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Abstract

Identification of specific species in metagenomic samples is critical for several key applica-

tions, yet many tools available require large computational power and are often prone to false

positive identifications. Here we describe High-AccuracY and Scalable Taxonomic Assign-

ment of MetagenomiC data (HAYSTAC), which can estimate the probability that a specific

taxon is present in a metagenome. HAYSTAC provides a user-friendly tool to construct data-

bases, based on publicly available genomes, that are used for competitive read mapping. It

then uses a novel Bayesian framework to infer the abundance and statistical support for each

species identification and provide per-read species classification. Unlike other methods,

HAYSTAC is specifically designed to efficiently handle both ancient and modern DNA data,

as well as incomplete reference databases, making it possible to run highly accurate hypoth-

esis-driven analyses (i.e., assessing the presence of a specific species) on variably sized ref-

erence databases while dramatically improving processing speeds. We tested the

performance and accuracy of HAYSTAC using simulated Illumina libraries, both with and

without ancient DNA damage, and compared the results to other currently available methods

(i.e., Kraken2/Bracken, KrakenUniq, MALT/HOPS, and Sigma). HAYSTAC identified fewer

false positives than both Kraken2/Bracken, KrakenUniq and MALT in all simulations, and

fewer than Sigma in simulations of ancient data. It uses less memory than Kraken2/Bracken,

KrakenUniq as well as MALT both during database construction and sample analysis. Lastly,

we used HAYSTAC to search for specific pathogens in two published ancient metagenomic

datasets, demonstrating how it can be applied to empirical datasets. HAYSTAC is available

from https://github.com/antonisdim/HAYSTAC.
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Author summary

The emerging field of paleo-metagenomics (i.e., metagenomics from ancient DNA) holds

great promise for novel discoveries in fields as diverse as pathogen evolution and paleoen-

vironmental reconstruction. However, there is presently a lack of computational methods

for species identification from microbial communities in both degraded and nondegraded

DNA material. Here, we present “HAYSTAC”, a user-friendly software package that

implements a novel probabilistic model for species identification in metagenomic data

obtained from both degraded and non-degraded DNA material. Through extensive

benchmarking, we show that HAYSTAC can be used for accurately profiling the commu-

nity composition, as well as for direct hypothesis testing for the presence of extremely

low-abundance taxa, in complex metagenomic samples. After analysing simulated and

publicly available datasets, HAYSTAC consistently produced the lowest number of false

positive identifications during taxonomic profiling, produced robust results when data-

bases of restricted size were used, and showed increased sensitivity for pathogen detection

compared to other specialist methods. The newly proposed probabilistic model and soft-

ware employed by HAYSTAC can have a substantial impact on the robust and rapid path-

ogen discovery in degraded/shallow sequenced metagenomic samples while optimising

the use of computational resources.

This is a PLOS Computational Biology Methods paper.

Introduction

Metagenomics allows high-throughput sequencing of complex microbial communities that

may not be possible to grow in a laboratory. Accurate identification of specific species within a

complex community is critical for metagenomic applications in a wide variety of fields, includ-

ing medicine, microbiome sciences, environmental sciences, biosurveillance, and biomolecu-

lar archaeology. Confidently assessing the presence of individual species is also crucial for

taxonomic profiling [1], inferring genomic evolution and phylogenetics [2], tracing disease

outbreaks [3], generating diagnostics from biofluids [4] and studying ancient pathogens [5].

Recent studies of ancient pathogens based on high-throughput sequencing technology have

provided unique insights into the evolutionary history of major human pathogens. These

include the etiologic agents of both the Justinian and Black Death plagues (Yersinia pestis;
[6,7,8,9]), tuberculosis (the Mycobacterium tuberculosis complex; [10,11]), syphilis (Treponema
pallidum; [12,13]) and smallpox (Variola major and Variola minor; [14]).

Accurately identifying specific microbial species from ancient metagenomes, however, can

be challenging for numerous reasons. Firstly, short read sequences originating from closely

related species may be difficult to distinguish from each other. In addition, the species of inter-

est may have low abundance in the sample, or the genomes in the reference database may not

be representative of the strain present in a sample [15]. Contamination from laboratory envi-

ronment or reagents may also obscure identification [16]. Identifying specific species within

ancient metagenomes is further complicated by issues inherent to ancient DNA, including

short molecules (typically between 30–60 bp [17]), post-mortem miscoding lesions (e.g., cyto-

sine deamination), contamination from soil and sediment bacteria in the burial environment,

sample handling, and storage [18].
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When present in ancient metagenomes, pathogen DNA is usually found in low abundance

[15], and researchers often initially screen many samples before deciding which libraries

should be more deeply sequenced in order to obtain whole genome data, or be further pro-

cessed using targeted capture techniques [19,20,5]. Screening for pathogens is typically per-

formed by shallow shotgun sequencing followed by in silico analyses of short read data using

taxonomic classifiers. Following screening, libraries with a positive identification for a species

of interest are then more deeply sequenced and investigated, with or without targeted capture

[5]. Confident species identification from metagenomic screening data is therefore critical for

studies of ancient pathogens.

Tools for detecting microbial species from metagenomes include metagenomic classifiers

that report taxonomic relative abundances [21], such as Kraken2 [22,23], KrakenUniq [24]

and the Megan Alignment Tool (MALT) [25], as well as species identification pipelines that

classify individual reads, such as Sigma [3], Strain Prediction and Analysis using Representa-

tive Sequences (SPARSE) [26], Bayesian Reestimation of Abundance with KrakEN (Bracken)

[27], and Heuristic Operations for Pathogen Screening (HOPS, specifically designed for

ancient DNA) [28]. The metagenomic classifiers Kraken2, KrakenUniq and MALT provide a

good starting point for exploratory studies, especially when it is not known which pathogens

may be present [29]. These tools, however, can be slow, require a large amount of RAM

[24,25,28], and are prone to false positive identifications of low abundance species [30]. The

species identification pipelines Sigma [3] and SPARSE [26] are based on more sophisticated

statistical models but they require alignment to a large database, which can be slow [26], and

do not provide statistical support for individual species identifications.

To address these issues, we developed High-AccuracY and Scalable Taxonomic Assignment

of MetagenomiC data (HAYSTAC - https://github.com/antonisdim/HAYSTAC), a light-

weight, fast, and user-friendly species identification tool. HAYSTAC evaluates the presence of

a particular species of interest in a metagenomic sample and provides statistical support for the

species assignment. Our method is designed to estimate the probability that a specific taxon is

present in a metagenomic sample given a set of sequencing reads and a database of reference

genomes. We first derive the probability that the set of reads has originated from a single spe-

cies (single source identification). This is useful, for example, for taxonomic identification of

unknown source material (e.g. [31]). We then expand this method to identify multiple species

in a metagenomic sample (multiple source identification).

To apply HAYSTAC, the user begins by constructing a database from publicly available

genomes via a user-friendly automated process. Sample reads are then mapped to all reference

genomes in the database using a Bowtie2 wrapper [32]. HAYSTAC then applies a novel Bayes-

ian framework to infer abundance and statistical support for each species identification, and

provides a per-read classification, allowing for both hypothesis-driven and exploratory analy-

ses. HAYSTAC can build and make use of arbitrarily sized databases, with minimal effects on

sensitivity and specificity. This means that HAYSTAC can provide reliable species identifica-

tions by aligning reads to a handful of reference genomes (instead of thousands), without mis-

identifying taxa because of the restricted database size. This feature dramatically improves its

performance relative to other methods. Altogether, HAYSTAC provides a robust method to

assess the presence of a specific species in a metagenomic sample without the need to run mul-

tiple programs to assess assignment accuracy, such as is required by other methods (i.e.,
Bracken for Kraken2 [27] and HOPS for MALT).

To evaluate HAYSTAC’s performance, we applied it to both simulated microbiome datasets

and to empirical datasets that were generated from DNA extracts derived from archaeological

human remains. We further used HAYSTAC to assess the presence of putative respiratory

pathogens in oral microbiome-derived metagenomes from ancient human dental calculus.
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While dental plaque is known to harbour respiratory pathogens [33], few studies to date have

reported these species in its mineralized analogue, dental calculus [34,35], a discrepancy that

may reflect identification biases in studies of the latter. Improved identification of ancient

respiratory pathobionts (host-associated microbial taxa that may cause disease under specific

conditions) has the potential to add to our understanding of pathogen evolutionary dynamics

and even aid vaccine development.

Results

Method overview

HAYSTAC is a metagenomic species identifier that works with arbitrary user defined data-

bases. The database can be built from any combination of an NCBI search query, a user speci-

fied list of NCBI accession codes, the RefSeq representative database of prokaryotic species, or

a list of user provided reference assemblies. To construct the database, HAYSTAC uses a heu-

ristic method to select a single representative genome per taxon from those available in the

user provided input data (Fig 1).

Fig 1. HAYSTAC’s workflow. HAYSTAC consists of three main modules: (i) DATABASE, which builds a database of

reference genomes from various user input sources; (ii) SAMPLE, which handles downloading sequencing files from the

SRA and pre-processing of samples prior to analysis; and (iii) ANALYSE, which performs an analysis of a sample against a

database by applying the mathematical model (see methods) for taxonomic abundance estimation.

https://doi.org/10.1371/journal.pcbi.1010493.g001
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A database-wide index is then built, followed by a competitive read mapping (very fast local

alignment mode in Bowtie2, with default parameters) of each sample against the full database.

This step ensures that reads with no matches in the database are excluded in all subsequent

analyses (“Unknown Source” category).

Reads passing this initial inclusion filter are then aligned against every individual genome in

the database (with Bowtie2 in end-to-end mode). For each alignment, we count the number of

transitions (Ts) and transversions (Tv), as each type of mismatch contributes differently to our sta-

tistical model, in order to handle ancient DNA damage. We then compute a posterior probability

for each read/taxon alignment pair, using both mismatch count and expected mismatch probabil-

ity (σ, default of 0.05). Accuracy can be improved by adjusting the mismatch probability (σ) using

prior information on intra- and interspecific variability in the specific set of species analysed.

Reads that possess a posterior probability exceeding a user-defined threshold (default of

0.75, S5 and S6 Figs) are then assigned to a single taxon. Reads with a lower posterior probabil-

ity are assigned to the “ambiguous source” category. For each taxon, the count of reads passing

the posterior probability threshold are used to compute the mean posterior abundance (and

95% confidence interval); i.e., the relative abundance of a taxon in a sample, using a Dirichlet

distribution of the sample input data as a whole. A final validation step, for low depth sequenc-

ing data, using breadth of coverage is then used to assess if the assigned reads represent a ran-

dom genome sample or cluster around specific genomic regions.

Computational performance

We assessed the computational performance of HAYSTAC relative to Sigma, Kraken2/

Bracken, KrakenUniq and MALT by measuring peak memory usage (maximum resident set

size) and elapsed execution time (wall clock) for each software package on a machine with 48

CPU cores and 392 GB of RAM under controlled conditions. To control for variability in each

measurement, we ran five independent replicates of each job, and performed a linear regres-

sion across the observed values.

We first assessed performance when building databases containing 10, 100 and 500 species.

For all tested sizes, HAYSTAC uses less memory than MALT, Kracken2/Bracken or KrakenU-

niq, as well as being faster than KrakenUniq for all database sizes and faster than MALT and

Kracken2/Bracken for the 10 and 100 species databases and only marginally slower than

MALT and Kracken2/Bracken for the 500 species database. For all databases HAYSTAC was

slower and used more memory than Sigma, which does not require large indices for its align-

ments (Fig 2; S9 Table).

We then assessed the performance of these methods when analysing a one million read

dataset against the same three database sizes. HAYSTAC uses less memory than Kraken2/

Bracken, KrakenUniq and MALT for all database sizes, but it uses more memory and is slower

than SIGMA for all database sizes (Fig 2; S10 Table).

Lastly, we assessed the performance of these methods when analysing datasets of 10 thousand,

100 thousand and 1 million reads, against a database of 500 species (S1 Fig; S10 Table). Memory

performance was unchanged from the earlier benchmarks, showing that for all methods, peak

memory usage scales with database size rather than sample size. With the exception of Kraken2/

Bracken and KrakenUniq, all other methods saw only a modest increase in runtime with larger

input sizes, showing that database size also has a substantial impact on overall runtime.

Analyses of simulated data sets using RefSeq prokaryotic database

To characterise the sensitivity and specificity of HAYSTAC, we compared its performance to

that of three other widely used metagenomic profiling tools: Sigma, Kraken2/Bracken,
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KrakenUniq and MALT. We simulated four datasets for these comparisons (Table 1), and

then profiled each dataset with all five tools. Each simulated dataset was designed to test a dif-

ferent aspect of performance. For each test, we computed: (i) false positive count (total number

Fig 2. Computational performance of HAYSTAC and other methods. Linear regression of the elapsed time (wall clock) and peak memory usage (maximum

resident set size) for a sample of size 1 million reads and reference databases containing either 10, 100 or 500 genomes, each with 5 replicates. When

constructing the database, HAYSTAC uses substantially less memory and runs faster than either Kraken2/Bracken, KrakenUniq or MALT for restricted

database sizes. When performing analyses, HAYSTAC uses less memory than Kraken2/Bracken, KrakenUniq or MALT, while its runtime was only marginally

slower.

https://doi.org/10.1371/journal.pcbi.1010493.g002

Table 1. Characteristics of the six simulated samples sets of the Simple, Random and Oral microbiome datasets.

Simulation set Dataset Number of replicates aDNA damage Mean number of species

Simple with human DNA Simple Microbiome 2 No 10

Simple without human DNA Simple Microbiome 2 No 10

Microbiome 100 species ancient General Microbiome 2 Yes 100

Microbiome 100 species modern General Microbiome 2 No 100

Microbiome 500 species ancient General Microbiome 2 Yes 500

Microbiome 500 species modern General Microbiome 2 No 500

Oral microbiome aDNA damage Oral Microbiome 6 Yes 178

Oral microbiome modern Oral Microbiome 6 No 178

https://doi.org/10.1371/journal.pcbi.1010493.t001
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of species that were reported yet not present in the simulated sample); (ii) false negative count

(total number of species present in the simulation yet were not identified); and (iii) true posi-

tive count (total number of species correctly identified).

We first generated a dataset of samples comprising 10 species to quantify the ability of each

program to accurately detect species in a simple metagenomic community (hereafter “Simple

Microbiome” dataset). We generated two additional sets of profiles for this dataset: one that

included modern human DNA (“contaminated”) and one that did not (“noncontaminated”).

This dataset was created using gargammel [36] by randomly sampling 10 species from a modi-

fied RefSeq prokaryote representative genome database (see Methods) and building simulated

libraries of one million single-end reads with an equal number of reads per species (100K),

both with and without contamination from the human reference genome (25% of the total

simulated reads).

All tools, apart from KrakenUniq, correctly identified the 10 species in each simulated sam-

ple set (both with and without human contamination; Fig 3). KrakenUniq in both sample sets

identified 9.5 species. Kraken2/Bracken (average of 2.5 species), KrakenUniq (average of 0.5

species) and MALT (average of 0.5 species) programs reported false positives in the non-con-

taminated sample set. False positive species counts, however, dramatically increased in the

sample set with human contamination. HAYSTAC reported the lowest false positive count (5)

relative to Sigma (6), Kraken2/Bracken (12.5), KrakenUniq (10.5) and MALT (12.5) (Fig 3).

This suggests that HAYSTAC is less prone to false positive identifications caused by human

contamination in bacterial reference genomes found in the RefSeq representative prokaryotic

database. All false positive identification (across all programs) involved species whose RefSeq

Fig 3. Accuracy of HAYSTAC and other methods for a simple simulation. Bar plot showing the mean count of false positives (red), false negatives (orange), and true

detected species (blue) for two versions of the simple simulations dataset, each with two replicates: (A) without human DNA contamination (n = 2); and (B) with human

DNA contamination (n = 2). The dotted line shows the number of simulated species in each set of samples (i.e., the maximum true positive; n = 10), and numbers above

the error bars indicate the mean species count in each category. For the simulation without human contamination, HAYSTAC outperforms Kraken2/Bracken,

KrakenUniq and MALT, and performs equally with Sigma (i.e., no false positives or false negatives). For the simulation with human contamination, HAYSTAC

outperforms all four other methods. All of the 5 false positive species identified by HAYSTAC are known to contain human sequences in their reference genomes [37],

confounding any analyses which do not explicitly filter human contamination.

https://doi.org/10.1371/journal.pcbi.1010493.g003
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genomes are known to contain human DNA contamination [37] (S7 Table). This result

strongly supports the pre-filtering and removal of all human reads prior to microbial metage-

nomic profiling.

We then tested HAYSTAC’s performance when profiling samples with damage patterns

characteristic of aDNA (i.e., sequence fragmentation and cytosine deamination). To do so, we

generated eight simulated samples consisting of 10 million reads each, both with and without

aDNA damage (hereafter “General Microbiome” dataset). Each sample contained simulated

reads from either 100 species (four simulated samples; two random sets of species all with

equal abundance) or 500 species (four samples; two random sets of species all with equal abun-

dance) that were randomly sampled from the RefSeq representative prokaryotic database

(Table 1).

Overall, the incidence of false negatives was low. HAYSTAC reported 2.0 false negative spe-

cies on average in the 100 species sample set, and 14.0 in the 500 species sample set. Sigma

reported 2.0 and 15.5, Kraken2/Bracken 2.75 and 23.5, KrakenUniq 12.5 and 71, and MALT

8.0 and 40.75, respectively (S2 and S3A & S3B Figs). False positives, in contrast, were variable

between methods. HAYSTAC reported an average of only 0.5 false positives in the 100 species

sample set, and an average of 1.0 false positives in the 500 species sample set. Sigma performed

similarly, with an average of 0.5 and 1.0 false positives, while Kraken2/Bracken reported 11.5

and 17.0 false positives, KrakenUniq reported 21 and 64.3 false positives and MALT reported

8.0 and 8.75 false positives in the 100 and 500 species sample sets, respectively (S3A and S3B

Fig and S3 Table).

We next performed more realistic simulations based on species compositions that mimic

an oral microbial community from a previously analysed subgingival plaque sample ([30];

hereafter “Oral Microbiome” dataset). These simulations included 12 simulated samples of 5

million paired-end reads each, with and without aDNA damage, and with 176–180 species in

varying or constant species abundance (Table 1). Out of the 196 species that were simulated

for the Oral Microbiome dataset, only 115 were included in the RefSeq representative prokary-

otic database. From these 115 species, only 4 species were simulated from the same genomes

that were present in the modified representative prokaryotic RefSeq database we used (S6

Table).

As expected, given the incompleteness of the database, false negatives were elevated overall

(Table 2). HAYSTAC failed to identify on average 73.2 species in the ancient (damaged) Oral

Microbiome dataset, and 73.2 species in the modern Oral Microbiome dataset. Sigma failed to

identify on average 74.2 and 74.2 species, Kraken2/Bracken failed to identify 74.0 and 73.8 spe-

cies, KrakenUniq failed to identify 79.2 and 78.0 species and MALT failed to identify 75.0 and

74.8 species in the ancient and modern Oral Microbiome datasets, respectively (Figs 4A and

4B and S4). False positives, however, were highly variable between methods. HAYSTAC

Table 2. False negative and false positive species counts in the ancient and modern Oral Microbiome datasets.

Oral microbiome Oral microbiome

aDNA damage modern

False False False False

negative positive negative positive

HAYSTAC 73.2 29.7 73.2 35.3

Sigma 74.2 42.2 74.2 29.5

Kraken2/Bracken 74.0 170.7 73.8 224.2

KrakenUniq 79.2 62.0 78.0 134.2

MALT 75.0 137.2 74.8 157.5

https://doi.org/10.1371/journal.pcbi.1010493.t002
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reported an average of 29.7 false positives in the ancient Oral Microbiome dataset and 35.3

false positives in the modern Oral Microbiome dataset. Sigma reported 42.2 and 29.5 false pos-

itives, Kraken2/Bracken reported 170.7 and 224.2 false positives, KrakenUniq reported 62.0

and 134.2 false positives and MALT reported 137.2 and 157.5 false positives in the ancient and

modern datasets, respectively (Fig 4A and 4B and S4 Table). Overall HAYSTAC outperformed

the other methods in the ancient Oral Microbiome sample set with the lowest number of false

positive identifications, and the highest number of true positive identifications in both the

ancient and modern Oral Microbiome datasets.

Analyses of simulated data sets using genus-level database

We next assessed how accurately HAYSTAC identified specific candidate species using smaller

reference databases. To do so, we re-analysed 20 simulated samples included in the General

and Oral Microbiome datasets (General Microbiome 100 species, General Microbiome 500

species, Oral Microbiome aDNA damage, and Oral Microbiome modern datasets) (Table 1)

using nine different genus-specific databases (see Methods). For each randomly selected

genus, we constructed a database that included all genomes found in the RefSeq representative

prokaryotic database. The nine genera that were selected for this analysis were: Bacteroides,
Burkholderia, Campylobacter, Clostridium, Corynebacterium, Desulfitobacterium, Mycobacte-
rium, Solimonas, and Streptococcus. Each database consisted of all RefSeq genomes from all

species belonging to the genus instead of the full RefSeq representative prokaryotic database.

This resulted in databases with between 3–91 species each, as opposed to 5,652 species when

Fig 4. Accuracy of HAYSTAC and other methods for an oral microbiome simulation. Bar plot showing the mean count of false positives (red), false

negatives (orange), and true detected species (blue) for two versions of the oral microbiome dataset, each with six replicates: (A) modern simulation, with fixed

read lengths (n = 6); and (B) ancient simulation, with variable read lengths and post-mortem damage (n = 6). The dotted line shows the average number of

simulated species in each set of samples (i.e., the maximum true positive; n = 178), and numbers above the error bars indicate the mean species count in each

category. For the modern simulation, HAYSTAC substantially outperforms Kraken2/Bracken, KrakenUniq and MALT with respect to false positives, and

performs equivalently with Sigma. For the ancient simulation, HAYSTAC outperforms all four other methods with respect to false positives. The overall high

rates of false negative identifications are due to the absence of many simulated species from the reference database for all four methods. HAYSTAC also

outperforms all the other four methods in both the modern and ancient Oral Microbiome datasets by identifying the highest number of true positive species.

https://doi.org/10.1371/journal.pcbi.1010493.g004
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using the full RefSeq representative prokaryotic database. For each analysis, we computed false

positive, false negative, and true positive species counts as before.

Overall, false negatives were low. HAYSTAC reported on average 0.1 species missing in the

samples of the General and Oral Microbiome datasets, while Sigma reported 0.1, Kraken2/

Bracken 0.1, KrakenUniq 0.2 and MALT 0.1 species missing (Fig 5, S5 Table). False positives,

Fig 5. Accuracy of HAYSTAC and other methods using a reference database restricted to a single genus. Bar plot, with a pseudo-log10 transformed y-axis,

showing the mean count of false positives (red), false negatives (orange), and true detected species (blue) for nine different genera (Bacteroides, Burkholderia,

Campylobacter, Clostridium, Corynebacterium, Desulfitobacterium, Mycobacterium, Solimonas and Streptococcus), each with 20 samples from the general and oral

microbiome datasets. The dotted line shows the average number of simulated species in each set of samples (i.e., the maximum true positive; n = 2.0), and numbers

above the error bars indicate the mean species count in each category. For the genus specific analysis, HAYSTAC substantially outperforms both Kraken2/Bracken and

MALT with respect to false positives and performs better than Sigma.

https://doi.org/10.1371/journal.pcbi.1010493.g005
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however, were variable between methods. HAYSTAC reported an average of 0.8 false positives,

averaged across all samples in the General and Oral Microbiome datasets, while Sigma

reported 1.1, Kraken2/Bracken 33.1, KrakenUniq 3.3 and MALT 29.1 (Fig 5). We also used

HAYSTAC to compare the mean posterior abundance computed using the full RefSeq data-

base with abundance computed using the genus specific databases (Fig 6). We found that

while genus specific abundances were in cases slightly higher than those computed with the

full RefSeq database, there was a very strong correlation between the two (R2 = 0.999;

slope = 1; p-value = 0; GLM: y = x+3.1�10−6).

Pathogen identification from metagenomic communities

We then tested the ability of HAYSTAC and HOPS (an extension of MALT) to distinguish

specific human pathogen species from close relatives when occurring at low abundance in a

metagenomic sample. To do so we selected 100 (human) pathobionts, each one belonging to a

different genus, as well as 1 non-pathogenic microbial taxon from each of the selected genera

(total of 200 taxa, 2 per genus, S11 Table). We subsequently simulated a total of 200 libraries (1

library per species), each containing 100 reads with damage patterns characteristic to aDNA.

This data was then added to one of our previously simulated Oral Microbiome dataset samples.

This resulted in 200 replicates of an Oral Microbiome sample (anc200e2repgn), with each rep-

licate containing 1 human pathobiont at low abundance. Due to the lack of taxonomic specific-

ity present in a random sample of only 100 reads per pathogen genome, the overall true

Fig 6. HAYSTAC inferred posterior abundance levels. Scatter plot showing the mean posterior abundances across all taxa (n = 362) and samples

(n = 20) for either a genus specific database or the entire RefSeq representative database of prokaryotic species. Using a genus specific database has

a small positive bias in mean posterior abundance for taxa within that genus (paired t-test p-value< 2.2�10−16, mean of the differences = 3.9�10−6),

nevertheless the overall abundance levels are highly correlated (R2 = 0.999). Computational runtime for the genus specific analyses are faster and

use less memory, making genus specific analyses suitable for rapid initial screening (e.g. 1 million reads against a Corynebacterium specific database

runs approximately 6.15 faster than against a database containing 500 species and uses approximately 3.9 times less memory).

https://doi.org/10.1371/journal.pcbi.1010493.g006
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positive rate for this test was low. HAYSTAC identified 2016 true positive pathogenic reads

and misidentified 50 reads across the 200 replicates, while HOPS only identified 144 true posi-

tive pathogen reads, and misidentified 58 reads across all replicates (Fig 7).

Case study 1: Ancient Yersinia pestis
We then tested HAYSTAC’s performance to detect specific pathogens in real archaeological

samples. We first analysed 130 publicly available plague-positive ancient human libraries [9],

obtained from seven bone and tooth samples (RISE00, RISE139, RISE386, RISE397, RISE505,

RISE509 and RISE511).

HAYSTAC was run using a reference database consisting of the longest complete genomes

for each of the species in the genus Yersinia (including plasmid sequences). Our method was

able to confidently assign between 6,720 and 856,467 reads to Y. pestis across all seven samples

(Fig 8). HAYSTAC on average uniquely assigned an order of magnitude fewer reads compared

to the number of aligned reads reported in the original study [9]. In addition, we found evi-

dence for additional Yersinia species in all samples, including Y. pseudotuberculosis (606–

Fig 7. Histogram of the number of assigned pathobiont simulated reads. Histogram showing the read count frequency of true positive (blue) and false positive

(red) pathobiont reads as identified by HAYSTAC and HOPS, after screening 200 spiked iterations of an ancient Oral Microbiome dataset sample (anc200e2repgn).

HAYSTAC identifies robustly more pathobiont reads than HOPS, while producing less false positive identifications.

https://doi.org/10.1371/journal.pcbi.1010493.g007
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72,581 reads), Y. similis (376–26,010 reads), Y. canariae (74–8,868 reads), Y. enterocolitica
(209–5,040 reads), Y. mollaretii (147–24,241 reads) and Y. ruckeri (211–4,670 reads). Of these,

Y. ruckeri and Y. similis are known to cause infections in animals (specifically fish), but have

also been reported to infect humans [38]. These identifications, however, are likely spurious,

since Y. ruckeri and Y. similis are phylogenetically basal to other Yersinia species [39,40] and

may be attracting reads belonging diverged sequences.

The posterior abundances for Yersinia pestis in the RISE samples ranged from 0.0093–

1.02%, corresponding to between 6,720–856,467 assigned reads. Despite the large number of

assigned reads, posterior abundances only exceeded 0.01% for six of the seven samples

(RISE00, RISE139, RISE386, RISE397, RISE505 and RISE509). This highlights the need to con-

sider both relative and absolute abundance when making positive identifications.

Fig 8. Posterior abundances of Yersinia species in Case Study 1. Heatmap showing the mean posterior abundances

for the seven RISE samples, based on a genus specific analysis of 18 Yersinia species. Yersinia pestis is the species with

the highest posterior abundance, followed by Y. pseudotuberculosis, in agreement with the results of (Rasmussen et al.,

2015).

https://doi.org/10.1371/journal.pcbi.1010493.g008

PLOS COMPUTATIONAL BIOLOGY HAYSTAC

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010493 September 30, 2022 13 / 30

https://doi.org/10.1371/journal.pcbi.1010493.g008
https://doi.org/10.1371/journal.pcbi.1010493


Case study 2: Historic dental calculus

Dental plaque is a biofilm that develops naturally on teeth, and during life it periodically min-

eralizes to form dental calculus [41], a robust substrate that can preserve biomolecules such as

DNA from the biofilm and the host [34]. Although this substrate can act as a reservoir for

respiratory pathobionts, analysis of ancient dental calculus metagenomic data is often chal-

lenging because the low abundance of these species makes it difficult to confidently identify

them [34]. To test the performance of HAYSTAC on pathobiont aDNA sequences within

host-associated ancient microbiomes, we analysed data from 48 dental calculus samples from a

19th century hospital in Oxford [42,43].

We screened these libraries for potential upper respiratory pathobionts from the Coryne-
bacterium, Streptococcus, Klebsiella and Bordetella genera (Fig 9), in an effort to test if such

pathobionts could be preserved and identified in dental calculus. Members of the genera Cory-
nebacterium, Streptococcus and Bordetella had also been included in the Oral Microbiome

dataset. Within the Corynebacterium genus, we identified Corynebacterium matruchotii (abun-

dance 0.01–1.96%; 37 samples) and C. durum (abundance 0.01–0.59%; 15 samples) both of

which are oral commensal taxa. We did not, however, identify Corynebacterium diphtheriae,
the species that causes diphtheria. We identified multiple species of Streptococcus, with the

commensal Streptococcus sanguinis being identified in 33 samples at relatively high abundance

Fig 9. Posterior abundances of oral microbiome species in Case Study 2. Heatmap showing the mean posterior abundances for the 44 dental calculus samples,

based on a custom database that combined the prokaryotic representative RefSeq and pathobionts with complete genomes from the following 5 genera:

Corynebacterium, Haemophilus, Klebsiella, Streptococcus, and Bordetella. Species from these five genera of interest that naturally colonise the oral cavity can be

found in more samples and at higher abundance (e.g. C. matruchotii) compared to pathobionts of the upper respiratory system (e.g. S. pneumoniae).

https://doi.org/10.1371/journal.pcbi.1010493.g009
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(0.01–2.62%). The pathobiont Streptococcus pneumoniae was also positively identified at low

abundance (0.01–0.07%) in 10 samples. We did not find any evidence for species belonging to

the genera Klebsiella and Bordetella.

Members of the Haemophilus genus were rarely identified, which is expected given that

many species from that genus are generally low-abundance in dental plaque compared to

other oral surfaces such as the tongue [44], and are similarly low-abundance in dental calculus

[43]. However, Haemophilus parainfluenzae was found in 18 samples (abundance between

0.01–0.46%), H. haemolyticus was identified in two samples (abundance 0.01–0.03%), and H.

parahaemolyticus was identified only in sample CS18 (abundance 0.02%). An uncharacterized

oral species, Haemophilus oral taxon 036, was identified in three samples (abundance 0.01–

0.04%) and the commensal H. sputorum was also identified in three samples (abundance 0.01–

0.03%).

As expected, our analysis indicates that while species naturally occurring in the oral cavity

(e.g., C. matruchotii and durum), were detected in most samples, upper respiratory system

pathobionts (e.g. S. pneumoniae, H. parainfluenzae) were more rare. Although pathogens were

found generally at very low abundance, in only a few individuals, our results indicate that

HAYSTAC was able to positively identify some potentially pathogenic species such as Strepto-
coccus pneumoniae and Haemophilus parainfluenzae, suggesting that dental calculus is a prom-

ising substrate to study ancient respiratory pathobionts.

Discussion

Our results demonstrate that HAYSTAC provides a robust and computationally efficient

framework to statistically assess the presence of specific species in a metagenomic sample.

HAYSTAC identified fewer false positives than Kraken2/Bracken, KrakenUniq or MALT in all

simulations, and fewer than Sigma in simulations of ancient data. When analysing modern

data, HAYSTAC’s performance can be further optimised by reducing the base mismatch prob-

ability parameter (σ) at run-time leading to a more stringent alignment strategy, and increas-

ing the minimum relative abundance threshold for a species call. Especially reducing the base

mismatch probability (σ) will reduce the number of false positive identifications, because

HAYSTAC calculates the maximum number of mismatches for a valid alignment based on

both the base mismatch probability (σ = 0.05) and the average read length of reads in a library

(e.g., 150 bp for the Oral Microbiome modern dataset, which allows for more mismatches to

be allowed). It uses less memory than Kraken2/Bracken, KrakenUniq and MALT. Further-

more, our results show that the use of reduced reference databases (e.g., a few selected genera

as opposed to the entire RefSeq representative prokaryotic database), can dramatically reduce

computational time (approximately 6.15 times faster when using a database of 84 species than

a database of 500) while still providing highly accurate species identification. HAYSTAC’s

underlying computational framework allows for an easy installation of the package, and the

efficient maintenance of its source code and software dependencies. Altogether, this makes

HAYSTAC a flexible tool to rapidly and accurately profile metagenomic samples and screen

them for pathogens, a feature that is attractive for a large range of applications, including

archaeogenetics and biosurveillance.

Species concept, horizontal gene transfer and species identification

Although we demonstrated that both HAYSTAC and Sigma provide more robust species

assignments than MALT, Kraken2/Bracken or KrakenUniq, their internal computation is

based on the assumption that intraspecific polymorphism is lower than interspecific polymor-

phism. While this is true in most cases, the concept of a species among microorganisms is
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often not straightforward. This is the case, for example, in the Mycobacterium tuberculosis
complex in which interspecific variability is very low [45], and occasionally lower than the

default value of expected mismatch (i.e., expected level of intraspecific polymorphism) set in

HAYSTAC (σ = 0.05; see Eq 4 below). HAYSTAC deals with this issue by introducing an

“ambiguous source” category, to which reads that are equally likely to match two or more

genomes are assigned. This ensures that they do not contribute to posterior abundance com-

putations, which could possibly force false identifications, while also not dismissing them into

“unknown source” category with reads that cannot be classified. In cases where the levels of

intra- and interspecific diversity are known (e.g., within a genus) it is possible to adjust the

probability of the expected mismatches between a read and a genome (σ; see Eq 4), which can

increase power while reducing false positive rates when analysing a specific dataset. This fea-

ture means HAYSTAC’s performance can be finetuned to specific questions and datasets.

Identifying species within a metagenomic sample can also be complicated by horizontal

gene transfer (HGT). HGT can lead to spurious, highly supported, species assignments—espe-

cially if the sequences originate from an outgroup species that is not represented in the data-

base. HAYSTAC mitigates this issue by inspecting the evenness of coverage across the genome

for shallow sequencing data. Specifically, reads that belong to an outgroup species and that

map to a genome in a reference database because of an HGT or due to contamination are

expected to map only to parts of the reference genome (e.g. the part that was horizontally

transferred). HAYSTAC assesses whether reads are clustered more than expected by chance

across a reference genome using an evenness of coverage metric (see Methods). This provides

the user with a quantification of the evenness of spread, and thus a proxy signature of potential

HGT or misassignment of reads from a taxon that is not represented in the reference database.

Issues with databases

Another issue facing metagenomics is contaminated sequences incorporated into reference

genomes. For example, multiple bacterial RefSeq representative assemblies contain human

sequences [37]. This can lead to spurious, highly supported, species assignments when profil-

ing metagenome samples. Including genome sequences from potential contaminant sources

(e.g., the human reference genome) in the database should alleviate these issues [46]. Alterna-

tively, it is also possible to filter reads before starting a taxonomic identification/assignment

analysis (i.e., by excluding those that map to the contaminant’s reference genome). Potential

contaminants, however, are not always known, and there are many gaps in reference sequence

databases. In fact, inadequate species representation in databases is likely to be an important

source of false positives for all species identification methods [15].

Although reads belonging to a species that is not represented in a database are typically

assigned to a higher taxonomic node (“ambiguous source” category in HAYSTAC), incorrect

species assignment can occur if the missing taxon is closely related to another species in the

database, or if the read derives from a conserved element found within a taxonomic group

with sparse representation in the database. Although this is not considered a major problem

for general profilers, as closely related species are likely to play a similar function in the ecosys-

tem, such misassignments can greatly complicate the identification of specific pathogen spe-

cies, especially if they have close environmental relatives.

Conclusions

Metagenomic data are now routinely produced and analysed, providing new insights into

microbial communities that were previously unknown. Development of metagenomic analyti-

cal tools, however, has mostly focused on frameworks that can profile an entire microbial
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community. We showed that these methods, however, can produce high levels of false positives

when focusing on specific species identification. Here we present a tool that can robustly assess

whether a specific species is present in a metagenomic sample in one step, without the need to

combine different pipelines to validate the results. HAYSTAC provides a user-friendly and

automated method for rapidly constructing databases, and produces robust identifications

regardless of the database size, allowing for both rapid hypothesis-driven analyses and exhaus-

tive profiling. Because of the mathematical framework it employs, HAYSTAC reliably pro-

duces the lowest number of false positive identifications, making it a valuable tool for both

ancient and modern DNA microbial research.

Methods

Single source identification. We collect a series of observations (reads:r1 �rn) and we

denote the full set of observations as R. We map all the reads to a database of reference

genomes, and we define the event of sampling from the i-th reference genome in our database

as Gj. Assuming that all reads come from the same source (i.e., a single species represented in

the database), the events of sampling from a given genome are exhaustive and mutually exclu-

sive, i.e.

G1 � � �GnjGi \ Gj ¼ ;; 8i 6¼ j and
[n

i

Gi ¼ O

From Bayes Theorem we have:

P GjjR
� �

¼
PðRjGjÞPðGjÞ

PðRÞ
¼

PðRjGjÞPðGjÞ
P

kPðRjGkÞPðGkÞ
ð1Þ

Given that each read is a different realization of sampling process (i.e., an independent

observation), we can express the likelihood as:

PðRjGjÞ ¼
Y

i
PðrijGjÞ ð2Þ

Therefore, the posterior probability of sampling from a given genome Gj is:

P GjjR
� �

¼
PðGjÞ

Q
iPðrijGjÞ

P
kPðGkÞ

Q
iPðrijGkÞ

ð3Þ

Likelihood

We next derive a likelihood function to express the probability of a read given a genome P(ri|
Gj). To do so, we use a previously published expression of this likelihood [3] based on the

number of mismatches between a read and a reference to which it is aligned:

PðrijGjÞ ¼ s
zð1 � sÞ

l� z
; z � U

PðrijGjÞ ¼ 0; z > U

where z is the number of mismatches between read ri and genome Gj, U is the maximum num-

ber of mismatches allowed in the alignment and l is the length of read ri (in bp).

The method assumes a uniform probability of mismatch within a given alignment (σ) to

account for population level variability and sequencing errors. We expand this framework to

leverage the fact that transitions and transversions occur at significantly different rates, partic-

ularly in ancient samples due to the effect of deaminations.
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For each alignment we can then express the likelihood of generating a read ri given that it

has been sampled from the reference genome Gj based on both number of transitions (t) and

transversions (v).

Let σt be the probability of observing a transition and σv the probability of observing a trans-

version, we can express the likelihood for a single read as:

PðrijGjÞ ¼ s
vijj
v s

tijj
t ð1 � sv � stÞ

li� vijj � tijj ð4Þ

where li represent the length of the read ri, while vi|j and ti|j denote the number of transversions

and transitions between the read ri and the genome Gj respectively.

Posterior

By substituting the likelihood term (Eq 4) into Eq 3, we can obtain an explicit form for the pos-

terior probability of sampling a set of reads (R) from a given reference genome:

P GjjR
� �

¼
s

P
i
tijj

t s

P
i
vijj

v ð1 � sv � stÞ

P
i
ðli � tijj � vijjÞPðGjÞ

Pk¼n
k¼1

PðGkÞs

P
i
tijk

t s

P
i
vijk

v ð1 � sv � stÞ

P
i
ðli� tijk � vijkÞ

ð5Þ

By rescaling both numerator and denominator by a factor of ð1 � sv � stÞ

P
i
li we get:

P GjjR
� �

¼
PðGjÞ

st
1� sv � st

� �
P

i
tijj

sv
1� sv � st

� �
P

i
vijj

Pk¼n
k¼1

PðGkÞ
st

1� sv � st

� �
P

i
tijk

sv
1� sv � st

� �
P

i
vijk

ð6Þ

Let Vj = ∑ivi|j denote the total number of observed transversions between all reads and

genome Gj while Tj = ∑iti|j represents the total number of transitions. Let dv ¼
sv

1� sv � st
and dt ¼

st
1� sv � st

denote instead the transversion to match ratio and the transition to match ratio, respec-

tively. By introducing this more compact notation, the previous equation can be re-written as:

P GjjR
� �

¼
PðGjÞd

Tj
t d

Vj
v

Pn
k PðGkÞd

Tk
t d

Vk
v

ð7Þ

Numerical representation

Our method assumes a fixed probability of mismatches (σv+σt) which can be specified by the

user and has a default value of 5%. We estimate the transition/transversion ratio based on the

total number of mismatches per categories observed in the entire dataset and we obtain the

value for σv and σt by solving the following linear system:

st þ sv ¼ 0:05

st ¼
T
V
sv

ð8Þ

8
<

:

where V ¼
P

j

P
ivijj ¼

P
jVj and T ¼

P
j

P
itijj ¼

P
jTj.
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If we assume a uniform prior in which each genome has a probability of 1/n we can simplify

Eq 7 even further obtaining:

P GjjR
� �

¼
d
Tj
t d

Vj
vPn

k d
Tk
t d

Vk
v

ð9Þ

When analysing a large number of reads, evaluating Eq 9 might become problematic due to

numerical representation issues. To accommodate for this we use an equivalent expression of

the posterior probability:

P GjjR
� �

¼
1

1þ
Pn

k6¼j d
Tk � Tj
t d

Vk � Vj
v

ð10Þ

Each term in the summation at the denominator of Eq 10 represents the likelihood of

genome Gk relative to genome GJ. There might be cases in which even the relative likelihood is

so close to zero that cannot be represented numerically. We then take a conservative approach

and assign to d
Tk � Tj
t d

Vk � Vj
v the smallest number that the machine can represent (for a 64bit sys-

tem it should be 2.2250738585072014� 10−308 which we roughly approximate with 10−300).

Multiple sources identification

We then expand this method to identify multiple species from metagenomic data. The multi-

ple source identification approach involves the following steps:

• Assigning each read to a reference genome

• Obtain the likelihood for the multinomial distribution of abundances

• Obtain the posterior distribution from the Dirichlet distribution

• Calculate the 95% credible interval around each posterior mean

• Assess significance

Operatively we apply Eq 9 to each read separately and obtain a posterior probability for a

read to originate from a given genome:

P Gjjri
� �

¼
d
tijj
t d

vijj
v

Pn
k d

tijk
t d

vijk
v

ð11Þ

Thus, for each aligned read we obtain a vector of posterior probabilities (one value for each

genome in our dataset). If a posterior probability value is above a given threshold (default:

0.75) we consider the read ri to be informative and assign it to that reference genome. If instead

all posterior values are below the threshold, we consider the read to be uninformative and we

assign it to the n+1 category where n is the number of reference genomes. This means that any

read ri that has been successfully aligned, can only be assigned to a single category: either to

one reference genome or to the “Ambiguous Source” (AS, the n+1 category). All reads which

belong to species that do not possess a representative reference genome (or a close relative) in

the database and therefore haven’t been successfully aligned to any of the reference genomes,

will then be assigned to the n+2 category called “Unknown Source” (US).

Repeating this procedure 8ri 2R allows us to populate a matrix MN×(n+2) in which each row

represents a read and each column represents a reference genome in our database or either the

AS or US categories. Hence, the assignment matrix represents a series of N observations from
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a multinomial distribution of n+2 variables (where N is the total number of reads). This distri-

bution is parametrized by a probability mass function q = [q1,q2,. . .,qn,qAS,qUS].
The likelihood of N observations has thus the following form:

M � Multinomialnþ2ðN; qÞ

f x1; x2; � � � ; xnþ2jN; q
� �

¼
N!

x1!x2! � � � xnþ2!

Ynþ2

j¼1
qxjj ð12Þ

where xj is the sum of the column j of M, i.e. the number of occurrences of genome Gj.

Dirichlet prior

The Dirichlet distribution (Dir) is a conjugate prior for the multinomial distribution, and it

has desirable mathematical properties which make it appropriate to model the composition of

metagenomes.

Let π0 indicate the prior distribution and π� the posterior.

From Bayes theorem,

p�ðMjYÞ / LðMjYÞp0ðYÞ ð13Þ

We employ a uniform prior:

p0ðYÞ � DirðaÞ

a0 ¼ ða1; � � � ; anþ2Þ;

ai ¼ 1 8i ¼ 1; � � � ; nþ 2 ð14Þ

Because the Dirichlet is a conjugate prior for the multinomial likelihood (Eq 12), the poste-

rior density has the same form,

i.e

p�ðMjYÞ � Dirða�Þ

a� ¼ ða�
1
; � � � ; a�nþ2

Þ; ð15Þ

a�j ¼ aj þ xj; j ¼ 1; � � � ; nþ 2

where, again, xj is the number of observations (reads) of genome Gj in the assignment matrix

M. We can then use this framework to compute the minimum abundance of a species (repre-

sented by its closest reference genome) in a metagenome.

Posterior mean and confidence interval

Let γj denote the posterior abundance of genome Gj. From the property of the Dirichlet we can

obtain the posterior mean as follows:

E gjjX
h i

¼
a�j

a��

a�� ¼
Xnþ2

k¼1
a�k ¼ ðnþ 2Þ þ

Xnþ2

k¼1
xk ¼ nþ 2þ N ð16Þ
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meaning that the denominator of each posterior mean corresponds to the total number of

reads plus the number of categories (the number of reference genome + 2).

The marginal distribution of each abundance is:

gj � Betaða�j ; a
�� � a�j Þ ð17Þ

and we can use this to obtain the 95% CI numerically.

Computational architecture

HAYSTAC is written in Python and built upon the snakemake workflow engine [47]. It oper-

ates as a wrapper around custom python scripts and several common bioinformatics tools,

including: AdapterRemoval [48], bowtie2 [32], DeDup [49], mapDamage [50], samtools [51],

SeqKit [52], seqtk [53] and sra-tools [54]. It uses the conda package manager, with bioconda

[55], to manage its dependencies. Employing snakemake’s feature to use conda for installing

software dependencies required by a rule in a containerised fashion, allows HAYSTAC to have

a minimum list of dependencies as a package. Furthermore, it facilitates maintaining software

dependencies up to date, if necessary, without the need to make any major code changes.

A tool for constructing databases

HAYSTAC includes a user-friendly tool to download genomes from NCBI and build customi-

sable reference databases. After deciding a priori which taxa to include in their database (e.g.,

anywhere between a single genus to many thousands of taxa), the user constructs a database

from any combination of: (i) an NCBI search query; (ii) a user specified list of NCBI accession

codes; (iii) the RefSeq representative database of prokaryotic species; and/or (iv) a list of user

provided reference assemblies (in FASTA format).

To construct a valid NCBI search query, visit the NCBI Nucleotide database website

(https://www.ncbi.nlm.nih.gov/nucleotide/) and use the search feature to obtain a correctly

formatted query string from the "Search details" box. This search query can then be used

directly with HAYSTAC to automatically download and build a reference database based on

the accession codes present in the resultset returned by the query.

We caution that the choice of reference database can dramatically affect species identifica-

tion for all methods that use reference databases. For example, issues can arise if the reference

genomes in the database are not complete, as reads may map uniquely to one reference

genome because other incomplete genomes in the database do not possess that specific

sequence. To mitigate this issue, HAYSTAC uses a simple heuristic to select the longest

genome available per species in the input result set, which limits issues arising from unequal

size of reference genomes in the database.

Processing and aligning reads

Pre-processed reads can be directly passed onto the alignment step (Fig 1). This is useful when

dealing with modern DNA. The user can also decide whether to remove sequencing adapters

in the case of raw reads, and for ancient/degraded DNA collapse overlapping mate pairs using

a wrapper for AdapterRemoval [48]. Reads are then aligned to a database using Bowtie2 [32].

We first align to a single Bowtie2 index that contains all the reference genomes, to obtain a

BAM file that contains one single best alignment per read. For this alignment step we use the

local alignment mode in Bowtie2. This allows us to discard reads that did not map to a single

reference genome. This BAM is used by HAYSTAC to compute the expected Ts/Tv ratio from

the data, which is used as prior in Eq 4. Reads that pass this first filtering step are then
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realigned to each reference genome separately using Bowtie2 (one index per reference) in end-

to-end mode. We set a maximum number of mismatches to calculate the minimum alignment

score during the Bowtie alignment. The maximum mismatch allowed during this second align-

ment step is calculated by the average read length of the input library. Allowing more mis-

matches results in slower run time as the number of reads included in the analytical step

increases.

Computing abundance

Alignment files are then processed to calculate a likelihood score for each read/reference align-

ment and build a likelihood matrix that possesses n×r entries, where n is the number of refer-

ence genomes and r is the number of reads that pass the first filtering stage. This is done by

computing Ts, and Tv for each alignment, and computing the likelihood using Eq 4. Here the

user can change the probability of mismatch within a given alignment (σ; default 0.05) (see Eq

4). For each read we then compute a posterior probability using Eq 7. Reads are then filtered

based on their posterior probability (default 0.75) and included in the Dirichlet assignment

step. Reads that have not been aligned to any taxa in the database get assigned to the

“Unknown Source” category, a category that absorbs reads whose reference genomes are not

included in our database. Reads that have been aligned to multiple taxa in our database but

obtain a posterior probability below the threshold that is set for the Dirichlet assignment are

also assigned to another special category called the “Ambiguous Source”, a category that

includes reads that were not informative enough to be uniquely aligned to a specific taxon.

Both of these categories are included in the mean posterior abundance calculations.

Assessing evenness of coverage

We use an evenness of coverage ratio to assess if the reads assigned to a specific taxon represent

a random sample of its genome or whether they are clustering around specific regions. The

evenness of coverage ratio is defined as the genome coverage of a taxon over the fraction of its

genome that is covered by aligned reads. In the case of a true positive identification the reads

should not be clustering around specific genome regions (evenness ration< 10 as estimated

from empirical datasets), something that would indicate an HGT event. This test is particularly

useful for shallow sequencing data that do not allow for more than 1× genome coverage of a

given reference genome.

Representative species RefSeq database

For our analyses we build a database out of all the representative species of the prokaryotic

RefSeq database. A list of all the species that were included can be found here: https://ftp.ncbi.

nlm.nih.gov/genomes/GENOME_REPORTS/prok_representative_genomes.txt. In cases

where the RefSeq representative database contains more than one strain for a given species,

the first listed accession was picked. We also added complete genomes from the genera Klebsi-
ella, Streptococcus, Corynebacterium, Bordetella, Haemophilus and Yersinia, for these species

that were not present in the prokaryotic representative RefSeq. When possible (i.e., when

genome assembly with plasmid data were available) we included plasmid sequences in the

database.

Simulations

We generated 3 different simulated datasets. The first dataset was generated to determine the

accuracy of different methods under simple conditions. We did not apply any chemical
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damage pattern and the read length was kept constant at 60 bp. This was done by randomly

sampling 10 species from the prokaryotic representative RefSeq database (see above) twice, to

get two different sets of 10 species. For each set we then simulated 2 different sequencing

library samples of 1 million single-end reads using gargammel [36]. One set had no human

genome included and all taxa were present at 10% abundance. In the second set 25% of reads

were from the human genome, and all remaining taxa were present at 7.5% abundance. This

dataset included 4 simulated sample sequencing files.

The second dataset was produced to compare performance of the different tools when ana-

lysing ancient and modern DNA, and did not include the human genome. To do so, we first

generated two sets of 100 species randomly sampled from the prokaryotic representative

RefSeq database, and two sets of 500 randomly sampled species. The species were different

between each of the 2 random samplings for both the 100 species and 500 species sets. For

each species profile in both the 100 species and 500 species sets, we simulated two different

libraries (8 total libraries) using gargammel with 10 million single-end reads of length 125bp

from an Illumina HiSeq 2500 run. The species abundances were kept consistent within each

library, where libraries of 100 species have all taxa at 1% abundance and libraries of 500 species

have all taxa at 0.2% abundance. The first library incorporated aDNA damage patterns based

on the profile of reads that mapped to the Tannerella forsythia genome from a real ancient

dental calculus sample (CS21 from [43]) and the second library did not include aDNA damage

patterns.

To assess our method with more realistic data sets, we analysed simulated data previously

published by Velsko et al. [30] designed to resemble a dental plaque community, which

included species that were not in the prokaryotic representative RefSeq database. Twelve data-

sets of 200 species each were generated: with and without ancient DNA damage, each with

even species abundance (0.5%) or with abundance based on values observed in an ancient oral

microbiome bacterial community (see S8 Table). The type of simulation included members of

the Corynebacterium genus without Corynebacterium diphtheriae; the second type included all

members of the Corynebacterium genus (including Corynebacterium diphtheriae); the third

type did not include any member of the Corynebacterium genus. Each of these twelve samples

contained 5 million paired end reads of varying length, that were collapsed with

AdapterRemoval.

Lastly, we simulated reads from human pathogens and closely related species to test HAYS-

TAC’s ability to identify low abundance pathogens in metagenomic data. To do so, we simu-

lated 200 single-end Illumina sequencing libraries from 100 pathobionts and 100 non-

pathogenic closely related species respectively, with aDNA damage patterns (estimated from

simulated sample anc200e2repgn), which we then added to one of the simulated ancient Oral

Microbiome dataset samples (anc200e2repgn). These libraries were then analysed using both

HAYSTAC and HOPS (see below for more details).

Analyses of simulated data

We trimmed adapters using AdapterRemoval v2 [48] excluding reads that were smaller than

15 bp. Analyses of simulated data with Kraken2/Bracken [23, 27], KrakenUniq [24], MALT

[25] were conducted using default parameters. HAYSTAC and Sigma [3] were run with default

parameters. For HAYSTAC, Kraken2/Bracken, KrakenUniq, MALT and Sigma positive iden-

tification abundance threshold was set to 0.01% while we used 50 reads for MALT/HOPS as in

Hübler et al. [28].

For the pathogen detection analysis, HAYSTAC was run with a mismatch probability of 0.2

and a read assignment probability threshold of 0.5. For the HOPS analysis we initially ran
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cMALT (a version of MALT adapted to aDNA libraries) with the following flags activated

−asm−tails5, while setting all the other parameters at default settings. The cMALT output was

subsequently analysed with HOPS [28] with default values but providing a list of candidate

species that included 100 pathogen species, and using the outputs characterised as ancient by

HOPS. Before counting the true and false positive reads assigned to pathogen taxa by each

method, we removed the all the microbial taxa each method would identify in the initial library

of the ancient Oral Microbiome sample anc200e2repgn, so that the background species com-

position of the library would not affect the identification of the spiked pathobionts.

In order to assess how HAYSTAC, Sigma, Kraken2/Bracken, KrakenUniq and MALT per-

form with genus specific database, we analysed 20 simulated samples (based on RefSeq

genomes; see above) and aligning reads to all representative genomes in a single genus. Nine

genera were picked randomly for these analyses: Bacteroides (25 species), Burkholderia (3 spe-

cies), Campylobacter (23 species), Clostridium (91 species), Corynebacterium (84 species),

Desulfitobacterium (4 species), Mycobacterium (36 species), Solimonas (3 species) and Strepto-
coccus (78 species).

Case study 1: Ancient Yersinia pestis
We tested HAYSTAC using a published dataset of ancient human bone and tooth samples in

which Yersinia pestis was identified [9], to compare performance against standard techniques

used to identify specific pathogens in aDNA samples. We downloaded reads from all seven

samples in which the authors detected Y. pestis (RISE00, RISE139, RISE386, RISE505,

RISE509, RISE511) from the European Nucleotide Archive (NCBI BioProject accession:

PRJEB10885). We then used HAYSTAC to build a database that contains the longest complete

genome for each species of the genus Yersinia and aligned reads using default parameters.

HAYSTAC was then used to compute posterior abundance of each species.

Case study 2: Historic dental calculus

We also tested HAYSTAC using an historic dental calculus dataset [43] (PRJEB30331). Raw

reads were processed as described in Velsko et al. [43]. We attempted to identify a set of respi-

ratory pathogens in these calculus samples, including Corynebacterium diphtheriae and Borde-
tella pertussis, the causative agents of diphtheria and whooping cough, respectively (Fig 8). We

also tested for the presence of species belonging to the Haemophilus (ideally Heamophilus
influenzae or parainfluenzae), Klebsiella (ideally Klebsiella pneumoniae) and Streptococcus
(Streptococcus pneumoniae) genera. These species were selected to test if pathobionts of the

upper respiratory system could be found in dental calculus.

Performance test

For the performance tests we created a reproducible conda environment, inside which all the

different pipelines were installed and run. For each method we used the GNU time command

to measure elapsed time (wall clock) and peak memory usage (maximum resident set size).

Scripts to run the performance benchmarks are available from https://github.com/antonisdim/

haystac_paper

We used a total of 500 accessions, one for each species, which were a subset of the acces-

sions used for the analysis of all real and simulated datasets. We built databases with an

increasing number of species (10, 100, 500) and the same database was given as input to all the

methods. We only measured the database building time and maximum memory usage for

each method, as HAYSTAC was used to efficiently fetch all 500 reference genomes from

NCBI.
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For sample inputs we used samples from the Human Microbiome Project, with accession

SRS078671. We merged the forward-mate and the singleton reads in one file that we then

treated as single end reads. That file was subsequently subsampled to generate fastq files of 10

K, 100 K, and 1 M SE reads respectively, that were used as inputs for all the tests.

For the sample analysis we performed two tests, one that measured max memory usage and

runtime for samples of increasing size against the database of 500 species, and a second where

the input file size was kept constant at 1 million reads, while the database size was being varied,

again measuring the same variables for memory and elapsed execution time.
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S1 Fig. Benchmarking for elapsed runtime and memory for HAYSTAC, Sigma, Kraken2/
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eral Microbiome dataset.
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S3 Fig. Mean count of false positive (red), false negative (orange), and true detected species
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S4 Fig. False positive and negative rates per method for the simulated samples of the Oral

Microbiome dataset.

(PDF)

S5 Fig. Receiver operator curve analysis, showing the relationship between the true and
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probability threshold for the Dirichlet assignment across all simulated samples. A rather
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cation the threshold can also be increased.
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S6 Fig. Receiver operator curve analysis, showing the relationship between the true and

false positive ratios (TPR and FPR respectively) to determine the default read posterior

probability threshold for the Dirichlet assignment per sample. Here we can see how the

read length and deamination levels affect the true positive rate. The user might want to con-

sider these additional factors if they wish to change the default value of 0.75.
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