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1 Introduction 

1.1 Plants amidst environmental challenges 

 

Plants are widely defined as immobile organisms, which are exposed to a rapidly changing environment 

whilst constantly challenged by other surrounding organisms. The presence of detrimental external 

abiotic and biotic factors often results in stress for the plant (Gull et al., 2019). Abiotic stresses 

comprising extreme salt, heat, cold, humidity, and light conditions, are fluctuating environmental factors 

gaining importance over the years especially in the light of climate change and reduced crop yields (Bray 

et al., 2000;Ferguson, 2019). These agricultural losses can be amplified by simultaneously occurring 

abiotic and biotic stresses (Mittler, 2006;Dresselhaus and Hückelhoven, 2018). Biotic stress can be 

caused upon the interaction with pathogenic and/or herbivorous organisms; although beneficial 

symbionts and microbes can also serve as positive biotic regulators. Being subjected to such a 

perpetually occurring variety of potential threats and benefits, the plants’ physiological adaptations are 

often depicted as a desperate attempt of survival caused by the inevitability to run away. However, 

these constant challenges over the course of millions of years led to a multilayered fortification and 

highly sophisticated response strategies (Maffei et al., 2012;Mithöfer and Boland, 2016). By 

implementing mechanical barriers (e.g. hair-like trichomes, epicuticular waxes) in combination with 

chemical defenses (e.g. toxic secondary metabolites, feeding deterrents) (Mithöfer and Boland, 2016), a 

solid toolbox was established enabling plants to grow, adapt, survive, and propagate irrespective of their 

immobility. In order to efficiently use these given tools, a reliable and tightly regulated perception and 

signaling network is required to activate responses appropriate to the given stimulus within a plant 

(intraspecific signaling) as well as its whole plant community (interspecific signaling). This dissertation 

aims to investigate intra- and interspecific signaling features involved in plant-herbivore and plant-

microbe interactions. 

1.2 Signal perception in plants upon damage 

 

An efficient response to a given stimulus requires a specific recognition, decoding, and translation of the 

information to activate downstream elements resulting in appropriate reprogrammed cellular functions 

(Erb and Reymond, 2019). In the case of biotic stresses, the plant initially perceives pressure changes 

along the membrane caused by vibrations or mechanical impact (Alarcon and Malone, 1994;Huber and 
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Bauerle, 2016). These external stimuli are sufficient to trigger the generation of second messengers 

followed by a subsequent cascade of phosphorylation events and transcriptional changes (Zebelo and 

Maffei, 2015). Severe damage to the tissue can even result in ruptured cell structures, therefore 

releasing molecules which are usually constrained to specific cell compartments. Consequently, these 

endogenous regulators and/or their respective fragments are now exposed to the extracellular space 

serving as early indicators of injury, and activate immune and stress responses. These damage-

associated molecular patterns (DAMPs) comprise different classes of molecules, including proteins and 

signaling peptides, saccharides, cell wall fragments, nucleotides in the form of extracellular adenosine 

triphosphate (eATP) and DNA (eDNA) (Hou et al., 2019), and volatile organic compounds (VOCs) 

(Quintana-Rodriguez et al., 2018;Meents and Mithöfer, 2020). In addition to purely mechanical damage, 

attacking herbivores and pathogens introduce herbivore- (HAMPs; e.g. volicitin, inceptin) (Mithöfer and 

Boland, 2008;Acevedo et al., 2015) and pathogen- (PAMPs; e.g. flagellin, peptidoglycans, 

lipopolysaccharides) (Schwessinger and Zipfel, 2008) associated molecular patterns into the plant, which 

are perceived by binding to pattern recognition receptors (PRRs) (Erb and Reymond, 2019). Being 

specific for the attacking organism and its mode of action, these elicitors are able to induce a complex 

network of signaling pathways transduced by either electrical or chemical signals (Zebelo and Maffei, 

2015) leading to defense upregulation, growth promotion/inhibition, or enhanced/suppressed 

immunity. 

The generation of electrical signals occurs within seconds to minutes after wounding or herbivory 

(Maffei et al., 2007;Zimmermann et al., 2009;Zimmermann et al., 2016), being able to travel up to a 

speed of 40 cm/s (Volkov, 2012) whilst serving as a systemic transmitter of information even over long 

distances. Electrical signals, e.g. depolarization of the plasma membrane potential occur simultaneously 

or precede chemicals signals such as Ca2+  fluxes in the framework of leaf-to-leaf signaling (Nguyen et al. 

(2018) Subsequently, each signaling pathway deploys a variety of chemical signals including Ca2+, 

reactive oxygen (ROS) and nitrogen (RNS) species, phytohormones, volatiles, peptides, as well as protein 

phosphorylation events by mitogen-activated protein kinases (MAP-kinases) (Huber and Bauerle, 

2016;Sözen et al., 2020). In the following sections, this thesis will focus on a selection of the 

aforementioned chemical signals and their involvement within biotic interactions. 
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1.2.1 Calcium 

 

One of the earliest signaling events initiated by herbivory and microbe interaction (Maffei et al., 

2004;Howe and Jander, 2008;Kiep et al., 2015;Yuan et al., 2017;Toyota et al., 2018) is the elevation of 

cytosolic free calcium [Ca2+]cyt. Calcium as an essential macronutrient serves in an accurately 

orchestrated manner structural, metabolic, and signaling purposes (Demidchik et al., 2018). Being a 

multifunctional key player within cell homeostasis, Ca2+ levels can range from 50-150 nM (Medvedev, 

2005;Wilkins et al., 2016;Demidchik et al., 2018) in the cytoplasm up to 0.1-10 mM stored in specific 

organelles such as the endoplasmic reticulum, the vacuole or the apoplast (Stael et al., 2012;Demidchik 

et al., 2018). These massive compartment-dependent differences in Ca2+ concentrations can be targeted 

by the precise opening of ion channels localized at the plasma membrane or membranes of intracellular 

compartments. The main known Ca2+ channels in plants comprise cyclic nucleotide-gated channels 

(CNGCs) (Mäser et al., 2001), ligand-gated glutamate receptor-like channels (GLRs) (Davenport, 

2002;Nguyen et al., 2018), and mechanosensitive, reduced hyperosmolality-induced [Ca2+]i increase 

(OSCA) channel (Murthy et al., 2018). All of which are predominantly located at the plasma membrane 

with the exception of the vacuolar two-pore channel 1 (TPC1) at the tonoplast (Peiter et al., 2005;Peiter, 

2011). The majority of the aforementioned channels were found to be involved in wounding- and 

herbivory-induced calcium signaling (Arimura and Maffei, 2010;Kiep et al., 2015;Vincent et al., 

2017;Meena et al., 2019) leading to a systemic propagation of this initially local stimulus through the 

vascular-connected leaves, ultimately upregulating chemical defenses (Mousavi et al., 2013;Toyota et 

al., 2018). 

The physiological responses following this channel-mediated calcium influxes, are triggered by the 

perception of the increased [Ca2+]cyt by specific calcium sensing proteins, such as calmodulins (CaMs), 

calmodulin-like proteins (CMLs), calcineurin B-like proteins (CBLs), calcium-dependent protein kinases 

(CDPKs), and calcium/calmodulin-dependent protein kinases (CCaMKs) (Ku et al., 2018). The majority of 

the aforementioned Ca2+ sensors contain a specific helix-loop-helix motif, known as the “EF hand”, which 

binds single calcium molecules with high affinity (Tuteja and Mahajan, 2007). Additionally, several other 

proteins, e.g. phospholipase D (PLD) (Wang, 2001), calreticulin (Michalak et al., 1998), pistil-expressed 

Ca2+ binding protein (Furuyama and Dzelzkalns, 1999), and annexins (Clark and Roux, 1995) were found 

to bind Ca2+ independent of EF motifs (Tuteja and Mahajan, 2007). Especially the highly conserved 

multigene family of phospholipid-binding annexins gained increasing attention over the years (Tichá et 

al., 2020) due to their potential as unconventional Ca2+ channels (Laohavisit and Davies, 2011) 
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contributing to conductance at the plasma membrane. Up to now, eight annexins were found in 

Arabidopsis thaliana and their involvement in drought and salt stress responses was further unraveled 

(Konopka-Postupolska et al., 2009;Yadav et al., 2018). Apart from abiotic stress, insect feeding is a major 

elicitor able to induce rapid [Ca2+]cyt elevations in plants, however to date evidence to what extent 

annexins might be involved in these calcium-mediated herbivore defenses is still lacking. 

1.2.2 Plant peptides 

 

Over the years, small peptides as key endogenous signaling factors gained increasing attention due to 

their bifacial role within plant immunity, plant microbe-, and plant herbivore interactions (Hu et al., 

2018). Taking part in cell-to-cell communication, alteration of signaling pathways, and possessing 

antimicrobial properties, plant peptides serve as versatile molecules during insect attack or microbial 

infection, which can however also be reprogrammed and used to the intruder’s benefit (Tavormina et 

al., 2015;Hu et al., 2018). Plant peptides are generally referred to as proteins with a length ranging from 

2 to 100 amino acids originating from a longer precursor with various biological functions (Hu et al., 

2018). Taking into account structural similarities and biosynthetic origins, plant peptides can be further 

subdivided into cysteine-rich peptides, post-translationally modified peptides, and others.  

Cysteine-rich peptides such as plant defensins (PDFs), rapid alkalinization factor (RALF), and epidermal 

pattern factor (EPF), display the highest variability across species regarding their primary sequences and 

length while sharing a characteristic Cys-rich domain of 2-16 cystein residues (Tavormina et al., 2015). 

Although mainly known for their inherent antimicrobial activity, Cys-rich peptides were also found to be 

involved in plant growth, development, and overall immune response regulation. 

In contrast to the aforementioned variability in length and the presence of cysteine residues, post-

translationally modified peptides comprise a maximum of 20 amino acids and undergo glycosylation, 

hydroxylation, and Cys or Tyr sulfation (Matsubayashi, 2011) while possessing no or less than two Cys 

residues. Due to their small size and structural versatility, this class of peptides comprises 

multifunctional molecules involved in pathogen resistance, e.g. phytosulfokines (PSKs) and plant peptide 

containing sulfated tyrosine 1 (PSY1) (Mosher et al., 2013), as well as anti-herbivore protection via 

hydroxyproline-rich glycopeptide systemins (HypSys) (Pearce, 2011). 

As the previous examples, the third and final group of plant peptides is also processed from large 

nonfunctional precursors, lacking post-translational modifications and more than 2 Cys residues with an 
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overall length of 8 to 36 aa. In 1991, Clarence A. “Bud” Ryan and his group isolated the first wounding-

responsive peptide of 18 aa length from tomato leaves, which systemically travels through the plant and 

induces the accumulation of protease inhibitors (PIs) (Pearce et al., 1991). This groundbreaking 

discovery of the first mobile plant hormone named “systemin” paved the way for the identification of 

further systemins in other Solanaceae, e.g. black nightshade, bell pepper, and potato (Constabel et al., 

1998). Systemin is processed from a 200 aa long precursor predominantly found in the cytosol of the 

vascular phloem, known as prosystemin (Fig. 1) (McGurl et al., 1992;Ryan and Pearce, 2003). Apart from 

its regulatory effect on PI’s, systemin was found to induce jasmonic acid (JA), the generation of anti-

nutritive proteins, and herbivore-deterring volatiles (Orozco-Cardenas et al., 1993;Degenhardt et al., 

2010); therefore triggering a potent local and systemic defense mechanism in the plant. 

In 2006, a 23 aa long polypeptide called AtPep1 was isolated from Arabidopsis thaliana, serving as the 

first proteinaceous DAMP known in this model plant (Huffaker and Ryan, 2007). Together with six other 

homologues of this protein family, AtPep1 elicited the expression of defense-related genes (Fig. 1) and 

was shown to alkalinize suspension cell cultures (Huffaker and Ryan, 2007). Following studies 

highlighted the presence of plant elicitor peptides (Peps) in maize and various other species with the 

ability to regulate disease resistance (ZmPep1) as well as the induction of anti-herbivore volatiles and JA 

in the case of ZmPep3 (Huffaker et al., 2011;Huffaker et al., 2013). Although AtPeps originate from a 

comparably shorter protein precursor (ProPep; 92 aa) (Huffaker and Ryan, 2007), Peps and systemin 

share multiple characteristics, e.g. the lack of a putative signal sequence, post-translational 

modifications, localization in the cytosol, and ultimately the wounding-inducibility, making both classes 

potent elicitors in plant defense (Narváez-Vásquez and Orozco-Cárdenas, 2008). Intriguingly, the 

presence of systemin was demonstrated for a variety of solanaceous species; however tobacco 

responded to wounding with the systemic induction of PI’s, which was independent from the so-far 

identified systemin (Pearce et al., 2001). 

Following this observation, another peptide harboring the ability to induce systemic defense responses 

was isolated and characterized from tobacco leaves in 2001 (Pearce et al., 2001). Originating from a 

much larger precursor of 165 amino acids (NtPreproHypSys) (Fig. 1), two forms of the subsequently 

processed NtHydroxyproline-rich glycopeptide systemin (NtHypSys; 18 aa) were found to alkalinize 

suspension cell medium and induce the upregulation of protective trypsin proteinase inhibitors (Pearce, 

2001). Studies by Del María et al. (2005) revealed that similar to tomato systemin, NtPreproHypSys was 

stimulated during wounding and application of jasmonate, resulting in increased resistance against the 
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herbivore Helicoverpa armigera when overexpressed in Nicotiana tabacum (Ren and Lu, 2006). 

However, this enhanced insect defense was restricted to PreproHypSys overexpression in N. tabacum 

whereas Nicotiana attenuata-PreproHypSys-OE plants did not display any enhanced protection against 

herbivores, in this scenario the lepidopteran Manduca sexta (Berger and Baldwin, 2007). 

Observations like these raised several questions regarding the herbivore- and plant 

specificity/compatibility as well as necessary post-translational modifications and peptidase processing 

within the plant. Apart from functional similarities displayed in their given names, the precursors and 

the following mature systemin and tobacco HypSys peptides share no sequence homologies. In contrast 

to systemin, which lacks a putative signal sequence (Narváez-Vásquez and Ryan, 2004), HypSys peptides 

possess an N-terminal signal sequence, indicating synthesis and transport through the secretory 

pathway followed by post-translational modifications, e.g. the attachment of hydroxyl groups or 

pentose residues (Ryan and Pearce, 2003). Regarding the localization of wound-inducible HypSys, 

studies by Narváez-Vásquez et al. (2005) revealed that the mRNA encoding the precursor of the tomato 

HypSys (LeHypSys 1-3) is synthesized in the phloem parenchyma cells with the functional LeHypSys being 

sequestered in the cell wall and not accumulated in the cytosol. In the ongoing decade, more 

PreproHypSys orthologs have been discovered in other solanaceous species such as potato (Solanum 

tuberosum) and a Petunia hybrid (Pearce and Ryan, 2003;Pearce et al., 2007). In the case of potato and 

tomato, PreproHypSys induced the synthesis of proteinase inhibitors, increasing their herbivore 

resistance, whereas HypSys in petunia activated defensin, a gene involved in pathogen defense 

(Thomma et al., 2002). Taken together, all of the aforementioned observations show a species-specific 

use of HypSys peptides against both herbivores and pathogens. 

As the first non-solanaceous species, six highly active HypSys peptides deriving from a 291-aa precursor 

(IbPreproHypSys) were discovered in sweet potato (Ipomoea batatas, Convolvulaceae) after wounding 

and methyl jasmonate (MeJA) treatment (Chen et al., 2008). All six synthetic peptides were shown to 

induce the alkalinization of suspension cell medium but only IbHypSysIV purified from sweet potato 

leaves increased expression levels of sporamin, the major defensive trypsin inhibitor in sweet potato. 

Further studies by Li et al. (2016) unraveled the systemic effect of IbPreproHypSys and the connected 

signal transduction pathway in overexpression and RNA interference (RNAi) lines in the insect-resistant 

sweet potato cultivar Tainong 57. After induction by wounding, jasmonate, and H2O2, IbPreproHypSys 

was significantly upregulated whilst resulting in a local and systemic increased expression of defensive 

ipomoelin (IPO) (Li et al., 2016). This effect resulted from the presence of the active peptide IbHypSys, 

which subsequently activated lignin biosynthesis, IPO-, and IbPreproHypSys expression. Taken together, 
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all of these upregulated processes lead to suppressed Spodoptera litura growth, highlighting the 

importance of IbHypSys for the plants’ fortification against attacking insects. 

Upon the discovery of peptides as amplifiers in plant defense signaling, the question of suitable 

recognition mechanisms gained increasing attention. Cell surface receptors for AtPep1 (PEPR1) 

(Yamaguchi et al., 2006), AtPep2 (PEPR2) (Yamaguchi et al., 2010), and systemin (SYR1 & SYR2) (Wang et 

al., 2018) were found to be leucine-rich repeat receptor-like protein kinases (LRR-RLK) (Couto and Zipfel, 

2016;Tang et al., 2017;Wang et al., 2018;Steinbrenner et al., 2020), able to mediate pathogen and 

herbivore resistance (Fig. 1). However, the isolation of HypSys receptors remained unsuccessful up to 

now and further investigations are required. 

 

Fig. 1 Peptides triggering plant defense mechanisms. Tissue damage caused by wounding or herbivory 

activates the processing of hydroxyproline-rich systemin (HypSys) precursors (PreproHypSys) in the 

apoplast, yielding active HypSys. HypSys is then proposed to bind to cell-surface receptors triggering 

defense signaling cascades in the plant. Further, upon disruption of cells, cytosolic precursor proteins of 

systemin (ProSysteminSystemin) and plant elicitor peptides (ProPepsPeps) are cleaved into their 

active forms, which subsequently bind to their respective leucine-rich repeat receptor-like kinase (LRR-

RLK). Scheme modified after Albert (2013).  
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1.2.3 Phytohormones 

 

The role of phytohormones as plant signaling molecules involved in growth and development belongs to 

the best-studied phenomena in the history of botany. The concept that plant hormones serve as “organ-

forming-substances” allowing communication between distant plant parts via the sap already evolved 

from 1758 and over the next centuries, carried further by pioneers such as Duhamel du Monceau, Julius 

von Sachs, as well as Charles and Francis Darwin (du Monceau, 1758;Sachs, 1882;Darwin, 1897). Since 

then, multiple plant hormones have been discovered and further investigated, comprising auxin, 

cytokinins, gibberellins, strigolactones, brassinosteroids, ethylene, abscisic acid, salicylic acid, and 

jasmonates (Bari and Jones, 2009;Brewer et al., 2013;Verma et al., 2016). Their functional versatility and 

the fact that the biosynthesis is not restricted to specialized organs or tissues, enables these 

phytohormones to tightly regulate physiological plant processes in response to external stimuli. This 

thesis will further highlight the involvement of often stress-related phytohormones such as jasmonates, 

auxin, abscisic acid (ABA), and salicylic acid (SA) during biotic interactions. 

1.2.3.1 Jasmonates 

 

Lipid-derived jasmonates are phytohormones regulating a broad range of biological processes in plants, 

including plant growth, development, sex-determination, tolerance to abiotic stresses (salt & drought), 

and the production of secondary metabolites (Ueda et al., 2020). In addition, jasmonic acid (JA; see Fig. 

2) as the most prominent example, gained increasing attention as a mediator of plant defense in 

response to wounding, herbivory (Howe and Jander, 2008;Koo et al., 2009), as well as pathogen 

infection (Glazebrook, 2005). 

The first steps of jasmonate biosynthesis (Fig. 2) occur inside the chloroplast starting from α-linolenic 

acid. Three enzymatic reactions catalyzed by lipoxygenase (LOX), allene oxide synthase (AOS), and allene 

oxide cyclase (AOC), convert α-linolenic acid into 12-oxophytodienoic acid (OPDA). Afterwards, OPDA is 

transported into the peroxisome where the second half of JA biosynthesis occurs. OPDA is then reduced 

by the OPDA reductase 3 (OPR3) into 8-(3-oxo-2-(pent-2-enyl)cyclopentenyl)octanoic acid (OPC-8:0) 

(Wasternack and Song, 2017) followed by three β-oxidation steps. During each step, two carbons are 

removed from the carboxyl side chain, yielding 6-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)hexanoic 

acid(OPC-6:0), followed by 4-(3-oxo-2-(pent-2-en-1-yl)cyclopentyl)butanoic acid (OPC-4:0), and 

ultimately JA. Subsequently JA is transported into the cytosol and catalyzed by the JA-amino acid 
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synthetase Jasmonate Resistant 1 (JAR1) into the bioactive form, jasmonoyl-isoleucine (JA-Ile) (Koo et 

al., 2009;Schaller and Stintzi, 2009;Wasternack and Song, 2017;Griffiths, 2020). Generation of JA-Ile can 

also occur via an OPR3-independent alternative pathway branching off from OPDA in the peroxisome. 

Chini et al. (2018) demonstrated that JA can be formed through the intermediates dinor-12-

oxophytodienoic acid (dnOPDA), tetranor-12-oxophytodienoic acid (tnOPDA), and 4,5-

didehydrojasmonic acid (4,5-ddh-JA) after three β-oxidations, followed by reduction of 4,5-ddh-JA to JA 

by OPR2. 
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Fig. 2 Jasmonate biosynthesis. This simplified scheme shows the generation of jasmonoyl-isoleucine (JA-

Ile) via two alternative jasmonic acid (JA) pathways. Enzymatic reactions and corresponding enzymes are 

indicated in red. Transport between cell compartments is depicted by black dotted arrows. 

Abbreviations: LOX, Lipoxygenase; AOS, Allene Oxide Synthase; AOC, Allene Oxide Cyclase; OPDA, 12-

oxo-phytodienoic acid; dnOPDA, dinor-OPDA; tnOPDA, tetranor-OPDA; 4,5-ddh-JA, 4,5-didehydro-JA; 

OPR, OPDA Reductase; OPC-8, 8-(3-oxo-2-(pent-2-enyl)cyclopentenyl)octanoic acid; JA, jasmonic acid; 

JAR, Jasmonate Resistant; JA-Ile, jasmonoyl-isoleucine. Scheme modified after Chini et al. (2018), 

Griffiths (2020), Wasternack and Hause (2018), and Wasternack and Song (2017).  
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In the absence of stress, only low levels of JA-Ile are present in the cell (Fig. 3, I) (Hoffmann et al., 2011). 

In that scenario, MYC transcription factors involved in the transcription of JA-responsive genes, are 

repressed by the complex Topless (TPL)-Novel Interactor of JAZ adapter proteins (NINJA)-JA-ZIM-domain 

(JAZ). Upon certain stimuli, e.g. herbivory or wounding, JA-Ile accumulates and binds to the receptor 

Coronatine-Insensitive (COI1) (Fig. 3, II). COI1 forms together with Arabidopsis S-phase Kinase protein 1 

(ASK1), Cullin1 (CUL1), and Ring-Box1 (RBX1) the SCFCOI1-E3 ligase complex. Binding of JA-Ile promotes 

the ubiquitination of the JAZ transcription repressors by the SCFCOI1 complex, resulting in their 

degradation by the 26S proteasome (see Fig.3, III). Consecutively, MYC transcription factors are released 

and lead to the expression of JA-regulated defense- or stress-related genes (Fig. 3, IV).  
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Fig. 3 JA-Ile perception and activation of JA-responsive genes. (I) During low concentrations of active 

jasmonates, downstream responses are repressed by JA-ZIM-domain (JAZ) proteins, which are recruiting 

the co-repressor Topless (TPL) through Novel Interactor of JAZ adapter proteins (NINJA). (II) When 

present at high levels, JA-Ile is perceived by the F-box protein Coronatine-Insensitive (COI1). COI1 forms 

together with the Arabidopsis S-phase Kinase protein 1 (ASK1), Cullin1 (CUL1), and Ring-Box1 (RBX1) the 

SCFCOI1-E3 ligase multiprotein complex. (III) Interaction with this multiprotein complex mediates 

ubiquitination (Ub) of JAZ repressors, resulting in their degradation by the 26S proteasome. (IV) 

Consecutively, the NINJA-TPL complex is released, leading to activation of JA-responsive genes via MYC 

transcription factors. Scheme adapted from Pérez-Alonso and Pollmann (2018). 
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1.2.3.2 Auxins 

 

Auxin (greek “auxein” = “to grow”) is one of the most studied phytohormones, famously known for its 

involvement in almost every growth and developmental process throughout a plant’s life (Benjamins 

and Scheres, 2008). The predominantly occurring form of auxin, indole-3-acetic acid (IAA), regulates a 

plethora of growth responses, e.g. apical dominance, tropic responses to light and gravity, embryo 

polarity, and vascular differentiation (Woodward and Bartel, 2005;Brumos et al., 2018). All of the 

aforementioned processes rely on a tightly controlled auxin homeostasis to ensure proper 

concentration-dependent responses. Especially the storage of IAA conjugates plays an important 

regulatory role due to their inhibitory abilities (e.g. IAA-tryptophane) as well as the option to re-

hydrolyze them back into free IAA (Ludwig-Müller, 2011). 

In plants, IAA was found to be mainly – however not exclusively - synthesized from the aromatic amino 

acid tryptophan (Trp) via the indole-3-pyruvic acid (IPyA) pathway. Trp is first converted to IPyA by 

tryptophan aminotransferase (TAA) and subsequently metabolized by the flavin monooxygenase YUCCA 

(YUC) to form IAA (Fig. 4) (Brumos et al., 2014;Morffy and Strader, 2020). Further dissection of the IAA 

biosynthesis pathways revealed two additional Trp-dependent pathways. The involvement of the 

cytochrome P450 monooxygenase CYP79B which catalyzes Trp into indole-3-acetaldoxime (IAOx) (Zhao 

et al., 2002) unraveled the main components of the IAOx pathway, which was initially proposed to occur 

in crucifers only (Sugawara et al., 2009) (Fig. 4). The detection of the IAOx downstream product indole-3-

acetonitrile (IAN) in maize revoked this hypothesis (Bak et al., 1998;Korasick et al., 2013). From IAN, 

nitrilases (NIT) catalyze the conversion into IAA. An alternative IAOx-derived intermediate is indole-3-

acetamide (IAM) (Sugawara et al., 2009) which was proposed to be processed into IAA by AMIDASE1 

(AMI1) (Pollmann et al., 2003) within the IAM pathway (Korasick et al., 2013;Brumos et al., 2014) (Fig. 

4). 
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Fig. 4 Tryptophan-dependent IAA biosynthesis. Genetically confirmed biosynthetic steps in land plants 

are indicated by black arrows with their respective enzymes (red). Abbreviations: CYP, Cytochrome 

P;TDC, Trp Decarboxylase; TAA, Transferase of Arabidopsis; NIT, Nitrilase; AMI, Amidase; YUC, YUCCA; 

AAO, Arabidopsis Aldehyde Oxidase. Scheme modified after Morffy and Strader (2020). 

  



17 
 

The developmental programming of plant organogenesis is largely dependent on the biosynthesis, 

distribution, and modification of auxin - ultimately determining the signaling output and physiological 

responses (Ludwig-Müller, 2011, Brumos et al., 2018). Opposed to the classical notion that auxin is 

mainly produced in the shoot apical meristems, newly developed flower buds and leaves (Teale et al., 

2006), more recent studies showed that auxin biosynthesis also locally occurs in the roots (Ljung et al., 

2002;Stepanova et al., 2008). Subsequently, auxin is transported from the site of production via the 

phloem (Teale et al., 2006) or in a polar manner from cell to cell via auxin influx carriers (AUX1, LAXs), 

and auxin efflux transporters (PINs, MDR, PGPs) (Grones and Friml, 2015). These directed transport 

mechanisms lead to the generation of auxin gradients and distinct distribution patterns, forming so-

called auxin maxima (Vanneste and Friml, 2009). The formation of these robust gradients dictates the 

coordination of organ development and plant growth (Zhao, 2010) by converting changes in auxin levels 

into a transcriptional activation (Chapman and Estelle, 2009). 

During low IAA concentrations, auxin response factors (ARFs) are inhibited by auxin/indole-3-acetic acid 

proteins (AUX/IAA) and their co-repressor Topless (TPL) (Fig. 5, I). In the presence of increased IAA 

levels, auxin binds to the nuclear auxin receptor Transport Inhibitor Response1 and Auxin signaling F-

Box (TIR1/AFB) (Tan et al., 2007) and the AUX/IAA/TPL repressor complex (Fig. 5, II). The auxin-bound 

proteins are then brought to the SCFTIR1-E3 ubiquitin protein ligase complex (named after their subunits 

Skp1, Cullin, and F-box protein) (Smalle and Vierstra, 2004;Leyser, 2018) where AUX/IAA is ubiquitinated 

and degraded by the 26S proteasome (Fig. 5, III) (dos Santos Maraschin et al., 2009). After AUX/IAA 

degradation, ARFs are released from their inhibition, followed by the activation of auxin-responding 

genes (Fig. 5, IV) (Leyser, 2018). 
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Fig. 5 IAA perception and activation of auxin-inducible genes. (I) In the absence of physiologically 

relevant IAA concentrations, Auxin Response Factors (ARFs) are repressed by the transcriptional 

repressor AUX/Indole-3-Acetic Acid (AUX/IAA) and its co-repressor Topless (TPL). (II) Upon increased IAA 

levels, free IAA binds to the cavity of the F-Box auxin receptor proteins Transport Inhibitor Response1 

(TIR1) and Auxin signaling F-Box (AFB) together with AUX/IAA. (III) Similar to the previously described 

SCFCOI1-E3 ligase complex (S-phase Kinase protein 1 = ASK1, Cullin1 = CUL1, Ring-Box1 = RBX1), SCFTIR1-E3 

ubiquitinates AUX/IAA which is subsequently degraded by the 26S proteasome. (IV) Release from the 

AUX/IAA/TPL- repressor complex activates ARFs leading to the transcription of auxin-inducible genes. 

Scheme based on Pérez-Alonso and Pollmann (2018).  
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Although auxins were initially investigated as growth-related phytohormones, mounting evidence 

suggests a significant involvement during anti-herbivore defense and pathogen resistance (Kazan and 

Manners, 2009;Pérez-Alonso and Pollmann, 2018). Studies by Machado et al. (2016) demonstrated that 

IAA accumulates locally and systemically in herbivore-attacked Nicotiana attenuata plants, preceding 

local jasmonate bursts while activating biosynthetic YUCCA-like genes. Observations like these weaken 

the previously widespread notion that (JA-mediated) defense comes along with a trade-off visible in 

growth inhibition (Karasov et al., 2017). Additional evidence that jasmonate and auxin signaling and 

biosynthesis pathways are intimately connected was provided by Hentrich et al. (2013), showing that 

oxylipins can transcriptionally regulate auxin-related YUCCA genes. Reciprocally, Zhang et al. (2016b) 

demonstrated that members of the Arabidopsis IAA amidohydrolase family are able to metabolize JA-Ile. 

These findings combined with the striking similarities in the signal perception machineries (Hoffmann et 

al., 2011) underline the importance of a deeper understanding in hormone crosstalk between JA and IAA 

during biotic interactions. 

1.2.3.3 Abscisic acid and salicylic acid 

 

Apart from JA and IAA, additional phytohormones such as abscisic acid (ABA) and salicylic acid (SA) take 

part in the regulation of the plants’ hormonal network - especially during stress or attack.  

Abscisic acid (ABA, Fig. 6, A) is a 15 carbon- sesquiterpenoid which is synthesized from the 40 carbon- 

precursor β-carotene via the carotenoid pathway in the plastids (Nambara and Marion-Poll, 2005). It is a 

main regulator of abiotic stress responses, particularly drought stress, but also biotic stresses, e.g. 

pathogen attack. Both threats are met by ABA-mediated closure of the stomata to prevent infection 

and/or limit water loss (Chen et al., 2020). In response to herbivory or wounding, ABA was shown to act 

synergistically with JA by positively regulating MYC transcription factors (Abe et al., 2003;Anderson et 

al., 2004;Kazan and Manners, 2013). Depending on the given stimulus, studies by Anderson et al. (2004) 

proposed that upon pathogen infection the outcome is rather different as ABA negatively regulates JA. 

Therefore it has to be clearly distinguished which stress-specific signaling is triggered and how the 

corresponding phytohormone interactions shape the resulting gene expression changes in the plant. 

Salicylic acid (SA; Fig. 6, B) is a phenolic compound, which is synthesized via the isochorismate- or the 

phenylpropanoid pathway (Wildermuth et al., 2001;Dempsey et al., 2011;Li et al., 2019). However, both 

pathways require chorismate originating from the shikimate pathway (Li et al., 2019). Regarding its 

functionality, salicylic acid is predominantly known as the antagonist of JA (Pieterse et al., 2012) and the 
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backbone of plant immune responses against biotrophic pathogens (Glazebrook, 2005;Li et al., 2019). 

Arabidopsis mutants impaired in SA biosynthesis and signaling displayed a higher susceptibility to 

specific pathogens (Thomma et al., 1998) which could be restored by the exogenous addition of SA 

(Gaffney et al., 1993;Wildermuth et al., 2001). Additionally, SA was shown to induce the upregulation of 

pathogenesis-related (PR) proteins, highlighting its crucial role within local- and systemic acquired 

resistance (SAR) (Vlot et al., 2009) through the activation of PAMP-triggered (PTI)- and effector-triggered 

(ETI)- immunity (Li et al., 2019). Depending on invading organism, SA signaling and the SA/JA antagonism 

can be specifically targeted by the attacker, ultimately rewiring the plants’ hormonal machinery. 

Infection by virulent Pseudomonas syringae was shown to suppress SA-mediated immune responses 

using bacterial effector proteins. Injection of these effectors in combination with the bacterial toxin 

coronatine, a molecular mimic of JA-Ile, resulted in the suppression of SA-promoted host immunity 

(Nomura et al., 2005). In contrast to the aforementioned harmful interactions, beneficial microbes can 

temporarily suppress and reprogram PTI to the plants’ benefit. The root-interacting beneficial fungus 

Piriformospora indica was shown to target the JA pathway while counterbalancing SA-defense 

mechanisms (Jacobs et al., 2011;Pieterse et al., 2012). This step then allowed rapid root-colonization 

before unfolding of the beneficial plant growth-promoting effect (Aslam et al., 2019). In addition to 

plant-microbe-interactions, SA also mediates defense mechanisms against herbivores. However, the 

mode of defense strongly depends on the mode of feeding, e.g. piercing-sucking by whiteflies and 

aphids (Moran and Thompson, 2001;Zarate et al., 2007) against chewing by lepidopteran caterpillars 

(Cipollini et al., 2004;Felton and Tumlinson, 2008). Infestation by phloem-feeding aphids triggered SA-

related defense whereas wounding and the introduction of elicitors from Spodoptera larvae induced JA-

mediated protection mechanisms (Vos et al., 2013;Huot et al., 2014). 

 

Fig. 6 Chemical structures of the phytohormones abscisic acid (A, ABA) and salicylic acid (B, SA). 

Taken together, all of the phytohormones described contribute to an intricate network regulating plant 

responses throughout their whole life cycle, acting as highly specific chemical signals in dependence of 
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their combined concentrations. Apart from the aforementioned candidates, the gaseous phytohormone 

ethylene is also implicated in a plethora of growth, development, and defense-related mechanisms, 

playing a vital part within the plant’s hormonal regulatory network (Kazan, 2015;Light et al., 2016). 

However, this thesis will focus on the non-volatile phytohormones highlighted in the sections above. 

1.2.4 Volatile organic compounds (VOCs) 

 

Volatile organic compounds (VOCs) emitted by plants provide an intriguing example of fast and efficient 

infochemicals involved in intra- and interspecific plant signaling. VOCs can originate from multiple 

different pathways with the majority being formed by fatty acid catabolism, isoprenoid/terpenoids, and 

the phenylpropanoid/benzenoid pathways (Dudareva et al., 2013). After undergoing multiple structural 

modifications (acetylation, methylation, hydroxylation), VOCs can occur in a tremendous chemical 

variety with green leaf volatiles (GLVs), terpenoids, phenylpropanoids, or benzenoids as the most well-

studied examples (Dudareva et al., 2004;Ameye et al., 2018). Their structural diversity is intertwined 

with a plethora of functions which can trigger distinct responses in the emitter plant as well as on a 

community level (Karban and Maron, 2002;Das et al., 2013). Via the release of volatiles, plants are able 

to lure pollinators and seed dispersers towards their scented flowers (Pichersky and Gershenzon, 

2002;Burkle and Runyon, 2019), induce distinct defenses in conspecific neighbors (Kost and Heil, 2006), 

and even guide predators towards infested tissues (Dicke and van Loon, 2000;Kessler and Baldwin, 

2001;Van Poecke et al., 2001). This type of communication is not restricted to aboveground interactions, 

since roots are also able to emit (allelopathic) volatiles (Turlings et al., 2012;Zhang et al., 2012;Schulz-

Bohm et al., 2018). The information encoded in the chemical bouquets is strongly dependent on the 

composition, concentration, and the context in which it is presented (Mumm and Hilker, 2005;Ninkovic 

et al., 2020). VOCs represent the plant’s current physiological status driven by biotic and abiotic stress 

factors, e.g. the availability of resources, competitors, benefactors, or threats in general. Neighboring 

individuals can benefit from these constitutively emitted cues or induced signals to enhance their direct 

resistance against herbivores and pathogens, as well as to prepare for nutrient competition by recruiting 

beneficial microbes (Ninkovic et al., 2019). Apart from intra- and interspecific information transfer, 

volatiles harbor the potential to provide a fast and efficient shortcut to rapidly trigger signaling cascades 

in distant parts of the same plant (Karban et al., 2006;Heil and Bueno, 2007;Heil and Ton, 2008). The 

possibility to omit time-consuming vascular signaling steps via VOCs presents a well-structured 

mechanism which is implemented by various species (Meents and Mithöfer, 2020). However, the 
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receptors and downstream signal transduction cascade involved in defense-related VOC perception still 

remain elusive.  
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1.3 Aims of this study 

 

Considering the broad toolbox of aforementioned signaling components, each plant as a living organism 

in a complex environment can tailor its responses in a multitude of different ways. Therefore, scientific 

research must thoroughly investigate as many combinations of interacting partners, stressors, 

physiological and chemical readouts as possible. Within this thesis, the complex interplay of several 

chemical signaling components described in the previous chapters will be addressed in the model 

organism Arabidopsis thaliana and the crop plant Ipomoea batatas (Fig. 7). 

As one of the fastest signaling mechanisms, the rapid elevation of cytosolic calcium levels marks an 

excellent starting point for the investigation of stress-induced plant signaling mechanisms and the 

resulting responses. Over many years, a plethora of studies identified various calcium channels and 

sensors, including their function concerning the systemic signal propagation throughout connected 

leaves and tissues. Although the presence of annexins as calcium-binding proteins promoting calcium 

conductance has been demonstrated in plants, little is known regarding their function during biotic 

stress, especially herbivory. Wounding and/or insect attack pose as the most common threats triggering 

distinct local and systemic calcium signatures. Therefore, within this study standardized mechanical 

wounding (with and without elicitors) and feeding by the generalist Spodoptera littoralis (Fig. 7, right 

panel) were applied to address the following open questions: 

1. Does ANNEXIN1 contribute to downstream local and systemic defense responses in A. thaliana? 

2. Are [Ca2+]cyt elevations, jasmonates, and defense-related gene expressions altered in ANN1 

overexpression- and ann1 knock-out lines? 

3. Are ann1 knock-out mutants more susceptible to S. littoralis attack? 

Apart from rapid - but solely within-plant - calcium signatures, wounded plant tissues are able to release 

distinct volatile organic compounds. These chemical bouquets can be emitted quickly within seconds 

after wounding and harness the ability to trigger responses on a community level. Volatiles gained 

increasing attention as eco-friendly resistance boosters within crop protection. Due to their potential as 

potent intra- and interspecific information transmitters, more and more crop species were investigated 

regarding their ability to release and perceive volatile blends. However, in many species the exact 

mechanism and overall potential is still unknown. Because volatiles are able to provide an interesting 

alternative to time-consuming vascular signaling, especially plants possessing vast and distant organs 
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structures (e.g. trees, vines), are of major interest to study volatile signaling. Thus, this thesis will discuss 

the potential of volatiles regarding the following aspects: 

1. Can volatile organic compounds be classified as DAMPs and do they provide an applicable 

alternative to conventional pesticides? 

2. Are there cultivar-dependent differences in wounding-induced volatiles within the crop vine 

sweet potato? 

3. What chemical signaling components are regulating anti-herbivore defense in sweet potato (Fig. 

7, left panel)? 

4. Does trypsin inhibitor activation of sweet potato depend on the presence of jasmonates, 

peptides, and/or volatiles (Fig. 7, left panel)? 

5. Are conspecific sweet potato plants able to communicate via VOCs? 

 

Prior to all aforementioned aboveground interactions, each plant needs to anchor itself with a 

sophisticated network of roots into the soil, providing vital nutrients and stability. The necessity for 

efficient resource allocation to ensure optimal growth is mainly driven by a tight regulation of 

phytohormonal networks in the roots and throughout the whole seedling. As one of the main regulators 

in root growth and development, auxin is a central target of surrounding organisms (especially root-

interacting fungi) for manipulation. These manipulations can be beneficial but also detrimental to the 

plant, depending on the interacting organism. Although it is widely acclaimed that microbes can utilize 

and reprogram the plants’ auxin machinery, evidence regarding the early stages of infection and its 

effect on auxin distribution patterns in the root is still lacking for many fungal species. Therefore, this 

study will further investigate the following aspects: 

1. How do beneficial (Piriformospora indica & Mortierella hyalina) and pathogenic (Alternaria 

brassicicola & Verticillium dahliae) fungi influence auxin-responsive genes in transgenic 

Arabidopsis thaliana plants (Fig. 7, right panel)? 

2. How fast does infection occur upon exposure to spores or fungal plaques? 

3. Does fungal colonization alter phytohormone distribution patterns in the plant? 

4. Do fungi produce and accumulate phytohormones in the absence of plants? 

This thesis aims to shed light on the complex interplay of these versatile yet specific signaling 

mechanisms during aboveground herbivore-, as well as belowground microbe interactions. 
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Fig. 7 Overview of investigated chemical signaling components in the two species Ipomoea batatas 

and Arabidopsis thaliana upon different types of stress. Left: One part of thesis will study the local and 

systemic involvement of jasmonates (JA), small signaling peptides (Peps), and volatile organic 

compounds (VOCs) during mechanical wounding inflicted by the robotic caterpillar MecWorm and 

herbivore attack by the generalist Spodoptera littoralis. As readout, sweet potato-specific signaling 

cascades resulting in the activation of the defensive trypsin inhibitor (TI) will be investigated. Right: Due 

to the availability of various transgenic reporter lines, the model plant Arabidopsis thaliana poses as an 

excellent organism allowing the visualization of specific chemical signaling components. Therefore this 

thesis will also focus on the local and systemic cytosolic calcium ([Ca2+]cyt) and jasmonate elevations in 

Arabidopsis lines expressing the bioluminescent Ca2+ reporter aequorin after mechanical wounding by a 

pattern wheel (MW), MecWorm, or feeding by S. littoralis. Investigation of biotic belowground 

interactions with beneficial (+) and pathogenic (-) root-interacting fungi combined with dual 

fluorescence reporter lines, will highlight the complex interplay of auxins (IAA) and jasmonates.  
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2. Manuscripts 
 

2.1 Manuscript 1 

2.1.1 Manuscript overview 

 

Manuskript Nr. 1 

Titel des Manuskriptes: ANNEXIN1 mediates calcium-dependent systemic defense in Arabidopsis plants 

upon herbivory and wounding 

Autoren: Jaiana Malabarba, Anja K. Meents, Michael Reichelt, Sandra S. Scholz, Edgar Peiter, Julia 

Rachowka, Dorota Konopka-Postupolska, Katie A. Wilkins, Julia M. Davies, Ralf Oelmüller, Axel Mithöfer 

Bibliographische Informationen: New Phytologist (2021), 231(1), 243-254; doi.org/10.1111/nph.17277 

Der Kandidat / Die Kandidatin ist: 

 Erstautor/-in,  Ko-Erstautor/-in,  Korresp. Autor/-in, X Koautor/-in. 

Status: Publiziert 

Anteile (in %) der Autoren / der Autorinnen an den vorgegebenen Kategorien der Publikation  

 

Autor/-in Konzeptionell Datenanalyse Experimentell Verfassen des 
Manuskriptes 

Bereitstellung 
von Material 

Jaiana 
Malabarba 

50 % 50 % 50 % 40 % - 

Anja K. 
Meents 

- 30 % 40 % 20 % - 

Michael 
Reichelt 

- - 10 % - 10 % 

Sandra S. 
Scholz 

- 5 % - - - 

Edgar Peiter - - - - 20 % 

Julia 
Rachowka 

- - - - 5 % 

Dorota 
Konopka-
Postupolska 

- - - - 5 % 

Katie A. 
Wilkins 

- - - - 5 % 
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Julia M. Davies - - - - 10 % 

Ralf Oelmüller - 5 % - - 5 % 

Axel Mithöfer 50 % 10 %s - 40 % 40 % 

Summe: 100 % 100 % 100 % 100 % 100 % 
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2.1.2 Supplementary Material Manuscript 1 
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2.2 Manuscript 2 

2.2.1 Manuscript overview 

 

Manuskript Nr. 2 

Titel des Manuskriptes: Plant–Plant Communication: Is There a Role for Volatile Damage-Associated 

Molecular Patterns? 

Autoren: Anja K. Meents and Axel Mithöfer 

Bibliographische Informationen: Frontiers in Plant Science (2020), 11: 583275; doi: 

10.3389/fpls.2020.583275. 

Der Kandidat / Die Kandidatin ist: 

X Erstautor/-in,  Ko-Erstautor/-in,  Korresp. Autor/-in,  Koautor/-in. 

Status: Publiziert 

Anteile (in %) der Autoren / der Autorinnen an den vorgegebenen Kategorien der Publikation  

 

Autor/-in Konzeptionell Datenanalyse Experimentell Verfassen des 
Manuskriptes 

Bereitstellung 
von Material 

Anja K. 
Meents 

50 % 100 % NA 80 NA 

Axel Mithöfer 50 % - NA 20 NA 

Summe: 100 % 100 % NA 100 % NA 
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2.3 Manuscript 3 

2.3.1 Manuscript overview 

 

Manuskript Nr. 3 

Titel des Manuskriptes: Volatile DMNT systemically induces jasmonate-independent direct anti-

herbivore defense in leaves of sweet potato (Ipomoea batatas) plants 

Autoren: Anja K. Meents, Shi-Peng Chen, Michael Reichelt, Hsueh-Han Lu, Stefan Bartram, Kai-Wun Yeh, 

Axel Mithöfer 

Bibliographische Informationen: Scientific Reports (2019), 9: 17431; doi: 10.1038/s41598-019-53946-0. 

Der Kandidat / Die Kandidatin ist: 

 Erstautor/-in, X Ko-Erstautor/-in,  Korresp. Autor/-in,  Koautor/-in. 

Status: Publiziert 

Anteile (in %) der Autoren / der Autorinnen an den vorgegebenen Kategorien der Publikation  

 

Autor/-in Konzeptionell Datenanalyse Experimentell Verfassen des 
Manuskriptes 

Bereitstellung 
von Material 

Anja K. 
Meents 

- 40 % 45 % 45 % - 

Shi-Peng Chen - 30 % 35 % 20 % - 

Michael 
Reichelt 

- 5 % 15 % - 10 % 

Hsueh-Han Lu - - 5 % - - 

Stefan 
Bartram 

- 10 % - - 10 % 

Kai-Wun Yeh 50 % - - 5 % 30 % 

Axel Mithöfer 50 % 15 % - 30 % 50 % 

Summe: 100 % 100 % 100 % 100 % 100 % 
 

  



61 
 



62 
 



63 
 



64 
 



65 
 



66 
 



67 
 



68 
 



69 
 



70 
 



71 
 



72 
 



73 
 

 

  



74 
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Supplementary Table S1. Identification of volatiles collected in the headspace of I. batatas  TN57 and TN66 after mechanical wounding and feeding by S. littoralis .

No. (chromatogram) RI (exp) RI (DB) Compound Database TN57 TN66

901 900 n -Nonane au 2 3

903 901 n -Heptanal ni 1,2 1,2

1 931 930 α-Pinene au - 2

2 942 945 1-Butoxy-2-propanol ni - 2

3 954 955 2-Ethylhexanal ni - 1,2

4 958 957 Benzaldehyde au 1 1,2,3

5 961 966 5-Ethyl-(5H)-furan-2-one ni 1,2,3 2,3

6 987 987 6-Methyl-5-hepten-2-one au 1,2,3 1,2,3

7 991 994 Mesitylene ad 1,2 1,2

8 991 989 1-Decene ni 3 -

9 1000 1000 n -Decane au - 1

10 1003 1003 n -Octanal ni 1,2,3 1,2,3

11 1008 1008 (Z )-Hex-3-enyl acetate au 2,3 2,3

12 1015 1011 Hexyl acetate ni 3 -

13 1018 1016 (E )-Hex-2-enyl acetate ni 3 -

14 1027 1027 Limonene au 1,2 2

15 1031 1030 2-Ethyl-hexanol ni 1,2,3 1,2,3

16 1048 1049 (E )-β-Ocimene ni 3 2,3

17 1100 - unidentified monoterpenoid (93, 136) - 3 2,3

18 1103 1103 n -Nonanal au 1,2,3 1,2,3

19 1117 1118 4,8-Dimethylnona-1,3,7-triene au 1,2,3 1,2,3

20 1137 1134 Phenyl acetonitrile ad - 3

21 1178 1178 Naphthalene ad - 1,2

22 1187 1187 (Z )-Hex-3-enyl butanoate ni 3 -

23 1205 1205 n -Decanal au 1,2,3 1,2,3

24 1293 1295 Indole ni 2,3 2,3

25 1300 1300 n -Tridecane au 2,3 3

26 1306 1307 n -Undecanal ni 1,2,3 1,2,3

27 1349 1349 Internal standard (n -bromodecane) au 1,2,3 1,2,3

28 1363 1365 (E )-2-Undecenal ni - 3

29 1374 1375 α-Copaene au 3 1,3

30 1389 1389 β-Cubebene ni 3 2

31 1390 1391 7-epi-Sesquithujene ni 3 3

32 1392 1392 1-Tetradecene au 1,2 -

33 1397 1394 (Z )-Jasmone ni 2,3 3

34 1400 1400 n -Tetradecane au 3 1,3

35 1408 1409 Dodecanal ni 1,2,3 2,3

36 1417 1417 (E )-β-Caryophyllene au 1,2,3 1,2,3

37 1428 1430 β-Copaene ad 3 1,2

38 1435 1435 (E) -α-Bergamotene ni 2,3 1,2,3

39 1443 1444 Sesquisabinene (1) - 3 3

40 1452 1452 α-Humulene au 3 3

41 1453 1453 Geranyl acetone ni 1,2 1,2

42 1479 1479 Germacrene D au 3 -

43 1484 1486 β-Ionone ni 3 1

44 1494 1495 Bicyclogermacrene ni 3 -

45 1500 1500 n -Pentadecane au 2,3 1,2,3

46 1509 1509 Tridecanal ad 2 -

47 1564 1564 Nerolidol ni 2,3 3

48 1580 1580 (3E ,7E )-4,8,12-Trimethyltrideca-1,3,7,11-tetraene au 1,2,3 1,2,3

49 1600 1600 n -Hexadecane au 1,3 1,2,3

50 1700 1700 n -Heptadecane au 1,2,3 1,2,3

51 1714 1715 n -Pentadecanal ni 2,3 -

52 1800 1800 n -Octadecane au 1,2 2,3

53 1827 1827 Isopropyl tetradecanoate ni 2 -

54 1881 1880 n -Hexadecanol ni 1 -

(1) tentatively Sesquisabinene A according to: Weissbecker B. et al. 

 J. Chem. Ecol., 2000, 26, 6, 1433-1445. [doi:10.1023/A:1005535708866]

Abrreviations:

au Authentic ref Treatment:

Tentative identification with: 1 Control

ad Adams 2 MecWorm

ni NIST 3 Spodoptera littoralis
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Supplementary Table S2. Quantification of volatiles (ng/g fresh weight) collected in the headspace of I. batatas TN57 and TN66 after 

mechanical wounding and feeding by S. littoralis relative to the internal standard. 

 

(1) tentatively Sesquisabinene A according to: Weissbecker B. et al. J. Chem. Ecol., 2000, 26, 6, 1433-1445. [doi:10.1023/A:1005535708866]; Abbreviations: Bql 
(below quantification limit); Treatment: (1) Control; (2) Control (MecWorm); (3) Control (Spodoptera littoralis); (4) Spodoptera littoralis; Statistical test used: 
Ost (one sample t-test); Mw (Mann-White rank sum test); Aov (Kruskal-Wallis AOV).  



85 
 

Supplementary Table S2 (contin.). Quantification of volatiles (ng/g fresh weight) collected in the headspace of I. batatas TN57 and TN66 after 

mechanical wounding and feeding by S. littoralis relative to the internal standard. 

 

(1) tentatively Sesquisabinene A according to: Weissbecker B. et al. J. Chem. Ecol., 2000, 26, 6, 1433-1445. [doi:10.1023/A:1005535708866]; Abbreviations: Bql 
(below quantification limit); Treatment: (1) Control; (2) Control (MecWorm); (3) Control (Spodoptera littoralis); (4) Spodoptera littoralis; Statistical test used: 
Ost (one sample t-test); Mw (Mann-White rank sum test); Aov (Kruskal-Wallis AOV). 



86 
 

2.4 Unpublished results 

2.4.1 Sweet potato peptides IbHypSys4 and IbPepI differentially regulate anti-herbivore defense in sweet 

potato (Ipomoea batatas L.) 

 

2.4.1.1 Material and Methods 

 

Plant material and growth conditions 

Sweet potato scions (Ipomoea batatas Lam.; cultivar Tainong 57) were grown as previously described in 

Meents et al. (2019) (Manuscript 3) for 3 weeks under long day conditions (16 h light : 8 h dark) at 28 °C 

(day) and 25 °C (night) in 70% relative humidity. 

Peptides 

Peptides (IbHypSys4: REEKPOOOAOETDDPN; IbPepI: LSSRPPRPGLGNSGDPQTNDTSS; SlPep6: 

ATDRRGRPPSRPKVGSGPPPQNN; scrambled: PEROEDDNEOPKORPC) were ordered from GenScript 

Biotech (Leiden, Netherlands) and dissolved prior to each experiment in double-distilled water to a final 

concentration of 25 µM. 

Peptide spray treatments 

To study the local effects of peptide solutions on DMNT emission and gene expression, whole plants 

with six to eight fully expanded leaves were evenly sprayed with peptide solution or double-distilled 

water (control) until all leaves were fully covered in liquid. After a 1 h incubation period, single plants 

were placed for 24 h in 2.4 L glass desiccators (VWR international) for headspace volatile collection. For 

RNA-Seq, qRT-PCR, and phytohormone analyses each 3rd fully expanded leaf was locally sprayed with 

peptide solution or ddH2O (control) and harvested together with the adjacent 4th leaf (systemic) after 1 h 

of incubation. 

VOC collection and quantification 

Volatiles were collected over 24 h from peptide- or water-treated sweet potato plants enclosed in 2.4 L 

desiccators using the closed-loop stripping technique (Kunert et al., 2009). Throughout the headspace 

collection, each desiccator was connected to an air circulation pump (Fürgut GmbH, Germany) 

containing a charcoal trap with 1.5 mg absorption material (CLSA filter, 6 cm long, 0.5 cm diameter, 

Gränicher & Quartero, France). After collection, volatiles were eluted and measured as described in 

Meents et al. (2019) (Manuscript 3) with minor modifications. In this study, samples were eluted with 2 
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x 20 µl of dichloromethane containing 10 µg ml-1 n-bromodecane as internal standard used for further 

relative quantification. 

RNA extraction and quantitative real time (qRT)-PCR 

Harvested sweet potato leaves were processed and used for real-time PCR as described in Meents et al. 

(2019) (Manuscript 3) with the additional primer pair IbLRR-RLK1 (5’-3’; F: 

TGGCCCATTTCCTGAGTCTTTAC; R: GACAGGCAAGGTTCCAACAAGATT; Eurofins Genomics, Luxembourg) 

on a Bio-Rad CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories, USA). 

Phytohormone extraction and quantification 

Local and systemic leaves collected after 1 h peptide treatment were extracted and measured according 

to Meents et al. (2019) (Manuscript 3) using Agilent 1200 HPLC system (Agilent, USA) with subsequent 

API 5000 tandem mass spectrometer (Applied Biosystems, USA) with a Turbo spray ion source in 

negative ionization mode. 

RNA-Seq 

RNA from single 3rd leaves treated for 1 h with IbHypSys4, IbPepI, and water (control) was extracted 

according to Meents et al. (2019) (Manuscript 3) using TRIzol Reagent (Invitrogen, USA). Four biological 

replicates per treatment were used for RNA-Seq experiments conducted by Novogene Europe 

(Cambridge, UK). RNA quality was monitored using NanoPhotometer® spectrophotometer (IMPLEN, CA, 

USA) and RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA, USA). 1 µg 

of RNA per sample was used as template material for further sample preparations. Sequencing libraries 

were generated via NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB, USA) following 

manufacturer’s instructions. 20 M paired end reads of 150 bp per sample were generated, sequenced 

on an Illumina NovaSeq 6000 instrument (San Diego, USA), and mapped in reference to the genome of 

Ipomoea trifida (http://sweetpotato.plantbiology.msu.edu). Differential gene expression analysis was 

conducted using DESeq2 (v1.22.2) R package followed by a Benjamini and Hochberg FDR correction of 

the resulting p-values. Genes with an adjusted p-value of < 0.05 were considered as significantly 

differently expressed. Statistical enrichment analyses of differential gene expression in KEGG pathways 

was executed with KOBAS (v3.0). 

  



88 
 

Statistical analysis 

Data generated using qRT-PCR was analyzed as described in Meents et al. (2019) (Manuscript 3) 

followed by a Shapiro-Wilk normality test with subsequent t-test or Mann-Whitney rank sum test based 

on the data distribution. Phytohormone levels were analyzed using a two-way ANOVA with initial 

Shapiro-Wilk-normality and equal variance test. For all analyses, phytohormone content was set as the 

dependent variable with treatment and leaf type as independent variables. For identification of 

significant differences between groups, pairwise multiple comparison procedure via the Holm-Sidak 

method was implemented with a significance level of p < 0.05. All statistical analyses were conducted in 

SigmaPlot (V 11.0). 

2.4.1.2 Results and Discussion 

 

IbHypSys4 induces the emission of anti-herbivore DMNT in sweet potato 

 

In our previous study we demonstrated that the wound-inducible volatile (E)-4,8–dimethyl–1,3,7-

nonatriene (DMNT) is sufficient to induce the defensive trypsin inhibitor sporamin in the sweet potato 

cultivar Tainong 57 in a jasmonate-independent manner (Manuscript 3). Apart from this novel volatile 

shortcut, the endogenous 18 aa hydroxyproline-rich glycopeptide IbHypSys 4 was also shown to activate 

sporamin expression upon wounding and methyl jasmonate treatment (Chen et al., 2008) therefore 

serving as an additional systemic signaling component during anti-herbivore defense. In order to 

elucidate whether IbHypSys4 contributes to DMNT-mediated protection, whole sweet potato plants 

were sprayed with the active peptide and volatiles were collected over 24 h to test for DMNT induction. 

Application of IbHypSys4 resulted in a significantly increased DMNT emission compared to water 

controls (Fig. 1 a). In addition to previously discovered HypSys signaling peptides, plant elicitor peptides 

(Peps) were also found to induce defense-related genes and anti-herbivore volatiles in maize and 

Arabidopsis thaliana (Huffaker and Ryan, 2007;Huffaker et al., 2013;Huffaker, 2015). Based on amino 

acid sequences shared with known Peps in other species, the novel peptide candidate IbPepI was 

identified in Ipomoea batatas in reference to the genome of Ipomoea trifida and tested for activity using 

ROS-based luminescence assays (Lu, Meents, et al., in prep). Although IbPepI was confirmed to possess 

bioactive properties, 24 h incubation with IbPepI did not lead to DMNT induction (Fig. 1 b), highlighting 

the specificity of HypSys and Pep-induced volatile responses in sweet potato. Scions incubated with the 

tomato-derived peptide SlPep6 (Fig. 1 c) or an inactive scrambled peptide (Fig. 1 d) also only displayed 
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basal DMNT levels comparable to the control treatment, therefore underlining the functionality of the 

peptide application method and the (species-)specificity of the elicitor. 

 

Fig. 1 Incubation with IbHypSys4 induces emission of (E)-4,8–dimethyl–nonatriene (DMNT) in Ipomoea 

batatas TN57. DMNT emission of whole I. batatas plants sprayed with 25 µM of (a) IbHypSys4 (n = 8-

10), (b) IbPepI (n = 10), (c) SlPep6 (n = 11), (d) scrambled peptide (n = 7) solution (gray bars) or water 

(control, black bars). Single plants were evenly sprayed with liquid and incubated for 1 h until no more 

droplets were visible. Volatiles were then collected over 24 h and eluted with internal standard. Bars 

represent the mean ± SEM of DMNT emission in ng/g fresh weight. Significance levels are indicated by 

the asterisks (n.s. = not significant; *p < 0.05). Asterisks indicate significant differences between control 

and peptide treatment, based on a Shapiro-Wilk normality test followed by a Mann-Whitney rank sum 

test. 

Upregulated sporamin transcript levels in response to IbHypSys4 spray 

To further examine whether our peptide treatment is sufficient to reproduce previously described 

sporamin upregulation, sweet potato plants were sprayed and incubated with IbHypSys4 solutions for 1 
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h. Subsequent qRT-PCR analysis revealed approx. 10-fold increased sporamin transcript levels upon 

contact with IbHypSys4 (Fig. 2 a), confirming the ability of HypSys peptides to trigger sporamin-related 

signaling cascades. 

Although increasing information is available about signaling mechanisms leading to the activation of 

defensive sporamin in sweet potato, it stills remains unclear which receptors are involved. As outlined in 

the introductory chapter 1.2.2, various peptide-binding cell surface receptors have been identified with 

the majority belonging to the family of leucine-rich repeat receptor kinases (LRR-RK) (Tang et al., 2017). 

Bioinformatic analyses conducted by Dr. Hwang (Academic Sinica, Taiwan) identified the novel 

IbHypSys4 receptor candidate IbLRR-RLK1 by comparison of amino acid sequences from known LRR-RK 

to sequences found in Ipomoea trifida (Lu, Meents, et al., in prep). Unfortunately, spraying of IbHypSys4 

did not upregulate transcript levels of the putative receptor candidate (Fig. 2 b) confirming ROS- and 

ethylene-based assays by H. Lu (data unpublished). Taken together, our results indicate that IbHypSys4 

is involved in sporamin-mediated defense, however not by binding to IbLRR-RLK1. 

 

Fig. 2 IbHypSys4 spray induces defensive sporamin but not the putative receptor candidate IbLRR-

RLK1. qRT-PCR of trypsin-inhibitory sporamin (a) and the putative receptor candidate gene (b) IbLRR-

RLK1 after 1 h incubation with 25 µM of sprayed IbHypSys4 (gray bars) or ddH2O (black bars). Bars 

represent the mean ± SEM of normalized fold gene-expression levels with water-sprayed leaves used as 

a respective control. Significance levels are indicated by the asterisks (*p < 0.05; **p < 0.01; n = 8). 

Statistical analyses were performed for the peptide treatment and the respective control using a 

Shapiro-Wilk normality test followed by a Mann-Whitney rank sum (a) and a t-test (b). 
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IbPepI treatment induces expression of upstream IbNAC1 but not sporamin 

Strikingly, ROS burst assays using chimeric receptor constructs revealed that the novel peptide 

candidate IbPepI is able to bind and activate the putative receptor IbLRR-RLK1 at concentrations of 0.01-

0.1 nM (Lu, Meents, et al., in prep). Additional RT-PCR experiments by Lu, Meents, et al. (unpublished) 

confirmed that IbLRR-RLK1 transcripts can be induced by IbPepI treatment and wounding of I. batatas 

TN57. Based on these findings, our study aimed to investigate whether wound-inducible IbPepI can elicit 

sporamin defense. Incubation experiments with 25 µM of sprayed IbPepI for 1 h induced expression of 

upstream transcription factor IbNAC1 (Fig. 3 a) however not of the downstream trypsin inhibitor 

sporamin (Fig. 3 b). The fact that IbPepI activated universal transcription factors, e.g. IbNAC1 (Meng et 

al., 2018) in the absence of defense-related sporamin or DMNT output, suggests a different role than 

the anticipated involvement in anti-herbivore defense. 

 

 

Fig. 3 IbPepI spray induces IbNAC1 but not downstream defensive sporamin. qRT-PCR of IbNAC1 (a) 

and trypsin-inhibitory sporamin (b) after 1 h incubation with 25 µM of sprayed IbPepI (gray bars) or 

ddH2O (black bars). Bars represent the mean ± SEM of normalized fold gene-expression levels with 

water-sprayed leaves used as a respective control. Significance levels are indicated by the asterisks (*p < 

0.05; ***p < 0.001; n = 8). Statistical analyses were performed for the peptide treatment and the 

respective control using a Shapiro-Wilk normality test followed by a t-test (a) and a Mann-Whitney rank 

sum test (b). 

 

Local IbHypSys4 and IbPepI differentially affect phytohormones 

Our previous studies have shown that mechanical wounding and herbivory induced local jasmonate 

accumulation without a systemic increase in JA levels (Manuscript 3). At that point, we mainly focused 
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on unraveling the DMNT-mediated volatile shortcut, rendering systemic JA responses unnecessary to 

activate sporamin defenses. However, our recent findings confirmed that jasmonate-inducible HypSys 

peptides such as IbHypSys4 can induce sporamin expression and DMNT release (see Fig. 1 & 2), 

indicating its importance for signaling during herbivore defense. In order to further elucidate which role 

peptides play within the Ipomoea defense framework, local and systemic TN57 leaves were analyzed for 

phytohormone levels after peptide contact. In comparison to water-treated controls, no significant 

differences in local and systemic JA concentrations could be observed after IbHypSys4 treatment (Fig. 4 

a). Interestingly, IbHypSys4-treated leaves showed a significantly increased amount of bioactive JA-Ile, 

however only locally (Fig. 4 d). For the JA metabolite JA-OH, differences could be observed between 

control and peptide-treated groups with a decreased concentration of systemic leaves sprayed with 

IbHypSys4 (Fig. 4 g). A similar trend was detected for cis-OPDA, however not significant due to strong 

concentration fluctuations during measurements (Fig. 5 a). For the stress-related hormones SA and ABA 

(Fig. 5 d & g), no significant differences to control treatment could be observed except for a local 

decrease in SA concentrations upon contact with IbHypSys4 (Fig. 5 d). Overall, it has to be noted that the 

measured phytohormone concentrations were relatively low compared to previously reported levels 

(Manuscript 3). This indicates that in order to determine significant changes and plant responses, longer 

incubation periods and increasing peptide concentrations might be necessary to highlight specific 

responses on a phytohormone level. As reported by Li et al. (2016), application of IbHypSys4 to leaf-

petiole cuttings increased expression levels of Ib-13-LOX and IbAOS after 1 h, providing first evidence for 

its participation in jasmonate biosynthesis. Within our experimental setup using intact plants, we could 

confirm a local accumulation of the active jasmonate, JA-Ile, after 1 h of IbHypSys4 treatment. This 

indicates that IbHypSys4 is able to induce jasmonate production – however on a very low level, which 

might be insufficient to trigger downstream defense signaling mechanisms requiring higher jasmonate 

bursts as e.g. after feeding or wounding. 

 

Treatment with our newly identified IbPepI did neither alter jasmonate nor SA levels although possible 

effects might have been masked by low concentrations and strong fluctuations (Fig. 4 b, e, h & Fig. 5 e). 

Exposure to IbPepI resulted in significantly increased cis-OPDA concentrations in the systemic leaf 

compared to the control group. An opposing effect was observed for ABA with decreasing amounts 

mainly found in the local leaf (Fig. 5 h). Although no tremendous changes in phytohormone levels were 

overall visible, we noted a clear tendency that for hormones responding to IbHypSys4, no response 
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would occur during exposure to IbPepI and vice versa (Fig. 4 & 5). On that note, the treatment 

implemented in this study appears to be species-specific as spraying with tomato-derived SlPep6 did not 

affect any stress-or defense related hormones (Fig. 4 & 5 c, f, i). 

 

Fig. 4 Alternating jasmonate induction of I. batatas after treatment with IbHypSys4 and IbPepI. (a-i) 

Jasmonate levels after IbHypSys 4 (a,d,g), IbPepI (b,e,h), and SlPep6 (c,f,i) treatment measured in I. 

batatas TN57 after 1 h. Phytohormone contents were measured in the locally treated 3rd leaf (dark gray 

bars) and the adjacent untreated 4th systemic leaf (light gray bars). Leaves from ddH2O-sprayed plants 

served as controls. Statistically significant differences between groups were analyzed using a two-way 

ANOVA with initial normality and equal variance tests. Different letters indicate significant differences 

among groups for p<0.05, determined by the Holm-Sidak method. For all analyses, phytohormone 

content was set as the dependent variable with treatment and leaf type as independent variables. Data 

are presented as mean ± SEM. 
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Fig.5 Opposing phytohormone accumulation patterns in I. batatas after treatment with IbHypSys4 and 

IbPepI. (a-i) Jasmonic acid precursor cis-OPDA, salicylic acid (SA), and abscisic acid (ABA) levels after 

IbHypSys 4 (a,d,g), IbPepI (b,e,h), and SlPep6 (c,f,i) treatment measured in I. batatas TN57 after 1 h. 

Phytohormone contents were measured in the locally treated 3rd leaf (dark gray bars) and the adjacent 

untreated 4th systemic leaf (light gray bars). Leaves from ddH2O-sprayed plants served as controls. 

Statistically significant differences between groups were analyzed using a two-way ANOVA with initial 

normality and equal variance tests. Different letters indicate significant differences among groups for 

p<0.05, determined by the Holm-Sidak method. For all analyses, phytohormone content was set as the 

dependent variable with treatment and leaf type as independent variables. Data are presented as 

mean ± SEM. 
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RNA-Seq of I. batatas reveals high number of differentially expressed genes (DEGs) upon IbPepI and 

IbHypSys4 peptide treatment 

 

In order to better understand the functionality and similarities between IbPepI and IbHypSys4, RNA-Seq 

experiments were conducted on single leaves treated with IbHypSys4, IbPepI, and water (control) for 1 

h. Overall, 24482 differentially expressed genes (DEGs) were detected based on comparisons to the 

reference genome Ipomoea trifida. A total of 22702 DEGs was shared among all treatments including 

control samples; however IbHypSys4 elicited expression of 241 specific DEGs whereas plants responded 

even stronger to IbPepI incubation with 485 DEGs (Fig. 6). The amount of shared transcripts between 

both peptide treatments was found to be 326 genes (Fig. 6). 

 

 

Fig. 6 Venn diagram of DEGs in leaves locally treated with 25 µM of IbHypSys4, IbPepI, or ddH2O 

(control) for 1 h. Overlapping circle parts represent the shared differentially expressed genes (DEGs) 

between the three treatments. 

 

Compared to water-treated control samples, spraying of IbHypSys4 induced upregulation of 555 genes 

whereas 826 were significantly downregulated (Fig. 7 a). After IbPepI incubation, an even stronger 

response was observed with 1749 DEGs up- and 2694 downregulated (Fig. 7 b). This suggests that I. 

batatas responds more strongly to IbPepI, indicating that this peptide can trigger a wider range of 

mechanisms within the plant compared to IbHypSys4. However, this hypothesis requires further 
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confirmation with KEGG pathway analyses and RT-qPCR of selected genes. Nevertheless, an overall 

comparison of both peptide treatments revealed that the so far highest detected amount of 2607 DEGs 

was shown to be upregulated whilst 2229 displayed downregulated patterns (Fig. 7 c). These findings 

highlight the proposed different functions of both investigated sweet potato-derived peptides, based on 

their ability to trigger a diverging variety of genes. However at this point, a deeper analysis has to be 

conducted to verify this assumption. 

 

 

Fig. 7 Volcano plot of statistical significance (-log10 adj. p-value) against enrichment of DEGs (log2-fold 

change) after 1 h treatment of I. batatas leaves with 25 µM of IbHypSys4, IbPepI, or ddH2O (control). 

The number of significantly upregulated genes is indicated in red with the downregulated ones 

highlighted in green. DEGs not meet significance thresholds are expressed in blue.  

a b 

c 
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2.4.1.3 Outlook 

 

The defensive role of the sweet potato peptide precursor IbpreproHypSys and the resulting IbHypSys4 

has been demonstrated in the past, shedding light on its importance within sporamin-induced herbivore 

resistance (Chen et al., 2008;Li et al., 2016). We could confirm that spraying of IbHypSys4 elicited DMNT 

emission and sporamin transcript upregulation in sweet potato (Fig. 8, left panel). Based on these 

findings, this peptide serves as an intriguing new component within our proposed DMNT-mediated 

systemic signaling. As we could only find a local jasmonate accumulation upon wounding in sweet 

potato, HypSys signaling peptides provide an elegant solution to systemically activate sporamin as well 

as enhancing DMNT release. As shown by Chen et al. (2008), transcript levels for the IbHypSys4 

precursor IbpreproHypSys were induced upon exposure to methyl jasmonate vapors, showing once 

more the plant’s perceptiveness to VOCs. As vice versa the active peptide is able to induce DMNT 

emission, it would be crucial to investigate whether DMNT can trigger IbHypSys4 production, ultimately 

closing the feedback loop. Additionally, future analyses of the transcriptome data will provide a deeper 

insight into additional regulatory functions of IbHypSys4. As the proposed receptor candidate IbLRR-

RLK1 did not respond to this specific peptide, further experiments are necessary to identify the actual 

binding partner for IbHypSys4 (Fig. 8, left panel). 

Strikingly, the receptor candidate IbLRR-RLK1 was identified as the binding partner for the novel 

discovered peptide IbPepI (Lu, Meents, et al., in prep) therefore presenting the first known peptide-

receptor pairing in sweet potato. Regarding its mode of action, we found that IbPepI did not affect 

DMNT emission and sporamin transcript levels, therefore ruling out an involvement in known trypsin-

inhibitory herbivore defense (Fig. 8, right panel). Based on the divergent expression patterns observed 

within the RNA-Seq analysis, I. batatas appears to be responsive to IbHypSys4 as well as IbPepI, however 

upon activation of different gene patterns. The identification of pathways induced by IbPepI as well as 

its biological relevance will be a key element addressed in future studies. Due to the structural 

similarities shared with e.g. the tomato peptide SlPep6, we predict that IbPepI participates in broader 

immune responses or pathogen defense, comparable to the AtPep1/PEPR1 pairing (Yamaguchi et al., 

2006;Huffaker and Ryan, 2007;Yamaguchi et al., 2010). As SlPep6 was also able to bind to the sweet 

potato receptor IbLRR-RLK1 (Lu, Meents, et al., in prep), the receptor type is also able to recognize and 

bind peptides from other species – underlining its versatility and involvement in a wider range of 
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functions. However, further evidence needs to be gathered, which can ultimately be confirmed by RT-

qPCR and bioassays. 

 

 

 

Fig. 8 Overview of the current status of peptide-receptor pairings and its signaling functions in I. 

batatas TN57. Left panel: Our studies revealed the involvement of the signaling peptide IbHypSys4 

within anti-herbivore defense by mediating DMNT emission and sporamin upregulation. A receptor 

binding this peptide yet remains to be discovered. Right panel: The novel sweet potato peptide IbPepI 

does not take part in DMNT-sporamin-signaling. Investigation of putative receptor candidates revealed 

IbLRR-RLK1 as a binding partner for IbPepI and tomato-derived SlPep6, indicating a role in general 

immune responses and pathogen interaction.
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2.5 Manuscript 4 

2.5.1 Manuscript overview 

 

Manuskript Nr. 4 

Titel des Manuskriptes: Beneficial and pathogenic Arabidopsis root-interacting fungi differently affect 

auxin levels and responsive genes during early infection 

Autoren: Anja K. Meents, Alexandra C. U. Furch, Marília Almeida-Trapp, Sedef Özyürek, Sandra S. Scholz, 

Alexander Kirbis, Teresa Lenser, Günter Theißen, Veit Grabe, Bill Hansson, Axel Mithöfer, Ralf Oelmüller 

Bibliographische Informationen: Frontiers in Microbiology (2019), 10: 380; doi: 

10.3389/fmicb.2019.00380. 

Der Kandidat / Die Kandidatin ist: 

X Erstautor/-in,  Ko-Erstautor/-in,  Korresp. Autor/-in,  Koautor/-in. 

Status: Publiziert 

Anteile (in %) der Autoren / der Autorinnen an den vorgegebenen Kategorien der Publikation  

Autor/-in Konzeption
ell 

Datenanalyse Experimentell Verfassen des 
Manuskriptes 

Bereitstellung 
von Material 

Anja K. Meents 30 % 35 % 30 % 25 % - 

Alexandra C. U. 
Furch 

20 % 35 % 30 % 25 % - 

Marília 
Almeida-Trapp 

- 15 % 15 % - - 

Sedef Özyürek - - 15 % - - 

Sandra S. Scholz - - - 20 % - 

Alexander Kirbis - - - - 5 % 

Teresa Lenser - - - - 5 % 

Günter Theißen - - - - 5 % 

Veit Grabe - 10 % 10 % 5 % - 

Bill Hansson - - - - 5 % 

Axel Mithöfer - - - - 30 % 

Ralf Oelmüller 50 % 5 % - 25 % 50 % 

Summe: 100 % 100 % 100 % 100 % 100 % 
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2.6 Manuscript 5 

2.6.1 Manuscript overview 

 

Manuskript Nr. 5 

Titel des Manuskriptes: Fungal-induced formation of auxin maxima in Arabidopsis thaliana roots 

Autoren: Anja K. Meents, Sedef Özyürek, Ralf Oelmüller, Alexandra C. U. Furch 

Bibliographische Informationen: Russian Journal of Plant Physiology (2019), 66(6): 872-883; doi: 

10.1134/S102144371907001X. 

Der Kandidat / Die Kandidatin ist: 

 Erstautor/-in, X Ko-Erstautor/-in,  Korresp. Autor/-in,  Koautor/-in. 

Status: Publiziert 

Anteile (in %) der Autoren / der Autorinnen an den vorgegebenen Kategorien der Publikation  

 

Autor/-in Konzeptionell Datenanalyse Experimentell Verfassen des 
Manuskriptes 

Bereitstellung 
von Material 

Anja K. 
Meents 

25 % 25 % 25 % 35 % - 

Sedef Özyürek - 50 % 50 % 30 % - 

Ralf Oelmüller 50 % - - - 100 % 

Alexandra C. 
U. Furch 

25 % 25 % 25 % 35 % - 

Summe: 100 % 100 % 100 % 100 % 100 % 
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3. Discussion 

 

Plants are key components within a complex, diverse, and resource-abundant environment. In order to 

adapt to these constantly changing conditions, comprising biotic and abiotic influences, each individual 

needs to perceive, decode, translate, and transduce the respective stimuli into responses appropriate to 

the given scenario. A variety of available chemical messenger, such as Ca2+, phytohormones, volatiles, 

and peptides serve as fast and specific signals linking the perception of external stimuli to a tailor-made 

response within the plant itself or the surrounding community (Zebelo and Maffei, 2015). This study 

aimed to disentangle the aforementioned chemical signals involved during biotic interactions with 

herbivores and fungi in the model organism Arabidopsis thaliana and the crop plant Ipomoea batatas 

and the respective physiological response in each species. 

3.1 Plant signaling molecules involved in wounding- and herbivory-induced defense 

 

Wounding and herbivory are known to be among the most common stressors within a plant’s life cycle. 

Damage to the tissue alone has already been shown to be sufficient to trigger a vast range of 

physiological responses (Schilmiller and Howe, 2005;Hou et al., 2019). Independent from the presence 

of herbivores and the concomitant host races, these wound signaling cascades can be regarded as the 

most ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, 

which often initiate defined defense responses (Manuscript 2). Nevertheless, current pest management 

mainly targets mechanisms involved in plant-herbivore interactions, trying to identify and exploit the 

key players affecting plant performance and herbivore resistance. Although the introduction of the 

respective attacking organisms and their inherent herbivore- or pathogen-associated molecular patterns 

(HAMPs & PAMPs) adds another layer of complexity, it also provides additional targets for novel pest 

management strategies. Plants alone possess powerful defense strategies, which can directly affect 

herbivore survival and reproductive success or indirectly by attracting natural enemies of the insect pest 

(War et al., 2012;Pérez-Hedo et al., 2021). Direct defense mechanisms comprise the production of toxins 

and feeding deterrents (proteinase inhibitors (PIs), terpenoids, alkaloids) (Pérez-Hedo et al., 2021) or 

fortification with mechanical barriers (War et al., 2012). Indirect defenses, e.g. damage- or herbivore- 

induced plant volatiles (DIVs & HIPVs), guide the herbivore’s natural predators to protect the plant from 

infestation (Paré and Tumlinson, 1999;Mithöfer and Boland, 2012;War et al., 2012). 
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Prior to the activation of all aforementioned protective mechanisms, the adequate perception and 

elicitation of stimulus-specific outputs is crucial. Therefore, the following chapters will focus on 

herbivory-induced signaling components and their interplay in two different species, e.g. the model 

plant A. thaliana and the crop I. batatas. 

3.1.1 Annexin1 – a regulator of calcium-mediated systemic herbivore defense 

 

As one of the first signaling relays after wounding or herbivory, calcium has been extensively studied 

concerning its activation of a variety of downstream elements (Arimura et al., 2011), such as the 

induction of defense-related genes (Maffei et al., 2007), and the accumulation of jasmonates (Wang et 

al., 2019). These calcium-mediated responses occur locally as well as systemically, forwarding 

information from the site of damage through the vascular tissue by following a distinct pattern (Kiep et 

al., 2015).However, the generation of such rapid and transient [Ca2+]cyt signatures requires the 

involvement of stress-inducible calcium channels in the first place. Within the last decade, a broad range 

of studies identified multiple wounding or herbivory-induced candidates and demonstrated their 

involvement in cytosolic calcium influx, e. g. glutamate receptor-like channels (GLRs) (Mousavi et al., 

2013), Two Pore Channel 1 (TPC1) (Kiep et al., 2015), and more recently cyclic nucleotide-gated channel 

19 (CNGC19) (Meena et al., 2019). Apart from these conventional channels, ubiquitous proteins such as 

annexins gained increasing attention as potential key elements in the formation of Ca2+-permeable 

transport pathways (Davies, 2014). Especially Annexin 1 was shown to mediate the elevation of [Ca2+]cyt 

in response to extracellular hydroxyl radicals and salt stress (Lee et al., 2004;Laohavisit et al., 

2012;Richards et al., 2014) as well as cold-triggered Ca2+ influx resulting in enhanced freezing tolerance 

in Arabidopsis thaliana (Liu et al., 2021). Interestingly, the majority of available annexin-related reports 

mainly focused on the investigation of its involvement during abiotic stresses, comprising heat, salt, 

drought, cold, and osmotic stresses in various plant species (Yadav et al., 2018). Considering the 

involvement of biotic factors and a potential impact on plant annexins, some studies confirmed that the 

host plant’s annexin expression was induced upon infection with viruses, bacteria, fungi, and 

phytohormonal treatments in general (Yadav et al., 2018). However, the role of annexins within 

wounding and especially biotic herbivore interactions has only been scarcely explored up to now. 

We found the expression of ANN1 in A. thaliana Col-0 plants to be significantly induced after 90 minutes 

of wounding or herbivory treatment (Manuscript 1). Interestingly, the observed upregulated ANN1 

transcript levels did not deviate depending on the presence of OS-derived HAMPS or water only, 
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indicating the presence of annexins as a universal wounding response. This hypothesis is supported by 

the occurrence of annexins in a multitude of other plants, including crops such as alfalfa, tomato, or 

wheat (Xu et al., 2016). Within these species it was shown that annexins are not exclusively 

transcriptionally activated after wounding but as a result of drought, salinity, cold, heat, 

phytohormones, or heavy metal stress (Xu et al., 2016). Although not stimulus-specific, our observations 

update previous studies conducted by Konopka-Postupolska et al. (2009) demonstrating upregulated 

ANN1 mRNA levels after wounding with forceps, after longer time periods (24 and 48 h). Therefore we 

could highlight that the activation of annexins upon mechanical damage and herbivory can be regarded 

as a rapid but rather general stress response.  

In order to further unravel the potential role of ANN1 in the downstream signaling cascade following 

actual and simulated herbivory, we investigated the cytosolic calcium elevations in Col-0 and ann1-1 

Arabidopsis plants (Manuscript 1). Using the bioluminescent [Ca2+]cyt reporter (apo)aequorin, we found 

that - although slightly weaker compared to Col-0 plants – a rapid local accumulation of [Ca2+]cyt 

occurred also in the absence of functional ANN1 after wounding with the addition of oral secretion from 

Spodoptera littoralis (Manuscript 1). Although the local calcium signal was clearly initiated in both wild-

type and ann1-1 plants, neither water nor OS could induce a systemic calcium signal in the connected 

leaves within ann1-1 mutants. This crucial observation highlights the importance of ANN1 during 

systemic wounding signal propagation and how its absence impedes connected leaves from receiving 

information necessary for survival, comparable to GLRs (Nguyen et al., 2018;Toyota et al., 2018). Similar 

observations were made within mutants of the vacuolar cation channel, Two Pore Channel 1 (tpc1), 

where mechanical wounding-triggered systemic calcium waves were undetectable in contrast to the 

local response (Kiep et al., 2015). 

Considering the lack of systemic calcium signal propagation in ann1-1 mutants, our study aimed to 

investigate whether this impacts defensive downstream components, e.g. phytohormone accumulation 

and gene regulation in local and systemic leaves. As a readout for defense-related phytohormones, JA 

and its active form JA-Ile were investigated after 30 and 90 minutes of feeding by S. littoralis in locally 

treated leaves. Although increased jasmonate accumulation was detectable in all lines, ann1 mutants 

displayed significantly lowered concentrations of JA and JA-Ile compared to Col-0 plants (Manuscript 1), 

whereas especially JA-Ile levels were significantly upregulated in the ANN1 overexpression line. This 

finding supports the hypothesis, that a lack of ann1 reduces downstream jasmonate responses and 

hinders the full activation of jasmonate-defense mechanisms, comparable to findings for CNGC19 
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(Meena et al., 2019). To investigate whether the reduced jasmonate accumulation is also visible on a 

systemic level, mechanical wounding using a pattern wheel with or without the addition of OS or water 

was performed followed by the quantification of jasmonates in locally treated and connected systemic 

leaves (leaves 8 and 13, respectively) (Dengler, 2006;Farmer et al., 2013) after 90 minutes (Manuscript 

1). Similar to the omitted calcium elevations after mechanical wounding ± water/OS, JA and JA-Ile 

contents were not induced after mechanical wounding with or without OS in leaves 8 and 13 – strictly in 

contrast to the observed response in wild-type plants. Analyses of jasmonate-responsive genes (JAZ10 

and VSP2) after larval feeding showed a clear local as well as systemic upregulation of transcript levels in 

Col-0 plants, whereas ann1-1 once more did not display such an increase (neither local nor systemic). 

These findings are comparable to observations made by Meena et al. (2019), who also found reduced 

expression levels of VSP2, LOX2, and PLANT DEFENSIN1.2 conjoined with reduced jasmonate levels in 

cngc19 mutants upon herbivory. 

Feeding assays of S. littoralis on two annexin knockout and overexpression lines showed that impaired 

ann1 expression results in reduced herbivore resistance, being closely tied together with the lack of 

systemic [Ca2+]cyt signaling and jasmonate levels (Manuscript 1). Interestingly, although annexins are 

ubiquitously expressed in a variety of plant species, studies by Carella et al. (2016) outlined that ANN1 is 

not necessarily required for systemic signaling upon bacterial infection. Therefore, the Ca2+-dependent 

recruitment of ANN1 might be a specific stress response to herbivory and can vary with regards to the 

applied stress. The exact recruiting mechanism for annexins during biotic or abiotic stress still remains 

elusive. As ANN1 can occur as a mobile (cytoplasmic) protein transported via the phloem (Guelette et 

al., 2012) or rather static as an integral part of the plasma membrane (Alexandersson et al., 

2004;Marmagne et al., 2007), a variety of options leading to its channel-like activity is possible. One 

option would be transport via vesicles or direct recruitment to the membranes during stress (Laohavisit 

and Davies, 2011;Laohavisit et al., 2012;Davies, 2014) - also in combination with additional channels and 

transporters, e.g. by selective delivery or retraction from membranes similar to potassium channels in 

response to phytohormones (Sutter et al., 2007). 

Our finding that genetic modifications of a single annexin already reduced [Ca2+]cyt -mediated defense 

responses leads to the question whether there is a possibility to rescue the impaired systemic signaling 

upon activation of additional genetic interacting partners. As local calcium elevations are attenuated but 

still occurring, we deduce that ANN1 is important for the generation of systemic Ca2+ responses but not 

for local elevations itself comparable to TPC1 (Kiep et al., 2015). Nevertheless, calcium bursts in ann1 
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mutants might be insufficient to trigger additional signaling mechanisms as resistance against S. littoralis 

was significantly impaired. However, plants possess a multitude of additional signaling components, e.g. 

ROS, electropotential waves, or communication via hydraulic pressure changes. The induction of 

annexins under heat stress and its proposed interaction with ROS and Ca2+, heat stress response 

transcription factors, and calcium-dependent protein kinases (Wang et al., 2015;Liao et al., 

2017a;Dvorak et al., 2020) highlight new possibilities for stimulus-specific complex formations of 

annexin with other signaling components. Overall, we conclude that the lack of ANN1 hinders the 

transmission of wounding- and feeding-related signals to distal but connected leaves, resulting in the 

absence of calcium elevation and systemic jasmonate responses. The drastic impact of these crucial 

signals not reaching the necessary plant structures is clearly displayed in a reduced overall defense of 

ann1-1 mutants against S. littoralis.  

3.1.2 Anti-herbivore defense signaling in sweet potato (I. batatas) 

 

Apart from strictly calcium-mediated intraplant signaling, the power of volatiles as signaling components 

involved in intra- and interplant defense has been demonstrated for a broad range of species, ranging 

from trees, shrubs, grasses, and model plants to agricultural crops (Manuscript 2) with the list of 

investigated species constantly being updated. Driven by the need of finding eco-friendly alternatives to 

conventional pesticides, the focus of plant volatile research has been increasingly shifted towards plant-

herbivore interactions in commercially relevant crop species, e.g. maize, tomato, potato, cabbages, 

beans, and many more (Manuscript 2). In order to test the availability of a potential target for volatile-

mediated defense activation, the inherent protection mechanisms of each plant species have to be 

understood in the first place. Therefore, this thesis aimed to 1) identify and disentangle local and 

systemic defense mechanisms in sweet potato, being one of the most important tuber crops worldwide, 

followed by 2) the investigation of emitted DIVs and HIPVs regarding their defensive signaling potential 

(Manuscript 3). 

 

Our initial finding that the trypsin-inhibitor sporamin is predominantly expressed in unwounded 

systemic leaves upon local wounding or herbivory by Spodoptera littoralis, confirmed previous studies 

(Yeh et al., 1997a;Yeh et al., 1997b;Chen et al., 2016) and underlines the necessity of a signaling 

component, triggering this systemic anti-herbivore protection (Manuscript 3). The identification of the 

homoterpene DMNT as the most abundant VOC emitted after mechanical damage or herbivory - 

although predominantly in the insect-resistant cultivar Tainong 57 – was not surprising based on the fact 
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that DMNT is a common DIV and HIPV found in a variety of plant species (Holopainen, 2004). However, 

airborne contact with DMNT alone proved to be sufficient to upregulate sporamin transcripts and 

trypsin inhibitor activity in unwounded TN57 plants, resulting in enhanced resistance against the 

herbivore Spodoptera litura (Manuscript 3). Our novel finding in sweet potato corroborates 

groundbreaking studies by Arimura et al. (2000), which supplied first evidence that DMNT alone can 

induce defense-related genes in lima bean and resistance against spider mites. Interestingly, in our case 

DMNT harbored no direct toxicity against the lepidopteran caterpillar Spodoptera litura, whereas in 

other cases DMNT severely damaged the peritrophic matrix of the insect pest Plutella xylostella while 

serving as a repellant (Chen et al., 2021). By disrupting the physical barrier separating food and 

pathogens from the insect’s midgut epithelial cells, DMNT promotes inflammation and overall gut 

microbiota imbalance, leading to the pest’s death (Chen et al., 2021). Although the gut microbiome and 

integrity also plays a vital role in our model organism Spodoptera littoralis as well as in Spodoptera litura 

(Xia et al., 2020;Mazumdar et al., 2021), its larger body size might protect it from DMNT-induced 

poisoning. Another option might be that although DMNT is a rather universal HIPV, toxicity only occurs 

in an herbivore-specific manner. Apart from a direct toxic effect in the herbivore, DMNT was reported to 

also suppress orientation of S. littoralis to host plants and mates by interfering with pheromone and 

host plant attractant components (Hatano et al., 2015). Although our study did not address the effect of 

being located by herbivore attackers we could demonstrate that upon insect feeding, DMNT-induced 

defense significantly decreased weight gain in S. littoralis, underlining its versatility as a defensive 

compound. 

 

In contrast to systemically induced sporamin transcripts, jasmonates accumulated only locally during 

wounding or feeding treatment and showed no response to DMNT exposure. Thus, we concluded that 

within our setup, the direct anti-herbivore defense occurs in a jasmonate-independent manner. This 

effect appears to be rather species-specific as DMNT induced JA elevations in tea plants, promoting 

resistance of neighboring plants against insect attack (Jing et al., 2021). As demonstrated within this 

thesis, systemic sweet potato signaling is not only species- but also cultivar-dependent, as TN66 did not 

respond to DMNT treatment. The lacking trypsin inhibitor upregulation during DMNT exposure leads to 

the question whether other signaling and defense mechanisms exist in this cultivar, e.g. via other HIPVs 

and/or the generation of other defensive compounds. These are questions which will be addressed in 

the future. 
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3.2 Plant signaling during root-microbe interaction 
 

As previously highlighted, efficient anti-herbivore defense mechanisms are a crucial aspect within a 

plant’s life cycle. However, before being able to build up defenses, the plant needs to establish itself in 

unpredictable environmental conditions in the first place, therefore having to prioritize growth rather 

than defense (Figueroa-Macías et al., 2021). During seed germination and the following stages of root 

formation and leaf development, phytohormones play a major role determining the plant’s success in 

adapting to surrounding abiotic and biotic stressors. Being the most influential signaling molecules 

during this initial growth period, they also pose as the most vulnerable target to manipulation for 

surrounding organisms (Xu et al., 2018). As plants do not live in a sterile environment, they are 

constantly shaped by a plethora of microbial communities (Eichmann et al., 2021) with the plant root as 

the first point of contact with soil microbiota present. In the first stages of plant-microbe interaction, 

there is no distinction between beneficial or pathogenic microbes as all foreign organisms are 

considered to be an intruder triggering immune responses by releasing bacterial flagellin or chitin 

(Eichmann et al., 2021;Figueroa-Macías et al., 2021). Interestingly, hormones provide a bridge and 

common chemical language between both organism types, therefore allowing microbes to alter the 

plants’ hormone homeostasis and 1) mediate the interaction with beneficial symbionts (Egamberdieva 

et al., 2017;Eichmann et al., 2021) or 2) promoting pathogenicity and virulence (Kunkel and Harper, 

2018;Han and Kahmann, 2019). The resulting interactions are highly complex and can determine the 

success or downfall of involved parties depending on whether the interaction is beneficial or 

pathogenic. As the majority of land plants successfully established symbiotic relations with fungi 

(Bidartondo et al., 2011), this study aimed to decipher the impact of beneficial and pathogenic fungal 

species on the plant’s hormone regulatory network. As it is known that especially during beneficial 

interactions, auxin plays a central role interfering with biosynthesis and regulation of other hormones 

such as JA and SA (Sirrenberg et al., 2007;Ludwig-Müller, 2015), we were particularly interested in how 

fungus-microbe pairings alter hormonal outputs in the model organism Arabidopsis thaliana. 

3.2.1 Piriformospora indica reprograms Arabidopsis thaliana root development during early recognition 

phases 

 

Within the past two decades, Piriformospora indica (also currently known as Serendipita indica) 

emerged as one of the best-studied endophytic fungi of the Sebacinaceae family (Opitz et al., 2021). 

Originally isolated from the Indian Thar Desert (Verma et al., 1998) it gained increasing popularity –
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especially in the light of progressing climate change – due to its ability to colonize the root of many plant 

species whilst promoting plant growth and conferring drought resistance (Sherameti et al., 2008). Upon 

host contact, P. indica elicits mild defense responses in the plant via cellotriose-induced [Ca2+]cyt 

elevations in the root (Vadassery et al., 2008;Johnson et al., 2018;Oelmüller, 2018). 

 

In addition to calcium responses, we found that colonization with P. indica activated the auxin-

responsive DR5v2 promoter in Arabidopsis roots (Manuscript 4) within 3 h of co-cultivation. Strikingly, 

the fluorescence levels continuously increased within the next 24 h (Manuscript 4) up to 4 days 

(Manuscript 5) before returning to a basal level. In contrast to interaction with the beneficial fungus M. 

hyalina, 24 h of contact with P. indica initiated the formation of lateral root primordia, highlighting 

reprogramming of root development during an early recognition phase (Manuscript 4; discussion 

section 3.2.4 Fig. 8). P. indica co-cultivation experiments with Chinese cabbage confirmed our findings, 

reporting enhanced lateral root development, however after a prolonged treatment period of 7 d (Lee 

et al., 2011). Taken together, these morphological changes combined with the ~10-fold upregulated 

fluorescence levels indicate a rapidly increased availability of free IAA in the root tissue. Interestingly, 

the impact of P. indica treatment on the availability of auxin occurs in a highly time-dependent manner, 

as co-cultivation with barley lead to increased IAA levels after 3 d of exposure which was subsequently 

omitted after 5 and 14 d (Hilbert et al., 2012). Similar observations were made in Arabidopsis by 

Vadassery et al. (2008) who did not detect any differences in IAA levels between P. indica-treated and 

control seedlings after 7, 10, and 14 days. Within our setup, we found IAA levels significantly increased 

after 24 h (Manuscript 4 & 5). However, we could not distinguish whether the auxin originates from the 

endophyte itself - as the mycel of P. indica contains high amounts of IAA in the absence of the plant 

(Manuscript 4) - or is produced by the plant during fungal infection. Among others, studies by e.g. 

Contreras-Cornejo et al. (2009) and Liao et al. (2017b) confirmed that plant growth promotion can be 

mediated by fungal auxin metabolites which are converted into auxin in the host. Interestingly, the 

presence of newly produced indole derivatives by P. indica is not always required to directly promote 

growth but rather facilitate root colonization (Hilbert et al., 2012). However, auxin-dependent 

mechanisms are species-specific, depending on the host plant and whether auxin signaling or auxin 

production is targeted as shown for Arabidopsis and Chinese cabbage (Lee et al., 2011). This highlights 

the necessity to further investigate the mechanisms of plant-fungus symbiosis in order to unravel 

signaling and biosynthetic circuits involved. 
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Investigation of additional phytohormone profiles after 24 h of P. indica infection revealed increased SA 

levels in the absence of jasmonate upregulation (Manuscript 4). As an antagonistic crosstalk between SA 

and IAA has been suggested (Xu et al., 2018), we did not anticipate simultaneously increased IAA and SA 

levels in P. indica -colonized roots. However, this effect was also reported in Sun et al. (2014) and Vahabi 

et al. (2018) with the potential explanation that SA alters auxin-dependent signaling and not the auxin 

concentration per se (Wang et al., 2007). 

3.2.2 Auxin -jasmonate antagonism during Arabidopsis-Mortierella hyalina interaction 

 

Apart from P. indica, increasing numbers of plant growth promoting fungi have been newly discovered, 

among them various Mortierella species (Ozimek and Hanaka, 2021). As the most abundant filamentous 

soil fungi worldwide (Ozimek and Hanaka, 2021), Mortierella strains occur in a wide range of adverse 

environmental conditions ranging from nutrient-poor caves to constantly evolving rivers and lakes at 

each latitude (Ozimek and Hanaka, 2021). Due to their ability to thrive in unfavorable habitats and their 

saprotrophic lifestyle providing alternative nutrient resources, Mortierella inoculates gained increasing 

popularity as agriculturally valuable decomposers. Additionally, their beneficial growth-promoting effect 

has been successfully demonstrated in a variety of crops, e.g. castor bean, corn, avocado, and 

watermelon (Ozimek and Hanaka, 2021). 

 

Studies by Johnson et al. (2019) demonstrated that, in addition to promoting increased shoot biomass 

production in A. thaliana, the early root colonizer Mortierella hyalina is able to reduce Alternaria 

brassicicae infection via activation of calcium-dependent defense mechanisms. These findings highlight 

the versatility of M. hyalina as a mediator of pathogen resistance as well as a growth promotor. 

Interestingly, co-cultivation of A. thaliana with M. hyalina did not promote root growth (Johnson et al., 

2019) confirming our findings that in contrast to P. indica, M. hyalina does not initiate the formation of 

lateral root primordia (Manuscript 4; discussion section 3.2.4 Fig. 8). The lack of root growth seemingly 

contradicts our results showing a significantly increased amount of IAA within the roots after 24 h of 

incubation (Manuscript 4) compared to control samples. Induction of IAA (and ABA) concentrations in 

the roots was also observed during corn – M. elongata- interaction (Li et al., 2018) corroborating 

previous findings by Wani et al. (2017) stating that co-cultivation of Crocus sativus with M. alpina leads 

to increased IAA accumulation. However, they. did not differentiate between root and shoot and 
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investigated later stages of infection in contrast to our study presented here. Due to our experimental 

setup, it is not possible to distinguish whether the detected IAA levels originate from the plant upon 

contact with the fungus or from M. hyalina itself. We demonstrated that M. hyalina mycel contains a 

detectable amount of free IAA, however much lower compared to P. indica (Manuscript 4). It has been 

shown previously that Mortierella strains are able to produce up to 70 mg IAA per liter depending on the 

species, strain, incubation temperature, and tryptophan availability (Wani et al., 2017;Ozimek et al., 

2018;Ozimek and Hanaka, 2021). Therefore, it is possible that the detected IAA either originates from 

the fungus itself or is produced by M. hyalina and/or A. thaliana during the early stages of infection. 

 

An indicator that other signaling components might antagonistically prevent IAA-induced root growth 

promotion is the expression pattern of the auxin reporter gene observed during co-cultivation for 24 h 

up to 14 d (Manuscript 4 & 5). Fluorescence levels of auxin maxima remained on a constant level during 

the 24 h measuring period, supporting our hypothesis that although IAA is present, no auxin-mediated 

reporter activation takes place (Manuscript 4). This effect could also be seen during our long-term 

experiments where no change in reporter expression could be detected within 2 weeks of 

measurements (Manuscript 5). Considering that SA levels remained at a basal level compared to control 

plants (Manuscript 4) based on a proposed IAA- and SA antagonism (Kazan and Manners, 2009), 

jasmonates provide a valid explanation for the absence of root growth promotion. We found JA and its 

active form JA-Ile as well as the precursor OPDA significantly accumulated within 24 h, suggesting that 

jasmonates play an important role during the early infection stages with M. hyalina (Manuscript 4). As 

jasmonates are mainly induced as defense-related signaling molecules during wounding or herbivore- 

and necrotrophic pathogen attack (Thaler et al., 2004;Kachroo and Kachroo, 2009), our findings 

implicate that during the first contact phase M. hyalina is perceived as a potential intruder. During later 

time points this effects seem to be diminished as M. hyalina-colonized roots did not display elevated 

jasmonate levels or JA-responsive gene expression within 4 d of treatment (Johnson et al., 2019). 

 

Although no data is available investigating the expression of auxin-related genes during early stages of 

infection with M. hyalina, we could demonstrate that addition of increasing concentrations of JA 

impaired DR5::EGFP-DR5v2::tdTomato fluorescence in a dose-dependent manner (Manuscript 4). Our 

findings confirm previous experiments conducted by Ishimaru et al. (2018) showing that JA treatment of 

Arabidopsis seedlings inhibits lateral rooting and accumulation of the auxin reporter DR5::GUS. 

Interestingly, this auxin-jasmonate interaction occurred independent of the JA-receptor complex COI1, 
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highlighting that an interaction is possible by skipping certain mechanistic components of the JA 

signaling pathway. 

 

Taken together, our results confirm a crosstalk between auxins and jasmonates, which has been the 

center of vivid discussions throughout the past years. As JA and IAA are commonly attributed to be 

defense- or growth related hormones perceived to function antagonistically, mounting evidence can be 

found demonstrating that JA mediates induction of auxin biosynthesis genes in Arabidopsis (Dombrecht 

et al., 2007), whereas auxin can vice versa induce JA biosynthesis (Tiryaki and Staswick, 2002). As 

described by Hoffmann et al. (2011), the auxin and jasmonate signaling pathways share an intriguing 

variety of common perception and signal transduction components which are not yet well understood - 

especially in the light of plant/fungus interactions. Thus, further evidence needs to be gathered 

shedding more light on the plant’s and fungus’ contributions to hormone regulatory processes. 

3.2.3 Alternaria brassicicola infection suppresses auxin responses in A. thaliana roots 

 

Opposing the beneficial effects of growth-promoting microbes, plant pathogens are causing massive 

crop yield losses on a daily bases. Therefore, extensive research has been conducted, attempting to 

unravel underlying infection mechanisms to enhance plant immunity and prevent rot and wilt diseases. 

Depending on whether the pathogen derives its nutrients from living host tissues or dying cells, plant 

pathogens can be further subdivided into biotrophs and necrotrophs (Glazebrook, 2005). Taking a closer 

look at the impact on the host plant’s phytohormone distribution, it is widely accepted that SA mediates 

resistance against biotrophs and hemi-biotrophs whereas JA promotes defense against necrotrophs (Qi 

et al., 2012). 

One of the most prominent examples causing black leaf spot disease in crucifers and a variety of other 

species is the necrotrophic fungus Alternaria brassicicola (Glazebrook, 2005). Due to its broad host 

range and ability to infect leaves and roots, A. brassicicola provides an excellent pathogen to study 

infection mechanisms, especially in model organisms such as A. thaliana. From its mode of action, the 

fungus penetrates the plant tissue with a subsequent production of hydrolytic enzymes and toxins 

resulting in black leaf spot disease and ultimately cell death (Otani et al., 1998;Glazebrook, 2005). 

 

Within our studies, we observed that 24 h- A. brassicicola spore inoculations diminished DR5-reporter 

fluorescence levels in the root within 3 h (Manuscript 4 & 5; discussion section 3.2.4 Fig. 8) indicating 
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suppression of auxin responsive genes. In contrast to the lack of tdTomato-derived fluorescence, we 

found significantly increased concentrations of IAA (Manuscript 4) in the treated roots confirming 

observations by Qi et al. (2012) showing upregulated expression levels of several auxin biosynthetic 

genes in a time-dependent manner as well significantly increased free IAA concentrations after 24 h of 

fungal treatment. This again highlights the importance of auxins in mediating pathogen resistance, 

confirming observations showing that plants defective in auxin biosynthesis are more susceptible to A. 

brassicicola infection (Bari and Jones, 2009;Kazan and Manners, 2009;Qi et al., 2012). 

 

Jasmonates are widely accepted defense regulators against necrotrophs, therefore it is not surprising 

that coi1-2- jasmonate-receptor mutants are more prone to Alternaria infection comparable to 

aforementioned auxin ones (Qi et al., 2012). Upregulation of jasmonates generally occurs during 

infection with necrotrophic fungi, however we surprisingly did not find any induction of JA, JA-Ile, or 

OPDA levels (Manuscript 4). A similar effect has been observed by Scholz et al. (2018) for the pathogenic 

fungus Verticillium dahliae. Due to the short treatment time, it is highly probable that although gene 

expression patterns started to be altered, penetration of the root has not yet occurred (Scholz et al., 

2018). In order to fully perceive the fungal attack and unfold jasmonate-dependent defense responses, 

pathogen-induced cell disruption (comparable to wounding) needs to be triggered first to activate JA 

and JA-Ile accumulation. Overall, upon 1 d- co-cultivation with fungal plaques, no auxin reporter 

fluorescence could be detected, highlighting the severity and rapid infection progression in the presence 

of increased spore amounts (Manuscript 5) independent on infection or penetration rates. Similar to our 

observations, Johnson et al. (2019) found A. brassicicola- treated seedlings dead within a few days. 

3.2.4 Manipulation of auxin signaling in the root occurs during early stages of Verticillium dahliae 

infection  

 

Aside from the aforementioned purely pathogenic Alternaria, hemi-biotrophic fungi present an 

intriguing but economically devastating threat to a wide range of agricultural crops (Deketelaere et al., 

2017). During the initial stages of colonization, hemi-biotrophic fungi penetrate and systemically spread 

through the plant host’s root xylem without any display of disease symptoms or reduced plant 

performance (Scholz et al., 2018;Dhar et al., 2020). However, during later stages of disease progression, 

these fungi shift from a biotrophic to a necrotrophic interaction once the hyphae extend to the host’s 

aerial plant tissue (Fradin and Thomma, 2006). Upon this change, a variety of responses is triggered 

within the plants, e.g.: 1) blocked xylem transport impairing vascular transportation promoting leaf 
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wilting (Klosterman et al., 2011), 2) synthesis and release of fungal toxins (Fradin and Thomma, 2006), 3) 

reprogramming of phytohormone metabolism (Veronese et al., 2003;Thaler et al., 2004;Tjamos et al., 

2005), and 4) induction of additional signaling molecules such as nitric oxide (NO) and hydrogen 

peroxide (H2O2) (Yao et al., 2011;Yao et al., 2012). Although the initial stages of infection remain largely 

undetected allowing the fungal intruder to thrive, ultimately the host plant activates defense genes to 

induce cell death (Reusche et al., 2014;Zhang et al., 2016a). 

The genus Verticillium with V. dahliae as one of its most prominent and destructive members 

(Inderbitzin et al., 2011;Inderbitzin and Subbarao, 2014), causes extensive yield losses in a plethora of 

crop species worldwide comprising cotton, tomato, spinach, potato, but also trees and shrubs (Dhar et 

al., 2020). As a soilborne pathogen mainly attacking plant roots, V. dahliae produces spores during 

growth phases within the xylem in addition to formation of microsclerotia, allowing long-term survival in 

soil for up to 10 years (Scholz et al., 2018). 

Our study aimed to take a closer look at the hormone reprogramming during early stages of infection. As 

V. dahliae displays a specific combination of growth phases followed by attacking the host, growth-

related auxin as well as defensive jasmonates were of main interest. 

We could not detect any increase in free IAA, SA, or jasmonate (JA & JA-Ile) contents after 24 h of co-

cultivation with V. dahliae (Manuscript 4). With regards to free IAA, our observations confirm previous 

reports stating that V. dahliae or V. longisporum- treated Arabidopsis show IAA levels similar to control 

plants - however measured at later timepoints ranging from 2 to 14 dpi (Iven et al., 2012;Fousia et al., 

2018). Taken together, these findings indicate that co-cultivation with V. dahliae does not affect auxin 

biosynthesis neither during early nor later stages of infection. The lack of JA accumulation during 24 h of 

V. dahliae treatment was also observed by Scholz et al. (2018) highlighting that elevation of JA and JA-Ile 

rather occurs during later timepoints (~21 dpi) as reported by Sun et al. (2014) and due to the 

hemibiotrophic nature of the fungus. Interestingly we found the JA-precursor OPDA to be significantly 

accumulated within 1 d (Sun et al., 2014), however as we cannot distinguish between active cis- and 

inactive trans-OPDA, further measurements need to be performed to provide a more accurate 

statement. 

Opposed to basal IAA levels during early timepoints of pathogen treatment, we found the auxin reporter 

gene fluorescence levels in the root tip completely diminished after 6 h (Manuscript 4) strengthening 

our findings observed during fungal plaque treatments (Manuscript 5). Based on these results, signals 
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released by Verticillium likely inhibit the activation of our reporter construct DR5::EGFP-

DR5v2::tdTomato and promote infection by manipulating auxin signaling within the roots instead of the 

actual IAA production. On a gene regulatory level, it is known that expression of growth-associated 

genes like the auxin-responsive genes (e.g. ARF5 and several genes belonging to the GH3-family (e.g., 

GH3.17, GH3.4, DFL2, WES1) decreased during the 24 h of Verticillium treatment as reported by Scholz 

et al. (2018). Additional findings by Fousia et al. (2018) showed that V. dahliae infected roots displayed 

induced expression levels of auxin receptor genes, e.g. transport inhibitor response 1 (TIR1), auxin 

signaling F box protein 1 (AFB1), auxin signaling F box protein 3 (AFB3), and auxin transporter gene auxin 

resistant 4 (AXR4) during prolonged inoculation periods. Studies by Kidd et al. (2011) and Lyons et al. 

(2015) have made similar observations, showing that a number of auxin signaling genes in A. thaliana 

were differentially expressed in roots and shoots after Fusarium oxysporum inoculation. As the 

investigated timepoints from the latter studies (3 dpi – 14 dpi) mainly focused on later responses in 20 

d- old potted plants, it is evident that expression patterns of auxin- related genes strongly depend on 

the observed measuring timeframe. Overall, it becomes evident that V. dahliae is able to influence 

auxin-dependent signaling pathways in Arabidopsis from early stages of infection until the actual display 

of disease symptoms. 

Consequently, a key element to unravel specific events during Verticillium treatment is the 

determination of the infection stage and its progression. Scholz et al. (2018) documented that within 

their 24 h- setup the fungus rapidly colonized and penetrated the root surface, however without 

invading the vascular tissue yet. As the fungus is still growing in its pre-vascular phase, these conditions 

provided an optimal setup to investigate early interaction events, which we could implement for the 

experiments described in this thesis. Although phytohormone levels did not show any significant 

changes during 24 h of contact with Verticillium, a rapid colonization could be observed (Manuscript 5) 

conjoined with an inhibition of the auxin reporter construct (Manuscript 4; discussion section 3.2.4 Fig. 

8). Both results indicate that on a signaling level, growth and defense-related pathways are already 

affected early on by spore treatment independent on fungal- induced phytohormone changes. As JA 

pathway- and auxin signaling mutants displayed increased disease resistance to Verticillium infection 

(Scholz et al., 2018;Dhar et al., 2020), V. dahliae most likely employs components of jasmonate and 

auxin signaling pathways to promote disease progression to overcome the plant’s defense mechanisms. 

As well-known antagonists of SA (Dhar et al., 2020), the presence of IAA and JA would putatively 

diminish protective SA pathway components, favoring establishment and disease progression by V. 

dahliae.  
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Fig. 8 Overview of investigated responses in transgenic Arabidopsis thaliana auxin reporter lines upon 

infection with the fungi Piriformospora indica, Mortierella hyalina, Alternaria brassicicola, and 

Verticillium dahliae. ↑upregulation; → no detectable effect compared to control treatment; X 

inhibition.  
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4. Outlook 
 

As can be seen throughout the sections above, plant signaling mechanisms during biotic interactions 

provide a beautiful and intriguing maze, which I attempted to further explore within this thesis. The 

involvement of the unconventional calcium channel protein ANNEXIN1 as a regulator of systemic 

signaling during herbivory was discovered. However, the underlying mechanism of its distribution and 

channel formation during plant-insect interaction ultimately promoting Ca2+ -conductance, still requires 

further investigation. As ANN1 is only a single member of the annexin’s diverse multigene family, future 

studies will elucidate the role of single and multiple annexins during herbivore attack and their 

involvement and interaction with other signaling components, e.g. calcium binding proteins and 

channels. 

In contrast to well-investigated calcium signaling in model plants, the interplay of intra- and interplant 

signaling components in genetically complex crops, e.g. the hexaploid species I. batatas, remains largely 

obscure. The findings emphasize the potency of DMNT alone to induce protective mechanisms for 

resistance against herbivores, however in a cultivar-specific manner. As the emitted VOC bouquet 

consists of additional compounds apart from DMNT, further studies are necessary to investigate the 

effect of other volatile on the defense and signaling output in sweet potato – especially on a community 

level. The plant’s ability to communicate with conspecific neighbors while omitting long-distance 

signaling within the same individual provides an efficient protective mechanism against herbivores. 

However, it would be intriguing to gather further information on whether the plant solely relies on VOCs 

for systemic responses. As shown by Chen et al. (2008), signaling peptides such as IbHypSys4 provide a 

valid additional opportunity for systemic signaling via the vascular system. Combined with our current 

knowledge, experiments have to be conducted showing the order of events leading to herbivore 

resistance, e.g. how jasmonate burst, VOC release, peptide induction, and defense output are 

intertwined. The mounting identification of downstream signaling components leads to the subsequent 

question about the initial perception mechanism during wounding, insect feeding, and after VOC release 

in sweet potato. In order to better understand the hierarchy of events following the various 

aforementioned stimuli, additional experiments are required to identify VOC and peptide receptors as 

well as their biological functions. 

It has been shown that VOCs are not exclusively implemented by herbivore-infested plants during 

defense but also by the beneficial fungus M. hyalina, ultimately promoting shoot growth in the host 
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(Johnson et al., 2019). This distinct mode of action highlights the necessity to better understand plant-

microbe interaction mechanisms, consolidating volatile and phytohormone signaling in the light of 

growth- and defense responses. The importance of IAA during beneficial and pathogenic plant-fungus 

co-cultivations was verified, resulting in a variety of results depending on the availability of jasmonates 

and salicylic acid. The performed study mainly focused on the expression of a single auxin-responsive 

promotor and the accumulation of phytohormones. As early signaling events upon fungal infection are 

often visible by reprogramming of distinct hormonal signaling pathways, further studies investigating 

the expression levels of JA- and or SA-related genes would be advisable. Additionally, the used 

experimental setup only detected IAA in the mycel and in the plant (with fungal residues) after 24 h of 

co-cultivation. As auxin derivatives can also play a crucial role in plant-microbe interactions, the 

involvement of alternatives to IAA should be addressed. On that note, further knowledge is needed on 

whether phytohormones are formed and supplied by the fungus or the plant upon contact to distinguish 

the contributions of each interaction partner.  
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5. Summary 

 

In the course of evolution, plants have developed a broad toolbox of protective mechanisms to 

specifically tailor their physiological reactions to their surrounding impulses and current needs. As 

environmental factors and the presence of friends and foes in the shape of microbes and herbivorous 

attackers constantly changes, the necessity for tightly regulated constitutive and inducible response 

mechanisms gained increasing importance. In order to respond efficiently to a given stimulus, plants 

evolved distinct perception and signal transduction pathways, comprising a large variety of components 

serving as messenger molecules. 

 

Calcium (Ca2+) serves as a crucial secondary messenger during early signaling transduction processes in 

plants. Upon perception of environmental stresses, e.g. wounding and herbivory, the rapid elevation of 

free cytosolic calcium levels induces local and systemic signaling cascades as well as distinct defense 

responses. Although a variety of channels and calcium-binding proteins contributing to this early 

signaling events have been identified, the mode of action of unconventional calcium channels such as 

annexins still remains unknown. As members of a diverse multigene family, annexin proteins have been 

shown to bind anionic phospholipids, ultimately promoting Ca2+ conductance. In this study we 

investigated the role of ANNEXIN1 during wounding and herbivory of Arabidopsis thaliana and found 

systemic cytosolic calcium elevation significantly impaired in ann1 loss-of-function mutants. Subsequent 

bioassays revealed that the generalist herbivore Spodoptera littoralis performed better in the absence 

of ANNEXIN1 (and vice versa in ANN1-oeverexpressing lines), therefore highlighting its importance as a 

positive defense regulator. As especially downstream phytohormones, e.g. jasmonates, mediate the 

onset of Ca2+-elicited signaling events, we investigated whether ann1 mutants display a comparable 

induction of defense-related responses locally and systemically. Conjoined with the aforementioned 

reduced calcium elevation in systemic leaves, expression of defense genes and jasmonate accumulation 

remained local in ann1 plants. Taken together, our findings provide evidence for the importance of 

ANN1 in the activation of systemic calcium signaling events, ultimately enhancing resistance against 

attacking herbivorous insects. 

 

From a broader perspective, a central aspect of cellular signaling cascades initiating plant defense 

responses is the presence of damage-associated molecular patterns (DAMPs). Indicated by its given 

name, DAMPs are released upon tissue damage, providing information on wounding events or herbivore 
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attack in the plant. Apart from cell wall components, peptides, eATP, and a variety of other compounds, 

volatile organic compounds (VOCs) were also classified as airborne DAMPs and provide an intriguing 

signaling component for intra- and interplant communication. In this thesis, we show that sweet potato 

plants are able to release, perceive, and respond to VOCs in a highly species-specific manner, 

underlining the importance of plant-plant communication during herbivore defense. We identified a 

distinct blend of herbivory-induced VOCs with the homoterpene (E)-4,8–dimethyl–1,3,7-nonatriene 

(DMNT) as the most prominent compound. This single compound systemically induced the trypsin 

inhibitor sporamin, resulting in increased resistance against Spodoptera larvae in neighboring plants. 

Intriguingly, this effect was only observed in an allegedly more herbivore-resistant cultivar Tainong 57, 

whereas a second cultivar Tainong 66 displayed reduced DMNT emission and increased susceptibility 

during insect attack. As jasmonates were only locally upregulated during feeding and simulated 

herbivory, we propose that the systemic defense activation in sweet potato is jasmonate-independent 

and inducible without any previous priming incident. 

 

Aside from DMNT-mediated signaling, previous findings in sweet potato provided evidence that wound- 

and jasmonate-elicited hydroxyproline-rich glycopeptides (HypSys peptides) could act as an additional 

systemic intraplant messenger. Investigations of the defense-related peptide IbHypSys4 demonstrated 

its ability to activate sporamin expression and DMNT release, highlighting its importance within the 

DMNT regulatory signaling pathway. Although no receptor for IbHypSys4 perception has been identified, 

the discovery of the novel peptide-receptor pairing IbPepI-IbLRR-RLK1 provides a new angle to study the 

involvement of peptides in sweet potato stress responses. We suggest that IbHypSys4 and IbPepI 

possess divergent biological functions; however, additional information has to be gathered to cement 

this hypothesis. 

 

In addition to signaling events during plant-herbivore interactions, a plethora of plant species is known 

to be associated with microbes, especially root-interacting fungi. Upon colonization, these fungi are able 

to alter phytohormone levels during early stages of infection. The phytohormone auxin (indole-3-acetic 

acid, IAA) is a key regulator in root growth in development, therefore providing an easy target for 

manipulation by microbial intruders. Available auxin reporters (DR5::EGFP-DR5v2::tdTomato) expressed 

in the model plant A. thaliana allow visualization of auxin distribution patterns in fungi-colonized 

Arabidopsis roots. Live-imaging fluorescence microscopy techniques combined with LC-MS revealed that 

the beneficial endophytes Mortierella hyalina and Piriformospora indica produce IAA in their mycelia 
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whilst the latter stimulates expression of auxin-responsive reporter genes. Co-cultivation of 24 h already 

resulted in significantly higher auxin levels, promoting elongation of lateral root primordia – however 

only during P. indica treatment. These responses were strictly time-dependent as induction of auxin 

maxima disappeared during longer treatment periods. In addition to IAA accumulation, we found 

jasmonate levels strongly increased in M. hyalina-colonized roots, pointing out an inhibitory effect of 

jasmonates on downstream auxin signaling events. In contrast to observed auxin stimulatory effects 

during beneficial interactions, we demonstrated that the necrotrophic fungus Alternaria brassicicola and 

the hemi-biotroph Verticillium dahliae diminish fluorescence levels of auxin-responsive reporter within 

3-6 h. 

 

Overall, this thesis provides new insights into the complex interplay of signaling mechanisms involved in 

plant-herbivore and -microbe interactions, demonstrated in a model and a crop plant species.  



147 
 

6. Zusammenfassung 

 

Im Verlauf der Evolution entwickelten Pflanzen ein breites Spektrum an Schutzmechanismen, um ihre 

physiologischen Reaktionen gezielt auf die sie umgebenden Reize und daraus resultierenden Bedürfnisse 

abzustimmen. Aufgrund der sich konstant verändernden Umweltfaktoren, wie beispielsweise die 

Präsenz von vorteilhaften und pathogenen Mikroben sowie Pflanzenfressern, gewann die Notwendigkeit 

von streng regulierten konstitutiven und induzierbaren Reaktionsmechanismen zunehmend an 

Bedeutung. Um eine effiziente Reizweiterleitung sowie adäquate Reaktion zu garantieren, bildeten sich 

zunehmend spezifischere Wahrnehmungs- und Signalübertragungswege in diversen Pflanzenspezies 

aus. Diese strikt umweltinduzierten Signalwege werden von einer Vielzahl an Botenmolekülen reguliert. 

 

Calcium (Ca2+) ist ein wichtiger sekundärer Botenstoff während früher Signalübertragungsprozesse in 

Pflanzen. Bei der Wahrnehmung von umweltbedingten Stressoren, z. B. Verwundung und Herbivorie, 

führt der rasche Anstieg des freien cytosolischen Calciumspiegels zu lokalen und systemischen 

Signalkaskaden sowie diversen Abwehrreaktionen. Eine Vielzahl von Kanälen und calciumbindenden 

Proteinen, die zu diesen frühen Signalereignissen beitragen, wurden bereits identifiziert. Die 

Wirkungsweise von insbesondere unkonventionellen Calciumkanälen wie den Annexinen ist jedoch 

weiterhin unbekannt. Annexin-Proteine gehören zu einer vielfältigen Familie von Multigenen und 

binden nachweislich anionische Phospholipide, was schlussendlich die Förderung der Ca2+-Leitfähigkeit 

bewirkt. In dieser Studie untersuchten wir die Rolle von ANNEXIN1 während der mechanischen 

Verwundung und Herbivorie von Arabidopsis thaliana. Unser Ergebnisse zeigten eine erhebliche 

Beeinträchtigung des systemischen cytosolischen Calciumanstiegs in ann1-„Loss-of-Function“-Mutanten. 

Anschließende Bioassays zeigten, dass der generalistische Herbivor Spodoptera littoralis in Abwesenheit 

von ANNEXIN1 ein höheres Körpergewicht und damit eine bessere Performance aufzeigte mit einem 

gegenteiligen Effekt in ANN1-überexprimierenden Linien. Diese Beobachtungen zeigen die Bedeutung 

von ANNEXIN1 als positiver Abwehrregulator während der Pflanzenabwehr auf. Da insbesondere 

nachgeschaltete Phytohormone, z. B. Jasmonate, den Beginn von Ca2+-ausgelösten Signalereignissen 

vermitteln, untersuchten wir in anschließenden Experimenten, ob ann1-Mutanten lokal und systemisch 

eine vergleichbare Induktion von abwehrbezogenen Reaktionen zeigen. In Verbindung mit der oben 

erwähnten reduzierten Calciumerhöhung in systemischen Blättern, konnten wir eine Expression von 

Abwehrgenen und die Jasmonatakkumulation in ann1-Pflanzen ausschließlich lokal verzeichnen. 
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Insgesamt belegen die Ergebnisse die Bedeutung von ANN1 für die Aktivierung systemischer Calcium-

Signale, die letztlich die Resistenz gegen angreifende pflanzenfressende Insekten erhöhen. 

 

Ein zentraler Aspekt der zellulären Signalkaskaden, die Pflanzenabwehrreaktionen auslösen, ist das 

Vorhandensein von schadensassoziierten molekularen Mustern (DAMPs). Wie bereits im Namen 

indiziert, werden DAMPs bei Gewebeschäden freigesetzt und liefern der geschädigten Pflanze intern 

Informationen über Verwundungen oder Angriffe von Pflanzenfressern. Neben Zellwandbestandteilen, 

Peptiden, eATP und einer Vielzahl anderer Verbindungen, wurden auch volatile organische 

Verbindungen (VOCs) als spezielle über die Luft übertragene DAMPs klassifiziert und stellen eine 

interessante Signalkomponente für die Kommunikation innerhalb und zwischen Pflanzen dar. In dieser 

Arbeit zeigen wir, dass Süßkartoffelpflanzen in der Lage sind, VOCs in einer sehr artspezifischen Weise 

freizusetzen, wahrzunehmen und darauf zu reagieren. Dies unterstreicht die Wichtigkeit der Pflanze-zu-

Pflanze-Kommunikation innerhalb einer Population während der Abwehr von Pflanzenfressern. Wir 

identifizierten eine spezifische Mischung von VOCs, die von Pflanzenfressern freigesetzt werden, wobei 

das Homoterpen (E)-4,8-Dimethyl-1,3,7-Nonatrien (DMNT) die wichtigste Verbindung darstellte. Diese 

einzelne Verbindung induzierte systemisch den Trypsin-Inhibitor Sporamin, was zu einer erhöhten 

Resistenz gegen Spodoptera-Larven in benachbarten Pflanzen führte. Interessanterweise wurde dieser 

Effekt nur bei der Herbivoren-resistenteren Sorte Tainong 57 beobachtet, während eine zweite Sorte, 

Tainong 66, eine geringere DMNT-Emission und eine erhöhte Anfälligkeit für Insektenbefall aufwies. Da 

Jasmonate nur lokal während Herbivorie und mechanischer Verwundung hochreguliert wurden, gehen 

wir davon aus, dass die systemische Abwehraktivierung in der Süßkartoffel jasmonatunabhängig und 

ohne vorheriges Priming-Ereignis induzierbar ist. 

 

Neben der DMNT-getragenen Signalübertragung lieferten frühere Ergebnisse in Süßkartoffelstudien 

bereits Hinweise darauf, dass durch Verwundung und Jasmonate ausgelöste hydroxyprolinreiche 

Glykopeptide (HypSys-Peptide) als zusätzlicher systemischer Botenstoff innerhalb einer Pflanze 

fungieren könnten. Untersuchungen des verteidigungsrelevanten Peptids IbHypSys4 zeigten, dass es die 

Sporamin-Expression und die Freisetzung von DMNT aktivieren kann, was seine Bedeutung innerhalb 

des DMNT-Signalwegs unterstreicht. Obwohl bis dato kein Rezeptor für die IbHypSys4-Wahrnehmung 

identifiziert wurde, bietet die Entdeckung der neuartigen Peptid-Rezeptor-Paarung IbPepI-IbLRR-RLK1 

einen neuen Ansatzpunkt zur Untersuchung der Beteiligung von Peptiden an Stressreaktionen innerhalb 
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Süßkartoffeln. Wir vermuten, dass IbHypSys4 und IbPepI unterschiedliche biologische Funktionen 

innehaben; zur Bestätigung dieser Hypothese müssen jedoch weitreichendere Informationen gesammelt 

werden. 

 

Abgesehen von der Signalübertragung bei der Interaktion zwischen Pflanzen und Herbivoren ist 

bekannt, dass eine Vielzahl von Pflanzenarten mit Mikroben –insbesondere Pilzen- assoziiert ist, die mit 

den Wurzeln interagieren können. Nach ihrer Kolonisierung sind diese Pilze in der Lage, den 

Phytohormonspiegel in den frühen Phasen der Infektion zu verändern. Das Phytohormon Auxin (Indol-3-

Essigsäure, IAA) ist ein wichtiger Regulator des Wurzelwachstums in der Entwicklung und daher ein 

leicht angreifbares Ziel für die Manipulation durch mikrobielle Eindringlinge. Verfügbare Auxin-Reporter 

(DR5::EGFP-DR5v2::tdTomato), die in der Modellpflanze A. thaliana exprimiert werden, ermöglichen die 

Visualisierung von Auxin-Verteilungsmustern in pilzbesiedelten Arabidopsis-Wurzeln. Live-imaging 

Fluoreszenzmikroskopie-Techniken in Kombination mit LC-MS zeigten, dass die nützlichen Endophyten 

Mortierella hyalina und Piriformospora indica IAA in ihren Myzelien produzieren, während letzterer die 

Expression von Auxin-responsiven Reportergenen stimuliert. Die Co-Kultivierung von 24 Stunden führte 

bereits zu signifikant erhöhten Auxinspiegeln und förderte die Bildung von Seitenwurzelprimordien - 

allerdings nur während der Behandlung mit P. indica. Diese Reaktionen waren streng zeitabhängig, da 

die Induktion von Auxinmaxima bei längerer Behandlungsdauer nicht mehr sichtbar war. Zusätzlich zur 

IAA-Akkumulation stellten wir fest, dass der Jasmonatspiegel in den von M. hyalina besiedelten Wurzeln 

stark anstieg, was auf eine hemmende Wirkung von Jasmonaten auf nachgeschaltete Auxin-Signale 

hinweist. Im Gegensatz zu den beobachteten Auxin-stimulierenden Effekten während gutartiger 

Interaktionen konnten wir zeigen, dass der nekrotrophe Pilz Alternaria brassicicola und der hemi-

biotrophe Pilz Verticillium dahliae die Fluoreszenzwerte des auf Auxin reagierenden Reporters innerhalb 

von 3-6 Stunden vermindern. 

 

Insgesamt bietet diese Arbeit - , demonstriert an einer Modell- sowie einer Nutzpflanze - neue Einblicke 

in das komplexe Zusammenspiel von Signalmechanismen, die an der Interaktion zwischen Herbivoren 

und Mikroben beteiligt sind.  
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X 100 % (die in dieser Abbildung wiedergegebenen Daten entstammen 

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin 
durchgeführt hat) 
 

  0 % (die in dieser Abbildung wiedergegebenen Daten basieren 

ausschließlich auf Arbeiten anderer Koautoren) 
 

  Etwaiger Beitrag des Doktoranden / der Doktorandin zur 
Abbildung:   _____% 
Kurzbeschreibung des Beitrages:  

   

 

Abbildung(en) # 3, S6  100 % (die in dieser Abbildung wiedergegebenen Daten entstammen 

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin 
durchgeführt hat) 
 

  0 % (die in dieser Abbildung wiedergegebenen Daten basieren 

ausschließlich auf Arbeiten anderer Koautoren) 
 

 X Etwaiger Beitrag des Doktoranden / der Doktorandin zur 
Abbildung: 25 % 
Kurzbeschreibung des Beitrages: Statistische Analyse & 
Erstellung der Abbildung 

   

 

Abbildung(en) # 5  100 % (die in dieser Abbildung wiedergegebenen Daten entstammen 

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin 
durchgeführt hat) 
 

  0 % (die in dieser Abbildung wiedergegebenen Daten basieren 

ausschließlich auf Arbeiten anderer Koautoren) 
 

 X Etwaiger Beitrag des Doktoranden / der Doktorandin zur 
Abbildung: 85 % 
Kurzbeschreibung des Beitrages: Konzeptualisierung & 
Erstellung der Grafik; Durchführung & Auswertung der hier 
zusammengefassten Experimente 
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Abbildung(en) # S4, S5  100 % (die in dieser Abbildung wiedergegebenen Daten entstammen 

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin 
durchgeführt hat) 
 

  0 % (die in dieser Abbildung wiedergegebenen Daten basieren 

ausschließlich auf Arbeiten anderer Koautoren) 
 

 X Etwaiger Beitrag des Doktoranden / der Doktorandin zur 
Abbildung: 65 % 
Kurzbeschreibung des Beitrages: Konzeptualisierung & 
Durchführung der Experimente; Statistische Analyse & 
Erstellung der Abbildung 
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Manuskript Nr. 4 

Kurzreferenz: Meents et al (2019), Front. Microbiol. 

Beitrag des Doktoranden / der Doktorandin 

Beitrag des Doktoranden / der Doktorandin zu Abbildungen, die experimentelle Daten wiedergeben (nur 

für Originalartikel): 

Abbildung(en) # 1, 2, 
6, 7 

 100 % (die in dieser Abbildung wiedergegebenen Daten entstammen 

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin 
durchgeführt hat) 
 

  0 % (die in dieser Abbildung wiedergegebenen Daten basieren 

ausschließlich auf Arbeiten anderer Koautoren) 
 

 X Etwaiger Beitrag des Doktoranden / der Doktorandin zur 
Abbildung: 55 % 
Kurzbeschreibung des Beitrages: Konzeptualisierung der 
Experimente & Probenvorbereitung; Durchführung der 
Experimente & Messungen 

 

Abbildung(en) # 3 X 100 % (die in dieser Abbildung wiedergegebenen Daten entstammen 

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin 
durchgeführt hat) 
 

  0 % (die in dieser Abbildung wiedergegebenen Daten basieren 

ausschließlich auf Arbeiten anderer Koautoren) 
 

  Etwaiger Beitrag des Doktoranden / der Doktorandin zur 
Abbildung:   _____% 
Kurzbeschreibung des Beitrages:  

   

 

Abbildung(en) # 4, 5  100 % (die in dieser Abbildung wiedergegebenen Daten entstammen 

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin 
durchgeführt hat) 
 

  0 % (die in dieser Abbildung wiedergegebenen Daten basieren 

ausschließlich auf Arbeiten anderer Koautoren) 
 

 X Etwaiger Beitrag des Doktoranden / der Doktorandin zur 
Abbildung: 85 % 
Kurzbeschreibung des Beitrages: Konzeptualisierung der 
Experimente & Probenvorbereitung; Experiment. 
Durchführung; Stat. Auswertung; Erstellung der Abbildung 
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Manuskript Nr. 5 

Kurzreferenz: Meents et al (2020), Russ. J. Plant Physiol. 

Beitrag des Doktoranden / der Doktorandin 

Beitrag des Doktoranden / der Doktorandin zu Abbildungen, die experimentelle Daten wiedergeben (nur 

für Originalartikel): 

 

Abbildung(en) # 1  100 % (die in dieser Abbildung wiedergegebenen Daten entstammen 

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin 
durchgeführt hat) 
 

  0 % (die in dieser Abbildung wiedergegebenen Daten basieren 

ausschließlich auf Arbeiten anderer Koautoren) 
 

 X Etwaiger Beitrag des Doktoranden / der Doktorandin zur 
Abbildung: 50 % 
Kurzbeschreibung des Beitrages: Konzeptualisierung und 
Durchführung der Experimente & Messungen; 
Probenvorbereitung; Statist. Auswertung 

   

 

Abbildung(en) # 2-5  100 % (die in dieser Abbildung wiedergegebenen Daten entstammen 

vollständig experimentellen Arbeiten, die der Kandidat/die Kandidatin 
durchgeführt hat) 
 

  0 % (die in dieser Abbildung wiedergegebenen Daten basieren 

ausschließlich auf Arbeiten anderer Koautoren) 
 

 X Etwaiger Beitrag des Doktoranden / der Doktorandin zur 
Abbildung: 30 % 
Kurzbeschreibung des Beitrages: Konzeptualisierung und 
Durchführung der Experimente & Messungen; 
Probenvorbereitung 
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