
 

Supplementary Material 

 

Intra- and Interbrain Synchrony of Guitarist Quartet and Audience 

during a Concert 

Viktor Müller and Ulman Lindenberger 



2 

 

The program of the concert 

Piece of music       Composer 

 

Aragonaise       Georges Bizet 

Libertango       Astor Piazolla 

Merry christmas Mr. Laurence    Ryuichi Sakamoto 

Baiao de Gude      Paulo Bellinati 

Comme un Tango      Patrick Roux 

Dredlocked       Andrew York 

Five piezas artesanales     Maximo Diego Pujol 

Mediodia en Belgrano 

Alguna calle gris 

Plaza Miserere 

Tangazo a medianoche 

Un domigo en La Boca 

Danza Ritual del Fuego     Manuel De Falla 

Säbeltanz (Bonus)       Aram Chatschaturjan 

 

For a better idea of the performance, see Supplementary Video 1. 

For dynamic changes of the community structure in real time, see Supplementary Video 2. 

The three pieces of music analyzed in the study are available online as audio files (MP3). 

The time stamps of SOIs in the three pieces of music (M1, M2, and M3) in the MP3 files:  

M1/SOI1: 0:44-1:04; M1/SOI2: 1:05-1:25; M1/SOI3: 1:34-1:54. 

M2/SOI1: 0:01-0:21; M2/SOI2: 0:22-0:42; M2/SOI3: 3:40-4:00. 

M3/SOI1: 0:02-0:22; M3/SOI2: 0:26-0:46; M3/SOI3: 1:41-2:01. 
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Network construction and network topology measures 

Threshold determination and network costs 

In order to remove noisy or spurious connectivity links and emphasize key topological 

properties of the network, a threshold has to be applied to the connectivity matrix. In general, 

the choice of a threshold plays an important and non-trivial role in network construction, but 

is necessarily always arbitrary. At least two issues appear important for the network 

construction: (i) the connectivity measures should not occur by chance, and (ii) the networks 

changing in time should have the same connection density (similar number of links), 

providing a high sparsity level and economical network properties. In order to fulfill these two 

criteria, we first generated surrogate data through (i) creation of Gaussian white noise (cf.1) 

and (ii) a random permutation of the phase of the signals (“phase shuffling”).  

We first generated 224 20-s white noise signals, band-pass filtered them in the four 

frequency ranges (delta, theta, alpha, and beta), extracted the phase of the signals using the 

fast Hilbert transform, and then calculated the Phases Synchronization Index (PSI) using 

moving window approach between all possible channel pairs (24976) across 91 time 

windows. We first averaged these synchronization indices across the time widows and then 

calculated a mean (M) and standard deviation (SD) across the channel pairs, to determine the 

threshold as M + 2 SD. The same procedure was carried out with a real dataset, where the 

phases were shuffled and transformed back to the time domain using the inverse Fourier 

transform. In this way, we generate surrogate data with the same power spectrum as the real 

data but with a different time course. The M, SD, and thresholds determined as M + 2 SD for 

PSI in the four frequency bands with regard to the two types of surrogate data are presented in 

Table S1. It can be seen that PSI for phase-shuffled (PS) surrogate data was mostly higher 

than that for white noise (WN) surrogate data, and synchronization indices for real data (RD) 

are significantly higher than that for surrogate date (WN and PS). We then used the thresholds 

determined for PS surrogate data, as more conservative ones, and determined the costs of all 
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sets of RD that were analyzed in the study at the given threshold levels. The wiring costs (K) 

were calculated as the ratio of the number of actual connections (Nnetwork) divided by the 

maximum possible number of connections in the network:  

%100
)1(





NN

N
K network . 

The result of this analysis is presented in Figure S2. It can be seen that the lowest cost level 

amounts to 20%. We therefore set the cost level for network analyses to this cost level that 

fulfills both our criteria, that is, the connectivity measures do not occur by chance and it 

corresponds to a high sparsity level providing economical network properties. This allowed a 

more accurate examination of the network topology in the different musical pieces and 

sequences. 

Calculation of the graph-theoretical approach (GTA) measures 

Network strengths. As PSI is a weighted symmetric measure, we obtained the node’s 

strength (
w

iS ) as the sum of weights of all connections ( ijw ) to node i: 





Nj
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w
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Strengths were determined for each node i separately for within-brain (SwB) and between-

brain (SbB) connections. For the common hyperbrain network (HBN) analysis, SbB were 

determined in the whole HBN including all connections between the guitarist and audience 

participants with regard to the particular node i. 

Clustering coefficient (CC) and characteristic path length (CPL). If the nearest 

neighbors of a node are also directly connected to each other, they form a cluster. For an 

individual node i, the 
w

iCC is defined as the proportion of the number of pairs of i's neighbors 

that are connected to the total number of pairs of i's neighbors. In the case of a weighted 

undirected graph, the mean CC is calculated by the formula:2 
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where 
w

iCC  is the weighted CC of the node i, N is the number of nodes in the network, ki is 

the degree of the node i, and the weights jhihij www


 have been scaled relative to the 

maximum edge weight in the network, such that )max(/ www ijij 


. The CC measures the 

clustering or cliquishness of a typical neighborhood and is thus a measure of network 

segregation. 

Another important measure is the CPL. In the case of an unweighted graph, the shortest 

path length or distance dij between two nodes i and j is the minimal number of edges that have 

to be passed to go from i to j. This is also called the geodesic path between the nodes i and j. 

For the weighted graph, the CLP is the weighted mean of the path lengths between all 

possible pairs of vertices:3 
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where iL  is the average shortest path length from node i to all other nodes; the distance 
w

ijd  

between two nodes i and j was calculated by remapping it to 1 – wij instead of the reciprocal 

of the edge weights (1/wij) to avoid the infinity problem if there is no path between any two 

nodes. CPL shows the degree of network integration, with a short CPL indicating higher 

network integration.  

Global (Eglobal) and local (Elocal) efficiency. Global efficiency (Eglobal) is defined as the 

average inverse shortest path length and is calculated as follows:4 
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where 
w

inodalE )(  is nodal efficiency of the node i determined as the normalized sum of the 

reciprocal of the shortest path length from a given node to all other nodes in the network. 
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Note that the distance 
w

ijd  between two nodes i and j in this case was calculated by remapping 

to the reciprocal of the edge weights (1/wij), because the reciprocal of the path length between 

disconnected nodes is zero (the inverse of infinity) and thus the harmonic mean is necessarily 

finite (cf.5). Like CPL, Eglobal is a measure of the integration of a network, but CPL is 

primarily influenced by long paths, whereas Eglobal is primarily influenced by short ones.  

Local efficiency (Elocal) is similar to the CC and is calculated as the harmonic mean of 

neighbor-neighbor distances:4 
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where 
iGN is the number of nodes in subgraph Gi , comprising all nodes that are immediate 

neighbors of the node i (excluding the node i itself), and 
w

ilocalE )(  is local efficiency of the node 

i determined as the reciprocal of the shortest path length between neighbors j and h. Thus, 

Elocal of node i is defined with respect to the subgraph comprising all of i’s neighbors, after 

removal of node i and its incident edges.4 Like CC, Elocal is a measure of the segregation of a 

network, indicating efficiency of information transfer in the immediate neighborhood of each 

node and showing how fault-tolerant the system is. 

All GTA measures described here were first determined for each of the nodes in the 

network and then averaged for specific brain regions and participant. Therefore, N in the 

formulas denotes the number of nodes in this specific sets or subunits in the network.  

Modularity analysis and community structure determination 

Modularity analysis was applied to detect optimized community structures or modules.6,7 For 

this calculation, the modularity optimization method for weighted networks as implemented 

in the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/) was used.8 The 

optimal community structure is a subdivision of the network or graph into non-overlapping 

groups of nodes in a way that maximizes the number of within-module edges, and minimizes 

https://sites.google.com/site/bctnet/
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the number of between-module edges. The modularity (Mw) is a statistic that quantifies the 

degree to which the network may be subdivided into such clearly delineated groups or 

modules. For weighted networks, it is given by the formula:6 
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where 
wl  is the total number of weights in the network, N is the total number of nodes in the 

network, ijw  are connection weights, w

ik  and 
w

jk  are weighted degrees or strengths of the 

nodes, mi is the module containing node i, and 
ji mm ,  is the Kronecker delta, where 

ji mm , = 1 

if mi = mj, and 0 otherwise. High modularity values indicate the strong separation of the nodes 

into modules. Mw = 0 if nodes are randomly placed into modules or if all nodes belong to the 

same cluster, values around 0.3 or more usually indicate good divisions, and the maximum 

possible value of Mw is 1.6  

To investigate the dynamic changes of modular structures across time, we used 

normalized mutual information (MI), which measures the similarity between two partitions 

and is given by the formula:9 

,
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YXMI   

where I(X, Y) denotes the mutual information between X and Y, and H(X) and H(Y) denote the 

entropy of X and Y, respectively. 

Calculation of Granger Causality 

To investigate the causal associations between guitar sounds and brain dynamics of the 

guitarists and audience, we used multivariate Granger Causality (GC) based on MultiVariate 

AutoRegressive (MVAR) modeling. GC in its original formulation is a bivariate concept but 

it could be extended to multivariate one (cf.10). Giving two time series x1 and x2, the model 
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considered by Granger11 assumes that x1(t) and x2(t), with t = 1, … , T, are represented by an 

univariate AR model of order p as:  
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where the prediction error for a time series depends only on its own past, and by a bivariate 

ARX model as: 
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where the prediction error depends on the past of the both signals. This model can also be 

extended to Q signals x1, x2, … , xQ:10 




























































)(

)(

)(

)(

)(

)( 1

1

11

tw

tw

ktx

ktx

A

tx

tx

Q

p

k

Q

k

Q

  

with 

























)()(

)(

)()()(

.1.

.

.12.11.1

kaka

ka

kakaka

A

QQQ

mn

Q

k











. 

Ak is the matrix of autoregressive coefficients for the kth time lag evaluating linear interaction 

of xm(t-k) on xn(t), while p is the model order that gives the maximum number of time lags. 

In the case of the bivariate Granger Causality, the unbiased variance of prediction error 


22 |xx

 for the univariate AR model is given by:  
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and the unbiased variance of prediction error 
122 | xxx

 for the bivariate ARX model could be 

determined as: 
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where 

22 |xx
RSS  and 

122 | xxx
RSS  are the residual sums of squares in the corresponding models.  

If X1 causes X2 in the Granger sense, then 
122 | xxx

 must be smaller than 
22 |xx

. The level of 

linear causality is then estimated by 
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In the multivariate case, the causality from xm to xn could be obtained in analog way as
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where 
Qn xxx

RSS
...|

1

 is the residual sum of squares for a variable xn in the model involving all 

variables, and 






Qmmn xxxxx
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 is the one for the same model involving all variables except 

xm. 

Statistical evaluation of the multivariate GC was performed by the Fisher’s test:10 
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with df1 = p and df2 = ( QpT  ). 
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Supplementary Table and Supplementary Figures 

Table S1 

Mean (M) and standard deviation (SD) of Phase Synchronization Index (PSI) values for white 

noise (WN) and phase-shuffled (PS) surrogate data, and for real data (RD) in the four 

frequency bands 

 

  WN   PS   RD t-value 

 M SD M+2SD M SD M+2SD M SD RD>PS 

delta 0.265 0.035 0.335 0.305 0.043 0.391 0.347 0.118 54.4*** 

theta 0.249 0.033 0.315 0.249 0.034 0.317 0.288 0.129 46.9*** 

alpha 0.204 0.028 0.260 0.210 0.030 0.270 0.240 0.131 37.0*** 

beta 0.126 0.017 0.160 0.130 0.018 0.166 0.177 0.150 49.7*** 

WN, White Noise; PS, phase-shuffled; RD, real data; PSI, Phase Synchronization Index; M + 

2SD indicates network threshold for the two types of surrogate data; t-values were calculated 

between RD and PS surrogate data; ***, P < 0.0001.  

 

 

 

 

 

 

Figure S1. Scene of the concert with a quartet of guitarists and audience.  
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Figure S2. Real and surrogate data and network connectivity costs. (A) Box plots for real 

and surrogate data across the four frequency bands. For this representation, the Phase 

Synchronization Index (PSI) values were first averaged across the time windows for each of 

the network connections. (B) Network connectivity or wiring costs across the different time 

windows. For this representation, the hyperbrain networks (HBNs) of all real data 

investigated in the study were constructed by using the threshold determined as the mean + 

two standard deviations (SDs) of phase-shuffled surrogate data and then HBN costs were 

calculated for all the data at the four frequency bands across the 91 time windows. The results 

of these calculations are presented on the left. On the right, the average costs + two SDs are 

displayed. They are all higher than 20%. WN, white noise surrogate data; PS, phase-shuffled 

surrogate data; RD, real data; ***, P < 0.001. 
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Figure S3. ANOVA results for the dual HBN indices in the theta frequency band. Main 

effects of the factors Group (Q-Q, Q-P, and P-P) and Condition (MU vs. AP) and their 

interaction are presented as box plots. SwB, strength within brains; CC, clustering coefficient; 

CPL, characteristic path length; Elocal, local efficiency; Eglobal, global efficiency; Q-Q, quartet-

quartet dual networks; Q-P, quartet-public dual networks; P-P, public-public dual networks; 

MU, music condition; AP, applause; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Figure S4. ANOVA results for the dual HBN indices in the alpha frequency band. Main 

effects of the factors Group (Q-Q, Q-P, and P-P) and Condition (MU vs. AP) and their 

interaction are presented as box plots. SwB, strength within brains; CC, clustering coefficient; 

CPL, characteristic path length; Elocal, local efficiency; Eglobal, global efficiency; Q-Q, quartet-

quartet dual networks; Q-P, quartet-public dual networks; P-P, public-public dual networks; 

MU, music condition; AP, applause; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Figure S5. ANOVA results for the dual HBN indices in the beta frequency band. Main 

effects of the factors Group (Q-Q, Q-P, and P-P) and Condition (MU vs. AP) and their 

interaction are presented in a form of the box plots. SwB, strength within brains; CC, 

clustering coefficient; CPL, characteristic path length; Elocal, local efficiency; Eglobal, global 

efficiency; Q-Q, quartet-quartet dual networks; Q-P, quartet-public dual networks; P-P, 

public-public dual networks; MU, music condition; AP, applause; *, P < 0.05; **, P < 0.01; 

***, P < 0.001. 
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Figure S6. Linear and causal relationships between MSD and NTD indices for the music 

piece 1. (A) Linear relationships indicated by Pearson’s product correlation. (B) Causal 

relationships indicated by multivariate Granger causality. The relationships are presented in 

form of matrices or heatmaps and circular connectivity maps. In the connectivity maps, the 

four red circles or nodes represent the four guitar sounds, the four green circles represent the 

four guitarists’ brains, and the four blue circles represent the four audience members’ brains. 

The linear relationships are symmetric and the causal relationships are asymmetric. The 

direction of the links is coded by color. Note that the links in causal connectivity maps are 

either unidirectional or bidirectional. 
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Figure S7. Linear and causal relationships between MSD and NTD indices for the music 

piece 2. (A) Linear relationships indicated by Pearson’s product correlation. (B) Causal 

relationships indicated by multivariate Granger causality. The relationships are presented in 

form of matrices or heatmaps and circular connectivity maps. In the connectivity maps, the 

four red circles or nodes represent the four guitar sounds, the four green circles represent the 

four guitarists’ brains, and the four blue circles represent the four audience members’ brains. 

The linear relationships are symmetric and the causal relationships are asymmetric. The 

direction of the links is coded by color. Note that the links in causal connectivity maps are 

either unidirectional or bidirectional. 
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Figure S8. Linear and causal relationships between MSD and NTD indices for the music 

piece 3. (A) Linear relationships indicated by Pearson’s product correlation. (B) Causal 

relationships indicated by multivariate Granger causality. The relationships are presented in 

form of matrices or heatmaps and circular connectivity maps. In the connectivity maps, the 

four red circles or nodes represent the four guitar sounds, the four green circles represent the 

four guitarists’ brains, and the four blue circles represent the four audience members’ brains. 

The linear relationships are symmetric and the causal relationships are asymmetric. The 

direction of the links is coded by color. Note that the links in causal connectivity maps are 

either unidirectional or bidirectional. 

 


