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FINITE SYMMETRIES OF QUANTUM CHARACTER STACKS

CORINA KELLER AND LUKAS MÜLLER

Abstract. For a finite group D, we study categorical factorisation homology on ori-
ented surfaces equipped with principal D-bundles, which ‘integrates’ a (linear) balanced
braided category A with D-action over those surfaces. For surfaces with at least one
boundary component, we identify the value of factorisation homology with the category
of modules over an explicit algebra in A, extending the work of Ben-Zvi, Brochier and
Jordan to surfaces with D-bundles. Furthermore, we show that the value of factorisation
homology on annuli, boundary conditions, and point defects can be described in terms
of equivariant representation theory. Our main example comes from an action of Dynkin
diagram automorphisms on representation categories of quantum groups. We show that
in this case factorisation homology gives rise to a quantisation of the moduli space of
flat twisted bundles.

1. Introduction

In this paper we extend the work on categorical factorisation homology by Ben-Zvi,
Brochier and Jordan [BZBJ18a, BZBJ18b] to (framed) E2-algebras with an action of
a finite group D. This leads to functorial invariants for manifolds equipped with an
SO(2)×D tangential structure, or in more geometric terms oriented 2-dimensional man-
ifolds equipped with principal D-bundles.

Factorisation homology [Lur, AF15] is a local-to-global invariant which ‘integrates’
higher algebraic quantities, namely disk algebras in a symmetric monoidal higher cate-
gory C, over manifolds. We will work with C = Prc, the 2-category of k-linear compactly
generated presentable categories for k an algebraically closed field of characteristic 0.
In the D-decorated setting, the coefficients A for factorisation homology are given by
balanced braided monoidal categories equipped with an additional D-action through bal-
anced braided monoidal automorphisms. Factorisation homology assigns to every oriented
2-dimensional manifold Σ equipped with a principal D-bundle, described by its classifying
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map φ : Σ −! BD, a linear category ∫
(Σ,φ)

A ∈ Prc .

This construction is functorial in the pair (Σ, φ).
Our main example will be A = Repq(G), the (locally finite) representation category of

a quantum group associated to a reductive group G and q ∈ C× (we assume q is not a root
of unity), which admits a natural action of the group of outer automorphisms Out(G) of
G. We use these coefficients to construct a functorial quantisation of the moduli space
of flat twisted bundles related to finite Out(G)-symmetries in gauge theories. Before
addressing the role of symmetries, we give a brief overview on the factorisation homology
approach to the quantisation of moduli spaces of flat bundles.

For a reductive algebraic group G, the moduli space M(Σ) of flat principal G-bundles
over a Riemann surfaces Σ is ubiquitous in mathematical physics and symplectic geome-
try: For example, the symplectic volume of M(Σ) computes the topological limit of the
partition function of two dimensional Yang–Mills theory on Σ [Wit91], the state space of
3-dimensional Chern–Simons theory on Σ can be constructed by applying geometric quan-
tisation to M(Σ) [Hit90, ADPW91], and deformations of the category of quasi-coherent
sheaves on M(Σ) describe boundary condition in the 4-dimensional Kapustin–Witten
theory [KW05, BZN16].

In [BZN13, BZBJ18a, BZBJ18b] it was shown that quasi-coherent sheaves on the
classical moduli space can be understood in terms of the factorisation homology of Rep(G):

QCoh(M(Σ)) ∼=
∫
Σ

Rep(G) .

The category Rep(G) admits a well-studied deformation by the category Repq(G) of (lo-
cally finite) Uq(g)-modules. Thus, using the local-to-global property of factorisation ho-
mology, the quantum analog of the category of quasi-coherent sheaves on M(Σ) is defined
in [BZBJ18a, BZBJ18b] as the quantum character stack

∫
Σ
Repq(G). This is a mathemat-

ical construction of the 2-dimensional part of the 4-dimensional Kapustin–Witten theory
as a topological quantum field theory, which assigns to an oriented surfaces Σ a quanti-
sation of the moduli space of flat G-bundles on Σ, where ‘quantisation’ is understood as
a deformation of the category of quasi-coherent sheaves on the moduli space.

To explain the physical role of the D-action, we turn our attention to symmetries of
quantum field theories, in particular to symmetries of moduli spaces of G-local systems.
One source for symmetries are automorphisms of the classical space of fields preserving
the classical action functional. In gauge theories the space of fields is most naturally
understood as a higher differential geometric object, namely a smooth stack, and au-
tomorphisms should take this higher geometric structure into account. Concretely, this
means that the action of a symmetry group D only needs to close up to gauge transforma-
tions. In the physics literature these are known as fractionalised symmetries [WWW18]
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and can be described by group extensions

1 −! G −! Ĝ −! D −! 1 .

where the group Ĝ encodes the non-trivial interaction of gauge transformations and the
symmetry group D. We refer to [FPSV15, MS20] for a detailed discussion of these sym-
metries in the case of discrete gauge theories.

We will restrict our attention to extension of the form

1 −! G −! G⋊Out(G) −! Out(G) −! 1

with D = Out(G).1 An element κ ∈ Out(G) acts on a gauge field described by a
principal G-bundle with connection by forming the associated bundle along the group
homomorphism κ : G −! G. In [MSS22] these symmetries have been studied in the
context of 2-dimensional Yang–Mills theory. They restrict to an action of Out(G) on the
moduli space M(Σ). One motivation for developing the general framework presented in
this paper was to study these symmetries for quantum character stacks.

On the level of the local coefficients, i.e. for fE2-algebras, the symmetry is realised
through the Out(G)-action on Rep(G) by pullbacks. In Section 2.15 we show that this
action extends to Repq(G) and hence we can compute the value of factorisation homology
for Repq(G) on oriented surfaces with principal Out(G)-bundles. By evaluation on surfaces
with trivial bundles we get an action of Out(G) on the quantum character stack associated
to an arbitrary surface. This implements the action of the symmetry on the quantum
character stack.

Factorisation homology on surfaces equipped with non-trivial Out(G)-bundles has also
a natural field theoretical interpretation: The value of factorisation homology describes
the coupling of the quantum character field theory to non-trivial Out(G)-background
fields. In [MSS22] the topological limit of the partition function of 2-dimensional Yang–
Mills theory coupled to an Out(G)-background field φ : Σ −! BOut(G) was related to
the symplectic volume of the moduli space of flat φ-twisted G-bundles Mφ(Σ) [Mei17,
Zer21]. We will show the analogous statement for quantum character stacks, i.e. that they
provided a quantisation of the category of quasi-coherent sheaves on Mφ(Σ).

Summary of results and outline. In Section 2 we review factorisation homology follow-
ing [AF15], with a focus on categorical factorisation homology on oriented 2-dimensional
surfaces with D-bundles for a finite group D. We will also allow for certain stratifications
along the lines of [AFT17], namely boundary conditions and point defects. The section
concludes with some details related to the algebraic quantities appearing in this paper.
In particular, we introduce the representation category of a quantum group Repq(G), and
show that it is naturally endowed with an Out(G)-action.

After the setup is established, we compute in Section 3 factorisation homology with
coefficients in a rigid braided tensor category A with D-action ϑ of an oriented punctured
surface Σ equipped with a D-bundle. To that end we apply reconstruction techniques

1To handle arbitrary extensions one could use non-abelian 2-cocycles.
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for module categories, following ideas presented in [BZBJ18a, Section 5]. We use a com-
binatorial description of the surface with decoration φ : Σ −! BD, namely a decorated
fat graph model (P, d1, . . . , dn), see Definition 3.6. From (P, d1, . . . , dn) we can define an
algebra

ad1,...,dnP =
n⊗
i=1

Fdi
A

in A, where each Fdi
A =

∫ V ∈cmp(A)
V ∨ ⊠ ϑ(d−1

i ).V is a twisted version of Lyubashenko’s
coend [Lyu95] in A. We show in Theorem 3.7 that there is an equivalence of categories∫

(Σ,φ)

A ∼= ad1,...,dnP -ModA ,

identifying factorisation homology with the category of modules over an algebra which
can be described in purely combinatorial terms. This result is an extension of [BZBJ18a,
Theorem 5.14] to surfaces with D-bundles.

In Section 3.8 we explore the algebraic structure that arises on the collection of the
factorisation homologies ∫

φ : S1×R−!BD

A

for varying decoration φ, which turn out to assemble into an algebra over the little bundles
operad [MW20b]. It was shown in [MW20b] that categorical little bundles algebras can
be identified with braided D-crossed categories, as defined by Turaev [Tur00, Tur10].
We compute the resulting D-crossed categories concretely in terms of bimodule traces
introduced in [FSS17].

The goal of Section 3.15 is to give an explicit description of the algebraic data de-
scribing boundary conditions and point defects in D-structured factorisation homology.
It is well-known that for oriented 2-manifolds without D-bundles, boundary conditions
are incorporated by algebras over the Swiss-Cheese operad, and point defects by E2-
modules [AFT17, Gin15]. For algebras in linear categories, [BZBJ18b, Theorem 3.11]
shows that the latter coincides with the notion of a braided module category as intro-
duced in [Enr08, Bro12, Bro13]. In order to extend these algebraic structures to the
D-decorated setting, we will work with combinatorial models for the decorated Swiss-
Cheese operad and the operad of decorated disks with marked points respectively. If we
let A be a balanced braided tensor category with D-action, we find:

• Boundary conditions are given by a monoidal category C with D-action and a D-
equivariant braided functor A −! Z(C) into the Drinfeld centre of C (see Proposi-
tion 3.16).

• Point defects are equivariant balanced right modules over A as given in Definition
3.21 (see Proposition 3.22).
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In Section 3.25.1, we treat the case of closed manifolds.
Lastly, Section 4 is devoted to our main application: the quantisation of the moduli

space of twisted flat bundles via Out(G)-structured factorisation homology with coeffi-
cients in Repq(G). Recall that for a connected surface Σ = Σg,r of genus g and r > 0 bound-
ary components, together with a chosen point p on the boundary, the G-representation
variety is the affine variety Hom(π1(Σ), G) of group homomorphisms. Since the funda-
mental group of Σ is free on n = 2g + r − 1 generators we have Hom(π1(Σ), G) ∼= Gn.
Via the holonomy map, the G-representation variety is identified with the moduli space
M◦(Σ) of flat G-bundles on Σ with a trivialisation over p ∈ ∂Σ, and there is an action of
G on M◦(Σ) changing the trivialisation.

Now, given an Out(G)-bundle ρ : π1(Σg,r) −! Out(G) described by a tuple (κ1, . . . , κn)
of elements κi ∈ Out(G), we can define the Out(G)-twisted representation variety

M◦
ρ(Σ) = Homρ(π1(Σ), G) ,

for which the maps π1(Σ) −! G are no longer group homomorphisms, but twisted by the
elements κi, see Section 4.1 for the formal definitions. The moduli space of flat ρ-twisted
bundles is the stacky quotient M◦

ρ(Σ)/
ρG, with respect to the ρ-twisted conjugation

action, and we show that the category of quasi-coherent sheaves on this moduli space can
be computed via Out(G)-structured factorisation homology∫

ρ : Σ−!BOut(G)

Rep(G) ∼=
n⊗
i=1

Oκi(G)-ModRep(G) ,

where on the right hand side ⊗n
i=1Oκi(G) is the algebra of functions on M◦

ρ(Σ)
∼= Gn with

the induced ρ-twisted action by G.
We then follow the approach of Ben-Zvi–Brochier–Jordan [BZBJ18a] to quantise these

moduli spaces by locally choosing coefficients in the representation category of the cor-
responding quantum group Repq(G) and subsequently gluing this local data together via
factorisation homology over the surface Σ decorated with an Out(G)-bundle:∫

ρ : Σ−!BOut(G)

Repq(G)
∼= aκ1,...,κnP -ModRepq(G) .

We then show by means of a direct computation that the above provides a quantisation
of the moduli space of flat twisted bundles. To that end, we present in Proposition 4.4 a
novel combinatorial formula for the Poisson structure on M◦

ρ(Σ) and in Theorem 4.6 we
prove that the algebra2 aκ1,...,κnℏ is a deformation quantisation of the algebra of functions
on M◦

ρ(Σ).

2The algebra aκ1,...,κn

ℏ is the combinatorial algebra aκ1,...,κn

P in A = Repℏ(G).



56 CORINA KELLER AND LUKAS MÜLLER

Relation to topological field theories. We conclude the introduction by briefly com-
menting on the relation to topological field theories. We restrict our discussion to framed
field theories since we want to highlight the additional structure coming from the bundle
decorations and because this is the case most studied in the literature on fully extended
field theories. In the undecorated setting, i.e. for manifolds without D-bundles, factori-
sation homology gives rise to fully extended topological field theories. More precisely, for
an En-algebra E in a (nice) symmetric monoidal (∞, 1)-category C, Scheimbauer [Sch14]
explicitly constructed a fully extended framed topological field theory taking values in
the higher Morita category of En-algebras [Sch14, Hau17, JFS17] in C via factorisation
homology for framed manifolds, assigning E to the framed point. For n = 2 and C = Prc
the Morita category is the 4-category BrTens of braided tensor categories with central
algebras3 as 1-morphisms, central bimodules as 2-morphisms, and functors and natural
transformations as 3- and 4-morphisms, respectively [BJS21]. Every object of BrTens is
2-dualisable [GS18, BJS21] and hence by the cobordism hypothesis [BD95, Lur09] defines
a 2-dimensional framed topological field theory, namely the one explicitly constructed by
Scheimbauer.

If one adds decorations with principal D-bundles, the corresponding topological field
theories are known as D-equivariant field theories [Tur10]. Factorisation homology for En-
algebras withD-action is expected to provide examples ofD-equivariant field theories with
values in the Morita category of En-algebras. Our work can be understood as exploring
this (expected) equivariant field theory in the oriented setting and dimension n = 2 with
values in Prc. As a complementary example it was shown in [MW20a] that equivariant
higher Hochschild homology, that is factorisation homology for E∞-algebras with D-action
in chain complexes, gives examples of equivariant field theories in any dimension n.

D-equivariant field theories can also be studied through the cobordism hypothesis,
which implies that 2-dimensional framed fully extended D-equivariant field theories with
values in BrTens are described by functors BD −! BrTens. Such a functor is described
by picking out an object A ∈ BrTens, together with a central algebra Md for every d ∈ D,
a central Md2 ◦ Md1-Md2d1-bimodule for every pair d1, d2 ∈ D and furthermore 3- and
4-morphisms for all triples and quadruples of group elements, respectively, satisfying a
coherence condition involving five group elements. This data can be constructed from an
E2-algebra in Prc with D-action by setting Md = A, seen as an E1-algebra in bimodules
over itself, where the left action is twisted by acting with d. The coherence isomorphisms
for the D-action induce the additional data. However, this is only a special case for the
data classifying equivariant framed field theories according to the cobordism hypothesis
and situations outside this class do not seem to be accessible using factorisation homology
with values in Prc.

The type of factorisation homology we compute in this article is a special case of
equivariant factorisation homology for global quotient orbifolds [Wee20]; namely the case
of free actions. The general case, which requires additional input data, should give rise
to field theories defined as functors out of the bordism category introduced in [GS21].

3For A,B ∈ BrTens a central algebra is an E1-algebra in A-B-bimodules.
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Hence, our results provide a first steps towards computing this field theory.

2. Setup

In this section we review some of the necessary mathematical background and introduce
the main example of Out(G)-actions on the representation category of a quantum group
Repq(G) leading to a coherent quantisation of moduli spaces of twisted flat bundles in
Section 4.

2.1. Review of factorisation homology for manifolds with G-structures.
LetMann be the topological category of n-dimensional manifolds which admit a finite good
open cover with embeddings as morphisms. The morphism spaces are equipped with the
compact-open topology. The disjoint union of manifolds equips Mann with the structure
of a symmetric monoidal category. Let G be a topological group and ρ : G −! GL(n) a
continuous group homomorphism. A G-structure on a manifold M is a homotopy lift

BG

M BGL(n)

Bρ

of the classifying map for the frame bundle. These homotopy lifts correspond to a re-
duction of the structure group of the frame bundle to G. There is a space of tangential
G-structures on M , given by the mapping space Spaces/BGL(n)(M,BG). This space is a
model for the ∞-groupoid of tangential G-structures onM . Homotopies in this space lead
to a natural notion of morphisms of tangential structures.

2.2. Example. We list some important examples of G-structures.
• For G = ⋆, a G-structure is the same as the choice of a framing on M .

• For G = SO(n) −! GL(n) the canonical embedding, a G-structure is the same as
the choice of an orientation.

• For G = SO(n) ×D and ρ : SO(n) ×D
prSO(n)
−−−−! SO(n) −! GL(n), a G-structure is

the choice of an orientation on M together with a map M −! BD, i.e. a principal
D-bundle. This is the example considered in this paper.

To construct the∞-categoryManGn of manifolds with G-structure we proceed as follows:
there is a symmetric monoidal functor τ : Mann −! Spaces/BGL(n) of ∞-categories sending
a manifold M to the classifying map M −! BGL(n) of its frame bundle [AF15, Section
2.1]. The categoryManGn of manifolds with tangential G-structure is defined as the pullback

ManGn Spaces/BG

Mann Spaces/BGL(n)
τ
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Denote by DiskGn ⊂ ManGn the full symmetric monoidal subcategory whose objects are
disjoint unions of Euclidean spaces. Let (V ,⊗) be a symmetric monoidal ∞-category. A
DiskGn-algebra in V is a symmetric monoidal functor A : DiskGn −! V .

2.3. Remark. For the tangential structures of Example 2.2, disk algebras have a de-
scription in terms of more classical objects:

• A Disk⋆n-algebra is an En-algebra, see for example [AF15].

• A DiskSO(n)
n -algebra is a framed En-algebra, see for example [AF15].

• A DiskSO(n)×D
n -algebra is a framed En-algebra equipped with a D-action, see for

example [Wee20, Proposition 4.6].

2.4. Example. In Figure 1 we give a sketch for n = 2 of the disk operations in DiskG2 ,
for the tangential structures of the previous remark, and the corresponding algebraic
structures on A : DiskG2 −! (V ,⊗).

↪−! ⇝ m : A⊗A −! A

e

BD

e

↪−!
id

=⇒
d

⇝ ϑ(d) : A −! A

⇝ σ : m =⇒ m ◦ τ

⇝ θ : idA =⇒ idA

Figure 1: First row : Disk embeddings (or isotopies thereof) in Disk∗2 that give rise to the
multiplicationm and the braiding σ in the E2-algebra A. Here τ : A⊗A −! A⊗A denotes
the braiding in V . Second row : On the right, the additional operation in the oriented
case given by a loop in the space of disk embeddings in Disk

SO(2)
2 , rotating the disk by

2π. Together with the operations in the first row, this endows A with the structure of
a framed E2-algebra. On the left, the additional operation in the D-decorated oriented
case, given by the identity disk embedding in Disk

SO(2)×D
2 with homotopy d : id∗(e) ⇒ e,

inducing an automorphism of A for each d ∈ D, i.e. a D-action on A.

From now on we assume that the symmetric monoidal∞-category (V ,⊗) admits sifted
colimits and that ⊗ preserves them in each component. Factorisation homology

∫
•A with

coefficients in the DiskGn-algebra A is the left Kan-extension [AF15]:

DiskGn V

ManGn

A

∫
• A
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M0

N
M− M+

Figure 2: An example of a collar-gluing.

The condition that ⊗ preserves sifted colimits makes factorisation homology into a sym-
metric monoidal functor. Hence, the value of factorisation homology on any manifold M
is naturally pointed by the inclusion ∅ ↪−!M of the empty manifold:∫

∅
A ∼= 1V −!

∫
M

A .

2.4.1. Excision. The main tool for computing factorisation homology will be ⊗-excision.
Excision allows one to reconstruct the value of factorisation homology from a certain
decomposition of M , namely from a collar-gluing [AF15, Section 3.3]. We recall that a
collar-gluing of a G-structured manifold M is given by a smooth map

f : M −! [−1, 1] ,

such that f−1(−1, 1) −! (−1, 1) is a manifold bundle. If we define M− := f−1[−1, 1),
M+ := f−1(−1, 1] and M0 := f−1(−1, 1), we will often denote the collar-gluing by M =
M−

⋃
M0
M+.

We can choose an equivalence θ : M0

∼=
−! N×(−1, 1) in the ∞-category of G-structured

manifolds, where N is the fibre over an arbitrary point in (−1, 1), as illustrated in Figure
2. The object

∫
N×(−1,1)

A has a natural E1-algebra structure in V , which gives rise to an

E1-algebra structure on
∫
M0

A. We fix oriented embeddings

µ+ : (−1, 1) ⊔ (−1, 1] −! (−1, 1] , µ− : [−1, 1) ⊔ (−1, 1) −! [−1, 1) ,

which are the identity in a neighborhood of the boundary. Using the equivalence θ, we
lift these embeddings to maps act− : M− ⊔M0 −! M− and act+ : M0 ⊔M+ −! M+ of
G-structured manifolds, see Figure 3 for a sketch.

Evaluation of factorisation homology on act− and act+ equips
∫
M−

A and
∫
M+

A with

the structure of a right and left module over
∫
M0

A, respectively. At this point we want
to highlight that the module structures depend on the chosen trivialisation θ; see Section
2.12.1 for an example. The value of factorisation homology onM can be computed as the
relative tensor product [AF15, Lemma 3.18]∫

M

A ∼=
∫
M−

A
⊗
∫
M0

A

∫
M+

A ,

defined through the bar construction in V .
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Figure 3: The map which induces the right
∫
M0

A-module structure on
∫
M−

A. Here, the

green collar depicts the manifold N × (−1, 1).

2.4.2. Point defects and boundary conditions. Factorisation homology admits
a natural extension to stratified manifolds [AFT17], which in more physics oriented lan-
guage corresponds to incorporating defects in the field theory that we wish to study
via factorisation homology. For us, only two types of defects will be relevant; namely
point defects and boundary conditions. Instead of going through the heavy machinery of
stratified manifolds, we only mention the concrete examples studied in this paper follow-
ing [BZBJ18b].

We fix G = SO(2) ×D and define the ∞-category ManG2,∗ whose objects are oriented
2-dimensional manifolds Σ, together with a collection of marked points p1, . . . , pn ∈ Σ and
a continuous map φ : Σ \ {p1, . . . , pn} −! BD. Morphisms are embeddings of manifolds,
mapping marked points bijectively onto marked points, which are compatible with the
morphisms into BD. We denote by DiskG2,∗ the full subcategory whose objects are disjoint
unions of disks with one or zero marked points. Notice that we do not require the D-
bundles to extend to the whole of Σ. As for smooth manifolds, factorisation homology
can again be defined by left Kan extension:4

DiskG2,∗ V

ManG2,∗

F

∫
• F

The second type of defects we want to study are boundary conditions. To that end, we
define the category ManG2,∂ of oriented 2-dimensional manifolds Σ with boundary ∂Σ and

continuous maps Σ −! BD. We denote by DiskG2,∂ the full subcategory with objects
disjoint unions of disks and half disks, by the latter we mean manifolds diffeomorphic to
R× R≥0.

We will adopt the following terminology:

2.5. Definition. By point defects in G = SO(2)×D-structured factorisation homology
we mean a symmetric monoidal functor F : DiskG2,∗ −! V. Similarly, by a boundary

4The slice categories appearing in the coend formula for the left Kan extension are not sifted. Hence,
here we need to assume that V is tensor cocomplete.
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condition we mean a symmetric monoidal functor F : DiskG2,∂ −! V.

In Section 3.15 we will give an algebraic characterisation of point defects and boundary
conditions.

2.6. Remark. Unless otherwise stated, we will usually work with trivial boundary con-
ditions in this paper, meaning that we use the same disk algebra for a disk with empty
boundary, as for a disk with non-empty boundary.

2.7. The categorical case. From now on we specialise to 2-dimensional manifolds and
tangential structures of the form D × SO(2), where D is a finite group. Throughout this
paper we will work with factorisation homology with values in the (2, 1)-category Prc of k-
linear compactly generated presentable categories with compact and cocontinuous functors
and natural isomorphisms between them, meaning that we will not use any non-invertible
2-morphisms. For us k will always be an algebraically closed field of characteristic 0,
usually k = C. Recall that an object c in a k-linear category C is compact if the functor
Hom(c,−) preserves filtered colimits. A category C is compactly generated if every object
can be written as a filtered colimit of compact objects and a functor is compact if it
preserves compact objects. We refer the reader to [BZBJ18a, Section 3] for more details
on Prc.

Every ∞-functor from Man
D×SO(2)
2 to Prc will factor through its homotopy 2-category

which admits the following concrete description.

2.8. Definition. We denote by D-Man2 the (2, 1)-category with

• Objects: Oriented 2-dimensional manifolds Σ equipped with a continuous map φ : Σ −!
BD.

• 1-Morphisms: Smooth embeddings f : Σ1 −! Σ2 together with the choice of a ho-
motopy h : φ1 −! f ∗φ2.

• 2-Morphisms: A 2-morphism (f1, h1) −! (f2, h2) is given by an equivalence class
of isotopies χ : f1 −! f2, together with a map γ : Σ1 ×∆2 −! BD filling

f ∗
2φ2

φ1 f ∗
1φ2

h2

h1

χ∗φ2

Two such pairs (χ, γ) and (χ′, γ′) are equivalent if there exists an isotopy of isotopies
from χ to χ′ (i.e. a map Ω: Σ1 ×∆2 −! Σ2 filling the bottom in Diagram (1)) and
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a map Γ: Σ×∆3 −! BD filling

φ1

f ∗
2φ2

f ∗
1φ2

f ∗
2φ2

h2

h1

χ∗φ2

χ′∗φ2

h2

(1)

where the faces are labeled with the various maps which are part of the morphisms.

We denote the corresponding disk category by D-Disk2.

2.9. Remark. Similarly, there are truncated versions D-Man2,∗ and D-Man2,∂ of the

categories Man
D×SO(2)
2,∗ and Man

D×SO(2)
2,∂ introduced above.

One reason to work with Prc is that it is a closed symmetric monoidal (2, 1)-category
under the Deligne–Kelly tensor product ⊠. In particular, the tensor product ⊠ preserves
sifted colimits in each variable, see [BZBJ18a, Proposition 3.5]. For any two objects
C,D ∈ Prc, the Deligne–Kelly tensor product C ⊠D ∈ Prc of C and D is characterised via
the natural equivalence

Prc[C ⊠D, E ] ∼= Bilc[C,D; E ] ,

where Bilc[C,D; E ] is the category of k-bilinear functors from C × D to E , preserving
colimits in each variable separately.

2.10. Definition. A tensor category A in Prc is rigid if all compact objects of A are
left and right dualisable.

2.11. Definition. A balancing is a family of natural isomorphisms (θV : V −! V )V ∈A,
such that θ1A = id1A, and so that it is compatible with the braiding σ of A:

θV⊗W = σW,V ◦ θW ⊗ θV ◦ σV,W : V ⊗W −! V ⊗W .

Graphically we depict this compatibility as follows

=θ θ θ

V ⊗W V ⊗W

(2)
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A balanced tensor category is then a braided tensor category equipped with a balancing.

By a result of Salvatore and Wahl [SW03], the 2-category of framed E2-algebras (or

equivalently Disk
SO(2)
2 -algebras) in Prc can be identified with the 2-category of balanced

braided tensor categories bBr. We also recall that a ribbon category in Prc is a rigid
balanced braided tensor category so that the balancing maps satisfy θV ∨ = (θV )

∨. One
can show that in this case giving a balancing is equivalent to giving a pivotal structure,
see e.g. [HPT16, Appendix A.2]. Finally, a D-Disk2-algebra is described by a balanced
braided tensor category with D-action.

2.12. Definition. Let A be a balanced tensor category. A D-action on A is a (2-)functor
ϑ : ⋆ //D −! ⋆//AutbBr(A) from the category with one object and D as automorphisms
to the 2-category with one object, balanced braided automorphisms5 of A as 1-morphisms
and natural transformations as 2-morphisms. In more details, the action consists of an
auto-equivalence ϑ(d) : A −! A for each d ∈ D, and for each composable pair di, dj ∈ D

we have a natural isomorphism cij : ϑ(didj)
∼=
−! ϑ(di)ϑ(dj) satisfying the usual associativity

axiom.

Our main example will be constructed from Dynkin diagram automorphisms acting
on the representation categories of quantum groups, see Section 2.15.

2.12.1. Excision for manifolds with D-bundles. Consider an object (Σ, φ) in
D-Man2, where Σ is an oriented 2-manifold and φ : Σ −! BD a continuous map. Let
Σ = Σ− ∪Σ0 Σ+ be a collar-gluing and θ : Σ0

∼= N × (−1, 1) a diffeomorphism of oriented
manifolds. Notice that when using excision to compute factorisation homology on (Σ, φ),
the restriction φ|N×(−1,1) is not required to be constant along the interval (−1, 1), though
it will be homotopic to the constant map. For the cases of interest to us, making this ho-
motopy compatible with the collar-gluing will introduce a D-twist in the action featuring
in excision. We illustrate this last point with an example which will be relevant later on:

2.13. Example. Assume that the map φ is such that its restriction φ|Σ−\Σ0 as well as
φ|Σ+\Σ0 agree with the constant map to the base point ∗ of BD. Furthermore, let us fix a

diffeomorphism θ : Σ0

∼=
−! N × (−1, 1) of oriented manifolds. Here, N is the codimension 1

submanifold determined by the given collar-gluing, see Figure 2. We choose φ such that
its pullback to N × (−1, 1) is given by

(θ−1)∗φ(n, s) =

{
∗, for s /∈ (−1

2
, 1
2
)

γd−1(s+ 1
2
), for s ∈ (−1

2
, 1
2
)

for all n ∈ N , as illustrated in Figure 4a. Here, γd−1 : [0, 1] −! BD is the loop correspond-
ing to the inverse of a given group element d ∈ D. We then extend θ to an equivalence of
D-manifolds, where the collar N×(−1, 1) is equipped with the constant map to BD. The
equivalence is established using a homotopy H : (θ−1)∗φ|Σ0 ⇒ ∗, which is given by γd−1

5A braided automorphism is balanced if it preserves θ.
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for every point in N × (−1,−1
2
], continues the loop γd−1 to its end point on N × (−1

2
, 1
2
)

and is constant on N × [1
2
, 1), as sketched in Figure 4b. Hence, we get an equivalence∫

(Σ0,φ|Σ0
)

A ∼=
∫
N×(−1,1)

A =: C .

Given a balanced tensor category A with a D-action, we now want to deduce the module
structures featuring in the excision formulae for

∫
(Σ,φ)

A. Denote by Σ∗
− and Σ∗

+ two

objects in D-Man2, whose underlying manifolds agree with Σ− and Σ+, but whose maps to
BD are assumed to be constant. The value of factorisation homology on these manifolds
naturally defines module categories M− and M+ over the E1-algebra C. In order to
obtain an explicit description of the module structures obtained by excision, note that

the homotopy H from above can be used to construct an equivalence θ+ : Σ+

∼=
−! Σ∗

+

with homotopy H+ : (θ
−1)∗φ|Σ+ ⇒ ∗ in D-Man2. We use this equivalence to identify∫

(Σ+,φ|Σ+
)
A ∼=

∫
Σ∗

+
A as categories. This equivalence can be promoted to an equivalence

of module categories, i.e. the following diagram commutes:

N × (−1, 1) ⊔ Σ+ Σ+

N × (−1, 1) ⊔ Σ∗
+ Σ∗

+

id⊔(θ+,H+) (θ+,H+)

We can see that the action of C on
∫
(Σ∗

+,φ|Σ+
)
A is precisely given by the C-module structure

of M+. On the contrary, the situation is a bit more involved for the C-module structure
of

∫
(Σ−,φ|Σ− )

A: We cannot simply identify Σ− ∼= Σ∗
− via H since the homotopy is not

constant near N × {−1}. However, we can construct an equivalence θ− : Σ−
∼=
−! Σ∗

− from
a homotopy H−, which is defined by using the loop γd similarly to how we used γd−1

above. This gives rise to an identification
∫
(Σ−,φ|Σ− )

A ∼=
∫
Σ∗

−
A together with a weakly

commuting diagram

N × (−1, 1)

Σ− \ Σ0

Σ+ \ Σ0

BD
∗ ∗

γd−1

−1
2

1
2

(a) The map φ on a collar-gluing.

N ×
−1 −1

2
1
2 1

∗

γd−1(t0)

γd−1(t ≥ t0)

, H(s, t0) =

(b) Sketch of the homotopy H for some fixed
t0 ∈ [0, 1].

Figure 4
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Σ− ⊔N × (−1, 1) Σ−

Σ∗
− ⊔N × (−1, 1) Σ∗

−

(θ−,H−)⊔(id,γd) (θ−,H−)

in D-Man2. From the horizontal maps we deduce that the module structure relevant for
excision is obtained by twisting by the D-action on C:

actd− : M− ⊠ C M− ⊠ C M− .
idM−⊠ϑ(d) act−

We write M−,d for this module category. Combining everything we arrive at∫
(Σ,φ)

A ∼= M−,d ⊠
C
M+ .

2.14. Remark. Notice that alternatively we could have chosen a trivialisation of Σ0

which extends to Σ−, instead of Σ+, which would have resulted in a twisting of M+ by
d−1. In this sense the module structures featuring in excision for D-structured oriented
2-manifolds are not unique, though the value of the relative tensor product is.

2.15. Actions of diagram automorphisms and their quantisation. For appli-
cations to quantum physics, we will be mostly interested in factorisation homology for the
ribbon category Repq(G). In this section we will show that Repq(G) admits an Out(G)-
action, which can be seen as a quantisation of the Out(G)-symmetry in gauge theory.

The outer automorphism group Out(G) of G is finite and can be identified with the
group of Dynkin diagram automorphisms. Concretely, one finds for the non-trivial outer
automorphism groups

Type An , n ≥ 2 Dn , n > 4 D4 E6

Out(G) Z2 Z2 S3 Z2

The identification of outer automorphisms and Dynkin digram automorphisms provides
an explicit splitting Out(G) −! Aut(G) and allows us to write down the short exact
sequence

1 −! G −! G⋊Out(G) −! Out(G) −! 1

containing the semi-direct product.
The category Rep(G) of G-representations is a symmetric monoidal ribbon category

and hence in particular a framed E2-algebra. The finite group Out(G) acts naturally
on the category Rep(G) by pulling back representations along the inverse and this sym-
metry extends to the representation category of the corresponding quantum group, see
Proposition 2.16 below.

We will use the following notation and conventions. We consider a finite-dimensional
simple complex Lie algebra g with Cartan matrix (aij)1≤i,j≤n. We fix a Cartan subalgebra
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h ⊂ g and select a set of simple roots Π = {α1, . . . , αn}. We write Λ for the weight lattice
and we choose a symmetric bilinear form (·, ·) on Λ such that (αi, αj) = aij. For the rest
of this paragraph we will restrict our attention to Lie algebras with Dynkin diagrams of
type An (n ≥ 2), Dn (n ≥ 4), or E6, since these are the only cases for which we have
non-trivial Dynkin diagram automorphisms.

The formal quantum group Uℏ(g) is a Hopf algebra deformation of the universal en-
veloping algebra U(g) over C[[ℏ]] with generators {Hαi

, X±
αi
}αi∈Π, subjected to certain

relations, see for example [CP95, Section 6.5] for details. In order to define positive and
negative root vectors, we fix a reduced decomposition ω0 = si1si2 . . . siN of the longest el-
ement ω0 in the Weyl group of g. The positive and negative root vectors are then defined
as

X±
βr

= Ti1Ti2 . . . Tir−1X
±
αir

in Uℏ(g) by acting on the generators with elements Ti ∈ Bg of the braid group associated to
g [CP95, Section 8.1]. The formal quantum group Uℏ(g) is quasi-triangular with universal
R-matrix given by the multiplicative formula [CP95, Theorem 8.3.9]

R = ΩR̂, Ω = eℏ
∑

i,j a
−1
ij Hαi⊗Hαj , R̂ =

∏
βr

R̂βr ,

where the order in the second product is such that the βr-term is to the left of the βs-term
if r > s, and R̂βr = expq

(
(1− q−2)X+

βr
⊗X−

βr

)
for q = exp(ℏ). It is shown in [CP95,

Corollary 8.3.12] that R is independent of the chosen reduced decomposition of ω0. We
denote by Repℏ(G) the category of topologically free left modules over Uℏ(g) of finite rank.
This tensor category comes with a braiding defined via the universal R-matrix R of Uℏ(g).

2.16. Proposition. The braided tensor category Repℏ(G) admits a left action of Out(G).

Proof.The outer automorphisms Out(G) can be identified with the automorphism group
Aut(Π) of the Dynkin diagram of g. An element κ ∈ Aut(Π) acts on the generators of
Uℏ(g) via

Hαi
7−! Hακ(i)

, X±
αi

7−! X±
ακ(i)

.

We thus get an action ρ of Out(G) on the tensor category Repℏ(G) defined by pulling
back a representation along the inverse automorphism, i.e. ρ(κ)(X) = (κ−1)∗X, for any
X ∈ Repℏ(G). It is left to show that the action preserves the braiding. The action of κ
on a positive, respectively negative, root vector is given by

κ.X±
βr

= Tκ(ir) . . . Tκ(ir−1)X
±
ακ(ir)

.

We now make use of the following explicit expressions for ω0, details can be found for
example in [Hum90, Section 3.19]. First, divide the vertices of the Dynkin diagram into
two nonempty disjoint subsets S and S ′, so that in each subset the corresponding simple
reflections commute. Let a and b be the products of the simple reflections in S and S ′,
respectively. For An (n odd), Dn (n ≥ 4) and E6 we can set ω0 = (ab)h, where h is the
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respective Coxeter number. Whereas for An (n even), ω0 can be represented either as
ω0 = (ab)

n
2 a or as ω0 = b(ab)

n
2 . We thus see that κ sends a given reduced decomposition

of the longest Weyl group element ω0 to another reduced decomposition of ω0. But since
the R-matrix is independent of the chosen reduced decomposition the result follows.

2.17. Proposition. The action of Out(G) on Repℏ(G) is compatible with the balancing
automorphism of Repℏ(G).

Proof. The balancing in Repℏ(G) is given by acting with the ribbon element cℏ =
exp(ℏHρ)uℏ of Uℏ(g), see [CP95, Section 8.3.F]. Here, Hρ =

∑n
i=1 µiHαi

with coeffi-
cients µi =

∑n
j=1 a

−1
ij and uℏ = mℏ(Sℏ ⊗ id)R2,1 with mℏ and Sℏ the multiplication and

antipode in Uℏ(g) respectively. It follows from Proposition 2.16 that a Dynkin diagram
automorphism κ ∈ Aut(Π) preserves the element uℏ. So it is left to show that κ pre-
serves the element Hρ. Since the Cartan matrix is invariant under the Dynking diagram
automorphism, we have µi =

∑n
j=1 a

−1
i,j =

∑n
j=1 a

−1
κ(i),κ(j) =

∑n
j=1 a

−1
κ(i),j = µκ(i) and thus

κ.Hρ = Hρ.

Let q ∈ C× be a non-zero complex number which is not a root of unity and let Uq(g)
be the corresponding specialisation of the rational form of Uℏ(g). A precise definition
of Uq(g) can be found e.g. in [CP95, Section 9]. We denote by Repq(G) the category of
locally finite Uq(g)-modules of type 1. Strictly speaking, Uq(g) is not quasi-triangular.
However, it’s representation category admits a braiding [CP95, Section 10.1.D]. On a
representation V ⊗ V ′ ∈ Repq(G), the braiding is defined by the so-called quasi R-matrix

ΘV,V ′ = τ ◦ EV,V ′R̂V,V ′ , where τ is the map swapping the tensor factors and EV,V ′ is an
invertible operator on V ⊗ V ′ acting on the subspace Vλ ⊗ V ′

µ by the scalar q(λ,µ), for
λ, µ ∈ Λ. Moreover, the standard ribbon element for Uq(g) acts on Vλ as the constant
q−(λ,λ)−2(λ,ρ) with ρ the half-sum of positive roots, giving rise to the balancing in Uq(g).
Hence, we get the q-analog of Proposition 2.16:

2.18. Proposition. The braided balanced tensor category Repq(G) admits a left action
of Out(G).

2.19. Reconstruction theorems for module categories. The following is a brief
recollection of [BZBJ18a, Section 4] which will allow us to compute the value of factori-
sation homology explicitly in terms of module categories over certain algebras in the next
section. We start by recalling that the inclusion ∅ ↪−! Σ of the empty manifold into a
surface Σ induces a canonical functor 1Prc

∼= Vectk −!
∫
Σ
A on the level of factorisation

homology, see Section 2.1. We thus have a distinguished object DistΣ ∈
∫
Σ
A, given as

the image of k under this functor. If we assume that Σ is not closed and we choose
a marked interval in its boundary, there is a natural A-module structure on

∫
Σ
A, in-

duced by embedding a disk along the marked interval. In order to study the factorisation
homology of the surface Σ, we wish to describe the entire category

∫
Σ
A internally in

terms of A. To that end, following [BZBJ18a], we will apply techniques from Barr–Beck
monadic reconstruction to monads arising from adjunctions of module functors of the
form actDistΣ : A −!

∫
Σ
A.
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Applying monadic reconstruction techniques to module categories was first done for
fusion categories in the work of Ostrik [Ost03], and later in the setting of finite abelian
categories in [DSPS20]. Here, we will recall its further generalisation to categories in
Prc, as developed in [BZBJ18a, Section 4]. For the remainder of this section, let A be
an abelian rigid tensor category in Prc and M an abelian right A-module category with
action functor act : M⊠A −! M. For each m ∈ M, the induced functor

actm : A −! M, actm(a) := m⊗ a

admits a right adjoint which we denote actRm. For any pair of objectsm,n ∈ M, define the
internal morphisms from m to n as the object HomA(m,n) = actRm(n) ∈ A representing
the functor a 7! HomM(m ⊗ a, n). Then, there is a natural algebra internal to A given
by EndA(m) := HomA(m,m), which is called the internal endomorphism algebra of m.
For each m ∈ M, we get a functor

ãctRm : M −! (actRm ◦ actm)-ModA

sending an object n ∈ M to HomA(m,n) with canonical action actRm ◦ actm ◦ actRm(n) −!
actRm(n) given by the counit of the adjunction. The monadicity theorem (see Theorem 2.21
below) then tells us when this functor is an equivalence. In order to state the theorem,
we adopt the following terminology.

2.20. Definition. An object m ∈ M is called

• an A-generator if actRm is faithful,

• A-projective if actRm is colimit-preserving,

• an A-progenerator if it is both A-projective and an A-generator.

2.21. Theorem. [BZBJ18a, Theorem 4.6] Let m ∈ M be an A-progenerator. Then the
functor

ãctRm : M
∼=
−! EndA(m)-ModA,

is an equivalence of A-module categories, where A acts on the right by the tensor product.

When computing factorisation homology of a surface, we will make extensive use of
⊗-excision, as explained in Section 2.4.1. On a categorical level this means that we wish to
apply monadic reconstruction to the relative Deligne–Kelly tensor product of two module
categories. For this, notice that if M is a left A-module category and A an algebra in
A, one can use the A-action on M to define the category of A-modules in M, which we
denote by A-ModM.
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2.22. Theorem. [BZBJ18a, Theorem 4.12] Let M− and M+ be right-, respectively left
A-module categories. Assume that m ∈ M− and n ∈ M+ are both A-progenerators.
Then there are equivalences

M− ⊠
A
M+

∼= EndA(m)-ModM+
∼= (EndA(m),EndA(n)) -BimodA

of categories.

The following special case will be of particular interest for us: We assume that M+ is
itself a tensor category and that the A-module structure on M+ is induced by a tensor
functor F : A −! M+, which is such that every object in M+ appears as a subobject, or
equivalently a quotient, of an object in the image of F . Tensor functors with this property
are called dominant. When in this setting, we have the following base-change formula:

2.23. Corollary. [BZBJ18a, Corollary 4.13] Let F : A −! M+ be a dominant tensor
functor and m ∈ M− an A-progenerator. Then there is an equivalence of M+-module
categories

M− ⊠
A
M+

∼= F (EndA(m)) -ModM+ .

3. Factorisation homology for surfaces with D-bundles

In this section we use excision and reconstruction theorems to compute factorisation
homology of an abelian rigid balanced braided tensor category A equipped with D-action,
for D a finite group, over a surface Σ with principal D-bundles and at least one boundary
component.

Furthermore, we study the algebraic structure corresponding to the evaluation on
annuli, boundary conditions and point defects.

3.1. Reconstruction for rigid braided tensor categories with group ac-
tion. For d ∈ D, consider the right A⊠2-module category Md, whose underlying category
is A and the action is

regd : Md ⊠A⊠A Md ⊠A⊠A Md ,
id⊠id⊠ϑ(d) T 3

(3)

where T 3 is the iterated tensor product functor x⊠ y ⊠ z 7! x⊗ y ⊗ z.

3.2. Lemma. 1A is a progenerator for the twisted regular action regd.

Proof. The unit 1A is a progenerator for the right regular action (see [BZBJ18a, Propo-
sition 4.15]). Since ϑ(d) is an automorphism of A, it is also a progenerator for regd.
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The internal endomorphism algebra EndA⊠2(1A) can be explicitly described by the
coend ∫ V ∈cmp(A)

V ∨ ⊠ ϑ(d−1).V ,

where V ∨ is the dual of V and the colimit is taken over compact objects in A. To derive
the above expression it is enough to note that the action is given by pre-composition of
the regular action with the automorphism id ⊠ ϑ(d) with adjoint id ⊠ ϑ(d−1) and use
Remark 4.16 of [BZBJ18a]. Applying the tensor product functor T : A ⊠ A −! A to
EndA⊠2(1A) we get the object

Fd
A :=

∫ V ∈cmp(A)

V ∨ ⊗ ϑ(d−1).V . (4)

Notice that for the identity element e ∈ D, this is Lyubashenko’s coend
∫
V ∨⊗V [Lyu95],

which in particular is a braided Hopf algebra in A.

3.3. Example. Let H be a ribbon Hopf algebra with D-action, meaning that an element
d ∈ D acts on H by Hopf algebra automorphisms, the universal R-matrix is D-invariant,
i.e. R ∈ (H ⊗H)D and the ribbon element is preserved by the H-action. Let Rep(H) be
the braided tensor category of locally finite left modules over H on which the elements
d ∈ D act through the pullback of representations along d−1. It is a well-known result that
at the identity element e ∈ D, the algebra F e

Rep(H) is identified with the braided dual of H,

also known as the reflection equation algebra (REA), equipped with the coadjoint action.
Its underlying vector space is given by the matrix coefficients H◦ of finite dimensional
H-representations. As an algebra, the REA can be obtained from the so-called Faddeev–
Reshetikhin–Takhtajan (FRT) algebra via twisting by a cocycle given in terms of the
universal R-matrix [DM03]. In more detail, the FRT algebra is identified with the coend

FFRT =

∫ V ∈Repfd(H)

V ∨ ⊠ V ∈ Rep(H)rev ⊠ Rep(H) ,

where Rep(H)rev is the category with the opposite monoidal product, with multiplication
mFRT induced by the canonical maps

(V ∨⊠V )⊗ (W∨⊠W ) = (V ∨⊗revW∨)⊠ (V ⊗W ) ∼= (W ⊗V )∨⊠ (W ⊗V )
ιV ⊗W
−−−! FFRT .

The REA is then given by the image of the FRT algebra under the composite functor

Rep(H)rev ⊠ Rep(H) Rep(H)⊠ Rep(H) Rep(H) ,
(id,σ)⊠id T (5)

where (id, σ) denotes the identity functor, equipped with a non-trivial tensor structure
given by the braiding σ in Rep(H).

In the decorated case, we precompose the functor in (5) with the automorphism (1⊠
ϑ(d)). Then, for any d ∈ D, the underlying vector space of Fd

Rep(H) is identified again
with H◦ via
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V ∨ ⊗ d∗V H◦ ιV (ϕ⊗ v) = ϕ(− ▷ (d−1)∗v) ,
ιV

for any V ∈ Repfd(H), but H◦ is now equipped with the twisted coadjoint action ad∗
d(h⊗

ϕ)(v) = ϕ(S(h(1))(−)d.h(2) ▷ v). The multiplication on the coend algebra is defined in
terms of its universal property. Concretely, consider the following dinatural map

fV,W : V ∨ ⊗ d∗V ⊗W∨ ⊗ d∗W V ∨ ⊗W∨ ⊗ d∗W ⊗ d∗V

∼= (W ⊗ V )∨ ⊗ d∗(W ⊗ V ) Fd
Rep(H) .

σd∗V,W∨⊗d∗W

ιW⊗V

Then there exists a unique multiplication map Fd
Rep(H) ⊗ Fd

Rep(H)

m
−! Fd

Rep(H) such that

fV,W = m ◦ (ιV ⊗ ιW ). Explicitly, the product of ϕ, ψ ∈ Fd
Rep(H) is given by

md
REA(ϕ⊗ ψ) = mFRT(ϕ(R1(−)d.R′

1)⊗ ψ(S(R′
2)R2(−)) .

In the language of [DM03], we thus find that Fd
Rep(H) is obtained by twisting the module

algebra (H◦, ad∗
d) by the cocycle R1 ⊗ d.R′

1 ⊗ R2R′
2 ⊗ 1, where we write R = R1 ⊗ R2

and we use primes to distinguish different copies of the R-matrix.

3.4. Example. The category of finite-dimensional Uq(g)-modules of type 1 is a semisim-
ple braided tensor category via the quasi R-matrix Θ. The quantised coordinate algebra
Oq(G) is then defined as the algebra of matrix coefficients of objects in this category.
Given an automorphism κ ∈ Out(G), the twisted coend algebra defined in Equation 4
takes the form T

(
EndRepq(G)⊠2(C)

) ∼=
⊕

V V
∨ ⊗ κ∗V , where the sum runs over the sim-

ple objects. By a quantum version of the Peter–Weyl theorem (see for example [Gan18,
Proposition 4.1]) we get an identification

⊕
V V

∨ ⊗ κ∗V ∼= Oq(G) as vector spaces, and
by the previous example, we thus find that the coend algebra is isomorphic to Oq(G) with
κ-twisted multiplication.

3.5. Computation on punctured surfaces. Throughout this section we consider
connected oriented surfaces with at least one boundary component. We can pick a ciliated
fat graph model to describe the surface Σ we want to work with, which in [BZBJ18a]
is conveniently defined via a gluing-pattern, that is a bijection P : {1, 1′, . . . , n, n′} −!
{1, . . . , 2n}, such that P (i) < P (i′). Here, n is the number of edges of the fat-graph
model of Σ. Given a gluing pattern P , we can reconstruct Σ as depicted in Figure 5b,
namely by gluing n disks D•• with two marked intervals each to a disk •2nD• with 2n+ 1
marked intervals, thereby gluing the intervals i and i′ to P (i) and P (i′), respectively.

3.6. Definition. A D-labeled gluing pattern is a gluing pattern P : {1, 1′, . . . , n, n′} −!
{1, . . . , 2n} together with n elements d1, . . . , dn ∈ D.

Notice that the fundamental group of a genus g surface with r+1 boundary components
is free on n = 2g+ r generators. This implies that a D-labeled gluing pattern determines
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a principal D-bundle on the surface constructed from the gluing pattern. Furthermore,
up to equivalence all principal D-bundles on surfaces with at least one boundary arise in
this way.

[γd1 ] [γdr ] [γdr+1
][γdr+2

] [γdn−1
][γdn ]

(a) Generators of the homotopy group π1(Σ).

P (1) P (1′) P (r) P (r′) · · · P (n) |
P ((n − 1)′)

P (n′)

d1 dr dn−1 dn

(b) Gluing a surface from a decorated gluing
pattern.

Figure 5

For a D-labeled gluing pattern (P, d1 . . . dn) we are going to define an algebra ad1,...,dnP ∈
A. As an object in A, it is defined by the tensor product

ad1,...,dnP :=
n⊗
i=1

Fdi
A ,

where the Fdi
A are defined by the coend (4). The gluing pattern can be used to define an

algebra structure on this object in complete analogy with [BZBJ18a]. To that end, we

will use the following terminology: Two labeled discs Ddi
•• and Ddj

•• with i < j are called

• positively (negatively) linked if P (i) < P (j) < P (i′) < P (j′)
(
P (j) < P (i) <

P (j′) < P (i′)
)

• positively (negatively) nested if P (i) < P (j) < P (j′) < P (i′)
(
P (j) < P (i) <

P (i′) < P (j′)
)

• positively (negatively) unlinked if P (i) < P (i′) < P (j) < P (j′)
(
P (j) < P (j′) <

P (i) < P (i′)
)

To each of the above cases, we assign a crossing-morphism as depicted in Figure 6 be-
low. Notice that the crossing-morphism in the nested case differs from the one given in
[BZBJ18a, Definition 5.8].

Now, for each pair of indices 1 ≤ i < j ≤ n, the restriction of the multiplication to
Fdi

A ⊗Fdj
A ⊂ ad1,...,dnP is defined by

Fdi
A ⊗Fdj

A ⊗Fdi
A ⊗Fdj

A Fdi
A ⊗Fdi

A ⊗Fdj
A ⊗Fdj

A Fdi
A ⊗Fdj

A ,
id⊗C⊗id m⊗m
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+-linked +-nested +-unlinked

Fdi
A Fdj

A

Fdi
AFdj

A

Fdi
A Fdi

A

Fdi
A Fdi

A

Fdj
A Fdj

A

Fdj
A Fdj

A

L+ = N+ = U+ =

Figure 6: Definition of crossing-morphisms L+, N+, U+ : Fdi
A ⊗ Fdj

A −! Fdj
A ⊗ Fdi

A for
positively linked, nested and unlinked decorated discs. Notice that we read the diagrams
from bottom to top.

where C is either L±, N± or U±, depending on whether the decorated discs Ddi
•• and Ddj

••
are ±-linked, ±-nested or ±-unlinked.

Finally, given a D-labeled gluing pattern, we wish to describe the module structure
induced by gluing the marked disks Ddi

•• to the disk •2nD• as sketched in Figure 5b. To
that end, we look at the example of a sphere with three punctures (S2)3 and a D-bundle
described by the map φ : π1((S2)3) −! D sending the two generators of the fundamental
group to d1 and d2, respectively. The corresponding gluing pattern is P (1, 1′, 2, 2′) =
(1, 2, 3, 4), decorated by the tuple (d1, d2) ∈ D × D. We then choose a collar-gluing
(S2)3 ∼= Σ− ∪Σ0 Σ+ for the punctured sphere, as sketched on the right hand side of Figure
7, and an equivalence in D-Man2, so that the maps to BD are constant on Σ− \ Σ0 and
Σ+ \ Σ0 and are given by the loops γd1 and γd2 on fixed open intervals in Σ0, which are
depicted by the red and blue intervals in Figure 7. We immediately see that we are in
a situation similar to Example 2.13: The right A ⊠ A-module structure on

∫
Ddi
••
A, for

i = 1, 2, is the twisted regular action regdi defined in (3). The module structure for more
general decorated gluing patterns can be worked out analogously.

∼=

Σ0

γd2

γd1

Figure 7: Example: sphere with three punctures.

3.7. Theorem. Let Σ be a surfaces with at least one boundary component. Fix a principal
D-bundle φ : Σ −! BD on Σ and a corresponding D-labeled gluing pattern (P, d1, . . . , dn).



74 CORINA KELLER AND LUKAS MÜLLER

There is an equivalence of categories∫
(Σ,φ)

A ∼= ad1,...,dnP -ModA

Proof. The following is an extension of the proof given in [BZBJ18a, Theorem 5.14] to
surfaces with D-bundles. We have seen that for a d-labeled disk Dd

•• with two marked
intervals we have

∫
Dd
••
A ∼= A as plain categories, with the markings inducing the structure

of a right A⊠2-module category with module structure given by the twisted regular action
regd. Now,

∫
⊔iD

di
••
A ∼= A⊠n has the structure of a right A⊠2n-module category. Indeed,

using the decorated gluing pattern (P, d1, . . . , dn) we have an action

regd1,...,dnP : (x1 ⊠ · · ·⊠xn)⊠ (y1 ⊠ · · ·⊠ y2n)
7−! (x1 ⊗ yP (1) ⊗ ϑ(d1).yP (1′))⊠ · · ·⊠ (xn ⊗ yP (n) ⊗ ϑ(dn).yP (n′))

We denote the resulting right module category by Md1,...,dn
P .

On the other hand, we have the disk •2nD• with 2n marked intervals to the left and
one marked interval to the right. This turns

∫
•2nD•

A ∼= A into a (A⊠2n,A)-bimodule via

the iterated tensor product

(x1 ⊠ · · ·⊠ x2n)⊠ y ⊠ z 7! x1 ⊗ · · · ⊗ x2n ⊗ y ⊗ z.

We denote the resulting bimodule category by A⊠2nAA. Using excision, we then have∫
(Σ,φ)

A ∼= Md1,...,dn
P ⊠

A⊠2n
A⊠2nAA .

Let τP : {1, . . . , 2n} −! {1, . . . , 2n} be the bijection given by postcomposing the map
defined by 2k − 1 7! k, 2k 7! k′ with P . Notice that the inverse of this map is part of
the action regd1,...,dnP . Applying monadic reconstruction as in Theorem 2.21, together with
Lemma 3.2, we can identify Md1,...,dn

P with modules over an algebra EndA⊠2n(1A)
d1,...,dn
P ∈

A⊠2n, obtained from EndA⊠2(1A)
d1 ⊠ · · · ⊠ EndA⊠2(1A)

dn by acting with τP . Applying
Corollary 2.23 to the dominant tensor functor T 2n : A2n −! A, we thus get∫

Σ

A ∼= T 2n(EndA⊠2n(1A)
d1,...,dn
P )-ModA

as right A-module categories.
Let us write T 2n(EndA⊠2n(1A)

d1,...,dn
P ) = ãP for brevity. To finish the proof, we want

to show that there is an isomorphism of algebras ãP ∼= ad1,...,dnP . Consider the subalgebras

F (i,i′)
A := EndAP (i)⊠AP (i′)

(1A)
di ∈ A⊠2n

and their images under the tensor functor F (i)
A := T 2n(F (i,i′)

A ) ∈ A. By embedding each

F (i)
A into ãP we get a map
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m̃P : F (1)
A ⊗ · · · ⊗ F (n)

A ã⊗nP ãP ,m̃

where m̃ is the multiplication in ãP . This map establishes the isomorphism on the level
of objects in A. The restriction of the multiplication to the image of one of the F (i)

A
agrees with the multiplication m in Fdi

A . So it is left to show that for each pair of indices
1 ≤ i < j ≤ n the composition

F (i)
A ⊗F (j)

A ⊗F (i)
A ⊗F (j)

A
id⊗C⊗id
−−−−−! F (i)

A ⊗F (i)
A ⊗F (j)

A ⊗F (j)
A

m⊗m
−−−! F (i)

A ⊗F (j)
A

m̃P−−! ãP ,

for C being L±, N± or U±, agrees with m̃P |(F(i)
A ⊗F(j)

A )⊗2 . To that end, consider the following

diagram

T 4(F (i,i′)
A ⊗F (j,j′)

A ) = T 4(F (j,j′)
A ⊗F (i,i′)

A )

F (i)
A ⊗F (j)

A F (j)
A ⊗F (i)

A

ãP

T 4(m)

Ji,j

m̃P m̃P

Jj,i

where the label T 4(m) on the vertical arrow means applying the tensor functor to the
multiplication in EndA⊠2n(1A)

d1,...,dn
P . The dashed arrows, making the above diagram com-

mute, can be described by exhibiting the tensor structure of the iterated tensor product
functor

Ji,j : F (i)
A ⊗F (j)

A = T 4(F (i,i′)
A )⊗ T 4(F (j,j′)

A )
∼=
−! T 4(F (i,i′)

A ⊗F (j,j′)
A )

given by the shuffle braiding6. As an example, consider the gluing pattern P (1, 1′, 2, 2′) =
(1, 3, 4, 2) describing positively nested handles. The corresponding shuffle braiding is

J1,2 = (1⊗ 1⊗ σ) ◦ (1⊗ σ ⊗ 1), J2,1 = (σ ⊗ 1⊗ 1) ◦ (1⊗ σ ⊗ 1),

and we observe that the composition J−1
1,2 ◦ J2,1 agrees with the nested crossing morphism

N+
1,2 : Fd2

A ⊗ Fd1
A −! Fd1

A ⊗ Fd2
A . From commutativity of the above diagram, we then get

that m̃P |Fd2
A ⊗Fd1

A
= m̃P |Fd1

A ⊗Fd2
A

◦ N+
1,2, which finishes the proof for the positively nested

case. The other five cases can be worked out analogously.

3.8. Little bundles algebras and braided D-crossed categories. The value of
oriented factorisation homology of a rigid balanced braided category A on S1×R is given
by the Drinfeld centre Z(A) of A. In [BZBJ18b, Remark 3.2] it is observed that

∫
S1×RA

carries two natural monoidal structures induced from the topology of genus zero surfaces;
one is induced by stacking annuli in the R-direction, which we will denote ⊗R, and the

6The shuffle braiding J : a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bn
∼=−! a1 ⊗ b1 ⊗ · · · ⊗ an ⊗ bn is given by J =

σan,bn−1
◦ · · · ◦ σa3⊗···⊗an,b2 ◦ σa2⊗···⊗an,b1 , where σ is the braiding of A.
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other one is induced by embedding annuli into the pair of pants and will be denoted
⊗Pants. The monoidal structure coming from the pair of pants requires some explanation:
Evaluating factorisation homology on the pair of embeddings sketched in Figure 8 gives
rise to the cospan∫

S1×R A⊠
∫
S1×R A

∫
Pants

A
∫
S1×R A

(ι1⊔ι2)∗ (ιout)∗

in Prc. Using the right adjoint7 ι∗out to ιout∗ we get an induced tensor product ⊗Pants,
which agrees with the usual tensor product on the Drinfeld centre. We refer to [Was20]
for a detailed algebraic discussion of the type of interaction we expect between these two
monoidal structures in the case of fusion categories.

ι1 ⊔ ι2 ιout

Figure 8: The maps inducing the monoidal structure ⊗Pants.

For the case of interest in the present work, i.e. in the case that A is equipped with a
D-action, the situation is slightly different since the annulus S1 ×R can be endowed with
different maps into BD. We can assume that, up to homotopy, every map φ : S1 ×R −!
BD is constant in the R-direction and hence we still find an E1-algebra structure ⊗R on∫
(S1×R,φ) A. On the other hand, the pair of pants only induces an E2-algebra structure

in the case that all maps into BD are chosen to be constant. The non-constant maps
into BD induce instead another interesting algebraic structure on the collection of values
taken by factorisation homology on all possible maps φ : S1×R −! BD, a littleD-bundles
algebra [MW20b].

The operad ED2 of little D-bundles is coloured over the space of maps from S1 to
BD. To describe the space of operations we need to introduce some notation: For a disk
embedding f ∈ E2(r) we denote by C(f) the complement of the interior of all embedded
disks. Let φ = (φ1, . . . , φr) be an r-tuple of maps φi : S1 −! BD and ψ : S1 −! BD

another map. The space of operations ED2
(
ψ
φ

)
consists of pairs of an element f ∈ E2(r)

together with a map ξ : C(f) −! BD whose restriction to ∂C(f) is given by (φ, ψ). By
construction we have the following:

7Note that the right adjoint ι∗out is again in Prc since ιout is given by acting on the distinguished object
in

∫
Pants

A which is a progenerator.
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3.9. Proposition. The value of factorisation homology on S1 equipped with varying D-
bundle decorations has the structure of a little D-bundles algebra.

The main result of [MW20b, Theorem 4.13] identifies algebras over ED2 inside the 2-
category Cat of categories with braided D-crossed categories as defined by Turaev [Tur00,
Tur10] and recalled below. The proof directly carries over to Prc.

3.10. Definition. A braided D-crossed category is a D-graded monoidal category

AD =
⊕
d∈D

Ad, such that ⊗ : Ad ⊠Ad′ −! Add′

together with a D-action on AD, which is such that the image of the action by an element
h ∈ D on Ad is contained in Ahdh−1, and natural isomorphisms cX,Y : X⊗Y −! d.Y ⊗X
for X ∈ Ad, satisfying natural coherence conditions [Gal17].

We call the braided D-crossed category assigned to A by factorisation homology the
D-centre ZD(A) of A. The d-components ZD

d (A) are given by factorisation homology on
φd : S1 × R −! BD, where φd corresponds to the loop d ∈ π1(BD) = D and is constant
in the R-direction. To compute the D-centre explicitly, we recall the concept of bimodule
traces and twisted centres from [FSS17, DSPS20]. Let A ∈ Prc be a monoidal category
and M be an A-bimodule category. The bimodule trace of M is

TrA(M) := M⊠A⊠Arev A ,

where Arev denotes the category A with the reverse multiplication. Assume now that
F : A −! A is a monoidal functor and denote by ⟨F⟩M the (A,A)-bimodule whose left
action is pulled back along F . Similarly, we will denote M⟨F⟩ the bimodule whose right
action is pulled back along F . The F -twisted centre ZF(M) is then the Drinfeld centre
of the bimodule category M⟨F⟩.

3.11. Proposition. Let d be an element of D. There is a natural isomorphism

ZD
d (A) ∼= TrA(Md) ,

where Md is the bimodule constructed in Section 3.1 via the twisted regular action.
Moreover, one can identify the bimodule trace TrA(Md) with the twisted Drinfeld cen-
tre Zϑ(d−1)(A).

Proof. The first statement follows directly from applying excision to the cover sketched
in Figure 9 combined with the results of Section 2.12.1. Note that here excision is not
used as in the proof of Theorem 3.7. For the second statement, recall that since A is rigid
we can apply Theorem 2.21 to identify Md

∼= End(1A)
ϑ(d)-ModA⊠Arev , where End(1A)

ϑ(d)

is the endomorphism algebra of 1A in A ⊠ Arev with respect to the ϑ(d)-twisted regular
action. Then, we have equivalence

TrA(Md) ∼= End(1A)
ϑ(d)-ModA ∼= HomA⊠Arev(⟨ϑ(d−1)⟩A,A) ,

where the first equivalence is Theorem 2.22 and the second one is due to a categorical
version of the Eilenberg–Watts theorem [BJS21, Lemma 5.7]. But, by [FSS17, Lemma
2.13] this is precisely the ϑ(d)-twisted Drinfeld centre of A as claimed.
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∼=

Σ0

Figure 9: Collar-gluing for the annulus with a map to BD.

Let us introduce the following bimodule category A⋊D :=
⊕

d∈DMd. This category
has the structure of a D-graded monoidal category via

⊗A⋊D : Md ⊠Md′ −! Mdd′ , x⊠ x′ 7−! x⊗ ϑ(d).x′ ,

as indicated by the notation.

3.12. Corollary. The trace TrA(A⋊D) of the bimodule A⋊D agrees with the D-centre
ZD(A) and is a braided D-crossed category.

3.13. Remark. In [GNN09], the graded centre of a D-graded fusion category C =⊕
d∈D Cd is defined to be ZCe(C) ∼= TrCe(C) and equipped with the structure of a braided

D-crossed category. In the case that A is a braided fusion category with D-action, the
D-centre ZD(A) agrees with the graded centre of A ⋊ D. A careful comparison of the
two little bundles algebra structures would take us too far from the content of the paper.

3.14. Remark.We also leave a detailed study of the interaction of the monoidal structure
⊗R induced by stacking annuli in the R-direction with the D-crossed braided structure as
an interesting open question for further research.

3.15. Algebraic description of boundary conditions and point defects. In
Section 2.4.2 we explained that boundary conditions and point defects for D × SO(2)-
structured factorisation homology with values in Prc are classified by symmetric monoidal
functors from the categories of stratified disks D-Disk2,∂ and D-Disk2,∗ to Prc, respectively.
In this section we will describe the algebraic structure classifying these functors. Our
strategy will be the following: The source categories can naturally be identified with
the envelope of the coloured operads D-fSC, a framed and D-equivariant version of the
Swiss-Cheese operad [Vor99], and D-fE1

2, a framed and D-equivariant E2-operad with a
frozen strand [CG20], respectively. Hence, defect data corresponds to algebras over them.
Both operads are aspherical, meaning that all the homotopy groups of the operation
spaces vanish in degree higher than 1. For this reason we can work equivalently with the
groupoid valued operads Π1(D-fSC) and Π1(D-fE1

2), instead of topological operads. We
extend existing combinatorial models [Idr17, CG20] in terms of generators and relations
to the situation at hand. The results will be combinatorially described groupoid valued
coloured operads D-fPeBr and D-fBr1 equivalent to Π1(D-fSC) and Π1(D-fE1

2).
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We will work within the 2-categorical framework for operads, see for example [MW22,
Section 2]. The advantage of this is that all structures will automatically be coherent in
the appropriate sense. Alternatively, one could work with Σ-cofibrant models, similar to
the parenthesised braid model for the E2-operad [Fre17-I, Chapter 6], at the categorical
level [CG20, Idr17].

3.15.1. Boundary conditions. We briefly recall the situation without principal bun-
dles [BZBJ18b]. The category Diskfr2,∂ is equivalent to the envelope of the topological
Swiss-Cheese operad SC with its two colours D and D∂, corresponding to the standard
disk and the half-disk. The spaces of operations are given by rectilinear embeddings. In
particular, one has that

SC(D, . . . ,D︸ ︷︷ ︸
n

;D) = E2(n), SC(D∂, . . . ,D∂︸ ︷︷ ︸
n

;D∂) = E1(n) .

In Figure 10 we sketch an operation with different colours and in Figure 11 we list the
generators8 for the corresponding combinatorial model PeBr of permutations and braids,
constructed in [Idr17], together with the respective topological operations.

1 2

3
4

5

Figure 10: An example of an operation in SC(D∂,D∂,D,D,D;D∂).

The relations for PeBr are such that an algebra over SC corresponds to a braided
monoidal category A, a monoidal category C and a braided functor A −! Z(C) into the
Drinfeld centre of C. For a complementary physical perspective on the correspondence
between boundary conditions and maps into Z(C) we refer the reader to [FSV15].

To study boundary conditions for oriented manifolds, one works with the framed Swiss-
Cheese operad fSC where embeddings are allowed to rotate the disks D. In the respective
combinatorial model fPeBr for the framed Swiss-Cheese operad this is incorporated by
introducing one additional generator in fPeBr(D;D), the balancing, and imposing the
relation corresponding to Equation 2 inside fPeBr(D,D;D), see also Figure 11. Hence, we

8We refer [MW20b, Section 4.1] for more details on generators and relations for groupoid valued
operads.



80 CORINA KELLER AND LUKAS MÜLLER

Generating objects:

Generating morphisms:

7−!
,

7−!
,

1 2 2 1

1 2 2 1

7−!

: −! 7−! −!

: −! 7−! −!

: −! 7−! −!

Figure 11: Generating operations for fPeBr and their image under the equivalence fPeBr ∼=
Π1(fSC). The arrows indicate the paths in the space of embeddings. If we ignore the last
generating morphism, we recover the generators of PeBr.

see that in order to extend an algebra (A, C) over SC to an algebra over fSC, we need to
equip A with a balancing.

Finally, we turn our attention to the D-equivariant version D-fSC of the framed Swiss-
Cheese operad, together with its combinatorial model D-fPeBr, whose envelope is equiva-
lent to D-Disk2,∂. We can assume without loss of generality that all bundles are trivial and
hence the colours of the operads do not change. However, for every group element d ∈ D,
we get an additional arity one operation in both D-fPeBr(D;D) and D-PeBr(D∂;D∂) cor-
responding to gauge transformations of the trivial bundle, which ‘commute’ with all the
other generators. Hence, we can identify D-fPeBr with the Boardman–Vogt tensor prod-
uct fPeBr⊗BVD, where we consider the group D as an operad concentrated in arity one.
On the level of algebras this implies Alg(D-fSC;Prc) ∼= Alg(fPeBr; Alg(D;Prc)). But a
D-algebra is just an object of Prc equipped with a D-action, and so we can summarise
our discussion in the following proposition.

3.16. Proposition. Let A be a balanced braided category with D-action. Boundary
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conditions for A in D×SO(2)-structured factorisation homology are given by a monoidal
category C ∈ Prc with D-action and a D-equivariant braided functor A −! Z(C) into the
Drinfeld centre of C with its induced D-action.

3.17. Example. The trivial boundary condition, corresponding to simply removing the
boundary and computing factorisation homology on the resulting manifold without bound-
ary, is given by taking C = A together with the canonical embedding A −! Z(A) induced
by the braiding on A.

3.18. Example. The sources for boundary conditions from [BZBJ18b, Section 2.3] have
natural generalisations to the equivariant setting:

1. Let A be a balanced braided category with D-action and denote by E2(A) the
category of commutative algebras in A, which comes with an induced D-action. For
every homotopy fixed point9 A ∈ E2(A)D, the category A-Mod inherits a natural D-
action and provides an example for boundary conditions of the bulk theory described
by A.

2. Consider the quantum Borel algebra Uq(b) ↪−! Uq(g), which is the subalgebra gen-
erated by the elements {K±

αi
, X+

αi
}αi∈Π, following conventions from [CP95, Section

9.1.B]. We get a forgetful tensor functor Repq(G) −! Repq(B). Moreover, as noted
in [BZBJ18b, Section 2.3], the R-matrix provides a central structure on this forgetful
functor. We observe that we have an Out(G)-action on Uq(b), given on generators
by K±

αi
7! K±

κ(αi)
and H+

αi
7! H+

κ(αi)
for any κ ∈ Out(G). We conclude that we get

an Out(G)-equivariant functor Repq(G) −! Z(Repq(B)).

3.19. Remark. There is another generalisation of the Swiss-Cheese operad to the equiv-
ariant setting with operations consisting of an element in SC equipped with a map to BD
on the complement of the embedding. This is similar to the generalisation of the little
disks operad given by the little bundles operad. We also expect this operad to play an
important role in the description of boundary conditions for equivariant field theories.

3.19.1. Point defects. We again start by recalling the framed result from [BZBJ18b]
in the language of coloured operads and then gradually build up to the oriented and
D-equivariant setting. The disk category Diskfr2,∗ can be described as the envelope of a
topological operad with two colours, D and D∗, corresponding to a disk and a marked
disk, respectively. The spaces of operations are given by rectilinear embeddings which
map marked points bijectively to marked points. The concrete structure of this coloured
operad makes it into a moperad as defined in [Wil16, Definition 9]. A combinatorial
model for this topological operad is given in [CG20] in terms of parenthesised braids with
a frozen strand. In Figure 12, we give a strict version of this combinatorial model, which
will be denoted Br1. The description in terms of generators and relations allows us to read
off the corresponding algebraic structure which was introduced in [Enr08, Bro12, Bro13].

9Here a homotopy fixed point is a commutative algebra A together with algebra isomorphisms

τd : d.A
∼=−! A for all d ∈ D such that τd′ ◦ d′.τd = τd′d.



82 CORINA KELLER AND LUKAS MÜLLER

3.20. Definition. Let A be a braided category. A braided module over A is a right
module category ◁ : M ⊠ A −! M equipped with a natural isomorphism E : ◁ =⇒ ◁
satisfying (suppressing coherence isomorphisms)

Em◁x,y = (idm ◁ σ
−1
y,x) ◦ (Em,y ◁ idx) ◦ (idm ◁ σ−1

x,y) ,

and
Em,x⊗y = (Em,x ◁ idy) ◦ Em◁x,y ◦ (idm ◁ (σy,x ◦ σx,y)) ,

for all m ∈ M and x, y ∈ A.

The framed version fBr1, giving a combinatorial model for the envelope of Disk2,∗,
can be described by an extension of Br1 obtained by adding two additional generating
morphisms θ ∈ fBr1(D;D) and θ∗ ∈ fBr1(D∗,D∗), corresponding to rotating the disks by
2π. Furthermore, we need to include Relation (2) for θ and Relation (R4) from Figure 12
for θ∗.

We note that the system of relations is over-determined: To see this, note that Relation
(R4) allows one to rewrite ED∗,D in terms of the balancing θ and θ∗. Inserting this into
Relation (R3) in Figure 12, we find that this relation is automatically satisfied and hence
obsolete. To show that the combinatorial description is correct, it is enough to note
that the operation spaces in fE1

2 can be identified with the ones of fE2. Reading off the
corresponding algebraic structure from the combinatorial model, one finds an equivalent
reformulation of the braided balanced modules introduced in [BZBJ18b, Theorem 3.12].
The only additional structure to the one described in Definition 3.20 is that of a balancing
θM : idM =⇒ idM on M compatible with E.

Finally, we move on to describe point defects in the D-equivariant setting, which is
slightly more subtle than the boundary conditions described in the previous section. The
reason for this is that the disk with one marked point D∗ is replaced by a collection of
marked disks Dd

∗ equipped with a map to BD with holonomy d. The combinatorial model
for D-fE1

2 can be derived from the model for the framed version of the little bundles operad
given in [Woi20, Section 5.4.2] similar to the derivation of the model for fE1

2 from the one
for fE2. It is important to note here that we only consider configurations where the map
to BD has non-trivial holonomy around the frozen strand. We list the generators and
relations for the combinatorial model D-fBr1 in Figure 12. The corresponding algebraic
notion is:

3.21. Definition. Let A be a balanced braided category with D-action. An equivariant
balanced right module over A is a D-graded category M =

⊕
d∈DMd equipped with

• a D-action actM : ∗//D −! ∗//Aut(M) such that the image of Md under the action
of d′ ∈ D is contained in Md′dd′−1,

• an equivariant right A-action ◁ : M⊠A −! M ,

• natural isomorphisms θdM : idMd
=⇒ actMd and Ed : ◁ =⇒ ◁ ◦

(
idMd

⊠ actAd
)
for all

d ∈ D .
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Generating objects:

Generating morphisms:

Relations:

d 7−! d

,

d

dhd−1

h

7−! d

, d

d

7−!

:

: −!

−!

7−!

7−!

−!

−!

d d

d d

d

d d

d

= = = =

, , ,

(R1) (R2) (R3) (R4)

Figure 12: Generating operations and relations for D-fBr1 and their image under the
equivalence D-fBr1 ∼= Π1(D-fE1

2). Notice that we did not depict the relations related to
the D-action. The d-labels on the disk for the first two generating objects mean that the
map to BD is the loop d in radial direction. In D-Man2 this embedding is isomorphic
to the identity embedding equipped with the homotopy corresponding to d. If we ignore
the D-labels, we get generators and relations of fBr1. If we furthermore drop the second
generating morphism as well as relation (R4), we get a combinatorial model for E1

2.

such that (suppressing coherence isomorphisms)

• for all m ∈ Md and x, y ∈ A

Ed
m◁x,y =

(
idm ◁ σ

−1
actAd (y),x

)
◦
(
Ed
m,y ◁ idx

)
◦
(
idm ◁ σ

−1
x,y

)
,

• and for all m ∈ Md and x ∈ A(
θdM

)
m◁x

= Ed
actMd (m),x ◦

((
θdM

)
m
◁ (θA)x

)
.

We can summarise our discussion in the following proposition.
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3.22. Proposition. Point defects in D × SO(2)-structured factorisation homology are
equivalent to equivariant balanced modules.

3.23. Example. Let C be a boundary condition for a bulk theory A. We can form
a point defect from this boundary condition by removing a small circle around every
marked point and inserting C. On the algebraic level, the map from boundary conditions
to point defects sends C to the D-centre ZD(C) with the A-action induced by the functor
A −! Z(C) ⊂ ZD(C).

3.24. Remark. In [BZBJ18b] a different approach to the description of point defects
is taken: They are identified with modules over the value assigned to the annulus by
factorisation homology equipped with the stacking tensor product. The same approach
should work in the situation considered in this section, hence we expect that equivariant
balanced modules overA can equivalently be described by graded modules over the graded
centre ZD(A) equipped with the stacking tensor product.

3.25. Example. Here we set D = Out(G). For each element κ ∈ Out(G), let h ∈ G
act via κ-twisted conjugation Adκh(g) = hgκ(h−1) on G. Denote Cκ ⊂ G the orbits
of this action, i.e. the κ-twisted conjugacy classes of G. For each κ-component of the
Out(G)-centre of Rep(G), we thus get a tensor functor∫

(S1,κ)
Rep(G) ∼= QCoh(G/G) −! QCoh(Cκ/G)

where the G acts by κ-twisted conjugation.

3.25.1. Closed surfaces and marked points.We first compute the value of factori-
sation homology on a closed, unmarked surface Σ equipped with a map φ : Σ −! BD.
We use a decomposition of Σ into a surface Σo with one boundary component and a disk
D, see Figure 13.

Σo

Figure 13: The surface Σo obtained from Σ by removing a disk D.

We denote by φo the restriction of φ to Σo which has trivial holonomy around the
boundary ∂Σo since the bundle extends to Σ. Excision now implies that the value of
factorisation homology on Σ is given by the relative tensor product∫

(Σ,φ)

A ∼=
∫
(Σo,φo)

A ⊠∫
(S1×R,∗) A

A , (6)
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where ∗ : S1×R −! BD is the constant map at the base point. Given a decorated gluing
pattern for Σo, we showed in Theorem 3.7 that one obtains identifications∫

(Σo,φo)

A ∼= ad1,...dnP -ModA,

∫
(S1×R,∗)

A ∼= F e
A-ModA ,

via monadic reconstruction in A. Now in order to compute the relative tensor product
(6), we have to describe the categorical factorisation homology internal to the annulus
category

∫
S1×R A. The techniques to do so were developed in [BZBJ18b, Section 4], and

we will briefly review the main results that will be used to compute factorisation homology
on closed surfaces with D-bundles.

We first recall the notion of a quantum moment map, see [Saf21, Section 3] for more
details. For every V ∈ A we have a natural isomorphism, the so-called “field goal”
isomorphism [BZBJ18b, Corollary 4.6]:

τV : FA ⊗ V −! V ⊗FA, τV :=

FA V

V FA

. (7)

Now let A be an algebra in A. A quantum moment map is an algebra map µ : A −! FA
in A such that it fits into the following commutative diagram

A⊗FA A⊗ A

A

FA ⊗ A A⊗ A

τ−1
A

id⊗µ

m

µ⊗id

m

It is shown in [BZBJ18b, Corollary 4.7] that algebras A ∈
∫
S1×R A amount to the data of

a quantum moment map µ : F e
A −! A.

As mentioned in Remark 3.24, braided modules are identified in [BZBJ18b] with mod-
ule categories over F e

A-ModA, where the latter is equipped with the tensor product ⊗R
induced by stacking annuli in the radial direction. Let now M be a braided module
category and assume there is a progenerator m ∈ M for the induced A-action. In the
situation at hand, M =

∫
(Σo,φo)

A and the progenerator is the distinguished object given

by the pointing via the inclusion of the empty manifold. The following reconstruction
result for M is proven in [BZBJ18b, Theorem 1.1]: There is an equivalence

M ∼= A-Mod∫
S1×R A, A = EndA(m) ,

where the endomorphism algebra comes with a canonical quantummoment map µΣo : FA −!
A. The right action of FA-ModA on M is then given by [BZBJ18b, Corollary 4.7] :

A-Mod⊠ FA-Mod −! A-Mod, V ⊠X 7−! V ⊗FA X ,
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where the algebra homomorphism µΣo and the field goal transformation (7) are used to
form the relative tensor product.

3.26. Remark. Conversely, given an algebra A ∈ A and a quantum moment map
µ : FA −! A, the category M = A-ModA is equipped with the structure of a braided
module category. We refer to [BZBJ18b, Section 4.3] for an explicit description of the
braided module structure that one obtains from the given quantum moment map µ.

Applying the above reconstruction result to the situation at hand, we get quantum
moment maps

µΣo : FA −! ad1,...dnP and µD : FA −! 1A ,

which endow ad1,...dnP and 1A with the structure of algebras in FA-ModA. Finally, by [BZBJ18b,
Corollary 4.8], we get:

3.27. Proposition. The factorisation homology on a closed decorated surface (Σ, φ) is
given by ∫

(Σ,φ)

A ∼= (ad1,...,dnP -Mod-1A)FA-ModA ,

the category of ad1,...,dnP -1A-bimodules inside FA-ModA.

3.28. Remark. Let {x1, . . . , xr} ⊂ Σ be a collection of marked points on the surface
and φ : Σ \ {x1, . . . , xr} −! BD a continuous map. Let Σo be the surface obtained
from Σ by removing a small disk Ddi around each point xi, where the label di indicates
that the holonomy of φ around the i-th boundary component ∂iΣo is given by the group
element di ∈ D. Let M =

⊕
d∈DMd be an equivariant balanced right module over A.

Applying excision, we can express factorisation homology over the marked surface Σ via
the following relative tensor product:∫

((Σ,φ),{x1,...,xr})

(A,M) ∼=
∫
(Σo,φ)

A ⊠( ∫
(S1,d1)

A⊠···⊠
∫
(S1,dr) A

) (Md1 ⊠ · · ·⊠Mdr

)
.

4. Quantisation of flat twisted bundles

In this section we describe the Poisson algebra of functions on the moduli space of flat
Out(G)-twisted G-bundles on an oriented surface Σ and its quantisation via factorisation
homology over Σ with coefficients in the ribbon category Repq(G) equipped with the
Out(G)-action defined in Section 2.15.

4.1. The moduli space of flat twisted bundles. We first recollect some back-
ground about twisted bundles in the differential geometric setting, see for example [Mei17]
and [Zer21] for more details and [MSS22] for the non-flat version. Let Σ be an oriented
surface equipped with a principal Out(G)-bundle P −! Σ. The group homomorphism
G⋊Out(G) −! Out(G), given by projection onto the second factor, induces a morphism
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of smooth groupoids10 Bunflat
Out(G)⋊G(Σ) −! BunOut(G)(Σ). The groupoid of flat P-twisted

G-bundles is defined as the homotopy pullback

Bunflat
G#P(Σ) Bunflat

G⋊Out(G)(Σ)

⋆ BunOut(G)(Σ) .P

The trivial P-twisted G-bundle is the bundle P ×Out(G) (G ⋊ Out(G)) associated to P
using the group homomorphism Out(G) ↪−! G ⋊ Out(G), κ 7−! 1 ⋊ κ. Note that the
automorphisms of the trivial flat P-twisted G-bundle are Gπ0(Σ) and not (G⋊Out(G))π0(Σ)

as one might naively expect.

4.2. Remark. The moduli space of flat Out(G)-twisted bundles on a closed surface Σ
was studied in the differential geometric setting in [Mei17, Zer21]. In particular, it is
shown in loc. cit. that the moduli space of Out(G)-twisted flat bundles for a compact Lie
group G carries a canonical Atiyah–Bott like symplectic structure.

Since in this paper we obtain our results in the algebraic setting, we will now give
another description of flat twisted bundles that is more suitable for us, namely the holon-
omy description of twisted G-bundles. We will only consider surfaces Σ with at least one
boundary component and a marked point v ∈ ∂Σ on one of the boundary circles. For
brevity we write simply π1(Σ) for π1(Σ, v). For any group G, we call the space of group ho-
momorphisms Hom(π1(Σ), G) the G-representation variety. It comes with a natural action
of G via conjugation: g.φ(γ) = gφ(γ)g−1 for all g ∈ G, γ ∈ π1(Σ) and φ ∈ Hom(π1(Σ), G).
As before, we fix a principal Out(G)-bundle, here described by a group homomorphism
ρ : π1(Σ) −! Out(G). Such a map ρ is given by picking an element κ ∈ Out(G) for every
generator in π1(Σ). Then, an element in the ρ-twisted G-representation variety is a lift

G⋊Out(G)

π1(Σ) Out(G) .ρ

We write Homρ(π1(Σ), G) to denote the space of lifts. Concretely, elements in Homρ(π1(Σ), G)
can be described by maps φ : π1(Σ) −! G, which are such that φ(γ1◦γ2) = φ(γ1)ρ(γ1).φ(γ2).
The group G acts via twisted conjugation, i.e. the action of an element g ∈ G is given by
φ(γ) 7−! gφ(γ)ρ(γ).g−1. Given a set E of free generators of π1(Σ), we get an identification
Homρ(π1(Σ), G) ∼= GE.

10Here smooth groupoids can, for example, be modeled as sheaves of groupoids on the site of Cartesian
spaces as in [BMS21, Section 5.1]. We will not go into details here because they will not be important
for what follows.
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There is a bijective correspondence between elements in the twisted representation
variety Homρ(π1(Σ), G) and elements in

M◦
ρ(Σ) := {Isomorphism classes of flat twisted G-bundles with trivialisation over v ∈ Σ} ,

which is established via the holonomy map. The group G acts on M◦
ρ(Σ) by changing

the trivialisation. The moduli space of flat twisted bundles is then given by the quotient
stack

Mρ(Σ) = M◦
ρ(Σ)/

ρG ,

where the notation /ρ indicates that G acts via twisted conjugation.

4.2.1. The twisted Fock–Rosly Poisson structure. For the remainder of this
section, Σ is a connected surface with at least one boundary component. We will give
an explicit description of the Poisson structure on M◦

ρ(Σ), following the strategy of Fock
and Rosly [FR98] using lattice gauge theory.

We choose a ciliated fat graph model for Σ with one vertex and edges E = {e1, . . . , en},
constructed from a gluing pattern for Σ as defined in Section 3.5. Furthermore, we choose
an Out(G)-labeling {κ1, . . . , κn} of the gluing pattern describing the twisting principal
Out(G)-bundle ρ. The fundamental group of Σ is freely generated by the edges E of the
graph model, as depicted in Figure 14. Using the holonomy description from the previous
section, we can characterise a ρ-twisted bundle on Σ by a graph connection, that is a
labeling of every edge ei ∈ E with a group element gi ∈ G:

hol : M◦
ρ(Σ)

∼=
−! Homρ(π1(Σ, v), G) = GE .

This identification chooses an orientation for every edge in the fat graph model which we
choose to agree with the natural orientation coming from the gluing pattern. Hence, we
get an identification

Mρ(Σ) ∼= GE/ρG ,

where h ∈ G acts via twisted conjugation

(ge1 , . . . gen) 7−! (hge1κ1(h)
−1, . . . , hgenκn(h)

−1) .

In this way, we consider the algebraic functions on GE as an element of Rep(G) and we
denote this algebra by Oρ(GE). Quasi-coherent sheaves on Mρ(Σ) can now be identified
with modules over Oρ(GE) in Rep(G).

4.3. Proposition. Let Σ be a surface of genus g and r ≥ 1 boundary components. Given
a principal Out(G)-bundle ρ : π1(Σ) −! Out(G), described by the elements κ1, . . . , κ2g+r−1 ∈
Out(G), and a gluing pattern P for Σ, there is an isomorphism Oρ(G2g+r−1) ∼= a

κ1,...,κ2g+r−1

P

of algebras in Rep(G).
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Figure 14: Generators of the fundamental group for an r-punctured genus g surface.

Proof. To establish the isomorphism on the level of vector spaces, we use the algebraic
Peter–Weyl theorem:

O(G) ∼=
⊕
V

V ∨ ⊗ V ,

where the sum on the right hand side is over all irreducible representations of G and O(G)
is the Hopf algebra of matrix coefficients of irreducible G-representations. Next we take
into account the twist by a given automorphism κ ∈ Out(G): a group element h ∈ G acts
on ϕ ∈ Oκ(G) via h ▷ ϕ = ϕ(h−1(−)κ(h)). As explained in Example 3.3, we thus get an
isomorphism Oκ(G) ∼=

⊕
V V

∨ ⊗ κ∗V = Fκ
Rep(G) compatible with the G-action.

In combination with Theorem 3.7, the above result shows that
∫
(Σ,ρ)

Rep(G) agrees with

the category of quasi-coherent sheaves on the moduli space Mρ(Σ) of twisted bundles.
Note that GE is a finite dimensional smooth algebraic variety and independent of the
concrete form of the gluing pattern or topology of Σ. However, we will see shortly that
the Poisson structure is sensitive to the topology.

In order to describe the Poisson structure on the representation variety M◦
ρ(Σ), we

notice that there is an equivariant embedding

ι : GE −! (G⋊Out(G))E , (ge1 , . . . gen) 7−! (ge1 ⋊ κ1, . . . gen ⋊ κn) ,

which identifies GE with a connected component of (G ⋊ Out(G))E since Out(G) is dis-
crete. The G-action on the right side is via the embedding G −! G ⋊ Out(G) and
conjugation inside G⋊Out(G). Using the gluing pattern for Σ, together with the choice

of an Out(G)-invariant classical r-matrix11 r ∈ (g⊗ g)Out(G), Fock and Rosly’s construc-
tion [FR98] gives a Poisson structure πFR on (G ⋊ Out(G))E, such that the action of
G ⋊ Out(G) is Poisson–Lie. Pulling back πFR along ι, we get the desired Poisson struc-
ture on M◦

ρ(Σ), which is compatible with the twisted G-action. In Proposition 4.4 below
we give an explicit formula for the Poisson structure πM◦

ρ(Σ) we just described on M◦
ρ(Σ),

11For example, the semi-classical limit of the quantum R-matrix R of Uℏ(g) is Out(G)-invariant, see
Proposition 2.16.
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which is a twisted version of the Fock–Rosly Poisson structure on GE given in [FR98,
Proposition 3].

4.4. Proposition. Let the surface Σ be represented by a ciliated fat graph with one
vertex v and a set E of edges. Let (xi)i=1,...,dim(g) be a basis of g. Then for a given choice

r = rijxi ⊗ xj ∈ (g⊗ g)Out(G) of Out(G)-invariant classical r-matrix there is a Poisson
structure on M◦

ρ(Σ) given by the bivector

πMρ(Σ) =
∑
α≺β

rijxi(α) ∧ xj(β) +
1

2

∑
α

rijxi(α) ∧ xj(α)

where α and β run over the set of half-edges12 and

xi(α) :=

{
−xRi (α), α is incoming at v
(κα)∗x

L
i (α), α is outgoing at v

where x
R/L
i (α) denotes the right/left-invariant vector field of xi acting on the α-copy of GE.

Furthermore, the induced Poisson structure on the subalgebra of G-invariant functions is
independent of the chosen fat graph model for Σ.

4.5. Quantisation. In Section 3.5 we constructed an algebra aκ1,...,κnP , n = 2g + r − 1,
from a combinatorial presentation of the decorated surface Σ. We now explain how these
algebras provide a deformation quantisation of the twisted Fock–Rosly Poisson structure
on M◦

ρ(Σ). To that end, we consider aκ1,...,κnP as an object in the representation category
Repℏ(G) of the formal quantum group. It is the tensor product

⊗n
i=1 O

κi
ℏ (G), where each

Oκi
ℏ (G) is a κi-twisted REA of quantised coordinate functions. The multiplication on the

tensor product is defined in terms of the crossing morphisms depicted in Figure 6. We
will show in Theorem 4.6 that for all elements fκiℏ ∈ Oκi

ℏ and g
κj
ℏ ∈ Oκj

ℏ we have

[fκiℏ , g
κj
ℏ ]

ℏ
mod(ℏ) = {fκi , gκj} ,

where {·, ·} is the twisted Fock–Rosly Poisson structure from Proposition 4.4, and fκi =
fκiℏ mod(ℏ) ∈ Oκi(G), and similarly for gκj .

We present a reformulation of the Poisson structure on M◦
ρ(Σ) that will prove useful

for what follows. Let r = ω + t be the decomposition of the classical r-matrix into an
anti-symmetric part ω and an invariant symmetric element t. For a given automorphism
κ ∈ Out(G), define the bivector field

πκSTS := ωad(κ),ad(κ) + tR,L(κ) − tL(κ),R ,

where the superscripts indicate that the action by left-invariant vector fields is twisted
by the automorphism κ, and we used the notation xad(κ) = xR − κ∗x

L for the vector

12We break up the edges of the graph, so that from each edge we get an incoming and an outgoing
half-edge at the vertex v. Since the chosen graph is ciliated, we get an ordering ≺ on the set of half-edges.
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field generated by the element x ∈ g via the twisted adjoint action h 7! ghκ(g−1) of
G on itself. In the case κ = e, the bivector field πeSTS agrees with the Semenov-Tian-
Shansky (STS) Poisson structure on G, see [STS94]. Using the decorated gluing pattern
(P, {κ1, . . . , κ2g+n−1}) for Σ, we define the bivector

π =
∑
α∈E

πκαSTS +
∑
α<β

πα,β − πβ,α ,

where πα,β is a 2-tensor, acting on the α-component of the first factor and on the β-
component of the second factor of GE ×GE, and is defined by

πα,β :=


−rad(κα),ad(κβ)2,1 , if α and β are positively unlinked

−rad(κα),ad(κβ)2,1 − 2tL(κα),R, if α and β are positively linked

−rad(κα),ad(κβ)2,1 − 2tL(κα),R + 2tL(κα),L(κβ), if α and β are positively nested

And similarly, the 2-tensor πβ,α acts on the β-component of the first factor and on the
α-component of the second factor of GE × GE and is defined as πβ,α = τ(πα,β), where τ
swaps the two tensor factors. Similarly, for the remaining three cases, we define

πα,β :=


r
ad(κα),ad(κβ)
1,2 , if α and β are negatively unlinked

r
ad(κα),ad(κβ)
1,2 + 2tR,L(κβ), if α and β are negatively linked

r
ad(κα),ad(κβ)
1,2 + 2tR,L(κβ) − 2tL(κα),L(κβ), if α and β are negatively nested

and set again πβ,α = τ(πα,β). A direct computation shows that π agrees with the twisted
Fock–Rosly Poisson structure defined in Proposition 4.4.

4.6. Theorem. The algebra a
κ1,...,κ2g+r−1

P is a quantisation of the twisted Fock–Rosly Pois-
son structure on M◦

ρ(Σ)
∼= G2g+r−1. Its subalgebra of Uℏ(g)-invariants does not depend

on the choice of the gluing pattern P and is a quantisation of the Poisson structure on
the affine quotient M◦

ρ(Σ)//G.

Proof. First, we show that the quasi-classical limit of the commutator of two quantised
functions in Oκ

ℏ (G) agrees with the κ-twisted STS Poisson structure πκSTS. We recall
from Example 3.3 that the multiplication in the κ-twisted REA Oκ

ℏ (G) is related to the
multiplication in the FRT-algebra via a twisting cocycle given in terms of R-matrices.
For H = Uℏ(g), the commutator in the (untwisted) FRT-algebra H◦ can be computed by
acting with

(1⊗rev 1)⊠ (1⊗ 1)− (R−1
2 ⊗rev R−1

1 )⊠ (R′
2 ⊗R′

1)

on the components V ∨ ⊗rev W∨ ⊠ V ⊗W , where V,W ∈ Repℏ(G), of the coend algebra
H◦. Indeed, the multiplication in the FRT-algebra is given by the Hopf pairing ⟨−,−⟩
between H◦ and H:

⟨mFRT(ϕψ), h⟩ = ⟨ϕ⊗ ψ,∆(h)⟩, ϕ, ψ ∈ H◦, h ∈ H .
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Then, one uses that ∆(−) = R−1∆op(−)R. Now we take into account the twist by κ, as
well as the twisting cocycle R′

1 ⊗ κ.R1 ⊗R′
2R2 ⊗ 1. We may compute the commutator in

Oκ
ℏ (G) component-wise by acting with

(R′
1 ⊗rev R′

2R2)⊠ (κ.R1 ⊗ 1)− C ◦ (R′
2R2 ⊗rev R′

1)⊠ (1⊗ κ.R1) (8)

where
C = (R−1

2 ⊗rev R−1
1 )⊠ (κ.R′

2 ⊗ κ.R′
1)

on V ∨ ⊗rev W∨ ⊠ V ⊗W . To compute the quasi-classical limit of this action, we will use
that in the limit exp(ℏ) ! 1 the R-matrix has the expansion R = 1 + ℏr +O(ℏ2), where
r = r1 ⊗ r2 ∈ g⊗2 is the classical r-matrix. Explicitly, the quasi-classical limit of (8) is

r3(κ),2 + r1,2 − r4(κ),1 − r2,1 + r2,1 − r4,3 ∈ U(g)⊗4 ,

where for instance r3(κ),2 = 1⊗ r2⊗ rκ1 ⊗ 1 ∈ U(g)⊗4 and the superscript κ means that the
respective action will be twisted by κ. More explicitly, the first two copies of U(g)⊗4 act
on Oκ(G) via x 7! xr, for x ∈ g, and the last two copies act via x 7! −κ∗xL. Thus, we
find that the quasi-classical limit of the commutator is the bivector field on G given by

−rL(κ),R + rR,R + r
R,L(κ)
2,1 − rL,L2,1 = ωad(κ),ad(κ) + tR,L(κ) − tL(κ),R = πκSTS ,

where we used that rR,R − rL,L2,1 = ωR,R + ωL,L.
Next, we prove the claim for two positively unlinked edges α < β. We recall that the

crossing morphism for two unlinked edges α < β is given by acting on Oκβ
ℏ (G)⊗Oκα

ℏ (G)
with

U+ = τ12,34◦(R1⊗1⊗1⊗κα.R2)(1⊗κβ.R1⊗1⊗κα.R2)(R1⊗1⊗R2⊗1)(1⊗κβ.R1⊗R2⊗1)

and we set
U+ := τ12,34 ◦ Ũ+ .

Hence, the commutator on components ϕ⊗κ∗αv ∈ Oκα
ℏ (G) and ψ⊗κ∗βw ∈ Oκβ

ℏ (G) can be
computed via

(mOκα
ℏ (G) ⊗mO

κβ
ℏ (G)

) ◦ (1− (U+)7,8,1,2)(ϕ⊗ κ∗αv ⊗ 1⊗4 ⊗ ψ ⊗ κ∗βw) .

Taking the quasi-classical limit of this action thus amounts to

1− τ(Ũ+)

ℏ
mod(ℏ) = −r3,2(κα) − r4(κβ),2(κα) − r3,1 − r4(κβ),1 ∈ U(g)⊗4 (9)

where this time the first and third copy in U(g)⊗4 act via x 7! xR and the second and the
forth copy via x 7! −κ∗xL, so that the right hand side of (9) acts on Oκα(G) ⊗ Oκβ(G)

via −rad(κα),ad(κβ)2,1 , which agrees with πα,β as claimed. Similarly, for two positively linked
edges we have

1− τ(L̃+)

ℏ
mod(ℏ) = r2(κα),3 − r4(κβ),2(κα) − r3,1 − r4(κβ),1
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and we see that in the positively linked case the 2-tensor πα,β differs from the unlinked
case by adding a term −2tL(κα),R. Lastly, for two positively nested edges we find

1− τ(Ñ+)

ℏ
mod(ℏ) = r2(κα),3 + r2(κα),4(κβ) − r3,1 − r4(κβ),1

which differs from the linked case by adding the term 2tL(κα),L(κβ), which ends the proof
for the positively unlinked, linked and nested case. The remaining three cases can be
worked out analogously.
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