describe the quench-
drive setup. This allows for the simulation of the evolution
of the order parameter as well a calculation of the current
induced in the superconductor [3,7]. In addition, we present
a diagrammatic approach to systematically interpret the two-
dimensional spectra.

The paper is organized as follows: In Sec. II we intro-
duce the quench-drive spectroscopy mechanism and explain
its features diagrammatically. In Sec. III we describe the theo-
retical background. We use the pseudospin model to solve the
Heisenberg equation of motion in the presence of an external
field for the time-dependent order parameter, and then calcu-
late the generated nonlinear current. In Sec, IV we show the
numerical results of the nonlinear current for the quench-drive
setup in a BCS superconductor. The discussion of results is
provided in Sec. V. Finally, we give a summary and outlook
on future applications and perspectives of quench-drive spec-
troscopy in Sec. VI.

II. QUENCH-DRIVE SPECTROSCOPY

We consider here a clean BCS superconductor without im-
purity scattering. We are interested in the nonlinear response
of the superconductor, which is of third order in the external
light field in materials with inversion symmetry. In particular,
the quasiequilibrium third-order current is determined by the
diamagnetic coupling to light, and its time-dependent expres-
sion reads [7,26,28]

j(t ) = A(t )(χρρ ∗ A2)(t ) (1)

where (B ∗ C)(x) = ∫
dy B(y)C(x − y) denotes a convolution

integral. The function χρρ is the effective density-density re-
sponse,

χρρ (t ) = −iθ (t )〈[ρ(t ), ρ(0)]〉, (2)

of the operator ρ = ∑
kσ

∂2εk
∂k2

x
c†

kσ
ckσ . For ease of notation,

we have assumed that all applied electromagnetic pulses are
polarized along the x direction, i.e., A = A x̂. In the general
case, where A can have arbitrary polarization, the density-
density response becomes a tensor whose structure encodes
additional information about material properties. A specific
case of cross-polarized pulses is discussed in Appendix C.

Within the BCS approximation, the gauge-invariant re-
sponse for a single-band model has been computed in various
references [3,15,26,28] and a general framework for pump-
probe experiments based on a quasiequilibrium effective
action formalism has been developed in Refs. [5,26]. The
density-density response is found to be peaked at the reso-
nance frequency 2� of the Higgs mode, where 2� is the
single-particle superconducting spectral gap. It was pointed
out, however, that the resonance peak in the density-density
response is the result of both single-particle contributions,
stemming from quasiparticle excitations, and collective mode
excitations. Importantly, it was shown that quasiparticles gen-
erally give the dominating contribution to the 2� peak in
the clean limit, making observation of the Higgs mode dif-
ficult [15]. Other collective modes of the condensate, such
as Leggett [5,29,30], Bardasis-Schrieffer [9,31], or other rel-
ative phase modes [13] do contribute significantly to the
density-density response and may even persist below the gap.
Additionally, the Higgs modes may achieve a sizable signal
in the presence of impurities [30,32–35] or due to additional
processes [36,37]. In the present work, we will not focus on
the attribution of spectral weight of the nonlinear response to
their various origins and instead discuss spectroscopic mea-
surement of the density-density response χρρ as a whole.

In Fourier space Eq. (1) can be expressed as

j(ω) = A ∗ [χρρ (A ∗ A)] =
∫ 3∏

i=1

dωi δ

(
ω −

∑
i

ωi

)

× A(ω1)χρρ (ω2 + ω3)A(ω2)A(ω3), (3)

where the δ function is a manifestation of energy conserva-
tion, i.e., the three photon frequencies ωi have to sum up to
the frequency ω of the induced current.

The susceptibility χρρ in Eq. (3) enters with a functional
dependence on the frequency variables ω2 + ω3. In general,
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the integration over these variables scrambles the resonance
spectrum of χρρ and no direct signature of collective modes
can be recovered from j(ω).

Two approaches to circumvent this problem exist.
First, one may choose A as a multicycle THz pulse of
the form

A(t ) = Ad (t ) = A0
d cos(ωdt + φ) e−t2/2τ 2

d (4)

with τdωd � 1 and ωd ∼ � such that it has a narrow fre-
quency spectrum of width τ−1

d centered around ±ωd . Then,
the integration variables are constrained to ωi ≈ ±ωd and the
susceptibilities are mostly evaluated at χρρ (0) and χρρ (±2ωd )
to yield the first or third harmonic, j(±ωd ) or j(±3ωd ). To
map out the functional dependence of χρρ one has to vary the
driving frequency ωd . This, however, is not easily achievable
experimentally. Instead, most current experiments fix the driv-
ing frequency ωd and instead attempt to shift the resonance
energies contained in χρρ . For a superconducting mode, this
is simply achieved by varying the temperature in the window
(0, Tc). The clear disadvantages of this method are that (1)
knowledge of the temperature dependence of the resonances
of χρρ is required, (2) only modes above 2ωd are visible, and
(3) thermal broadening effects are substantial.

The second approach consists of a pump-probe setup.
Here, we consider a pump-probe setup where, in addition to a
broadband quench pulse Aq, the multicycle drive pulse Ad is
utilized. The quench Aq has the same form as Eq. (4), but with
τq � 1/�. Further details of the pulse shapes are given in
Appendix B. The two pulses are delayed with respect to each
other by �t yielding the total field A(t ) = Aq(t + �t ) + Ad (t )
(see Figs. 1 and 9). In frequency space, this results in a phase
shift,

A(ω) = eiω�t Aq(ω) + Ad (ω)

=
∑

α=q,d

eiδα,qω�t Aα (ω), (5)

where we have introduced the notation δα,q = 1 for α = q and
zero for α = d .

In a nonlinear THz experiment, the current j(t ) is electro-
optically sampled as a function of t and Fourier transformed
numerically to obtain j(ω). Multiple such traces are recorded
for varied �t to assemble the 2D spectrum j(ω; �t ). Inserting
Eq. (5) into Eq. (3), we obtain

j(ω; �t ) =
∫ 3∏

i=1

dωi δ

(
ω −

∑
i

ωi

)

×
∑

α1,α2,α3=q,d

exp

(
i�t

3∑
i=1

δαi,qωi

)

× Aα1 (ω1)χρρ (ω2 + ω3)Aα2 (ω2)Aα3 (ω3), (6)

where we are summing over all combinations {αi} of quench
and drive pulse, Aq and Ad , respectively. We perform a Fourier

transform in the parametric time delay �t to obtain

j(ω; ω�t ) =
∫ 3∏

i=1

dωi δ
(
ω −

∑
i

ωi
)

×
∑

α1,α2,α3=q,d

δ

(
ω�t +

3∑
i=1

δαi,qωi

)

× Aα1 (ω1)χρρ (ω2 + ω3)Aα2 (ω2)Aα3 (ω3) (7)

We can represent the various terms in the sum over {αi}
diagrammatically as depicted in Fig. 2. Here, the current is
represented by a red wiggly line, and quench and probe pulses
are depicted by blue and black wiggly photon lines, respec-
tively. The density-density susceptibility χρρ is represented
by a fermionic bubble whose internal frequency we have
labeled ωn.

All external photon lines carry frequencies with profiles de-
termined by the experimental bandwidth of the pulses Aαi (ωi ),
where the directionality is marked by arrows of the photon
lines. The drive pulse will constrain the external frequencies
to ∼ ± ωd . In fact, we will be assuming a sufficiently narrow-
band drive pulse, τd � 1/�, such that we can approximate

Ad (ωi) ∼ δ(ωi − ωd ) + δ(ωi + ωd ). (8)

The key advantage of the pump-probe geometry lies in
the appearance of the second δ function in Eq. (7) that
introduces the experimentally accessible variable ω�t . We
can see this as follows. When α1 = d and α2 = α3 = q, the
δ function presents the constraint δ(ω�t + ω2 + ω3) and the
density-density correlation function is evaluated at χ (ω2 +
ω3) = χ (−ω�t ). Thus, χ can be pulled out of the integral in
Eq. (7) and the measured current is directly proportional to the
χρρ-response, whose frequency dependence can be mapped
out by sweeping ω�t . The diagrammatic representation of this
process is shown in Fig. 2(a). Making use of approximation
(8), it follows from energy conservation that the current is
nonzero only along the lines ω = ±ωd − ω�t in 2D frequency
space (ω,ω�t ), where j is given by

j(±ωd − ω�t , ω�t ) ∝ χρρ (−ω�t ). (9)

As similar discussion applies to the process depicted in
Fig. 2(b). Here, α1 = α3 = d and α2 = q. The susceptibility
is evaluated as χ (±ωd − ω�t ) and determined the current
along the lines ω = ±2ωd − ω�t and ω = −ω�t . Explicitly,
the current is

j(±2ωd − ω�t , ω�t ) ∝ χρρ (±ωd − ω�t ),

j(−ω�t , ω�t ) ∝ χρρ (ωd − ω�t ) + χρρ (−ωd − ω�t ). (10)

Figure 2(c) describes the usual THG process that is inde-
pendent of the quench. In 2D Fourier space it yields a signal
at ω�t = 0 at the first and third harmonic frequencies of the
drive, ω = ±ωd ,±3ωd , where the density-density suscepti-
bility is evaluated at fixed values 0,±2ωd .

The remaining diagrams of Fig. 2 can be separated into
two classes. In Fig. 2(d) χρρ only depends on ωd and the
discussion of the THG case applies. In Figs. 2(e) and 2(f)
the dependence of χρρ on integration variables ωi cannot be
removed. As a consequence, the resonance structure of χρρ is
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FIG. 2. Diagrammatic representation of the nonlinear processes. The wiggly lines represent photons: the black ones correspond from the
driving field Ad , the blue lines correspond to the quench pulse Aq, and the red line represents the generated current. Solid lines denote fermionic
bubbles that represent the nonlinear susceptibility χρρ . Due to the δ-function constraint in Eq. (7), all blue quench frequencies have to add up
to −ω�t . Energy conservation demands that all incoming frequencies add up to the frequency ω of the induced current.

washed out by integration and one obtains a mostly constant
signal for frequencies much smaller than the bandwidth of the
quench pulse.

In summary, we have shown that the signal j(ω,ω�t ) falls
onto diagonal lines ω = ±nωd − ω�t with n ∈ {0, 1, 2} in
2D Fourier space. From the 2D spectra, one can extract the
density-density response according to

j(±2m ωd − ω�t , ω�t ) ∝ χρρ (±ωd − ω�t )

+ c1, j(±ωd − ω�t , ω�t ) ∝ χρρ (−ω�t ) + c2, (11)

where m = {0, 1} and the ci denote the background signal that
is mostly constant in the limit of a broadband quench pulse.

III. MICROSCOPICAL DESCRIPTION

Having discussed the phenomenological structure of the
nonlinear response in a quench-drive experiment, let us
now microscopically investigate the response current of a
conventional clean superconductor subject to quench and
drive pulses. The solution is obtained solving the Bloch
equations derived from the pseudospin model of the BCS
Hamiltonian.

A. Equations of motion with quench-drive pulses

We write the BCS Hamiltonian using the pseudospin for-
malism [3,7,38,39] as

Ĥ =
∑

k

bk · σ̂k, (12)

with the pseudospin vector

σ̂k = 1
2 �̂

†
kτ�̂k, (13)

which is defined in Nambu-Gor’kov space, with spinor �̂k =
(ĉ†

k,↑ ĉ−k,↓) and the Pauli matrices τ = (τ1, τ2, τ3). The
pseudomagnetic field is defined by the vector

bk = (−�′ fk,−�′′ fk, εk ), (14)

where εk = ξk − μ, ξk being the fermionic band dispersion, μ
the chemical potential. The superconducting order parameter
�k = � fk = (�′ + i�′′) fk satisfies the gap equation

�k = � fk = V fk

∑
k′

fk′ 〈ĉ−k′,↓ĉk′,↑〉. (15)

Here, V is the pairing strength, and fk the form factor of the
superconducting order parameter. For s-wave pairing one has
fk = 1.

In the presence of an external field represented by
the vector potential A(t ), the pseudospin changes in time
according to

σk(t ) = σk(0) + δσk(t ), (16)

with σk = 〈σ̂k〉 and δσk(t ) = (xk(t ), yk(t ), zk(t )). The exter-
nal electromagnetic field is included in the pseudomagnetic
field by means of the minimal substitution k → k − eA(t ) in
the fermionic energy, resulting in

bk(t ) = ( − �′(t ) fk,−�′′(t ) fk, (εk−eA(t ) + εk+eA(t ) )/2).

(17)

The Heisenberg equation of motion for the pseudospin can be
written in Bloch form, ∂tσk = 2bk × σk, providing the set of
differential equations

∂t x(t ) = −(εk−eA + εk+eA)y(t ) − fk

Ek
εkδ�

′′(t )

+ 2δ�′′(t ) fkz(t ),

∂t y(t ) = 2εkx(t ) + 2[� + δ�′(t )] fkz(t ) (18)

− δ�′(t ) fk
εk

Ek
+ � fk

2Ek
(εk−eA + εk+eA − 2εk ),

∂t z(t ) = −2 � fk y(t ) − � f 2
k

Ek
δ�′′(t ) − 2δ�′′(t ) fkx(t ),
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where δ�(t ) = δ�′(t ) + i δ�′′(t ) is the time-dependent vari-
ation of the order parameter induced by the external field, such
that �(t ) = � + δ�(t ). Here, we assumed a real order param-
eter at the initial time t = 0, so that y(0) = 0. The solution
of Eq. (18) provides the time-dependent evolution of pseu-
dospins, from which the time-dependent order parameter �(t )
and the generated current j(t ) can be calculated. A detailed
derivation of the equations of motion is given in Appendix A.

B. Nonlinear current

The current generated by the superconductor in this
quench-drive setup is given by the general expression

j(t,�t ) = e
∑

k

vk−eA(t,�t )〈n̂k(t,�t )〉, (19)

where the velocity is calculated as vk−eA(t,�t ) = ∇kεk−eA(t,�t ),
and the charge density is defined as 〈n̂k(t,�t )〉 = 〈ĉ†

k,↑ĉk,↑ +
ĉ†

k,↓ĉk,↓〉(t,�t ). We can expand the velocity as a function
of the vector potential A(t,�t ), and expand the current in
powers of the external field. The first nonvanishing term of the
nonlinear current jNL(t,�t ) generated by the driving pulse is
the third-order component

j(3)(t,�t ) = −2e2
∑

k

∑
i=x,y

A(t,�t ) · ri ∂ki vk zk(t,�t ),

(20)

where zk(t,�t ) is the third component of the pseudospin
vector σk(t,�t ), that contains the information of the state of
the system perturbed by the quench pulse. The unit vector ri,
i = x, y, represents the two directions along which the output
current is measured.

IV. NUMERICAL RESULTS

We now present the results obtained from the numeri-
cal implementation of time-dependent Bloch equations de-
scribed in the previous section, solved by means of a
Runge-Kutta-4 algorithm without linearization or further
analytical approximations. We used the fermionic band dis-
persion εk = −2t (cos kx + cos ky) at half filling, setting the
lattice constant a = 1. The point μ = 0 is special in the sense
that it has perfect particle-hole symmetry as well as a van
Hove singularity at the Fermi level. But from the viewpoint
of collective modes, this symmetry point does not bear any
special significance other than presenting a local minimum of
the Higgs contribution compared to single-particle excitations
in the nonlinear response [15].

We used the values of t = 125 meV for the nearest-
neighbor hopping energy, s-wave order parameter �0 =
15.8 meV (corresponding to a frequency of 3.82 THz), and
a summation over the full Brillouin zone with a square
sampling and a total number of Nk = 106 points. For the time-
dependent evolution we used a time step of δt = 3 × 10−4 ps,
and for the quench-drive delay δ�t = 2.5 × 10−2 ps. For the
quench we used a few -cycles pulse with central frequency
ωq = 4.77 THz, while for the driving we used an asymmetric
pulse with central frequency ωd = 4.3 THz, so that both sat-

FIG. 3. Time-delay two-dimensional plot of the generated non-
linear current. 2D plot of the nonlinear output current jNL (t,�t )
generated by the driven superconductor, as a function of real time
t and the quench-drive delay time �t . The narrow diagonal stripes
are generated by the quench, while the vertical ones are the response
to the drive pulse. The intersection provides a wave mixing pattern
for t, �t ∈ [0, 2] ps. Here we used the asymmetric drive pulse, with
quench and drive pulse frequencies respectively ωq = 4.77 THz and
ωd = 4.3 THz.

isfy the condition ωq(d ) < 2�. Both pulses were considered
linearly polarized along the x direction, while the maximum
amplitudes of the electric field of quench and drive pulses
were Eq = 10.5 kV/cm and Ed = 4.7 kV/cm, respectively,
assuming a value for the lattice constant of a = 3 Å. For more
details on the pulses used, see Appendix B. In Appendix C we
analyze the 2D spectra for the case of cross polarization of the
two pulses, while in Appendix D we show additional results
that were computed using a symmetric Gaussian driving pulse
instead of an asymmetric one.

A. Two-dimensional quench-drive spectroscopy

We solved the time-dependent equation of motion in the
quench-drive spectroscopy setup using the pseudospin model,
and calculated the nonlinear current generated by the conden-
sate as described in the previous section. The result plotted as
a function of the real time evolution t and the quench-drive
delay time �t , which is measured as the interval between
the maximal peaks of the envelopes of the two pulses (see
Appendix B for more details on the pulse shapes), is shown
in Fig. 3. We notice that the diagonal line signifies the arrival
of the quench pulse, which overlaps with the drive for times
t = �t in the range t,�t ∈ [0, 2] ps. In this region the re-
sponse is modulated as a function of the delay time �t .

Next, we Fourier transform the real time variable t into
the frequency ω. In Fig. 4 we show the nonlinear generated
current intensity as a function of the quench-drive delay time
�t , namely | jNL(ω,�t )|. We notice that both the first and
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FIG. 4. Frequency-time delay two-dimensional plot of the gen-
erated nonlinear current. 2D plot of the nonlinear current jNL (ω,�t )
generated by the driven superconductor, as a function of relative
frequency ω/ωd (with driving frequency ωd = 4.3 THz) and the
quench-drive delay time �t . This corresponds to a Fourier transform
in the horizontal direction in Fig. 3. The fundamental (ω = ωd =
4.3 THz) and third (ω = 3ωd = 12.9 THz) harmonics are both
modulated in the delay time �t .

third harmonics of the fundamental driving frequency ωd are
modulated in delay time �t , with maximum intensity in the
interval 0 ps � �t � 2 ps, which corresponds to the range
of interference between the quench and the drive pulses, as
shown in Fig. 3. Additionally, the signal intensity does not
vanish away from ωd and 3ωd , where we instead observe
a striped pattern, with each intensity line tilted towards the
central time �t = 1 ps.

These features can be more readily interpreted by plotting
the 2D Fourier transform of the current, i.e., as a function of
the frequency ω and the delay-time frequency ω�t , respec-
tively, shown in Fig. 5. In particular, we notice the first and

FIG. 5. Two-dimensional Fourier-transformed plot of the non-
linear current. 2D plot of the generated nonlinear output current
intensity jNL (ω,ω�t ) as a function of the real frequency ω and
the quench-drive delay frequency ω�t . It corresponds to the two-
dimensional Fourier transform of the data in Fig. 3. The vertical
response at ω�t = 0 corresponds to the quench-free superconducting
signal, namely the high-harmonic generation due to the driving field.
The diagonal lines, instead, represent the transient modulation of the
higher harmonics due to the quench-drive wave mixing.

FIG. 6. Driven high-harmonic generation. Plot of the generated
nonlinear (continuous line) and total (dashed line) current as a
function of frequency, jNL (ω) and jtot (ω), respectively. This plot
corresponds to a vertical cut in Fig. 5 along ω for ω�t = 0. The
peaks at ω = ωd = 4.3 THz and ω = 3ωd = 12.9 THz correspond
to the fundamental and third harmonics, respectively. The smaller
peak at ω = 12 THz corresponds to the transient excitation of Higgs
and quasiparticles with ω = ωd + 2�, due to the asymmetric driving
pulse.

third harmonics as strong peaks in the central vertical line,
at ω�t = 0, which corresponds to the equilibrium response of
the driving pulse in the absence of the quench. Note that it
is sufficient to plot two quadrants of the nonlinear current in
2D frequency space, since it follows from j(t,�t ) ∈ R that
j(ω,ω�t ) = j(−ω,−ω�t ).

The modulations in �t appear here as broad diagonal
lines in 2D frequency space as expected from Eq. (11).
These features correspond to a dynamically generated four-
wave mixing signal due to both the quench and the drive
pulses.

B. High-harmonic generation and transient excitation of the
superconductor

To clearly distinguish the shape and position of the peaks
observed in the frequency 2D plot, we performed one-
dimensional cuts of Fig. 5 along various lines. Fig. 6 shows
the plot along the vertical line at ω�t = 0. This corresponds
to an equilibrium high-harmonic generation due to the driving
pulse only. We observe a first harmonic peak at ωd and a
third harmonic signal at 3ωd . Measurement of the temperature
dependence of the THG peak would correspond to a usual
THz THG experiment. The intensities of the fundamental and
third harmonics (continuous line) are of the same order, since
only the third order is plotted. The total current has a dominant
linear first harmonic response (dashed line). In addition to the
first and third harmonics, however, we notice the presence of
an additional shoulder peaks at a frequency ω = 2� + ωd and
at ω = 2� − ωd . These are the result of the intrinsic Higgs
and quasiparticle resonance at 2� [40] in conjunction with
a wave-mixing process with a driving photon of frequency
±ωd .

In Fig. 7 we show the prototypical case of a horizontal
cut in Fig. 5 along ω = 3ωd . The peak at ω�t/ωd = 0 is the
equilibrium third harmonic, visible in Fig. 6, while the smaller
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FIG. 7. Transient modulation of higher harmonics. Frequency-
resolved spectral weight of the third harmonic current as a function
of ω�t , jNL (ω�t , ω = 3ωd ). This corresponds to a horizontal cut in
the 2D Fourier-transform plot in Fig. 5 along ω�t at ω = 3 ωd . It
is possible to identify a transient modulation at frequencies −ωd ,
−2ωd , and −3ωd .

peaks at ω�t/ωd = −1,−2,−3 stem from the modulation
of the third harmonic due to the quench. Additional smaller
peaks appear in Fig. 4 as a modulation in the delay time �t
of the third harmonic, giving rise to the characteristic striped
pattern.

Figure 8 corresponds to a diagonal line in the 2D plot
of Fig. 5 passing through the point ω�t = 0, ω = ωd , and
projected along the ω�t axis. The peak at ω�t = 0 is the
signal of the first harmonic. Of particular interest is the peak at
ωD = −2�, which is a direct consequence of the quasiparticle
resonance at ±2�, represented by the process in Fig. 2(d).
Due to the wave mixing of the quench and the drive, we have
here isolated the intrinsic superconducting response with the
characteristic frequency of 2�.

Moreover, the peaks in Fig. 5 along the diagonals placed
at ω�t = −2� + ωd are resulting from the process repre-
sented by the diagram in Fig. 2(b), and they disappear
when quench and drive have perpendicular polarization,

FIG. 8. Transient excitation. This plots corresponds to a diagonal
cut in the 2D Fourier-transform plot in Fig. 5 along the line ω =
−ω�t + ωd . It is possible to identify a peak at a frequency ω�t =
−7.7 THz = −1.8ωd = −2�0.

since the corresponding interaction vertex vanishes (see
Appendix C).

V. DISCUSSION

We can understand all features in the spectrum shown in
Fig. 5 by considering each of the diagrams in Fig. 2 that rep-
resent the induced current expanded to third order in various
combinations of powers of Ad and Aq. The equilibrium THG
signal proportional to A3

d has to be independent of �t and
therefore falls onto the vertical line ω�t = 0 in the 2D spec-
trum j(ω,ω�t ). This is represented by the diagram Fig. 2(c),
where only the driving field acts on the condensate, and the
current spectrum can be described as a function of real-time
evolution as in Fig. 6. Interestingly, we also notice that, in
addition to the aforementioned fundamental and third har-
monics, a shoulder peak of the third harmonic at a frequency
ωd + 2� appears when the driving pulse is asymmetric and
not Gaussian shaped (see Appendix D for the data with the
symmetric envelope). This is the direct consequence of the
effective quench induced by the driving, which launches free
Higgs oscillations alongside the quasiparticle contribution and
enhances the intensity of the nonlinear susceptibility at ωH =
2� [3,7,36]. In principle, a THG experiment for a single
temperature would suffice to identify the collective mode res-
onance. However, this approach strictly relies on the condition
2� ≈ 2ωd and is specific to the asymmetric pulse shape [36]
(see also Appendix D).

The processes described by diagrams (a), (b), and (d)–(f)
in Fig. 2, which involve at least one photon of the quench, are
responsible for the signals along diagonal lines ω = ±nωd −
ω�t with n ∈ {0,±1,±2}. The spectral window in which
these lines can be observed are related to the bandwidth of the
quench pulse. Here, we differentiate between even and odd
n. Odd diagonal lines show a peak at ω�t = −2� and even
diagonals are peaked at ω�t = ωd − 2�. This is expected
from Eq. (11) since the susceptibility χρρ is peaked at 2�

for the modeled single-band superconductor. From Eq. (11),
we would additionally expect a peak at ω�t = −ωd − 2� for
the line at n = −2. However, while the diagonal n = −2 line
in principle is present, its spectral weight is negligibly small
within the corresponding frequency range. Note that diagonal
lines at ±n are related by frequency inversion j(ω,ω�t ) =
j(−ω,−ω�t ).

By inspecting the 2D spectrum in Fig. 5, it is now
straightforward to extract the resonances of the nonlinear
susceptibility χρρ . In our case, we observe the four peaks
on the diagonal lines from which we extract the value 2�.
If the superconducting condensate supports additional col-
lective modes that nonlinearly couple in the electromagnetic
response, their mode frequencies can be readily extracted
as well.

VI. CONCLUSION AND OUTLOOK

In this work we proposed and analyzed a pump-probe
spectroscopy setup on conventional clean superconductors
with a combination of a single-cylce THz quench pulse and
a multicycle driving THz probe field. We used a numerical
approach based on the Anderson-pseudospin model to solve
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FIG. 9. Quench and drive pulses. Plot of the amplitude of the vector potential A corresponding to the quench (top left, frequency ωq =
4.77 THz) and drive pulses used in the calculations: the asymmetric drive pulse (center left) and Gaussian shaped drive pulse (bottom left)
have a frequency ωd = 4.3 THz. On the right their Fourier spectrum in frequency is shown: the asymmetric drive has a sharp peak in frequency
with a slower decay, while the Gaussian-shaped drive is narrower in frequency.

the equations of motion and to calculate the generated nonlin-
ear current. In addition, we investigated the nonlinear optical
processes by means of a diagrammatic approach to interpret
and explain the obtained results.

In particular, we showed that, in addition to the usual third
harmonic generation measured in driving experiments, addi-
tional features are obtained in a two-dimensional spectrum of
the nonlinear generated current. These features are manifest as
diagonal lines in 2D frequency space of the time and pump-
probe delay and allow for a direct extraction of resonances
in the nonlinear susceptibility. The susceptibility encodes the
intrinsic superconducting response of the quasiparticles and
resonances of transient excitation of the Higgs mode.

The advantage of a two-dimensional analysis of quench-
drive spectroscopy is manifest in the possibility of scanning a
wider frequency spectrum at one time, with fixed parameters
of quench and drive pulses, by scanning the quench-drive de-
lay time. In addition, with the present setup the quench pulse
allows one to push the system out of equilibrium, quenching
and shrinking the superconducting gap, allowing the driving
pulse to probe different states of the superconductor, resulting
in different peak profiles and positions in the 2D frequency
spectra.

It is also interesting to examine the possibility of extend-
ing the quench-drive spectroscopy framework to the case of
cuprates, which exhibit a different symmetry of the order
parameter in momentum space, and preformed phase-
incoherent Cooper pairs [41], which can reveal more infor-
mation on the competing orders and their symmetries.

All in all, we believe that this work can pave the
way towards coherent time-dependent multidimensional spec-
troscopy on superconductors in the THz regime. A full
two-dimensional pump-pump-probe spectroscopy with co-
herent pulses will be the focus of a future work. Its

possibilities range from coherent control of superconductors
to the study of competing orders, such as superconductivity,
charge-density wave, and biplasmon among others [21,42].
Other systems where the Higgs response is known to be

FIG. 10. Nonlinear current spectra for cross-polarized pulses.
2D Fourier transform of x (top) and y components (bottom) of
the nonlinear current response for cross-polarized quench (linearly
polarized along the x axis) and drive (linearly polarized along the
y axis).
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FIG. 11. Nonlinear current along the x axis: traces from the 2D Fourier transform. Left: Nonlinear current as a function of the frequency
ω, obtained with a trace along the vertical axis from the left plot in Fig. 10. Right: Nonlinear current as a function of ω�t with the constraint
ω = ωd − ω�t , obtained from a diagonal cut passing by the fundamental harmonic of the left plot in Fig. 10.

enhanced, such as cuprates, could be interesting to inves-
tigate with this spectroscopic approach, to efficiently study
the transient nonequilibrium response of quasiparticles and
the Higgs mode and to unveil the features of their rich
phase diagram.
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APPENDIX A: PSEUDOSPIN MODEL

In this Appendix we will derive the equations of motion
for the order parameter within the pseudospin formalism. We
note that all results shown in the paper are computed within a

FIG. 12. Two-dimensional Fourier-transformed plot of the non-
linear current. 2D plot of the generated nonlinear output current
intensity jNL (ω,ω�t ) as a function of the real frequency ω and
the quench-drive delay frequency ω�t . It corresponds to the two-
dimensional Fourier transform of the data in Fig. 3. The vertical
response at ω�t = 0 corresponds to the quench-free superconducting
signal, namely the high-harmonic generation due to the driving field.
The diagonal lines, instead, represent the transient modulation of
the higher-harmonics due to the quench-drive wave mixing. The
symmetric Gaussian shaped driving pulse was used here.

fully numerical approach that does not rely on any numerical
approximation.

We first write the BCS Hamiltonian using the pseudospin
formalism as

Ĥ =
∑

k

bkσ̂k, (A1)

with the pseudospin

σ̂k = 1
2 �̂

†
kτ�̂k, (A2)

τ = (τ1, τ2, τ3) being the vector of the Pauli matrices τi=1,2,3,
and the pseudomagnetic field

bk = (−�′ fk,−�′′ fk, εk ), (A3)

using the gap equation

�k = � fk = V fk

∑
k′

fk′ 〈ĉ−k′,↓ĉk′,↑〉. (A4)

Here ĉ is the electronic annihilation operator, fk is the super-
conducting form factor, εk is the electronic band dispersion.
In the presence of an external field represented by the vector
potential A(t ), we get

σk(t ) = σk(0) + δσk(t ), (A5)

with δσk(t ) = (xk(t ), yk(t ), zk(t )), and

bk(t ) = ( − �′(t ) fk,−�′′(t ) fk, εk−eA(t ) + εk+eA(t )). (A6)

The equation of motion for the pseudomagnetic field can
be written in Bloch form, ∂tσk = 2bk × σk. We now write
the three components of the Bloch equation by apply-
ing to the time-dependent pseudospin the ansatz described
above:

σx(t ) = σ eq
x + x(t ),

σy(t ) = y(t ),

σz(t ) = σ eq
z + z(t ), (A7)

with σ
eq
y = 0 under the assumption of real order parameter,

σ
eq
x = �/(2Ek ), σ

eq
z = −εk/(2Ek ), where the quasiparticle

energy dispersion is Ek =
√

ε2
k + �2 f 2

k .
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Thus, the Bloch equations result in

∂t x(t ) = −(εk−eA + εk+eA)y(t ) − fk

Ek
εkδ�

′′(t )

+ 2δ�′′(t ) fkz(t ),

∂t y(t ) = 2εkx(t ) + 2(� + δ�′(t )) fkz(t ) − δ�′ fk
εk

Ek

+ � fk

2Ek
(εk−eA + εk+eA − 2εk ),

∂t z(t ) = −2 � fk y(t ) − � f 2
k

Ek
δ�′′(t ) − 2δ�′′(t ) fkx(t ).

(A8)

with A(t ) = Aq(t ) + Ad (t ), δ�(t ) = δ�′(t ) + i δ�′′(t ) being
the time-dependent variation of the order parameter induced
by the external field, such that �(t ) = � + δ�(t ). We intro-
duce now the quench-drive delay time �t = td − tq, which
measures the time distance of the peaks of the two pulses, and
we put td = 0, so that we can rewrite A(t ) = Aq(t + �t ) +
Ad (t ).

APPENDIX B: QUENCH AND DRIVE PULSES

As mentioned in the main text, in the quench-drive setup
we adopted three different kinds of pulses: a few-cycles
quench, and two different kind of drives, either asymmetric or
with a Gaussian envelope profile (Fig. 9), all of them polarized
in x direction (due to the symmetry of the superconductor
order parameter, this assumption can be made without loss of
generality).

The quench pulse is characterized by a very few cycles and
its vector potential can be written as

Aq(t ) = A0
q e−(t−tq )2/τ 2

q cos [ωq(t − tq)], (B1)

with τq = 0.1 ps and the quench central frequency ωq =
4.77 THz.

The asymmetric driving pulse is defined by the expression

Ad (t ) =
⎧⎨
⎩A0

d

sin [ωd (t − td )]

1 + (t − td )2
(t − td )e−(t−td )/τd for t � td ,

0 for t < td ,
(B2)

with τd = 2 ps and the driving central frequency ωd =
4.3 THz. The driving pulse reaches its maximum intensity
after ≈ 1 ps, and then slowly decays within ≈ 5 ps. Therefore,
the initial part of the drive acts as an effective quench on the
superconductor, while the its decay drives the condensate and
its collective modes.

Similarly to the quench pulse, the time-symmetric drive
with Gaussian envelope is

Ad (t ) = A0
d e−(t−t0 )2/τ 2

d cos [ωd (t − t0)]. (B3)

APPENDIX C: CROSS POLARIZATION OF QUENCH
AND DRIVE PULSES

So far, we have analyzed the setup with parallel linearly
polarized quench and drive pulses along the x axis. For s-wave
BCS superconductors, the direction of the polarization of the
pulses is arbitrary and does not affect the results, as long as
the polarization is kept parallel.

FIG. 13. High-harmonic generation and transient modulation
with Gaussian drive. Top: nonlinear current jNL (ω) at ω�t = 0. In
contrast to Fig. 6, no peak at ω = 2� + ωd is present in this case.
Center: nonlinear current modulation as a function of the quench-
drive frequency ω�t , jNL (ω�t , ω = 3ωd ). This corresponds to Fig. 7
using the Gaussian envelope for the drive pulse. Bottom: jNL (ω�t )
obtained with the condition ω = −ω�t + ωd , equivalent to Fig. 8.

In this section, we study the case of nonparallel quench
and drive pulses. The drive is fixed along the x axis and the
quench is linearly polarized along the y axis. We calculate
the output current along the two orthogonal axes x and y. The
corresponding spectra are plotted in Fig. 10 as a function of
ω and ω�t . The fundamental and third harmonic signals are
still present in the Fourier transform of the current along x,
together with the side peaks at 2� ± ωd . Along the diago-
nals, the peaks at ω�t = −2�0 + ωd are absent, as shown
in Fig. 11 (in contrast to the parallel polarization, as shown
in Fig. 8), while the ones located at ω�t = −2�0 are still
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present. This is due to the fact that the quench and the drive
cannot interact in the same vertex as in Fig. 2(b) since they
act on perpendicular directions, while the contribution of two
quench pulses, which provides a peak at a frequency of −2�0

[as in Fig. 2(d)], can still take place.

APPENDIX D: SYMMETRIC GAUSSIAN-SHAPED
DRIVING PULSE

Here, we repeated the same calculations of the nonlinear
current generation in the quench-drive spectroscopy setup as

in the main text, but using a symmetric Gaussian envelope
for the drive pulse. The results are shown in Figs. 12 and 13
and correspond to those in Figs. 5–8 in the main text, where
the asymmetric drive was used. In the top panel of Fig. 13, the
equilibrium high-harmonic generation does not include the
shoulder peak at ω = 2� + ωd , ω�t = 0, since it was gener-
ated by the initial effective quench of the asymmetric driving
field. However, all other features of high-harmonic modula-
tion and transient excitation at ω�t = 2� are still present,
since they originate from the wave mixing of the quench and
the drive pulses, independently of their shape.
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