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Addressing a century-old
hypothesis –dopioneer beetles of
Ips typographus use volatile cues
to find suitable host trees?

Summary

Global warming and more frequent climate extremes have caused

bark beetle outbreaks of unprecedented scale of these insects in

manyconifer forestsworld-wide.Conifers thathavebeenweakened

by drought and heat or damaged by storms are highly susceptible to

bark beetle infestation. A large proportion of trees with impaired

defences provides good conditions for beetle populationbuild-up of

beetles, but mechanisms driving host search of pioneer beetles are

still uncertain in several species, including the Eurasian spruce bark

beetle Ips typographus. Despite a two-century-long history of bark

beetleresearch,westill lackasufficientunderstandingof interactions

between I. typographus and its host Norway spruce (Picea abies) to

forecast futuredisturbanceregimesandforestdynamics.Depending

on the scale (habitat or patch) and beetle population state (endemic

or epidemic), host selection is likely driven by a combination of pre

and postlanding cues, including visual selection or olfactory

detection (kairomones). Here, we discuss primary attraction

mechanisms and how volatile emission profiles of Norway spruce

may provide cues on tree vitality and suitability for attacks by I.

typographus, in particular during the endemic phase. We identify

several crucial knowledge gaps and provide a research agenda

addressing the experimental challenges of such investigations.

Introduction

Bark beetles (Coleoptera; Curculionidae; Scolytinae) are among
the most common and threatening forest pests in Eurasia (Lieutier
et al., 2004) and North America (Raffa et al., 2016) and have
killed millions of hectares of conifer forests during recent decades
(Huang et al., 2020a). Outbreaks of the Eurasian spruce bark
beetle Ips typographus L. have major impacts on the functioning of
forest ecosystems and on forest economy (Hl�asny et al., 2021a).
Currently, it is difficult to reliably predict the occurrence and
intensity of attacks as some relevant factors that drive beetle
population dynamics, for instance during host selection (defini-
tion see Box 1), are not yet fully understood (Biedermann
et al., 2019). The selection of suitable hosts during the population

build-up phase is crucial for the survival of entire subpopulations
of bark beetles (Wood, 1982). While beetle broods develop better
in tissues of high nutritional quality (Raffa et al., 2016) from
healthy trees, hosts with strong defences can also hamper both
successful attack and egg deposition. Accordingly, pioneer beetles
generally succeed better in infesting stressed or storm-felled than
healthy trees with full defences, at least at low attack densities
(Netherer et al., 2022). It is currently strongly debated how
I. typographus identifies the vigour of potential hosts and whether
a tree’s physiological state influences host selection by beetles
(Netherer et al., 2021). Host selection mechanisms may change
with spatial scale of host search (long vs short distance) or beetle
population densities and depend not only on the physiological
condition of a tree. When populations change from endemic to
epidemic conditions (definitions see Box 1), beetles are known to
infest well-defended trees likewise. Yet, it has been suggested that
pioneer beetles may be attracted towards volatile emissions from
host trees during the dispersal phase, which may provide
information on the physiological state of a tree, such as its
defensive capacity (Rodriguez & Redman, 2008; Schiebe
et al., 2019). Such cues could additionally be amended by visual
hints like colour and shape of trees (Campbell & Borden, 2006b).
However, to what extent, and under which circumstances, the
various cues are most determinate for identifying host suitability is
currently not known for I. typographus.

Initial scientific investigations concerning the life cycle of
I. typographus and its interactions with host trees date back to the
mid-18th century when it was already recognised that bark beetles
succeed better in colonising cut or wind-felled trees rather than
healthy and vigorous trees (Gmelin, 1787). It was also observed that
beetles were initially attracted to diseased trees or those affected by
extreme weather events like windthrow (Ratzeburg, 1839). Meyen
and Esenbeck hypothesised that weakened or stressed trees may
emit ‘an odour […], which is recognised by the insects from a
distance’ already almost 200 yr ago (Meyen&VonEsenbeck, 1841,

Box 1 Glossary

Primary attraction: initial attraction of a pioneer beetle towards a tree
during the dispersal phase in response to olfactory and other cues.
Secondary attraction: aggregation of male and female beetles in
response to pheromones produced by conspecifics that already located
a suitable host.
Endemic: during the endemic phase, beetle abundance is low and
relatively constant.
Epidemic: epidemic conditions are characterised by very high beetle
population densities.
Host selection: multistep process of beetles locating suitable breeding
material ultimately resulting in host acceptance, including primary
attraction, postlanding cues as well as avoidance of unsuitable hosts.
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p. 43). Despite numerous advances that have been achieved in the
field since then, rigorous evidence for olfactory attraction to
suitable host trees by I. typographus has not been produced yet. By
contrast, several studies have been carried out on North America
beetle species of the Dendroctonus genus. For example, treatments
that increased susceptibility to D. brevicomis did not increase
landing rates on Pinus ponderosa (Moeck et al., 1981). Likewise,
pioneer D. ponderosae landed equally on trees that were ultimately
entered or not entered under natural conditions (Hynum &
Berryman, 1980; Raffa & Berryman, 1980).

In this article, we address this century-old hypothesis and discuss
potentialmechanisms of primary attraction, that is initial attraction
of pioneer I. typographus beetles towards potential hosts during
early-season swarming (definition see Box 1). We also discuss how
visual and olfactory cuesmight interact and complement each other
and beetles might use these cues to assess the suitability of a host.
We also address the importance of spatial scale (long-distance and
short-distance cues) and population densities during the selection
process.Our article focusses on I. typographus, as it has caused large-
scale treemortality during the past years and a better understanding
is required to assess future forest risks. We argue that a better
fundamental comprehension of interactions between host trees and
I. typographus in the critical phase of population build-up can
provide a foundation for mechanistically anchored predictions of
future forest dynamics in the face of climatic shifts (Huang
et al., 2020a). We provide a research agenda for some of the most
pressing outstanding questions along with practical advice for
approaching the often technically challenging investigations.

Ips typographus ecology and population dynamics

In spring, during the dispersal phase, pioneer beetles emerge from
overwintering sites when the temperature reaches 16–20°C
(Christiansen&Bakke, 1989; Lobinger, 1994).Whereas for many
bark beetle genera (e.g. Dendroctonus) female beetles take on the
role as pioneers, for I. typographus solely male beetles swarm in
search of forest stands with suitable host species (Fig. 1, long
distance). If they consider the host to be appropriate, pioneers bore
into the bark and establish a nuptial chamber in the phloem. In case
the beetles decide not to infest the tree, or are hindered, by for
instance resin exudation, they abandon the tree and continue their
search (Wood, 1982). Once pioneer beetles have selected a suitable
host, they start colonising the tree and simultaneously emit
aggregation pheromones comprising twoobligatory and synergistic
compounds, (�)-cis-verbenol and 2-methyl-3-buten-2-ol (Bakke
et al., 1977; Keeling et al., 2020), which attract both female and
male conspecifics (secondary attraction (definition see Box 1),
Fig. 1 inset b). Upon entering the bark, beetles also introduce their
symbiotic ophiostomatoid fungi, which may assist beetles to
deplete tree defences by metabolising tree defence compounds and
support beetle development by concentrating essential nutrients
close to the beetle feeding site (Zhao et al., 2019; Kandasamy
et al., 2021). During the colonisation phase, females construct
maternal galleries in which they deposit their eggs and inoculate
symbiotic microbes, for instance ophiostomatoid fungi, yeasts and
bacteria (Wood, 1982). Beyond a certain density of colonisation,

beetles release anti-aggregation pheromones such as (�)-verbenone
(Byers, 1989), which divert further attacks by conspecifics to other
bark areas or to different trees to constrain resource competition
during mass attack (Christiansen & Bakke, 1989; Schlyter
et al., 1989). After hatching, larvae feed on the phloem and
associated ophiostomatoid fungi (Fig. 1, inset d) and develop into
immature adults. Depending on environmental stimuli and
diapause phenotype (univoltine/one generation per year vs multi-
voltine/several generations per year; Schebeck et al., 2022), devel-
oping beetles emerge after maturation feeding to establish another
generation of offspring. High population growth rates of
I. typographus are further promoted by the re-emergence of parental
beetles to produce sister broods (Wermelinger, 2004).

Host preference during endemic phases

Although healthy trees provide a more nutritious habitat for beetle
development, it is also more difficult to overcome their defences
(Raffa et al., 2016). Hence, under endemic conditions during
initial attack, I. typographus preferentially targets trees that are
physiologically weak with impaired chemical defences, yet vital
enough to provide nutrient-rich tissue for brood development
(Wallin&Raffa, 2004;Boone et al., 2011;Kausrud et al., 2011). At
low population densities, stressed trees (windthrown, cut, drought-
affected) are the easiest hosts to overwhelm (Rudinsky, 1962), but
are also relatively rare, which leads to high beetle mortality during
the dispersion phase (Raffa et al., 2016; Baier et al., 2019). The
resulting balance between availability of compatible brood trees
and density of attacking beetles controls the population growth.
Thus, a targeted search for suitable hosts guided by kairomones like
monoterpenes (i.e. primary attraction) to improve survival rates of
pioneer beetles (Campbell & Borden, 2006a; Schiebe et al., 2019)
can be seen as a biologically relevant mechanism for I. typographus
fitness. Beetles must identify suitable host trees in a matrix of
vigorous trees and in an atmosphere that is rich in diverse conifer
volatiles (Raffa et al., 2016). Primary attraction cues which are
emitted by hosts may assist them to evaluate the physiological state
of the host trees even before landing and thus reduce beetle
mortality during the dispersal phase (Baier et al., 2019).

Host preference during epidemic phases

Disturbance events that cause physiological stress in trees such as
drought, excessive heat, lightning strikes or windthrow increase the
abundance of suitable host trees and improve the conditions for
population growth (Boone et al., 2011; Kausrud et al., 2012;
Hl�asny et al., 2021b). Hence, a greater availability of acutely
stressed trees entails a higher number of successful attacks (Netherer
et al., 2015), and the resulting increasing colonisation rates allow
for rapid development of further generations. Given that two to
three generations can develop in one growing season under
favourable climatic conditions, a rapid change from the endemic to
the epidemic phase can occur (Eriksson et al., 2005; J€onsson
et al., 2011).

Similar to the endemic phase, pioneer beetles most likely use
olfactory cues to detect weak host trees. However, during epidemic
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phases, beetles also infest vigorous trees, which is potentially caused
by a spillover effect (Fig. 1, spillover). After abundant aggregation
within weak trees, beyond a certain threshold, beetles may spillover
to adjacent, potentially healthy trees. This way, neighbouring trees
that have not been selected by pioneer beetles will be colonised as
well, however, without selection based on their physiological
properties (Geiszler & Gara, 1978). This effect may be more
prominent during epidemic than endemic phases, because overall
beetle density is lower during endemic phases. These spillover
events also affect nonhost species such as Pinus spp., as has been
observed in mixed stands with high beetle densities of Pityogenes
chalcographus (Berthelot et al., 2021).

For someDendroctonus species, a strong density-dependent host
selection behaviour has been observed.With increasing population
size,D. ponderosae do not have to rely on stressed trees and can shift
attacks to hosts that are more promising for better development of
offspring (Howe et al., 2022). Dendroctonus rufipennis from
epidemic populations would colonise both weak and vigorous
trees while those from endemic populations only infest weakened
hosts, potentially with low defences (Wallin & Raffa, 2004).
Interestingly, maternal host choice of D. ponderosae affected the

host preferences of the next generation. Offspring of beetles that
lived under endemic conditions preferred trees with low defences,
while beetles originating from epidemic conditions mainly
attacked well-defended trees (Burke & Carroll, 2017). Such a
change in host preference between endemic and epidemic phases is
not known for I. typographus; however, the threshold of a successful
attack is assumed to be a function of host tree resistance and
population density (Christiansen et al., 1987).

Potential mechanisms of host selection by pioneer
bark beetles

Variousmechanisms, including not only visual cues (e.g. Campbell
& Borden, 2006a), attractive and nonattractive olfactory stimuli
(e.g. Baier et al., 1997; Schiebe et al., 2019) but also random
landing, in which host suitability is assessed upon contact with the
host substrate (e.g. Byers, 1989), have been hypothesised to play a
role in host selection of bark beetles. These mechanisms are not
mutually exclusive, and a combination of mechanisms could come
into effect under different environmental conditions and with
changing population dynamics (Person, 1931; Wood, 1982;

Long distance Short distance
Host habitat search Host tree search

Pioneer beetle

Host speciesNonhost species

Adult beetle dispersal

Healthy trees Weakened trees

Chosen weak hosts Beetle abundance

Spillover

Endemic phase Epidemic phase
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Fig. 1 Hypotheses of Ips typographus attraction to its host, Norway spruce (Picea abies). Long distance/host habitat search (host vs nonhost species) and short
distance/host tree search (healthy/nonsuited trees vs weakened/suitable trees) selection are based on different visual cues (e.g. colour and silhouette of trees)
and volatile organic compounds (VOC) emission profiles of the individual trees. Long-distance cues may comprise distinct compounds (e.g. monoterpene
mixtures),while for short-distance selection, relative emission rates of host species-specific compoundsmay vary (note colour coding) and indicate tree vitality.
Certain compoundsmay only be emitted byweak trees (dotted peak). The endemic phase is characterised by lowbeetle abundance and beetles succeed better
in infesting weak trees with impaired defences. During the epidemic phase, beetle abundances are extremely high and a spillover can occur. Weak trees are
infested to such an extent that, due to abundance of beetles and lack of space on bark for attack, beetles spill over to the adjacent trees and thus also infest viral
trees. Here, besides volatiles, postlanding cuesmight become of higher importance in assessing host vitality. Note that secondary attraction is mediated by the
release of aggregation pheromones ((�)-cis-verbenol and 2-methyl-3-buten-2-ol) from pioneer beetles after initial attack (a), inciting large numbers of
conspecifics to engage inmass attack to overcome tree defences (b). Aftermating, females deposit their eggs and inoculate symbioticmicrobes in the gallery of
the phloem (c), which is also used as a food source by hatching larvae (d).
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Byers, 1996; Campbell & Borden, 2006b; Saint-Germain
et al., 2007). In other wood-boring insects, host selection may
involve olfactory and visual cues depending on the spatial scale of
the search where beetles might use olfactory cues at the habitat scale
or over longer distances while shifting to random landing over short
distances or at the patch scale (Saint-Germain et al., 2007).
However, it is not known whether certain selection strategies
becomemore precedent at different stages of the selection sequence
or change with spatial scale for I. typographus.

The definition of random landing is not consistent in the
literature, and generally, there seems to be some disagreement
regarding the scale at which it may become important. From a
general perspective, the term ‘random landing’ is somewhat
misleading as it does not refer to a random or unguided search.
Random landing may still require an attraction to host odours, and
it has been shown for several bark beetle species (Saint-Germain
et al., 2007). However, the host acceptance is multifaceted and
multistaged in this process and beetles can evaluate the host’s
suitability only postlanding and at close distance via haptic,
gustatory or olfactory senses. On the contrary, primary attraction
offers pioneer beetles an indication of where suitable hosts are
located by evaluating cues emanating from the suitable host before
landing on them. Postlanding cues may still be required for host
acceptance when attacking vigorous trees, and hence, this is likely a
more dominant mechanism during epidemics. During endemics,
however, it is more likely that beetles assess the suitability of a host
before landing froma long distance to avoid highermortality due to
longer exposure to, for example predators (Gries et al., 1989).

Visual cues

While visual cues have not been investigated as thoroughly as
olfactory cues, there is some evidence that they do matter in bark
beetle host orientation (Campbell & Borden, 2006a). It has been
shown for other species, including D. ponderosae and ambrosia
beetles, that they use particular visual characteristics such as colour
to avoid nonhost trees (Campbell & Borden, 2006b, 2009). Some
Ips species are more attracted by stems with dark colours (Goyer
et al., 2004), while they seem to avoid white stems (Dubbel
et al., 1985). Additionally, it was demonstrated for D. ponderosae
that adults show a higher attraction towards upright silhouettes.
Thismay be a hint that besides colour, the shape is also perceived by
beetles (Shepherd, 1966; Strom et al., 1999), which might also be
relevant for I. typographus.

Yet, the visual capacity of I. typographus and other bark beetles is
rather limited and it is unlikely that visual cues alone would allow
distinguishing between different coniferous species that are of
similar appearance (Campbell & Borden, 2005). Instead, a
combination of visual and olfactory cues may serve as a stimulus
for effective host recognition (Campbell & Borden, 2006a,b;
Byers, 2007).

Olfactory cues (volatile emissions)

Long-range cues Airborne odours emanating from host trees
likely play an important role in directing bark beetles to forest

stands with high abundance of host species and suitable individual
trees during habitat and host search (Fig. 1). To find a habitat with
host species, pioneering individuals of I. typographus are thought to
respond to both hostmonoterpenes and nonhost volatiles (NHVs),
including C6 green leaf volatile alcohols, directing them towards
spruce-dominated areas and away fromdeciduous trees (Schlyter&
Birgersson, 1999). Ips typographus has numerous olfactory sensory
neurons (OSNs) specifically tuned to host monoterpenes, NHVs
and odours from microbial symbionts or from con- and hetero-
specific bark beetles (with the two latter being more important for
secondary attraction; Tømmer�as, 1985; Andersson et al., 2009;
Kandasamy et al., 2019, 2021; Schiebe et al., 2019). The
behavioural effect of NHVs on I. typographus has been tested in
combination with aggregation pheromones, suggesting inhibitory
effects on secondary attraction (Zhang & Schlyter, 2003; Unelius
et al., 2014). Additionally, experiments in which NHVs in
combination with anti-attractant verbenone were applied without
aggregation pheromones on the trees to show decreased attack rates
in treated zones, and attacks were diverted to neighbouring
untreated zones (Jakus et al., 2003; Schiebe et al., 2011). However,
since NHVs were tested together with verbenone (which is not
involved in primary attraction), the potential effects of NHVs on
I. typographus primary attraction remain unclear.

Attraction to individual host monoterpenes so far has not been
demonstrated in flying I. typographus in natural habitats. This may
not be surprising as is difficult to locate a particular source of VOCs
in forest environments. Volatile concentrations in open forest
spaces can be indeed higher than in the vicinity of individual trees
(St�r�ıbrsk�a et al., 2022), and the movements of volatile plumes are
generally very complex to trace under natural forest conditions
(Fares et al., 1980). Additionally, many of the monoterpenes are
also released from conifers other than spruce, as well as from
individuals of the host tree species not in the diameter range of trees
attacked by beetles. Hence, the informational value of individual
host monoterpenes may be limited. Rather, one may expect that
mixtures of hydrocarbon and oxygenated monoterpenes in specific
ratios are more likely to guide the beetles to their host (Bruce
et al., 2005). In this regard, important unresolved questions are
whether acutely stressed trees differ in terpenoid blends from fully
vigorous trees and whether such emission profiles could be
attractive to I. typographus.

Short-range cues Various stress factors alter the biochemical
pathways in Norway spruce bark and needles and can cause
qualitative and quantitative differences in secondary metabolite
concentrations, which in turn can make host trees more attractive
for colonisation. Several studies have reported primary attraction of
I. typographus to host tree logs, trap trees and felled or windthrown
trees based on olfactory cues yet without beetle pheromones
(Rudinsky et al., 1971; Austar�a et al., 1986; Lindel€ow et al., 1992;
Jaku�s & Bla�zenec, 2011). Notably, the attraction of pioneer beetles
to windthrown trees was stronger when trees had aged on the
ground for a few months, potentially because the VOC profile of
the bark of felled trees also changes strongly over time (Schiebe
et al., 2019; Hro�s�so et al., 2020). The total emission of volatiles in
the midcrown area, where I. typographus usually initiates
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colonisation, was higher in felled trees compared with nonattacked
standing trees (Schiebe et al., 2019),while qualitative changes in the
chemical profile of the bark of felled trees involve the accumulation
of oxygenated monoterpenes and volatile aromatics over time
(Kalinov�a et al., 2014; Schiebe et al., 2019). Taken together, this
context-dependent variability in VOC emissions may very well be
utilised by I. typographus for finding suitable hosts, thus reducing
energy expenditure and mortality that may occur during lengthy
nontargeted host search.

The volatile profile of Norway spruce needles is distinct from that
of bark and is dominated mainly by oxygenated monoterpenes
(Sch€onwitz et al., 1990). Recently, OSNs specific for tree stress-
related oxygenated monoterpenes were identified in I. typographus,
indicating that such volatiles provide important cues to bark beetles
(Schiebe et al., 2019; Kandasamy et al., 2021). Attractive cues from
stressed trees may emanate also from needles and not only from the
bark (�Sotola et al., 2021). Monoterpenes are released by all conifer
tree species within the forest habitat; thus, emissions of minor
oxygenated monoterpenes may convey reliable information to
pioneer beetles about host suitability at the individual tree level. Low
levels of oxygenated monoterpenes have been reported for bark of
stressed trees before colonisation by bark beetles. Stress-induced
changes in the bark of trees often switch the lifestyle of treemicrobial
epiphytes and endophytes to their parasitic or saprophytic phase
(Rodriguez & Redman, 2008) and could lead to the production of
oxygenated monoterpenes and other compounds, which are
otherwise absent in vigorous trees. Notably, in certain doses several
oxygenated monoterpenes like camphor and trans-4-thujanol that
were identified in the bark of stressed host trees are attractive to
I. typographus adults at short distance in laboratory bioassays when
aggregation pheromones were absent (Kandasamy et al., 2021).
However, bioassays using high doses (> 200 lg) also showed that
trans-4-thujanol was avoided by I. typographus (Bla�zyt_e-�Cere�skien_e
et al., 2015; Kandasamy et al., 2021) but high concentrations of
oxygenated monoterpenes occurring after beetle attack are derived
mainly from themetabolism of host terpenes by symbiotic microbes
(Kandasamy et al., 2021). Changes in the composition of host
monoterpene concentrations in the bark and emissions from stressed
trees, that is differential increase or decrease in individual volatile
fluxes, could mediate their attractiveness and subsequent acceptance
by bark beetles. Increased trap catches were observed during
secondary attraction when (�)-a-pinene was added to
pheromone-baited traps (Erbilgin et al., 2007; Fang et al., 2020);
however, traps baited in (�)-a-pinene without aggregation
pheromones do not result in any catches of I. typographus, suggesting
noprimary attraction to this single compound.Othermonoterpenes
such as limonene, myrcene, 3-carene and 1,8-cineole were shown to
be toxic in laboratory bioassays and to reduce trap catch rates when
combined with aggregation pheromones, suggesting inhibitory
effects on secondary attraction (Andersson et al., 2010; Fang
et al., 2020). Highly attractive trees emit higher levels of (�)-a-
pinene and lower levels of (�)-limonene than unattractive trees
(Zhao et al., 2010). Bark beetles have likely evolved to avoid trees
with high bark concentrations as emissions of these compounds
might kill them (Everaerts et al., 1988; Chiu et al., 2017). However,
effects of these toxic compounds on postlanding behaviour and

primary attraction remain to be investigated in field experiments.
Nevertheless, these studies collectively suggest that pioneers may
evaluate the physiological status of potential host trees by assessing
levels of a variety of conifer volatile compounds, and some of them
are present only in very low concentrations.

Research agenda and methods for investigating bark
beetle attractants

Despite the longhistoryof researchonbarkbeetle–tree interactions,
there are still several knowledge gaps that limit ourunderstandingof
population dynamics of I. typographus and susceptibility ofNorway
spruce forest ecosystems tobiotic disturbance.We list here somekey
knowledge gaps and research questions and indicate suitable
approaches to address them (Table 1). Answering these questions
will help understanding whether and how I. typographus may
distinguish acutely stressed trees from highly vigorous ones and
therefore increase its attack success.

Tree volatile emission and defence capacity

Although there is some evidence that volatile compounds play a role
during host selection by I. typographus (Baier et al., 1997; Schiebe
et al., 2019) and that pioneer beetles prefer acutely stressed trees for
colonisation (Netherer et al., 2015), data on differences in volatile
emission profiles between stressed and unstressed trees are still
missing (Table 1a). Measurements of volatile compounds can be
done on trees in established drought experiments or on pull-down
trees as a simulated windthrow. Such measurements are technically
challenging as the forest atmosphere contains many volatile
substances, but the use of dynamic stem chambers allows sampling
only of those volatiles emitted by tree stems. Care should be taken
during installation as to minimise physical damage of the bark by
friction (Tholl et al., 2006; Schiebe et al., 2019),whichmay influence
volatile emissions from the living tissues below the bark. VOCs
accumulated in the headspace of the chambers can then be collected
using absorption tubes containing polymer traps, Tedlar bags or
canisters for later gas chromatography andmass spectrometry (GC–
MS). Portable GC devices are convenient for in situ measurement
and concurrent assessments. Concentrations of nonstructural
carbohydrates and/or nonvolatile secondary metabolites like
phenolics in tree stem tissues (Huang et al., 2020b), which are
indicative of relating to tree vitality and defence capacity (Table 1b).

Attraction and deterrence by NHVs have only been tested in
combination with aggregation or anti-aggregation pheromones
that are only relevant during secondary attraction. To test a
potential inhibitory effect of NHVs on primary attraction, choice
assays in the field, especially in mixed species stands and in the
laboratory with varying combinations of NHVs, without pher-
omone or host monoterpenes addition, can shed light on the
inhibitory effect of NHVs on host preference (Table 1c).

Beetle volatile perception and response

Once the differences in the emission profiles of vigorous/
nonattractive and acutely stressed/attractive trees have been
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established, it needs to be examined whether and which of the
compounds the beetles can detect and use to evaluate the
physiological status/suitability of trees. Electrophysiological stu-
dies on antennal sensilla can indicate the responsiveness of beetles
towards active odorants (Table 1c). Single sensillum recording
technique has proven highly successful for identifying response
profiles of numerous classes of olfactory sensory neurons in I.
typographus, (Tømmer�as, 1985;Andersson et al., 2009;Kandasamy
et al., 2019). Compounds that stimulate neuronal responses are
tested in both laboratory and field selection bioassays for their
potential to exert attraction (Table 1d; Kandasamy et al., 2019).

Influence of scale and population dynamics

Host selection might be influenced by a variety of visual, olfactory
and gustatory cues (Table 1e), which are differentially relevant at
the various temporal and spatial scales. For instance, distance to
host trees/forest stands, that is host search on landscape or habitat
scale, likely has a strong effect on the perception of trees by pioneer
beetles (Table 1f). A very promising sampling method, for
evaluating differences in volatile blends and concentrations on
different scales, is droneswith implementedVOCsamplers (Batista
et al., 2019; McKinney et al., 2019). Measurements with drones
provide volatile patterns of entire tree stands, including emissions
from both bark and foliage. While models that consider tree health
and population dynamics exist (J€onsson et al., 2011;Wildemeersch
et al., 2019), primary attraction and its implications for
host selection are not yet incorporated. Such models can then be

used to test the effect of population size on selection criteria, and
vice versa.

Conclusion

Our presented research agenda focusses on knowledge gaps
concerning direct interactions between I. typographus pioneer
beetles andP. abies trees. Several other biotic (e.g. predators or other
herbivores, and fungal diseases), abiotic (e.g. soil water potential or
light intensity) and anthropological factors (e.g. proximity of
agricultural or industrial sites) will also influence these interactions
and interdisciplinary approaches involving for instance tree and
beetle’s ecophysiology, behavioural entomology, forest ecology,
biochemistry, sensory biology and chemical ecology are needed.
Here, we defined first logical steps, but we are aware that further
field and laboratory experiments to investigate processes at small
and large scale are required. Further improvements in sampling
methods with drones, better beetle trapping methods and multi-
factorial behavioural bioassays will help paving the road towards a
better understanding of the tree–beetle relationship. Given the
enormous damages bark beetles are causing in many forests across
the globe, fast progress is crucial.
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