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Nonequilibrium correlation dynamics in the one-dimensional Fermi-Hubbard model:
A testbed for the two-particle reduced density matrix theory
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We explore the nonequilibrium dynamics of a one-dimensional Fermi-Hubbard system as a sensitive testbed
for the capabilities of the time-dependent two-particle reduced density matrix (TD2RDM) theory to accurately
describe time-dependent correlated systems. We follow the time evolution of the out-of-equilibrium finite-size
Fermi-Hubbard model initialized by a quench over extended periods of time. By comparison with exact
calculations for small systems and with matrix product state calculations for larger systems but limited to short
times, we demonstrate that the TD2RDM theory can accurately account for the nonequilibrium dynamics in the
regime from weak to moderately strong interparticle correlations. We find that the quality of the approximate
reconstruction of the three-particle cumulant (or correlation) required for the closure of the equations of motion
for the reduced density matrix is key to the accuracy of the numerical TD2RDM results. We identify the size of
the dynamically induced three-particle correlations and the amplitude of cross correlations between the two- and
three-particle cumulants as critical parameters that control the accuracy of the TD2RDM theory when current
state-of-the-art reconstruction functionals are employed.
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I. INTRODUCTION

Accurately describing the correlated out-of-equilibrium
dynamics of interacting many-particle systems has remained
a great challenge to date. Frequent realizations of such out-of-
equilibrium dynamics involve either quenches and relaxation
of initially prepared excited states of systems governed by a
time-independent Hamiltonian, or systems driven by an ex-
plicitly time-dependent Hamiltonian. Such systems are at the
forefront of current experimental and theoretical studies (see,
e.g., Refs. [1–14]). Several recent experiments have shown
that exotic states of matter can be generated by ultrashort
pulses of external fields or energetic ions and that relaxation
and decoherence can be strongly influenced by interparticle
correlations [15–23].

A versatile method to reliably describe the nonequilibrium
scenarios of correlated many-body systems, in particular in
extended systems and for extended periods of time, is still
lacking. Direct many-body wave-function-based methods
can be applied only to systems with a moderate number
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of degrees of freedom and pure states as they eventually
face the exponential wall of computational effort when
increasing the number of particles and the time interval of
propagation [2,9,24,25]. Application of the time-dependent
density matrix renormalization group (DMRG) theory
[2,26] has been shown to yield numerically accurate results,
currently, however, limited to one-dimensional (1D) systems
and short time scales (see, e.g., Refs. [27–29]). Similarly, the
closely related time-dependent matrix product state (MPS)
method [25,30] invoking the time-dependent variational
principle, is also limited to small propagation times for
mesoscopic system sizes of a few tens of particles (see, e.g.,
Ref. [31]) with the increasing bond dimension as a function
of time as the major bottleneck (see, e.g., Ref. [32]).

The multidimensionally distributed complex information
encoded in the quantum many-body wave function is, how-
ever, often not needed for the extraction of many physical
observables. Therefore, an appealing alternative are time-
dependent quantum many-body methods that attempt to
bypass the use of the many-body wave function altogether.
Upon successively tracing out more and more degrees of
freedom, information and complexity is lost but, in turn, the
reduced system is rendered increasingly tractable.

A well-known limit of this reduction is the time-dependent
particle density n(r, t ). The corresponding many-body
theory, the time-dependent density functional theory
(TDDFT) [33,34] with the Kohn-Sham ansatz features a
linear scaling with particle number and remains to date the
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only time-dependent quantum many-body theory applicable
to large extended systems with weak correlations. Its major
drawback, however, is the fundamental lack of knowledge of
the exact exchange-correlation (XC) functional. The pathway
towards systematic improvements beyond the currently
frequently used approximate adiabatic XC functionals
is still a widely open question and the applicability of
TDDFT to correlated systems is limited. Alternatively, the
so-called time-dependent current-density functional theory
has been proposed for which, up to now, however, only few
approximations for the exchange-correlation vector potential
have become available [35–37].

Going up one step of the ladder of reduction the one-
particle reduced density matrix (1RDM) D1(r1, r′

1, t ) allows
one to avoid some of the problems of TDDFT [38–40]
while facing others. The equation of motion for the 1RDM
corresponds to the first equation within the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy [41,42] and thus
couples the 1RDM to the two-particle reduced density matrix
(2RDM), D12(r1, r2, r′

1, r′
2, t ). Closing the equations of mo-

tion requires representing the 2RDM as a functional of the
1RDM, which is challenging in the presence of medium to
strong correlations and for time-dependent settings.

An alternative route to an accurate description of nonequi-
librium correlated quantum many-body systems involves
nonequilibrium Green’s function (NEGF) methods, going
back to the pioneering work of Keldysh [43]. They have
been applied to a wide range of physical systems (see,
e.g., Refs. [44,45] and references therein) but are impeded
by a nonlinear time scaling, which has only recently been
overcome [29,46–48]. Moreover, they exhibit a similar hierar-
chical coupling between different orders of Green’s functions,
which is subject to closure approximations as in the case of
reduced density matrices (see, e.g., Refs. [44]).

The importance of two-particle correlations as imprinted
by the pairwise interaction potentials in most physical systems
calls for the use of the 2RDM itself as the fundamental object
for representing the many-body system. When only one- and
two-body operators are present in the Hamiltonian, the total
energy of the system can be exactly expressed in terms of
the 2RDM. The fact that the energy is an exactly known
functional of the 2RDM has been meanwhile exploited in
numerous calculations of ground-state energies in quantum
many-body systems [49–53].

In this paper we investigate the time-dependent 2RDM.
The equation of motion for propagating the 2RDM of an
excited system, the second equation of motion the BBGKY hi-
erarchy, requires, the knowledge of the three-particle reduced
density matrix (3RDM). Many important works have been
devoted in the past to develop reconstruction functionals of
the 3RDM in terms of the 2RDM for the quantum many-body
ground-state problem [54–60]. Incorporating such reconstruc-
tion functionals into the time-dependent setting within the
time-dependent 2RDM method (TD2RDM), we have recently
succeeded in calculating the dynamics of multielectron atoms
driven by strong laser fields [61,62]. Motivated by the stability
and remarkable accuracy of this method, it is the aim of
the present paper to explore the application of the TD2RDM
theory to extended systems, and to systems featuring stronger
correlations than typically present in multielectron atoms.

FIG. 1. Fermi-Hubbard model with Ms sites initially (t < 0)
confined by an external harmonic potential. Dirichlet (hard-wall)
boundary conditions are imposed on site 0 and Ms + 1 marked by red
circles. (a) The one-particle site-occupation numbers ni of the initial
ground state in the potential, which represents an excitation of the
potential-free Fermi-Hubbard model after the quench. (b) Snapshots
of the time evolved ni(t ) at t = 2J−1 and t = 4J−1. The parameters
used are V = J and U = J .

A paradigmatic model system for this endeavor is the
Fermi-Hubbard model due to its structural simplicity and
the one-parameter tunability from weakly to strongly corre-
lated dynamics. Moreover, this model system can nowadays
be realized and accurately probed with ultracold atoms in
optical lattices even with single-site resolution (see, e.g.,
Refs. [63–69] and references therein) and is, of course, of
conceptual relevance for the study of correlated quantum
matter in real solids. Several state-of-the-art methods have
been tested by application to the Fermi-Hubbard model. They
include the NEGF methods [16,28,70], as well as approaches
based on Green’s functions exploiting the mapping between
the Fermi-Hubbard model and an impurity model where the
impurity is treated in a fully correlated fashion and is coupled
to an external uncorrelated bath. These methods, such as time-
dependent dynamical mean-field theory [6] or the explicit
sum of a high-order perturbation series in the interaction on
the Keldysh contour using quantum Monte Carlo methods
[71–73] have the advantage that extended systems can be
treated through the coupling of the impurity to an extended
bath. However, correlations between distant sites are not well
represented.

As a prototypical example, we apply the TD2RDM theory
to the dynamics of the Fermi-Hubbard model at half-filling
initialized by a quench, i.e., by suddenly switching off a
confining potential that prepares the initial out-of-equilibrium
state (Fig. 1). In order to test and to benchmark the TD2RDM
we consider in the present work 1D systems with a rela-
tively small number of sites. For these systems a detailed
assessment of the accuracy by comparison with numerically
exact or highly accurate solutions is still possible allowing us
to perform large and systematic parameter scans over many
different interaction strengths and excitation energies. We
generate (nearly) exact solutions by either direct propagation
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of the Schrödinger equation or using highly accurate matrix
product state (MPS) calculations within the time-dependent
variational principle [25,30,31]. We follow the dynamics over
relatively long times (�50 in units of the inverse hopping
amplitude) and study the exact buildup of dynamical corre-
lations, which can give valuable hints for the applicability
of the TD2RDM method as well as for the improvements
of reconstruction functionals. We emphasize that our present
restriction to 1D systems and to moderate sizes is due to
the difficulty of obtaining exact or highly accurate results
for comparison, rather than due to the limitations of the
TD2RDM theory itself. The latter can be easily extended to
larger systems and higher dimensions without encountering
major complications. We also compare with time-dependent
Hartree-Fock (TDHF) predictions to access the influence of
two-particle correlations neglected by mean-field theories. We
analyze the accuracy of the TD2RDM theory as a function of
the strength of the interparticle interaction as well as of the
degree of initial excitation. One focus is on detailed probes of
the accuracy of the time-dependent three-particle correlations
resulting from different state-of-the-art reconstruction func-
tionals.

The structure of the paper is as follows: In Sec. II we
briefly present the model system under investigation, the
one-dimensional Fermi-Hubbard model at half-filling. The
key ingredients of the TD2RDM theory are reviewed in
Sec. III. We numerically analyze the dynamics of two- and
three-particle correlations, the so-called cumulants, which
are the key ingredient to reconstruction functionals, for small
systems by comparison with exact calculations in Sec. IV.
Fully self-consistent TD2RDM simulations for the time
evolution of the out-of-equilibrium dynamics as monitored
by the one-site occupation number are presented in Sec. V,
followed by concluding remarks and an outlook to future
improvements in Sec. VI. As units we use h̄ = m = e = 1
unless otherwise stated.

II. OUT-OF-EQUILIBRIUM FERMI-HUBBARD MODEL

We consider a 1D chain with a number of Ms sites (Fig. 1)
and impose Dirichlet boundary conditions (i.e., hard-wall
boundary conditions) at sites 0 and Ms + 1. These two sites
remain unoccupied during the time evolution. The present
choice of boundary conditions is motivated by typical quan-
tum simulator experiments with trapped ultracold atoms (see,
e.g., Ref. [74]). Other boundary conditions, such as periodic
boundary conditions, could be easily implemented as well
without requiring major changes of the present analysis. The
Hamiltonian of the Fermi-Hubbard model in the presence of
an external potential initializing the quench is given in second
quantization by

H = − J
∑
〈i, j〉

∑
σ

a†
iσ a jσ + U

∑
i

n↑
i n↓

i

+
∑
i,σ

Vi(t )a†
iσ aiσ , (1)

where 〈i, j〉 denotes nearest-neighbor hopping, J the hopping
amplitude, a(†)

iσ the one-particle annihilation (creation) opera-
tors, n↑(↓)

i = a†
i↑(↓)ai↑(↓), the occupation number operators for

particles with spin up (down) at site i, U the strength of on-site
interaction controlling the correlation energy in the system.
Vi(t ) is the explicitly time-dependent potential chosen to be
harmonic in the present case,

Vi(t ) = θ (−t )
V 2

2

(
i − Ms + 1

2

)2

, (2)

which determines the initial excited state (the ground state
of H in the potential for t < 0), and induces the dynamics
by a sudden potential quench at t = 0. We consider in the
following the spin-symmetric Fermi-Hubbard system at half
filling, i.e., particle number N = Ms and the number of spin-
up particles equals to the number of spin-down particles (total
spin-singlet case).

Figure 1 illustrates the quench-induced dynamics on the
level of the one-particle site-occupation numbers ni corre-
sponding to the diagonal elements of the one-particle reduced
density matrix D1. The ground state of the interacting many-
body system in the potential [Fig. 1(a)] represents an excited
state of the field-free Fermi-Hubbard system and, thus, an
out-of-equilibrium state that evolves in time after the quench
[Fig. 1(b)]. We explore in the following within the framework
of TD2RDM theory the importance of interparticle correla-
tions induced by U [Eq. (1)] in both the stationary initial state
as well the time-dependent correlations induced by the sudden
quench.

III. OUTLINE OF TD2RDM THEORY

A. Equation of motion

The central object of our method is the 2RDM, which
results from the exact pure N-body wave function |�(t )〉 by
tracing out all but two particles. We refer to the 2RDM in a
basis-independent notation as D12. It follows from |�(t )〉 as

D12(t ) = N (N − 1)Tr3...N |�(t )〉〈�(t )|, (3)

with N the number of particles, N (N − 1) the normalization
related to particles pairs, and Tr3...N indicating the tracing out
of all particles except for the two particles 1 and 2 of interest.
More generally, the pRDM is obtained from

D1...p(t ) = N!

(N − p)!
Trp+1...N |�(t )〉〈�(t )|, (4)

with normalization factor N!/(N − p)!.
The equation of motion of the 2RDM corresponds to the

second equation within the BBGKY hierarchy and reads

i∂t D12(t ) = [h1 + h2 + W12, D12]

+ Tr3[W13 + W23, D123], (5)

where the square brackets denote commutators. The Hamilto-
nian governing Eq. (5) is given (in first quantization) by

H =
N∑

n=1

hn +
N∑

n<m

Wnm, (6)

where hn is the single-particle Hamilton operator, and Wnm the
two-particle interaction operator. In a basis of spin orbitals
{|ψiσ 〉}Ms

i=1 with σ =↑ or σ =↓ localized at a single site i
(given, e.g., by s-wave orbitals localized at atomic sites in
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solids or potential minima in optical latices of ultracold atoms)
the terms in Eq. (6) yield the explicit matrix representation for
the nearest-neighbor hopping as

hiσ ′
jσ = 〈ψiσ ′ |h1|ψ jσ 〉 = −Jδi+1

j δσ ′
σ − Jδi−1

j δσ ′
σ , (7)

and the on-site interaction of particles with different spins as

W
i1σ ′

1i2σ ′
2

j1σ1 j2σ2
= 〈

ψi1σ ′ψi2σ ′
∣∣W12

∣∣ψ j1σψ j2σ
〉

= Uδ
i1
j1
δ

i2
j2
δ j1, j2δ

σ ′
1

σ1 δ
σ ′

2
σ2

(
1 − δσ1,σ2

)
. (8)

For any initial state (pure or mixed) described by D12(t = 0),
Eq. (5) allows us to propagate the 2RDM without any knowl-
edge of the many-body wave function |�(t )〉. However, since
all equations of the BBGKY hierarchy couple to the density
matrix of the next higher order, propagation of the 2RDM re-
quires closure, i.e., a sufficiently accurate representation of the
3RDM (in the following called reconstruction) in terms of the
2RDM. Closure of the equations of motion by reconstruction
(denoted by the superscript R in the following) of the 3RDM
by the 2RDM, i.e.,

D123 ≈ DR
123[D12] (9)

poses thus a major challenge for the implementation of the
TD2RDM theory as a useful and accurate computational tool.
In the spirit of a quantum Boltzmann transport equation [41],
we call the term in Eq. (5) containing the D123 the collision
operator (or collision integral) C,

C[D123] = Tr3[W13 + W23, D123]. (10)

While for the collision operator an approximation to the re-
construction of the 3RDM is required, the time-dependent
2RDM, D12(t ), fully includes all two-particle interactions
and correlations without any additional approximation. The
solutions of the equations of motion of the 2RDM [Eq. (5)]
feature a direct relation to Green’s functions, which opens the
door to employ well-established diagrammatic methods also
within the TD2RDM theory. The pRDMs can be identified
with the equal-time limits of the p-particle Green’s functions
G<

1...p(t1, . . . , tp, t ′
1, . . . , t ′

p). For the 1RDM and 2RDM, e.g.,
we get (see, e.g., Refs. [29,44])

D1(t ) = −iG<
1 (t, t ) (11)

D12(t ) = i2G<
12(t, t, t, t ). (12)

In a given single-particle basis D12(t ) is represented by the
matrix

D
i1σ ′

1i2σ ′
2

j1σ1 j2σ2
= 〈�(t )|a†

i1σ ′
1
a†

i2σ ′
2
a j2σ2 a j1σ1 |�(t )〉. (13)

Because of the dependence of C on D123, the equation of
motion of the 2RDM represented in a single-particle basis of
dimension M scales as M7 for a general pair interaction W . In
the present spin-symmetric realization of the Fermi-Hubbard
model with equal number of spin-up and spin-down particles,
the complexity of the problem is considerably reduced. Given
a total spin singlet state, the calculation of Eq. (5) can be
reduced to that of the spin block Di1↑i2↓

j1↑ j2↓, which contains all
the information on the entire D12(t ) [61]. All other spin blocks
can be obtained from this particular block either through triv-
ial exchange or spin-flip symmetries, or through the following

relation:

Di1↑i2↑
j1↑ j2↑ = Di1↑i2↓

j1↑ j2↓ − Di1↑i2↓
j2↑ j1↓. (14)

Correspondingly, only the 3RDM block Di1↑i2↑i3↓
j1↑ j2↑ j3↓ needs to

be constructed instead of the entire 3RDM. The equation of
motion for Di1↑i2↓

j1↑ j2↓ is given in Appendix A. Due to the simple
on-site interaction within the Fermi-Hubbard model [Eq. (8)],
the equation of motion for the 2RDM scales as M4

s . For sim-
plicity of notation, we drop the explicit spin labeling (↑,↓)
unless specifically needed keeping in mind that only the spin
blocks identified above need to be calculated.

B. Cumulant expansion

The pRDM describes, in general, the correlated dynamics
of a p-tuple of particles embedded in a larger system, in
particular in the pure state |�(t )〉 of an N-particle system. In
the absence of interparticle interactions, the pRDM reduces
to the independent-particle limit where only Pauli exchange
correlations via antisymmetrization are present. The pRDM
can be expanded in term of correlators, in this context con-
ventionally referred to as cumulants [75], of increasing order
in the number of particles within the tuple to be correlated
with each other.

For D12 the cumulant expansion reads

D12 = ÂD1D2 + �12 (15)

with the two-particle cumulant (or correlator) �12 and Â the
antisymmetrization operator acting on the two one-particle
density matrices D1 and D2. In the single-particle site repre-
sentation

ÂDi1
j1

Di2
j2

= Di1
j1

Di2
j2

− Di1
j2

Di2
j1
. (16)

and Eq. (15) reads

Di1i2
j1 j2

= ÂDi1
j1

Di2
j2

+ �
i1i2
j1 j2

. (17)

The cumulant expansion of D12 [Eq. (15)] can be diagram-
matically visualized (Fig. 2). The key feature to be noted
is that the cumulant expansion itself [Fig. 2(a)] does not in-
voke any ingredients from perturbation theory. The double
lines represent the equal-time limit of the full one-particle
propagator. The cumulant represents the sum over all con-
nected diagrams between two one-particle propagators. For
illustrative purposes and to connect to other theories we in-
dicate in Figs. 2(b) and 2(c) the corresponding perturbative
diagrammatic expansion of the constituents of Fig. 2(a), the
one-particle propagator [Fig. 2(b)] and the two-particle cu-
mulant [Fig. 2(c)]. We emphasize that within the TD2RDM
theory the full 1RDM as well as the full 2RDM are in-
cluded such that the use of the perturbation series [Figs. 2(b),
2(c)] can be avoided. However, these diagrammatic interrela-
tions provide a helpful guidance for developing reconstruction
functionals on the three-particle level.

The cumulant expansion of the 3RDM follows as

D123 = ÂD1D2D3 + Â�12D3 + �123, (18)

diagrammatically visualized in Fig. 3(a). The first term in
Fig. 3(a) represents three uncorrelated particles, the second
the contribution of two-particle correlations in the presence of
a third uncorrelated particle, and the last the true three-particle
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FIG. 2. (a) Diagrammatic representation of the 2RDM. The first
term corresponds to ÂD1D2 (the antisymmetrized contribution is
not explicitly shown for brevity). The second term represents the
cumulant �12, which contains all connected diagrams between two
single-particle propagators. Note that no perturbative expansion in
the interparticle interaction W12 is involved in (a). (b) Diagrammatic
perturbative expansion of D1, i.e., the equal-time limit of the full
single-particle propagator. Two second-order diagrams in W12 (wavy
lines) are shown as illustrative examples. The double line represents
the full D1, while each single line in (b) and (c) stands for a Hartree-
Fock propagator. (c) Diagrammatic perturbative expansion of the
cumulant �12 with three prototypical diagrams to first and second
order in W12.

correlation or three-particle cumulant �123 containing all con-
nected three-particle diagrams. For illustrative purposes we
show also in Fig. 3(b) the first few low-order diagrams of a
perturbative expansion of �123 in terms of Hartree-Fock prop-
agators and pair interactions. We note again that the present
TD2RDM theory does not make direct use of perturbation
theory but we invoke the structure of these diagrams in the
following to motivate the approximations of �123 in terms of
one-particle propagators and two-particle cumulants.

C. Three-particle cumulant reconstruction

The challenge to render the TD2RDM theory operational is
the closure of the equations of motion [Eq. (5)] by developing
a reconstruction functional for the three-particle density
matrix DR

123[D12] [Eq. (9)]. The success of the TD2RDM
method in describing the many-body dynamics relies on
a sufficiently accurate approximation of this functional as
has been shown for multielectron atoms [61,62]. While

FIG. 3. (a) Diagrammatic representation of the 3RDM. The first
term corresponds to ÂD1D2D3, the second corresponds to Â�12D3,
and the last to the three-particle cumulant �123. The antisym-
metrized contributions of each term are not shown for brevity.
(b) Diagrammatic representation of the perturbative expansion of
the three-particle cumulant, with several prototypical second-order
connected diagrams (∝W 2

12) shown.

for the nondegenerate ground state the existence of such a
reconstruction is assured through Rosina’s theorem [76,77],
it is presently unknown whether such an exact reconstruction
also exists in a time-dependent setting. As Rosina’s theorem
is an existence theorem, it does not lend itself to aid in the
development of new functionals.

The cumulant expansion of D123 [Eq. (18)] reduces the
task of finding a reconstruction functional to that of recon-
structing the cumulant �123 = �R

123[D12] as the other terms
contributing to D123 are already known functionals of D12 (and
D1). Several approximate functionals DR

123[D12] or �R
123[D12]

have been recently proposed [54–56,59,60]. They provide the
starting point of our analysis of the capability of the TD2RDM
theory to capture nonequilibrium dynamics in correlated sys-
tems.

The simplest approximation to �123 attributed to Valde-
moro (V) and coworkers [54] amounts to neglecting �123

altogether. Accordingly, the reconstruction functional be-
comes

DV
123[D12] = ÂD1D2D3 + Â�12D3. (19)

A similar approximation has been earlier investigated by
Wang and Cassing [78]. Reconstruction functionals that in-
clude contributions from �123 and benchmarked in this paper
have been derived from different perspectives but all rely on
approximating �123 to second order in �12. Nakatsuji and
Yasuda (NY) [55] used diagrammatic techniques to arrive at

�NY
123[�12] = Â�12P2�23, (20)

where the intermediate single-particle projector Pi is given by

Pi = (3	i − Ii − Di )
−1, (21)

with Ii the identity matrix, 	i a diagonal matrix in the eigen-
representation of the 1RDM with eigenvalues 1 for the lowest
N natural orbitals and zero otherwise. 	i is frequently (in
ground-state calculations) referred to as the Hartree-Fock ref-
erence matrix. We note, however, that in the present context
	i refers to the natural orbitals of the nonperturbative 1RDM
rather than to mean-field states. It has been shown [56] that
this projector can be substantially simplified through an ex-
pansion in 	i − Di, the zeroth order of which yields

P(0)
i = (2	i − Ii )

−1. (22)

In practice, the summation over the index 2 in Eq. (20) is
performed in the basis of natural orbitals with a matrix as
the projector containing −1 for unoccupied and 1 for occu-
pied orbitals. We have checked for all parameters U and V
scanned in Sec. IV below that the difference between applying
Eq. (21) vs. Eq. (22) is negligibly small [in regions where
the NY + CC reconstruction has small errors, Eq. (22) even
slightly outperforms Eq. (21)]. We therefore use the simpler
approximation, Eq. (22). Thus, the NY reconstruction func-
tional for D123 reads

DNY
123[D12] = DV

123[D12] + �NY
123[�12]

= ÂD1D2D3 + Â�12D3 + �NY
123[�12]. (23)

Starting from a coupled-cluster ansatz for the wave function,
a similar reconstruction functional has been derived by To-
hyama and Schuck (TS) [59,60]. Including an empirically
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found renormalization factor the TS reconstruction functional
amounts to

�TS
123 = 1

N �NY
123, (24)

with renormalization factor N = 1 + 1
4 Tr12|�12|2. The recon-

struction functional thus reads

DTS
123[D12] = DV

123[D12] + �TS
123[�12]. (25)

Mazziotti (M) devised a similar reconstruction of �123 along
different lines starting from the cumulant decomposition
of the 4RDM and assuming Tr4�1234 = 0 with �1234 the
four-particle cumulant [56,57]. This leads to an implicit equa-
tion for �123, which can be explicitly solved in the eigenbasis
of the 1RDM. Further details of this reconstruction functional
are summarized in Appendix B. The corresponding recon-
struction functional of the three-particle cumulant is denoted
by �M

123 and the reconstructed three-particle density matrix by

DM
123[D12] = DV

123[D12] + �M
123[�12]. (26)

It has been shown that in the perturbative limit the reconstruc-
tions [Eqs. (23), (26), (25)] agree with each other to second
order in the interparticle interaction [58].

None of the reconstruction functionals presented above
preserves, however, important symmetries of the equations of
motion [Eq. (5)], most importantly the contraction consistency
(CC). At each instant of time CC requires

D12(t ) = 1

N − 2
Tr3DR

123(t ) (27)

to hold. We have recently shown [61,62] that the lack of CC
seriously impedes the stability as well as the accuracy of the
solutions of the equation of motion of the TD2RDM. This
deficiency, however, can be cured for any reconstruction func-
tional [61,62] by way of unitary decomposition of tensors. The
unitary decomposition allows to separate any p-particle matrix
M

i1...ip

j1... jp
into basis-invariant components

M12...p = M12...p;⊥ + M12...p;K, (28)

where M12...p;K denotes the kernel M12...p;K under contractions,
i.e.,

TrpM12...p;K = 0, (29)

while M12...p;⊥ denotes the component orthogonal to the ker-
nel. M12...p;⊥ carries all the important information encoded
in M12...p that survives in the lower-dimensional space upon
contraction. In turn, M12...p;⊥ can be reconstructed from the
information available in the contracted space. Equation (28)
applied to the 3RDM yields

D123 = D123;K + D123;⊥[D12], (30)

with the important consequence that the orthogonal compo-
nent of D123 as well as of �123 become now exactly known
functionals of the 2RDM. This exact functional for three-
particle hermitian matrices has been first given in Ref. [61]
(see also Refs. [29,79] for a more detailed description).
With this decomposition we can now reconstruct parts of the
missing components for the above reconstruction functionals

through

DR+CC
123 [D12] = DR

123;K[D12] + D123;⊥[D12] (31)

or equivalently

DR+CC
123 [D12] = DR

123[D12] + D123;⊥
[
Dd

12

]
, (32)

where the defective part of the 2RDM, Dd
12, corresponds to the

contraction error in the two-particle space

Dd
12 = D12 − 1

N − 2
Tr3DR

123. (33)

By construction, DR+CC
123 is now contraction consistent, i.e.,

D12 = 1

N − 2
Tr3DR+CC

123 [D12]. (34)

Equally importantly, the CC correction to D123, D123;⊥[Dd
12],

provides a correction to the approximate three-particle cumu-
lant

�123;⊥[D12] = D123;⊥
[
Dd

12

]
. (35)

In Eq. (35) we have used the fact that the first two terms of the
cumulant expansion [Eq. (18)] are already exact functionals of
D12. One remarkable consequence of restoring parts of �123

by the CC correction is that even the Valdemoro approxi-
mation whose bare version [Eq. (19)] neglects �123 entirely
contains now in its contraction consistent (V + CC) version
a three-particle correlation contribution �123;⊥. The residual
error for the reconstruction functionals considered can thus
be traced to the kernel of the three-particle cumulant �123;K ,
either completely missing as in the V + CC approximation or
only incompletely reconstructed by the NY + CC, TS + CC,
or M+CC approximation. In the following, we refer to func-
tionals without the CC correction as the bare functionals.

IV. PROBING THE DYNAMICS OF THE CUMULANTS

The proposed approximate reconstruction functionals for
D123(t ) or, more specifically, for the three-particle cumulant
�123(t ) [Eqs. (20), (24), (26)] are at most quadratic func-
tionals in �12(t ) and local in time. Higher-order terms in
�12 as well as any memory effects are neglected from the
outset. As this simple analytic structure of the approximate re-
construction functionals requires strong temporal correlations
between �12(t ) and �123(t ), it is instructive to probe for the
temporal correlations between �123(t ) and �12(t ) in the ex-
act dynamics of the nonequilibrium few-site Fermi-Hubbard
model. Only when such time-correlated dynamics is present
within the exact solution, the reconstruction by the time-local
reconstruction functionals used here can be expected to be
accurate.

For the Fermi-Hubbard model we explore the coupling
between �12(t ) and �123(t ) by following the quench dynam-
ics for varying strength of interparticle correlations (Hubbard
parameter U ) and strength of the initial out-of-equilibrium
excitation (controlled by the confining potential parameter V ).
We determine the exact time evolution of �12(t ) and �123(t )
for the quench dynamics without invoking any reconstruction
functional. We start from the exact ground state in the poten-
tial well of strength V [Fig. 1(a)], which controls the strength
of the out-of-equilibrium excitation of the free Fermi-Hubbard
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FIG. 4. Time evolution of the exact cumulants (Frobenius norm)
for the six-site Fermi-Hubbard model at half-filling after the potential
quench with V = 1J and U = 3.1J .

model [Fig. 1(b)]. We scan over V in steps of 0.1J in the
interval V ∈ [0.1, 2]J and over U in steps of 0.3J in the
interval U ∈ [0.1, 4]J . (Here and in the following we use the
hopping parameter J as characteristic energy scale and 1/J as
characteristic time scale.) Since in the spin-orbital represen-
tation the entire information on �123 is contained in the spin
block �

↑↑↓
123 , we focus on the magnitude of �

↑↓
12 , �

↑↑
12 , and

�
↑↑↓
123 , as measured by the Frobenius norm (Schatten 2-norm)

||M|| = (TrM†M )1/2. (36)

The Frobenius norm provides an upper bound of the largest
eigenvalue of M. The square of the Frobenius norm has been
used in previous time-dependent studies as a size-extensive
measure of correlations [80].

In Fig. 4 we show a typical example for the nonequilibrium
dynamics of cumulants at V = 1J and U = 3.1J . All cumu-
lants start with nonzero values �12(t = 0) and �123(t = 0) of
the initial out-of-equilibrium state. They significantly increase
immediately following the potential quench signifying the
buildup of dynamical correlations in nonequilibrium dynam-
ics. Direct visual inspection reveals that the variations of �

↑↓
12 ,

�
↑↑
12 , and �

↑↑↓
123 are correlated in time with each other. To

quantify these time correlations, we calculate the equal-time
limit Cf g(τ = 0) of the normalized cross-correlation function

Cf ,g(τ ) =
1

T −t0

∫ T
t0

dt[ f (t + τ ) − f̄ ][g(t ) − ḡ]

σ f σg
, (37)

with T the total time interval considered, the standard devia-
tion

σ f =
√

1

T − t0

∫ T

t0

dt[ f (t ) − f̄ ]2, (38)

and the mean f̄ = 1
T −t0

∫ T
t0

dt f (t ) (similarly for g). Cf g(τ =
0) is also referred to as the Pearson correlation coefficient
[81]. With this normalization −1 � Cf g(τ = 0) � 1 where
Cf g(τ = 0) = 1(−1) corresponds to perfect (anti)correlation
and Cf g(τ = 0) = 0 to absence of correlation in time. We use
in Eq. (37) a finite lower limit t0 of the time integral (instead
of evaluating the correlation starting with t = 0) because the
initial rise of the cumulants is always correlated and its

inclusion could lead to an overestimate of the steady-state
correlation coefficient. The value of t0 is found empirically by
requiring it to be large enough to separate for most parameters
in the U -V plane the initial buildup from the steady-state fluc-
tuations around the mean. The correlation coefficient Cf ,g(τ =
0) is designed to characterize only these steady-state fluc-
tuations. For the entire parameter scan we use t0 = 10J−1

and T = 50J−1. The behavior of Cf g(τ = 0) for different
cumulant pairs in the U -V plane is displayed in Figs. 5 and 6
for different system sizes (Fig. 5 for Ms = 6 sites, Fig. 6 for
Ms = 8 sites).

To delimit and identify structures in the U -V land-
scape we introduce two characteristic variables in the
U -V plane. One is the ratio of the time-averaged cor-
relation energy Ēcor to the initial degree of excitation
parameterized by Epot(0), Ēcor/Epot(0), [Figs. 5(c) and 6(c)].
The latter is given by

Epot(0) = TrD1(t = 0)V1(t = 0), (39)

while

Ecor(t ) = Tr12W12�12(t ), (40)

which in case of the Fermi-Hubbard model reduces to

Ecor(t ) = U
∑

j

�
j↑ j↓
j↑ j↓(t ). (41)

Another variable measures the buildup of dynamical three-
particle correlations during time evolution relative to the
three-particle correlations already present in the initial state
at t = 0 prior to the quench [Figs. 5(d) and 6(d)],

δ�
↑↑↓
123 = 1

T

∫ T

0
dt ||�↑↑↓

123 (t )|| − ||�↑↑↓
123 (0)||. (42)

The contour line δ�
↑↑↓
123 = 0.65 also denoted in Figs. 5(a),

5(b) and 6(a), 6(b) traces quite accurately the borderline be-
tween strong and weak time correlation (or anticorrelation)
between �123 and �12. We also display the borderline be-
tween high and low relative correlation energy by plotting
the contour line Ēcor = −0.1Epot(0) in Figs. 5(a)–5(c) and
6(a)–6(c), which accurately delimits the region of strong time
correlation (i.e., C�12,�123 � 1) in the cumulant dynamics.

Obviously, distinct parameter regimes exist for which
�123(t ) and �12(t ) are strongly correlated with each other:
one region pertains to small U (U � 0.1J) and a wide range
of excitation energies (0 � V � 2J), where the cumulants
build up over the entire time interval of T = 50J−1 and have
not reached saturation for most V . This buildup is naturally
strongly correlated over the entire time interval. Another
prominent region of positive correlations can be associated
with negative relative correlation energies Ēcor � −0.1Epot(0)
found over the entire interval of U tested and for moderate
levels of excitation (V � J). This region is characterized by
large amplitude fluctuations with frequencies �J an exam-
ple of which is shown in Fig. 4. In addition we find for
the larger system (Ms = 8) also a region of time correlation
between �12(t ) and �123(t ) for positive correlation energy
of Ēcor � 0.05Epot(0), which seems to be system specific, as
we did not find a similar region for Ms = 6 when scanning
up to V = 2.7J . In this region, all cumulants �

↑↑
12 , �

↑↓
12 , and

033022-7



STEFAN DONSA et al. PHYSICAL REVIEW RESEARCH 5, 033022 (2023)

0.5

1.0

1.5

2.0

V 
[J

]

-1

-0.5

 0

 0.5

 1

C
Δ 1

2,
 Δ

12
3(
τ=

0)
 

(a) Δ1
↑
 2
↑  Δ1

↑
 2
↑
 3
↓

0.5

1.0

1.5

2.0

V 
[J

]

-1

-0.5

 0

 0.5

 1

C
Δ 1

2,
 Δ

12
3(
τ=

0)
 

(b) Δ1
↑
 2
↓  Δ1

↑
 2
↑
 3
↓

0.5

1.0

1.5

2.0

V 
[J

]

-0.1

-0.05

 0

 0.05

 0.1

E_  c
or

 / 
E

po
t(0

)

(c)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
U [J]

0.5

1.0

1.5

2.0

V 
[J

]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

δ_ Δ__
_ 1↑  2↑  3↓__

_

(d)

FIG. 5. Six-site Fermi-Hubbard model at half-filling (Ms = 6)
with interaction U starting from a ground state at varying potential
of strength V . Equal-time limit of the normalized cross-correlation
function between the three-particle cumulant �

↑↑↓
123 and the two-

particle cumulants (a) �
↑↑
12 and (b) �

↑↓
12 in the U -V plane. In (c) we

depict the mean (i.e., time-averaged) correlation energy Ēcor relative
to the initial excitation energy Epot(0), Ēcor/Epot(0). The color bar
is cut below −0.1 (i.e., smaller values than shown on the color
bar are present). The black dashed line indicates the contour line
Ēcor/Epot(0) = −0.1. In (d) we show the dynamical buildup of three-

particle correlations relative to the initial correlations at t = 0, δ�↑↑↓
123

[Eq. (42)]. The solid black line denotes the δ�
↑↑↓
123 = 0.65 contour.

�
↑↑↓
123 initially slowly build up to a large local maximum and

subsequently decay to a smaller plateau while fluctuating only
with small amplitude around their mean. This predominantly
low-frequency dynamics yields small positive values of the
normalized correlation coefficient Cf ,g(τ = 0) [Eq. (37)].

In view of the quadratic dependence of the approximate re-
construction functionals of �123(t ) on �12(t ) [Eqs. (20), (24),
(26)] the time-correlation maps (Figs. 5 and 6) determined
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FIG. 6. As in Fig. 5, but for the Fermi-Hubbard model with Ms =
8 sites.

here from exact calculations, allow predictions for the antici-
pated accuracy of the TD2RDM theory. The time evolution of
the many-body system should be captured quite well with the
present set of reconstruction functionals in those parameter
regions in the U -V plane where the time correlation between
�12(t ) and �123(t ) is strong and the buildup of cumulants
remains moderate. We therefore anticipate and show below
that the reconstruction will be reasonably accurate in regions
of positive time correlations as long as the buildup of three-
particle correlations over time [Eq. (42)] remains moderate.
This is not the case for the additional region of positive
correlations for the system with Ms = 8, where the Pearson
correlation coefficient, being a normalized quantity that is
insensitive to the buildup, loses its predictive power.

To assess the accuracy of the reconstruction functionals
locally in time and without the accumulation of errors during
time evolution, we perform exact calculations of both D12(t )
and D123(t ) and determine the deviation δD123(t ) of the recon-
structed DR

123(t ) from the exact three-particle density matrix
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FIG. 7. Six-site Fermi-Hubbard model at half-filling (Ms = 6)
starting from the many-body ground state in the potential with V =
0.8J defining the out-of-equilibrium initial state in the potential-free
Fermi-Hubbard model after the quench. The interaction parame-
ter is U = 1.9J . Error in the three-particle reconstruction δD123(t )
[Eq. (43)] for different reconstruction functionals (a) Valdemoro (V)
[Eq. (19)] with and without contraction consistency (CC), (b) Mazz-
iotti (M) [Eq. (26)] with and without CC, and (c) Tohyama-Schuck
(TS) [Eq. (25)] and Nakatsuji-Yasuda (NY) [Eq. (23)] with and
without CC. The inset in (c) shows a zoom into a region where the
differences between TS + CC and NY + CC become visible.

D123(t ),

δD123(t ) = ∣∣∣∣DR
123

[
Dexact

12 (t )
] − Dexact

123 (t )
∣∣∣∣, (43)

using the exact D12(t ) as input to the reconstruction func-
tional. Taking into account the cumulant expansion of D123

[see Eq. (18)] this error coincides with the error in the three-
particle cumulant δD123(t ) = δ�123(t ) as only the latter is
subject to reconstruction errors. In Fig. 7 we present exem-
plary results for δD123(t ) for the �

↑↑↓
123 block and for the

parameters V = 0.8J and U = 1.9J localized in the region
of strong temporal correlations [Figs. 5(a) and 5(b)] as well
as moderate buildup of three-particle correlations over time
[Fig. 5(d)]. As the bare Valdemoro approximation neglects
�123 entirely, its error is largest and corresponds to the exact
value of �123 itself. The bare NY, M, and TS perform better
with the NY-reconstruction performing best. The difference
between NY and TS is very small indicating that the nor-
malization N does not play a significant role in this case.
Inclusion of the CC corrections improves the performance
of all reconstruction functionals (Fig. 7). As expected, the
changes are largest for V + CC for which the CC correction
given by the orthogonal component of the cumulant, �123;⊥
[Eq. (35)], represents the only contribution to �123. For the
TS and NY functionals, on the other hand, the corrections due
to CC are small in this particular case.
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FIG. 8. As in Fig. 7, however for the relative error of the collision
operator δC [Eq. (44)].

To further probe the accuracy of the reconstruction func-
tionals within the TD2RDM theory locally in time in more
detail we now take into account that only a fraction of the
elements of the full 3RDM enters the equations of motion of
the 2RDM via the collision operator C[D123] [see Eq. (5)].
We therefore determine the corresponding relative error in the
collision operator

δC(t ) =
∣∣∣∣C[

DR
123(t )

] − Cexact (t )]
∣∣∣∣

||Cexact (t )|| , (44)

using the exact input from Dexact
12 in DR

123. The error in the
collision operator (shown in Fig. 8 for the ↑↑↓ block) mirrors
closely that of �123 (Fig. 7). It is largest for the V functional
and smallest for the NY + CC functional. In the following
benchmark calculations of the nonequilibrium dynamics of
the Fermi-Hubbard model we will restrict ourselves to these
two functionals, which provide a clear indication of the band-
width of the expected accuracy.

It is furthermore instructive to directly compare the time-
local reconstruction error δD123(t ) [Eq. (43)] of the V + CC
and NY + CC reconstruction functionals for the cumulants
with the norm of the cumulants themselves (Fig. 9). Note
that the norm ||�123(t )|| [Figs. 9(a) and 9(b)] coincides with
the error of the bare V reconstruction functional in which the
three-particle is neglected. In turn, the difference to the V +
CC functional [Fig. 9(b)] directly indicates the size of �123;⊥
included by enforcing contraction consistency. This correction
amounts in the present system to an approximate scaling fac-
tor of ≈0.85 ± 0.05. The time-local reconstruction functional
NY + CC improves the reconstruction substantially compared
to V + CC. We find that NY + CC performs better in regions
where �

↑↑↓
123 has local minima but performs similarly as the

V + CC in regions of local maxima. This gives an indication
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FIG. 9. Same system as in Fig. 7. (a) Dynamics of the two-
particle (�↑↑

12 and �
↑↓
12 ) and three-particle (�↑↑↓

123 ) cumulants as
measured by the Frobenius norm and obtained from an exact wave-
function calculation. (b) Time-resolved error of the reconstruction
δD↑↑↓

123 using the NY + CC and V + CC functionals compared with
||�↑↑↓

123 ||exact [same curve as in (a)].

of current limitations of the reconstruction accuracy and also
useful hints for directions of future improvements.

We now analyze the time-averaged reconstruction error in
the collision operator [Eq. (44)] in the U -V plane (Fig. 10).
The time-averaged error closely mirrors the behavior of the
equal-time cross correlation between the two-particle and
three-particle cumulants [Eq. (37), Fig. 5]. (The result for
Ms = 8 looks qualitatively very similar and is omitted for
brevity.) For a Fermi-Hubbard system with weak interpar-
ticle interactions U � 0.1J the reconstruction error in the
collision operator is very small for both the V + CC and the
NY + CC reconstruction. For much larger U of up to U ≈ 3J
and moderately strong initial excitation (V � J) the NY + CC
reconstruction performs markedly better. Remarkably, this
region is quite faithfully delimited by the region where the
buildup over time of the correlations [Eq. (42)] is moderate,

δ�
↑↑↓
123 � 0.65. Nevertheless, it should be pointed out that the

accuracy also of this reconstruction is limited for larger U �
3J . Interestingly, in the U -V region of time-anticorrelated or
uncorrelated dynamics of the cumulants (Figs. 5 and 6), the
time-local reconstruction within NY + CC can cause even
larger errors than the V + CC. This is not surprising in view
of the fact that the V + CC approximation neglects (apart
from the CC correction) �123 entirely and therefore does not
enforce time correlations while the NY + CC reconstruction
does so through the quadratic dependence of �NY

123 on �12

[see Eq. (20)]. Also this observation may point to avenues for
further improvements of reconstruction functionals.

V. SELF-CONSISTENT PROPAGATION OF THE 2RDM

We present now examples of the fully self-consistent solu-
tion of the equations of motion of the 2RDM [Eq. (5)] starting
from the pure excited state, the many-body ground state in
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FIG. 10. Six-site Fermi-Hubbard model at half filling (Ms = 6)
initially (t = 0) confined by the harmonic potential of strength V
and released for t > 0 for varying pair interaction U . Shown is the
reconstruction error in the U -V plane measured by the time-averaged
relative error of the collision operator δC(t ) [Eq. (44)] using (a) the
V + CC reconstruction functional and (b) the NY + CC reconstruc-
tion functional. For the points in the U -V plane marked by Roman
numbers (I)–(IV) the time evolution of the occupation numbers n1(t )
is displayed in Fig. 11 and their error in Fig. 12. The black solid line
corresponds to the same contour line as in Fig. 5.

the potential Vi(t ) prior to the quench at t = 0. We present
examples of these simulations for different parameters in the
U -V plane, as marked in Fig. 10. As observable for the quench
dynamics we chose the occupation n1(t ) = D1

1(t ) of the first
site. We compare (Fig. 11) the results of the TD2RDM theory
for a given reconstruction functional with the corresponding
exact calculations. We note that the convergent and accurate
propagation of the 2RDM requires, in addition to an accurate
three-particle cumulant reconstruction functional, also the
preservation of N-representability, which is a priori not
guaranteed when errors due to the approximate reconstruction
functionals pile up. N-representability is approximately
restored during propagation by purification on the fly (see
Refs. [61,62]). The specific purification algorithm employed
in the present simulation is summarized in Appendix C.

The time evolution of n1(t ) for selected values of U and
V , marked by Roman numbers in Fig. 10, are displayed for
t � 50J−1 in Fig. 11. For weak on-site interaction U � 0.1J
both the V + CC and the NY + CC reconstruction function-
als yield excellent agreement with the exact results over a
wide range of out-of-equilibrium excitations 0 � V � 1.5J .
For stronger U and intermediate quenches with V up to
V = 0.8J [Fig. 11 (I)–(III)] we observe excellent agreement
for the NY + CC reconstruction which performs better than
the V + CC reconstruction. For larger V [e.g., V = 1.1J and
U = 1.9J , Fig. 11 (IV)] deviations for both functionals from

033022-10



NONEQUILIBRIUM CORRELATION DYNAMICS IN THE … PHYSICAL REVIEW RESEARCH 5, 033022 (2023)

0.0

0.5

1.0

1.5
(I) V = 0.8 J, U = 1 J 

n 1
(t

)

exact V+CC NY+CC 

0.0

0.5

1.0

1.5
(II) V = 0.8 J, U = 1.9 J

n 1
(t

)

exact V+CC NY+CC 

0.0

0.5

1.0

1.5
(III) V = 0.8 J, U = 2.8 J

n 1
(t

)

exact V+CC NY+CC 

0.0

0.5

1.0

1.5

0 10 20 30 40 50

(IV) V = 1.1 J, U = 1.9 J

n 1
(t

)

Time [1/J]

exact V+CC NY+CC 

FIG. 11. System as in Fig. 10. Shown is the time evolution of the
occupation of site 1, n1(t ) (see Fig. 1), as predicted by TD2RDM
using the V + CC and NY + CC functionals and compared with
the exact results for different parameter combinations of (U,V ) as
indicated in the frame and marked in Fig. 10.

the exact result are larger with the V + CC reconstruction
functional performing slightly better.

To survey the accuracy of the site occupation n1(t ) in the
entire U -V plane we display in Fig. 12 for the six-site Fermi-
Hubbard model the time-integrated deviations from the exact
result

δn1 =
∫ T

0 dt
∣∣nexact

1 (t ) − n1(t )
∣∣∫ T

0 dt nexact
1 (t )

, (45)

sensitively probing the amplitude, frequency, and phase of
the quench-induced density fluctuations. The distribution of
δn1 closely resembles the equal-time correlation between �12

and �123 [see Fig. 5, Eq. (37)]. Obviously, the limitation
to moderate buildup of three-particle correlations over time

(δ�↑↑↓
123 � 0.65) is one reliable predictor for accurate long-

term simulations of the correlated nonequilibrium dynamics.
We emphasize that the present figure of merit (δn1 � 0.1, i.e.,
the area shaded green or blue in Fig. 10) puts the theory to a
fairly stringent test. Even when δn1 � 0.3 the agreement with
the exact calculation is qualitatively and even semiquantita-
tively satisfactory, capturing key features of the fluctuations
even though not in all details [see, e.g., Fig. 11 (IV)]. Like-
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FIG. 12. System as in Fig. 10. Shown is the time-integrated
error δn1 [Eq. (45)] of the occupation number n1(t ) predicted by
TD2RDM relative to the exact result in the U -V plane. The black line

denotes the δ�
↑↑↓
123 = 0.65 contour of the buildup of three-particle

correlations over time [Eq. (42)] (same as in Fig. 5). The gray areas
mark regions where the method did not meet the convergence criteria
discussed in Appendix C.

wise, when the purification protocol does not fully converge
relative to the criteria imposed (see Appendix C), the re-
sults for the time-dependent occupation numbers still contain
qualitatively correct information on the mean occupation and
dominant frequencies.

We now turn to larger systems (Ms = 18, 20) and time
scales for which exact or highly accurate wave-function-
based methods (such as MPSs) are presently still a challenge.
We demonstrate here the straightforward applicability of the
TD2RDM theory for such systems. For a meaningful com-
parison with mean-field methods such as TDHF we restrict
ourselves to a weakly correlated Fermi-Hubbard model with
U = 0.1J but a high degree of excitation. We start with an
initial state where all Ms/2 sites around the center of the
system are doubly occupied amounting to a quench in the
limit V → ∞. For the system size Ms = 18 [Fig. 13(a)] we
can still compare with exact propagation for the time interval
0 � t � 80J−1. For Ms = 20 [Fig. 13(b)] we can compare
to MPS calculations, which provide a benchmark. The latter
are, however, currently limited to short times t � 10J−1 be-
cause of the exponential increase in computational effort with
time. For Ms = 18 we find excellent agreement with the exact
results up to t ≈ 60J−1 and still reasonable agreement for
longer times. For Ms = 20 we find excellent agreement with
the MPS results for the short time interval for which the MPS
data could be generated. We emphasize that increasing the
system sizes here from Ms = 18 to Ms = 20 does not pose any
major challenge for TD2RDM theory. The extension towards
larger systems approaching extended periodic systems thus
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FIG. 13. The Fermi-Hubbard model with (a) Ms = 18 sites and
(b) Ms = 20 sites at half-filling and U = 0.1J . All particles are
initially located at the center of the system amounting to a potential
quench of V → ∞. The exact solution of the Schrödinger equation in
(a) has been obtained using a Trotter decomposition of the sparse
time-evolution operator (time step dt = 0.025J−1), and via the one-
site time-dependent variational principle with matrix product state
bond dimension of χ = 512 (dt = 0.025J−1) in (b). Convergence
with bond dimension and time step has been verified to be within
an absolute precision of 10−3 for the expectation values shown.
We compare with the TD2RDM prediction using the V + CC and
NY + CC reconstruction functionals as well as with the mean-field
solution within time-dependent Hartree-Fock (TDHF) theory.

appears feasible. We also present in Fig. 13 a comparison
with a time-dependent Hartree-Fock (TDHF) simulation as
a representative mean-field description within which larger
systems are accessible. Even though the system is only weakly
correlated, TDHF fails after a short time interval (t � 35J−1)
and substantially overestimates the oscillation amplitude of
n1(t ) (Fig. 13). By contrast the TD2RDM method is able to
correctly capture the dynamics in this system for extended
periods of time.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have applied the time-dependent two-
particle reduced density matrix (TD2RDM) theory to the
nonequilibrium dynamics of the finite-size Fermi-Hubbard
model at half-filling in one dimension for a wide range of
number of sites, interaction strengths U , and initial out-of-
equilibrium excitations controlled by the potential strength V
of the quench. The Fermi-Hubbard model serves here as a
benchmark model to demonstrate the applicability and perfor-
mance of the theory to extended correlated systems relevant
for current research in condensed matter physics and ultracold
atoms.

The TD2RDM theory fully incorporates two-particle cor-
relations and includes approximate three-particle correlations
via reconstruction functionals. Key to an accurate description
of the dynamics within the TD2RDM theory are the recon-
struction of the 3RDM, D123, by means of the 2RDM, D12,
and application of contraction consistency. The equation of
motion of the 2RDM can be closed consistently in this way.

The underlying assumption of the closure is the existence of
a sufficiently accurate reconstruction functional of the three-
particle cumulant �123. The existence of such a reconstruction
functional is guaranteed for the ground state via Rosina’s
theorem [76,77] but its extension to time-dependent settings
is currently unknown. Currently used functionals assume �123

to be local in time, i.e., they do not take into account possible
memory effects. By comparing with exact results for small
system sizes we have analyzed the dynamics of both two- and
three-particle cumulants. Over a wide range of U and V we
could identify parameter regimes in which the dynamics of the
three-particle and two-particle cumulants are indeed strongly
correlated in time with each other, a key prerequisite for the
applicability of current state-of-the-art time-local reconstruc-
tion functionals. For this particular model system we could
show that the TD2RDM theory is applicable and accurate well
into the regime of moderately strong correlations (U � 3J),
of moderately strong out-of-equilibrium excitations (V � J),
and for long propagation times (close to hundred time units
J−1). As an approximate parameter controlling the applicabil-
ity of the TD2RDM theory with the present functionals we
could identify the difference δ�123 between the dynamically
built up and the initially present (ground-state) three-particle
correlations. The importance of temporal correlations be-
tween the two- and three-particle cumulants as well as of the
buildup of three-particle correlations over time will provide us
with directions for further improvements of the reconstruction
functionals. Moreover, they may serve as a guidance for the
applicability of the TD2RDM theory for systems where exact
benchmarks are not available.

Application to larger systems indicates that TD2RDM the-
ory is still capable of providing accurate results and may
outperform wave-function-based methods. We have show-
cased an example in the regime of weak interactions and a
high degree of excitation in a system with 18 sites, where a
numerically exact solution of the full Schrödinger equation is
still possible, and with 20 sites where a MPS solution can be
generated, however, only for a limited time span (�10J−1).
Based on the excellent agreement with these exact results we
conclude that the TD2RDM theory has the potential to de-
velop into a versatile tool to study the correlated and strongly
driven dynamics of extended models relevant to ultracold
atoms and solid-state physics. Application of the TD2RDM
theory to extended systems in two and three dimensions is
planned.
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APPENDIX A: EQUATIONS OF MOTION FOR THE 2RDM

We present here the explicit expression for the equation of
motion for Di1↑i2↓

j1↑ j2↓ in the basis of spin (σ =↑,↓) orbitals
localized at site i, which is obtained from Eq. (5) by inserting
Eq. (7) and Eq. (8):

i∂t D
i1↑i2↓
j1↑ j2↓ =

∑
n

hi1
n Dn↑i2↓

j1↑ j2↓ +
∑

n

hi2
n Di1↑n↓

j1↑ j2↓

+ Uδi1,i2 Di1↑i2↓
j1↑− j2↓

−
∑

n

hn
j1 Di1↑i2↓

n↑ j2↓ −
∑

n

hn
j2 Di1↑i2↓

j1↑n↓

− Uδ j1, j2 Di1↑i2↓
j1↑ j2↓

+ UDi1↑i2↑i1↓
i1↑ j2↑ j1↓ + UDi1↑i2↑i2↓

j1↑i2↑ j2↓

− UD j1↑i2↑i1↓
j1↑ j2↑ j1↓ − UDi1↑ j2↑i2↓

j1↑ j2↑ j2↓, (A1)

with

hi
j = −Jδi+1

j − Jδi−1
j . (A2)

This equation is closed by inserting the reconstructed
Di1↑i2↑i3↓

j1↑ j2↑ j3↓ [Eq. (9)] into Eq. (A1).

APPENDIX B: MAZZIOTTI RECONSTRUCTION
FUNCTIONAL

The Mazziotti reconstruction functional [56] is given in the
basis of natural orbitals by

�
i1i2i3 M
j1 j2 j3

= − 1

χ
i1i2i3
j1 j2 j3

− 3
Â

∑
n

�
i1n
j1 j2

�
i2i3
n j3

(B1)

with

χ
i1i2i3
j1 j2 j3

= ν j1 + ν j2 + ν j3 + νi1 + νi2 + νi3 , (B2)

and νk the eigenvalues of the 1RDM (i.e., the natural occupa-
tion numbers). For propagating the equations of motion in a
single-particle basis one has to perform a basis transformation.
Elements of the type �ooo

xxx and �ouu
oou , where o denotes an

occupied and u an unoccupied orbital, remain undetermined
due to the divergence of the denominator in Eq. (B1) and are
chosen to be zero, as suggested in Ref. [56].

APPENDIX C: PURIFICATION

The error through reconstruction of the 3RDM in the equa-
tion of motion [Eq. (5)] typically accumulates over time such
that the propagation eventually might become unstable [82].
Similar instabilities are found in NEGF methods [29]. We
have recently shown [61] that these instabilities can be pre-
vented by enforcing a subset of necessary N-representability
conditions during the propagation. N-representability refers
to the necessary and sufficient conditions a RDM has to ful-
fill in order to represent a proper reduction of a fermionic

many-body wave function (or many-body density matrix if
ensemble N-representability is concerned) [83]. While for
the 1RDM it is sufficient that its eigenvalues lie within the
interval νi ∈ [0, 1] for ensemble N-representability [84,85],
the pure state N-representability problem leads to so-called
generalized Pauli constraints [86–89]. For the 2RDM con-
structive methods exist to obtain a set of necessary ensemble
N-representability conditions (see, e.g., Refs. [83,84,90]), but
only a limited number of these conditions can be enforced
in numerical computations, especially in a time-dependent
setting. The problem of sufficient conditions of pure-state
N-representability is still widely open [91].

Within the TD2RDM theory, we have shown that enforcing
the positive semidefiniteness of the two-particle RDM (D
condition) and the corresponding condition on the two-hole
RDM,

Q12 = ÂI1I2 − ÂD1I2 + D12, (C1)

(the Q condition) is sufficient to stabilize the propagation.
Moreover, enforcing the D and Q condition substantially im-
proves the accuracy of all physical observables, even when the
equations of motion remain stable. A similar stabilizing effect
has been observed within the G1-G2 scheme of NEGF meth-
ods [29]. In previous studies we have numerically verified that
the additional G condition, i.e., the positive-semidefiniteness
of the particle-hole RDM, is typically fulfilled when the D and
Q conditions are [61].

The present purification protocol enforces positive
semidefiniteness of the 2RDM and the two-hole RDM in the
least invasive way, which implies preserving their diagonal
and off-diagonal traces as well as the energy after each pu-
rification step. The relevant diagonal traces are

∑
n Dn↑i2↓

n↑ j2↓
and

∑
n Di1↑n↓

j1↑n↓, while the off-diagonal traces read
∑

n Dn↑i2↓
j1↑n↓

and
∑

n Di1↑n↓
n↑ j2↓. Our purification protocol utilizes the unitary

decomposition of the 2RDM [62]. To this end we determine
the component of the 2RDM with negative eigenvalues (i.e.,
negative geminal occupation numbers) ηi

D<
12 =

∑
ηi<0

ηi|gi〉〈gi|, (C2)

and, analogously, the corresponding defective part of the two-
hole Q<

12. Subtracting these defective parts from D12 and Q12

would restore a positive semidefinite matrix. However, such
a procedure without constraints would lead to violation of
conservation of D1 as well as of the energy. Therefore, we
have to enforce in addition

Tr2D<
12 = 0, (C3)

i.e., the subtracted part D<
12 must reside in the kernel of the

two-particle contraction. Moreover, the two-particle (correla-
tion) energy must be preserved

Tr12W12D<
12 = 0. (C4)

That part of D<
12 meeting these additional requirements

Eqs. (C3) and (C4) is denoted by D<;E
12 . We thus arrive at the

purification formula for the 2RDM [29]

D′
12 = D12 − D<;E

12;K − Q<;E
12;K , (C5)
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which we apply iteratively each time the smallest geminal
occupation number ηi drops below a preset threshold value.
We would like to point out that the results depend only very
weakly on the particular threshold value as well as on the max-
imal number of iterations as long as the iterations converge at
all and the smallest geminal occupation number is close to
zero (but can still be slightly negative). Since calculating the
geminal occupation numbers through exact diagonalization
is numerically costly [scaling as O(M6

s ) with the number of
sites] we restrict ourselves to applying Eq. (C5) only once
each time the smallest geminal occupation number drops be-
low zero for the largest systems in the present paper (with
Ms = 18 and Ms = 20) to save computational time. We have
checked that the obtained results are converged with respect
to the time step dt of the propagation (i.e., the number of time
steps within the entire time interval [0, T ]). This also means
that applying different purification schemes (with respect to
the threshold on the smallest geminal occupation number and
the number of iterative steps) will give the same results on the
level of accuracy set by the threshold.

Reaching numerical convergence as a function of the
number of time steps of the propagation when purification
is applied poses a challenge in case of large reconstruction
errors. We have used an overall global time step dt . However,
within each time step we use a time-adaptive propagation
(using an explicit Runge-Kutta-Fehlberg propagator of fourth
and fifth order) to split each time step into substeps within
which the prescribed tolerance of the local error is reached.
Whenever the smallest geminal occupation number falls be-
low a certain threshold, purification is applied after the global
time step. For the scan in Fig. 12 we have applied a threshold
of −10−4 and the maximal allowed number of iterations to
reach this threshold is set to 100. We observe, however, that
there are regions where the iterative purification does not

reach the threshold. These convergence problems occur if
either the two-particle cumulant is large already in the initial
state, or if it becomes large over time. This can happen in
distinct parameter regions. The first region corresponds to the
bottom right corner of Fig. 12, i.e., for small V and large U �
3J , the second region corresponds to large V and U � 0.4J .
Convergence depends also on the reconstruction functional.
Correspondingly, we observe that V + CC shows stronger
convergence problems in the first region compared to NY +
CC, because the cumulant dynamics between the two-particle
cumulant and the three-particle cumulant is correlated, and
V + CC does not account for this dynamics sufficiently well,
leading to larger errors and thus convergence problems during
purification [see bottom right corner of Fig. 12(a)]. NY + CC,
on the other hand, shows convergence problems in the second
region, because the cumulant dynamics is decoupled and
NY + CC locally overestimates the three-particle cumulant
by using a large two-particle cumulant for reconstruction [see
top right corner of Fig. 12(b)]. This does not lead necessarily
to instabilities. In fact, we did not observe any instabilities for
all values of U and V scanned in Fig. 12. However, frequent
applications of purification and large numbers of iterations
per purification step may induce undesirable numerical noise.
This may prevent convergence as a function of the size of the
global time step dt (i.e., as a function of the number of time
steps used in the propagation) in cases when the uncontrolled
noise accumulates (Fig. 12 gray regions). These areas are
identified by a local error in the relevant physical observable
(obtained by time-averaging the curves for different global
time steps and multiplying by 1/T ) of >5 × 10−3. Even
when the simulation does not meet such strict convergence
criteria, many observables still appear to be reasonably well
represented, e.g., the mean (i.e., time-averaged) occupation
number.
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