
Meta-Psychology, 2024, vol 8, MP.2023.3715
https://doi.org/10.15626/MP.2023.3715
Article type: Commentary
Published under the CC-BY4.0 license

Open data: Not Applicable
Open materials: Not Applicable

Open and reproducible analysis: Not Applicable
Open reviews and editorial process: Yes

Preregistration: No

Edited by: Daniel Lakens
Reviewed by: Roman Stengelin, Erich Witte

Analysis reproduced by: Not Applicable
All supplementary files can be accessed at OSF:

https://doi.org/10.17605/OSF.IO/27NF6

Assessing rigor and impact of research software for hiring and
promotion in psychology: A comment on Gärtner et al. (2022)

Andreas M. Brandmaier1,2,3, Maximilian Ernst2,4, and Aaron Peikert2,3,5

1Department of Psychology, MSB Medical School Berlin, Berlin, Germany
2Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany

3Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
4Max Planck School of Cognition, Leipzig, Germany

5Department of Imaging Neuroscience, University College London, London, UK

Based on four principles of a more responsible research assessment in academic hiring
and promotion processes, Gärtner et al. (2022) suggested an evaluation scheme for
published manuscripts, reusable data sets, and research software. This commentary
responds to the proposed indicators for the evaluation of research software contribu-
tions in academic hiring and promotion processes. Acknowledging the significance of
research software as a critical component of modern science, we propose that an evalu-
ation scheme must emphasize the two major dimensions of rigor and impact. Generally,
we believe that research software should be recognized as valuable scientific output in
academic hiring and promotion, with the hope that this incentivizes the development
of more open and better research software.

Keywords: research software, open science, metrics, rigor, impact

Introduction

Based on four principles of a more responsible re-
search assessment in academic hiring and promotion
processes (Schönbrodt et al., 2022), Gärtner et al.
(2022) suggested a concrete evaluation scheme for pub-
lished manuscripts, reusable data sets, and research
software. We strongly support the increased emphasis
on research software as a creditable and commendable
scientific contribution. Why are research software con-
tributions important scientific contributions? We would
like to respond with a quote from the Science Code
Manifesto (Climate Code Foundation, 2011): “Software
is a cornerstone of science. Without software, twenty-
first century science would be impossible” and “soft-
ware is an essential research product, and the effort
to produce, maintain, adapt, and curate code must be
recognized.” However, despite the heavy reliance on
computational infrastructure, the current academic in-
frastructure does not adequately incentivize software
development and, specifically, good software engineer-
ing practice (Baxter et al., 2012). In line with prin-
ciple 3 of Schönbrodt et al. (2022), we suggest that
criteria for research software contributions must cap-
ture two major dimensions: rigor and impact. Impact
measures whether the scholarly effort, implementation,
and dissemination actually had a visible effect on the
field. Rigor means implementing high standards and

best practices for ensuring transparency, correctness,
and re-usability of a piece of software. By setting a high
bar of rigor in research software assessment in academic
hiring and promotion, we hope to foster the creation of
better software and, thus, better science. From this per-
spective, we comment on some indicators of the pro-
posed evaluation scheme for research software contri-
butions (Table 3 of Gärtner et al., 2022).

Proposed Criteria

ID 9: Citations and ID 5: Date of first fully functional
public version

Considering citations in relation to age of software
seems to be inconsistent with the proposal of Schön-
brodt et al. (2022), who reminded us that a core princi-
ple of the implementation of DORA is to “abandon the
use of invalid quantitative metrics of research quality
and productivity in hiring and promotion” (p.2). It is
unclear why a citation-based metric for software would
be more valid than the equivalent for articles. In fact, ci-
tations suffer from additional shortcomings when used
to evaluate the impact of research software, particu-
larly when used comparatively in the context of hir-
ing and promotion. For example, citing data analysis
packages is much more commonly accepted than cit-
ing supporting packages (such as papaja, Aust & Barth,
2022, used to render this article). Further, functional-

https://doi.org/10.15626/MP.2023.3715
https://doi.org/10.17605/OSF.IO/27NF6


2

ity of successful, modular scientific software is ideally
reused in other software packages to avoid code dupli-
cation and enable faster development of new software.
While we highly encourage reuse from both a software
engineering perspective and for scientific progress, it
challenges the validity of citation-based metrics for im-
pact. For example, consider the NLopt optimization
suite (Johnson, 2014), which counts 1,711 citations on
Google Scholar at the time of writing. NLopt is a back-
bone for many scientific packages both because it imple-
ments various optimization algorithms but also because
it is open-source and can inspire re-implementations of
these algorithms. One such example is the well-known
lme4 package (Bates et al., 2015) for generalized linear
mixed-effects models, which is partly based on NLopt.
lme4 has more than 58,000 citations on Google scholar,
yet it is unlikely that researchers will cite the underlying
optimization algorithm. For another example, the pdc
package (Brandmaier, 2015) offers functions to clus-
ter time series based on one specific algorithm. The
TSclust package (Montero & Vilar, 2014) is a wrap-
per package, which imports and makes accessible func-
tionality from the pdc package as well as various other
clustering approaches, which is very useful from a users’
perspective; however, we noticed that researchers now
cite TSclust instead of pdc.

ID 6: Date of most recent substantive update

Both ID 5 and 6 are difficult to ascertain because it
is not always clear when updates are considered ‘sub-
stantive’ or software ‘fully functional’. To assess active
maintenance as an aspect of rigor, we propose to pro-
vide a simple check box, in which the author indicates
whether a scientific software package is actively main-
tained (e.g., the software has a regular release cycle or
an update within the last six months). In addition, au-
thors have a chance to explain why their active mainte-
nance may be different from these guidelines.

ID 14: Lines of Code

We discourage the lines of code (LOC) metric to
measure effort. LOC highly depends on programming
language, mastery, and personal programming style.
In particular, many LOC may simply mean that a re-
searcher writes inefficient and repetitive code, one of
the great sins of programming. On the contrary, a fea-
ture of good software is modularity because it enables
reusing functions both inside and outside the project,
resulting in fewer LOC.

ID 7: Contributor Roles and Involvement

We support the standardized assessment of project
contributor roles, similar to the Contributor Roles Tax-
onomy (CRediT; https://credit.niso.org). However, we
like to point out that the current evaluation schemes
yields different scores for the same effort of the indi-
vidual researcher depending on the size of the software
project.

ID 8: License

At present, whether a piece of software is open source
is not evaluated at the pre-screening stage. However,
an open license is central for assessing both rigor and
(potential) impact, and should be part of the phase I
assessment. Above, we already discussed the differ-
ent ways research software can have an impact — not
only by direct usage, but also by reusing software in
other packages. Open-source software makes broader
impact more likely and is a prerequisite for full trans-
parency and reproducibility (Peikert et al., 2021). In
addition, many aspects of rigor are impossible to evalu-
ate for closed-source software — for example, whether
it is well-tested or bugs have been fixed. Giving more
weight to open licenses aligns well with the original ar-
ticle’s emphasis on open science. Therefore, we propose
to penalize software if it does not adhere to an open-
source license (those approved in a review process by
the Open Source Initiative), for example, by allowing
them only half of the total achievable points.

ID 17: Reusability Indicator

This is one of only two criteria used in the pre-
screening phase of the proposal and therefore is of cen-
tral importance. It is also important because it assesses
aspects of rigor in software development: documenta-
tion, active maintenance, and testing. However, by in-
corporating the size of the user base, it confounds us-
ability (as an aspect of rigor) with usage (as an aspect
of impact). In addition, the criteria for the different
proposed categories are not clearly defined. For exam-
ple, the difference between “fairly extensive” and “ex-
tensive” documentation is unclear. As a result, this in-
dicator is more of a “gut-feeling” indicator, roughly as-
sessing the “size” of the software project. Instead, in
the following we propose to assess rigor and impact in-
dependently as primary aspects of a software contribu-
tion.

Assessing Rigor

We propose to use the following aspects as equally
weighted indicators of rigor instead of the proposed

https://credit.niso.org
https://opensource.org/licenses


3

broader re-usability indicator (item 17 in Table 3 of the
proposal).

Tests

Tests are essential to discover incorrect functional-
ity, investigate code scalability and reveal poor design
choices. There are a variety of useful tests, such as unit
tests of sub components or tests of software functional-
ity at a larger scale (e.g., see the testthat package in
R, Wickham, 2011). It is possible to quantify aspects
of software testing, for example, by assessing code cov-
erage, defined as the percentage of code lines executed
during testing. However, we believe that we should give
points for software that promises that major functional-
ity is covered by tests. Those tests should be automated
or at least open-source and reproducible.

Documentation

Just like for tests, there are different types of docu-
mentation. For example, tutorials showcase software
usage with examples, and there is application pro-
gramming interface (API) documentation for individ-
ual functions and classes to enable reusing functions in
other software packages. We propose to identify rele-
vant categories of documentation for research software,
e.g., installation instructions, tutorials, API, and com-
munity guidelines (also see https://joss.readthedocs.io/
en/latest/review_checklist.html), and score the pres-
ence of each of them separately.

Maintenance

Maintaining a software package is often more work
than writing it. This should be reflected in the as-
sessment procedure. We propose to score two aspects
of maintenance separately, maintaining the code base
(such as active bug fixing and documenting changes in
logs) and maintaining the community (such as provid-
ing the possibility to report bugs, feature requests, or
support requests via tickets or mailing lists).

Measuring Impact

Total citation metrics, number of users, downloads
per month, GitHub stars and similar may provide a
coarse measure for the impact of a software package,
even though it is important to note the shortcomings
we described above.

We believe that the suggested merit statement is most
useful to assess impact of research software and that
this should be the primary statement for committee
members to evaluate if they are less concerned with the
technical aspects of research software development. In
our view, researchers should be requested to indicate

at least one (and up to three) research projects that di-
rectly benefited from their software contributions. In
case of recently published research software, the merit
statement can be used alternatively to describe expected
benefits to the field or potential use-cases of the soft-
ware. We believe this to be a fair assessment of the
actual impact the specific contribution of the individual
researcher had.

Summary

In sum, we are thankful to Gärtner et al. (2022) for
highlighting the importance of research software con-
tributions as scientifically valuable products. We be-
lieve the current proposal should aim to better reflect
the distinction between rigor and impact for software,
similar to the guidelines proposed to evaluate journal
articles. To this end, we suggest a more fine-grained as-
sessment of rigor, and put emphasis on the merit state-
ment, in which software authors should argue in how
far their project impacted other scientific endeavors.
Last, we hope to arrive at an evaluation scheme that
incentivizes the development of open-source research
software. Note that the requirements of a given aca-
demic position should guide the weighting of research
software when evaluating and selecting candidates. In
some cases, research software development may be cen-
tral to a position and, therefore, a requirement (such as
when hiring professors of statistics or research meth-
ods), but in other cases, we hope that research soft-
ware development activities at least are considered as
research output comparable to published papers.

Author Contact

Correspondence concerning this article should be
addressed to Andreas M. Brandmaier, Rüdesheimer
Str. 50, 14197 Berlin. E-mail: andreas.brandmaier@
medicalschool-berlin.de

Conflict of Interest and Funding

We have no conflict of interest to declare. There was
no specific funding for this research.

Author Contributions

The authors made the following contributions. An-
dreas M. Brandmaier : Conceptualization, Writing -
Original Draft Preparation, Writing - Review & Edit-
ing, Supervision; Maximilian Ernst : Conceptualization,
Writing - Original Draft Preparation, Writing - Review
& Editing; Aaron Peikert : Conceptualization, Writing -
Original Draft Preparation, Writing - Review & Editing.

https://joss.readthedocs.io/en/latest/review_checklist.html
https://joss.readthedocs.io/en/latest/review_checklist.html
mailto:andreas.brandmaier@medicalschool-berlin.de
mailto:andreas.brandmaier@medicalschool-berlin.de


4

Open Science Practices

This article is a commentary and is not eligible for
the Open Science badges. The entire editorial process,
including the open reviews, is published in the online
supplement. All source code to reproduce this article
can be found here.

References

Aust, F., & Barth, M. (2022). papaja: Prepare repro-
ducible APA journal articles with R Markdown [R
package version 0.1.1]. https ://github .com/
crsh/papaja

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015).
Fitting linear mixed-effects models using lme4.
Journal of Statistical Software, 67(1), 1–48.
https://doi.org/10.18637/jss.v067.i01

Baxter, R., Hong, N. C., Gorissen, D., Hetherington, J.,
& Todorov, I. (2012). The research software en-
gineer. Digital Research Conference, Oxford, 1–3.

Brandmaier, A. M. (2015). pdc: An R package for
complexity-based clustering of time series.
Journal of Statistical Software, 67(5), 1–23.
https://doi.org/10.18637/jss.v067.i05

Climate Code Foundation. (2011). Science
code manifesto. http : / / web . archive .
org / web / 20201112032938 / http : / /
sciencecodemanifesto.org/

Gärtner, A., Leising, D., & Schönbrodt, F. (2022). Re-
sponsible research assessment II: A specific pro-
posal for hiring and promotion in psychology
[PsychArchives]. https://doi .org/10.23668/
psycharchives.8162

Johnson, S. G. (2014). The NLopt nonlinear-
optimization package. https : / / github . com /
stevengj/nlopt

Montero, P., & Vilar, J. A. (2014). TSclust: An R package
for time series clustering. Journal of Statistical
Software, 62(1), 1–43. http ://www. jstatsoft .
org/v62/i01/

Peikert, A., Van Lissa, C. J., & Brandmaier, A. M. (2021).
Reproducible research in R: A tutorial on how
to do the same thing more than once. Psych,
3(4), 836–867.

Schönbrodt, F., Gärtner, A., Frank, M., Gollwitzer, M.,
Ihle, M., Mischkowski, D., Phan, L. V., Schmitt,
M., Scheel, A. M., Schubert, A.-L., Steinberg, U.,
& Leising, D. (2022). Responsible research as-
sessment I: Implementing DORA for hiring and
promotion in psychology [PsychArchives]. https:
//doi.org/10.23668/psycharchives.8162

Wickham, H. (2011). Testthat: Get started with test-
ing. The R Journal, 3, 5–10. https://journal.r-
project.org/archive/2011-1/RJournal_2011-
1_Wickham.pdf

https://github.com/brandmaier/research_software_evaluation
https://github.com/crsh/papaja
https://github.com/crsh/papaja
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i05
http://web.archive.org/web/20201112032938/http://sciencecodemanifesto.org/
http://web.archive.org/web/20201112032938/http://sciencecodemanifesto.org/
http://web.archive.org/web/20201112032938/http://sciencecodemanifesto.org/
https://doi.org/10.23668/psycharchives.8162
https://doi.org/10.23668/psycharchives.8162
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
http://www.jstatsoft.org/v62/i01/
http://www.jstatsoft.org/v62/i01/
https://doi.org/10.23668/psycharchives.8162
https://doi.org/10.23668/psycharchives.8162
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf

	Introduction
	Proposed Criteria
	ID 9: Citations and ID 5: Date of first fully functional public version
	ID 6: Date of most recent substantive update
	ID 14: Lines of Code
	ID 7: Contributor Roles and Involvement
	ID 8: License
	ID 17: Reusability Indicator

	Assessing Rigor
	Tests
	Documentation
	Maintenance

	Measuring Impact
	Summary
	Author Contact
	Conflict of Interest and Funding
	Author Contributions
	Open Science Practices


