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We investigate the Yang-Lee singularity in BCS superconductivity, and find that the zeros of the partition func-
tion accumulate on the boundary of a quantum phase transition, which is accompanied by nonunitary quantum
critical phenomena. By applying the renormalization-group analysis, we show that Yang-Lee zeros distribute
on a semicircle in the complex plane of interaction strength for general marginally interacting systems.

Introduction.—Yang-Lee zeros [1, 2] are the zero points
of the partition function and provide key properties of phase
transitions, such as critical exponents [3, 4]. Yang and Lee
showed [1, 2] that zeros of the partition function of the classi-
cal ferromagnetic Ising model distribute on a unit circle in the
complex plane of fugacity under an imaginary magnetic field
[5–8]. The thermal phase transition between the paramagnetic
and ferromagnetic phases occurs when the distribution of ze-
ros touches the positive real axis. The Yang-Lee zeros are also
related to singularities in thermodynamic quantities accompa-
nied by anomalous scaling laws [4, 9–13]. This type of critical
phenomena is collectively known as the Yang-Lee singularity,
which is also investigated in quantum models [14–20].

The Bardeen-Cooper-Schrieffer (BCS) model of supercon-
ductivity [21] has played a pivotal role in a wide range of
many-body fermionic systems. At absolute zero, there is a
quantum phase transition between the superconducting and
normal phases. At the transition, an essential singularity arises
which leads to non-analyticity in thermodynamic quantities,
such as the superconducting gap [21]: ∆ ∝ exp(− 1

ρU ), where
ρ is the density of states and U is the strength of attarctive in-
teraction (see below). A question of fundamental importance
in statistical physics is how to understand the superconducting
phase transition in terms of Yang-Lee zeros.

In this Letter, we develop a theory of Yang-Lee zeros and
Yang-Lee singularity in BCS superconductivity. On the ba-
sis of a non-Hermitian BCS model [22], we demonstrate that
the Yang-Lee zeros distribute on the critical line of the quan-
tum phase transition on the complex plane of the interaction
strength. In contrast to a previous study [15] on Fisher zeros
in pairing fields at complex temperature, we extend the inter-
action strength to a complex regime at absolute zero.

Furthermore, we find that the BCS model exhibits nonuni-
tary quantum critical phenomena on the complex plane of the
interaction strength which are induced by the square-root-like
excitation spectrum near the exceptional points. We observe
that the critical phenomena take place near the phase bound-
ary where Yang-Lee zeros distribute and determine the criti-
cal exponents to construct the Yang-Lee universality class of
BCS superconductivity. By defining a critical exponent from
χ ∝ (∆E)φ where χ is the order of Yang-Lee zeros and ∆E
is the condensation energy [23], we show that the condensa-

tion energy on the real axis can be found from the order of
Yang-Lee zeros on the upper half of the complex plane.

To illustrate the universality of nonunitary critical phenom-
ena and the distribution of Yang-Lee zeros, we develop a
renormalization-group (RG) theory for general complex in-
tearction strength. In particular, we show that the Yang-Lee
zeros take place on a semicircle in the complex plane, in sharp
contrast to the original Lee-Yang circle theorem [1, 2]. Our
RG theory also confirms the validity of mean-field results for
the non-Hermitian BCS model.

Yang-Lee Singularity in Superconductivity.—To analyze
the Yang-Lee singularity in BCS superconductivity, we con-
sider a three-dimensional non-Hermitian BCS model [22]

H =
∑
kσ

ξkc
†
kσckσ −

U

N

∑
k,k′

′
c†k↑c

†
−k↓c−k′↓ck′↑, (1)

where ξk = εk − µ is the single-particle energy measured
from the chemical potential µ, σ =↑, ↓ denotes the spin
index and U = UR + iUI is the complex-valued inter-
action strength [24]. The creation and annihilation opera-
tors of an electron with momentum k and spin σ are de-
noted as c†kσ and ckσ , respectively. The prime in

∑′

k indi-
cates that the sum over k is restricted to |ξk| < ωD where
ωD is the energy cutoff and N is the the number of mo-
menta within this cutoff. We focus on the superconducting
quantum phase transition at absolute zero, and use the com-
plex interaction strength to find Yang-Lee zeros. In Ref.
[22], a mean-field theory of the non-Hermitian BCS model
(1) is developed. By applying the mean-field theory, the
BCS Hamiltonian is given by HMF =

∑
kσ ξkc

†
kσckσ +∑′

k[∆̄0c−k↓ck↑ + ∆0c
†
k↑c
†
−k↓] + N

U ∆̄0∆0, where the super-

conducting gaps are ∆0 = − U
N

∑′

kL〈c−k↓ck↑〉R and ∆̄0 =

− U
N

∑′

kL〈c
†
k↑c
†
−k↓〉R. Here L〈A〉R := L〈BCS|A|BCS〉R,

and |BCS〉R and |BCS〉L are the right and left ground states
of the Hamiltonian HMF given by [22]

|BCS〉R =
∏
k

(uk + vkc
†
k↑c
†
−k↓)|0〉, (2)

|BCS〉L =
∏
k

(u∗k + v̄∗kc
†
k↑c
†
−k↓)|0〉, (3)
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where |0〉 is the vacuum for electrons and uk, vk and v̄k
are complex coefficients subject to the normalization condi-
tion u2

k + vkv̄k = 1. These coefficients can be determined
in a standard manner and given in Supplemental Material
[25]. Since the right and left ground states are not the same,
∆0 6= ∆̄∗0 and v̄k 6= v∗k in general. Here we choose a gauge
such that ∆0 = ∆̄0 and the Bogoliubov energy spectrum Ek

is then given by [22]

Ek =
√
ξ2
k + ∆2

k , (4)

where ∆k = ∆0θ(ωD − |ξk|) with θ(x) being the Heaviside
step function. It is worthwhile to note that ∆0 is complex in
general, so is the energy Ek. In the following, we assume that
the density of states ρ0 in the energy shell is a constant. The
gap ∆0 is then given by

∆0 =
ωD

sinh
(

1
ρ0U

) . (5)

The phase boundary of the model is determined by the condi-
tion Re∆0 = 0 [22]. The phase boundary is given by

(ρ0πUR)2 + (ρ0πUI − 1)2 = 1, UR > 0, (6)

which coincides with the exceptional points whereHMF is not
diagonalizable [22]. The partition function is given by

Z =
∏
k

(1 + e−βEk), (7)

whose absolute value is shown in Fig. 1. The Yang-Lee zeros
of our system are given by the zero points of Eq. (7) where
Re(Ek) = 0 and Im(βEk) = (2n + 1)π, n ∈ Z. This con-
dition is satisfied in the thermodynamic limit if Re∆0 = 0,
which agrees with the condition for a quantum phase transi-
tion. Hence, at absolute zero, Yang-Lee zeros distribute on the
phase boundary (6). As shown below, thermodynamic quan-
tities and correlation functions exhibit critical behavior on the
phase boundary. We call these critical phenomena collectively
as Yang-Lee singularity.

Here we investigate the quantum phase transition in BCS
superconductivity in contrast to the original Yang-Lee the-
ory [1, 2] on classical models. In the present case the phase
boundary touches the real axis at the phase transition between
superconducting and normal phases. However, each point on
the phase boundary stands for an individual phase transition,
which is in sharp contrast with the Yang-Lee edge singular-
ity at the edge of the distribution of Yang-Lee zeros [4]. We
can see that criticality shows up at each point on the phase
boundary not only at the edge on the real axis.

Correlation Function and Critical Exponents.—We exam-
ine the critical behavior of physical quantities to determine the
critical exponents and the universality class of the Yang-Lee
singularity. We first consider the correlation function

C(x) = L〈c†σ(x)cσ(0)〉R
:=L 〈BCS|c†σ(x)cσ(0)|BCS〉R. (8)

FIG. 1. Absolute value of the partition function Z of the three-
dimensional BCS model as a function of the real and imaginary parts
of the interaction strength U = UR + iUI in the zero-temperature
limit. The boundary along which the partition function vanishes is
indeed given by the critical line (6). In the shaded region inside the
phase boundary, the value of the partition function is not shown due
to the breakdown of the mean-field approximation [22].

We calculate the correlation function by considerting its
Fourier transformation, which can be written as

C(x) ' − 1

N

∑
k

′ ξk
2Ek

eik·x. (9)

Here we restrict the sum over k to the energy shell since
we are concerned with the long-range behaviour of the cor-
relation function. We expand ξk near the Fermi surface as
ξk = vF (k − kF ), where vF is the Fermi velocity, kF is the
Fermi momentum and k = |k|. On the phase boundary (6),
this correlation function (9) shows a power-law decay as

lim
x→∞

C(x) ' A(l)

l3/2
+ i

B(l)

l3/2
∝ x−3/2, (10)

where x = |x|, l := Im∆0

vF
x is a dimensionless length scale

and A(l) and B(l) are real functions that oscillate with l with-
out decay (see Supplemental Material [25] for details). The
anomalous power of 3

2 is to be contrast with the power of 2 for
the normal-metal phase [26] and attributed to the exceptional
points of the system. When the gap closes at the exceptional
points, the dispersion relation near the Fermi surface is given
by

Ek '
√
v2
F k

2 − (Im∆0)2. (11)

Near the exceptional points kE := Im∆0

vF
, the dispersion rela-

tion reduces to Ek ∼
√
k − kE , which makes a sharp con-

trast with the Hermitian counterpart having a linear excitation
spectrum near a gapless point. It is this square-root excitation
spectrum that induces the anomalous decay of the correlation
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function on the phase boundary. From the correlation func-
tion (10), we find the anomalous dimension η = 1/2 from
C(x) ∝ xD−2+η on the phase boundary where D is the di-
mension of the system [26].

The correlation function decays exponentially near the
phase boundary. If we shift U by an infinitesimal amount δU
along the real axis from the phase boundary, the correlation
function can also be calculated from Eq. (9), giving

lim
x→∞

C(x) ∝ (A(l) + iB(l))
exp(− l

ξ )

l3/2
, (12)

where the correlation length ξ ∝ (ρ0δU)−1 diverges on the
phase boundary, and hence we obtain the critical exponent
ν = 1 from ξ ∝ (δU)−ν [26] (see Supplemental Material
[25] for the derivation). Near the phase boundary, the dynam-
ical critical exponent z is defined as

Re∆0 ∝ ξ−z. (13)

From the expression of ∆0 in Eq.(5), we find that Re∆0 ∝
ξ−1 ∝ δU . Therefore, we have z = 1.

We note that the correlation length in the Hermitian case
takes the form of

ξ ∝ exp(
1

ρ0δU
). (14)

This behavior is quite different from that of the quantum phase
transition in the non-Hermitian case since ξ−1 in Eq. (14) can-
not be expanded as a power series of ρ0δU , which indicates
that the exceptional points lead to a completely different uni-
versality class in the non-Hermitian system.

We define a new critical exponent that relates the condensa-
tion energy to the order χ of Yang-Lee zeros, which is defined
as the number of n ∈ Z satisfying the relation Im(βEk) =
(2n+ 1)π under the zero-temperature limit β →∞:

χ/β ' Im(∆0)

π
=

ωD

πcosh( UR
ρ0|U |2 )

. (15)

On the phase boundary, the condensation energy ∆E takes the
form of

∆E =
N∆2

0

U
−N

ˆ ωD

−ωD
dξkρ0

(√
ξ2
k + ∆2

0 − |ξk|
)

= Nρ0ω
2
D

1− 1

2

sinh
(

2UR
ρ0|U |2

)
cosh2

(
UR

ρ0|U |2

)
 . (16)

Near U = 0, χ is related to ∆E as

χ/β ∝ (∆E)1/2. (17)

It follows from Eq. (17) that the critical exponent φ defined
from χ/β ∝ (∆E)φ is given by 1/2. We note that the power-
law behavior of the condensation energy is characterized by

the order χ rather than the density of Yang-Lee zeros used
in Ref. [4]. Since the phase boundary is tangent to the real
axis, we can approximately use the condensation energy on
the phase boundary near U = 0 to represent the condensation
energy on the positive real axis close to the origin. Therefore,
with Eq. (17), we can relate the order of Yang-Lee zeros χ on
the complex plane to the value of condensation energy on the
real axis.

Next, we consider the pair correlation function

ρ2(r1σ1, r2σ2; r′1σ
′
1, r
′
2σ
′
2)

= L〈c†σ1
(r1)c†σ2

(r2)cσ′
2
(r′2)cσ′

1
(r′1)〉R, (18)

where (r1σ1, r2σ2) and (r′1σ
′
1, r
′
2σ
′
2) are the positions and

spins of electrons that form the Cooper pairs. By setting r1 =
r2 = R and r′1 = r′ = 0 and taking the limit |R| → ∞,
we find that the pair correlation function ρ2 converges to a
nonzero value on the phase boundary as

lim
R→∞

ρ2(R ↑,R ↓; 0 ↓, 0 ↑) = − (Im∆0)2

U2
6= 0. (19)

This non-vanishing pair correlation function is characteritic of
nonunitary critical phenomena, where the correlation function
of the order parameter may diverge at long distance [4]. We
can also use the expression (19) to define the critical exponent
δ as

lim
R→∞

ρ2(R ↑,R ↓; 0 ↓, 0 ↑) ∝ |R|−δ. (20)

We have δ = 0 here, which is also unique to the nonunitary
critical phenomena.

The compressibility also shows critical behavior at the
Yang-Lee singularity. By analyzing the compressibility κ =
∂2F
∂µ2 near the phase boundary where F = −(1/β) logZ is the
free energy of the Bogoliubov quasiparticles, we have

κ = −N
ˆ ωD

−ωD
ρ0dξk

∆2
0

(ξ2
k + ∆2

0)3/2
. (21)

On the phase boundary (6), the compressibility κ diverges.
Therefore, we define another critical exponent ζ near the
phase boundary as

κ ∝ (δU)−ζ , (22)

with ζ = 1/2 in this system. This critical behaviour also
arises from the square-root-like dispersion relation near the
exceptional points. In fact, the critical exponents η and ζ
coincide for a general fractional-power dispersion relation
(k − kE)1/n, which includes the case of higher-order excep-
tional points [25].

Renormalization Group Analysis.— The celebrated Lee-
Yang circle theorem [2] states that the Yang-Lee zeros of the
classical Ising model distribute on a unit circle in the complex
plane. Here we show that the observed semicircular distribu-
tion (6) of the Yang-Lee zeros of the BCS model is generic
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and universal. To see this, we consider a general canonical
RG equation for a marginal complex interaction:

dV

dt
= aV 2 + bV 3, (23)

where V = VR+iVI ∈ C is a dimensionless coupling strength
which can be taken as V = ρ0U in the present case, and dt =
−dΞ

Ξ is the relative width of the high-energy shell which is
to be integrated out in the Wilsonian RG with Ξ being the
energy cutoff. There are two fixed point in Eq. (23). One is
V = 0, which is trivial, and the other one is V = −ab , which
is nontrivial. According to the stability of the nontrivial fixed
point, we can classify the RG-flow diagrams into two types.
One case with b > 0 corresponds to an unstable nontrivial
fixed point in the Hermitian case and does not exhibit critical
phenomena. The other case with b < 0 corresponds to a stable
nontrivial fixed point in the Hermitian case and is the only
case involving the critical line. The RG-flow diagrams for
these cases are shown in the Supplemental Material [25]. We
emphasize that the present BCS model belongs to the b < 0
case. By applying Wilsonnian RG analysis of fermionic field
theory [27], the RG equation of the BCS model up to two-loop
order including the self-energy correction is written as [25]

dV

dt
= V 2 − 1

2
V 3. (24)

From Eq. (24), we find a = 1 and b = −1/2 in the canonical
equation (23). A similar RG equation has been obtained for
the non-Hermitian Kondo model [28]. Note that the sign of
the parameter a does not influence the physics of RG flows
since we can reverse it by a transformation V → −V . For a
system with b < 0, there exists a critical line which separates
the trivial and nontrivial fixed points. Every point on the crit-
ical line flows towards the fixed point (VR, VI) = (− a

3b ,∞).
After integrating Eq. (23) and taking the imaginary part of
both sides of it, we obtain the critical line as

bπ

|a|
+

VI
V 2
R + V 2

I

=
b

a
arctan

VI
VR

+
b

a
arctan (− bVI

a+ bVR
).

(25)
Near the origin, Eq. (25) can be expaneded as

VI
V 2
R + V 2

I

+
bπ

|a|
= 0. (26)

This critical line (25, 26) is located at the right half plane
VR > 0 if a > 0 and the left half plane VR < 0 if
a < 0. Note that the critical line (26) forms a semicircle for
all a 6= 0 and b < 0. For the BCS model, Eq. (26) reduces to
− UI
ρ0(U2

R+U2
I )

+ π
2 = 0, which agrees with the mean-field phase

boundary in Eq. (6) where the Yang-Lee zeros distribute. This
RG result confirms the validity of the mean-field results.

This analysis of general marginally interacting systems
with a 6= 0 and b < 0 implies that the criticality associated
with the Yang-Lee zeros, if exists, can only take place on the
semicircle (26) within the perturbative RG framework. This

semicircle distribution makes a sharp contrast with the Lee-
Yang circle theorem [2] where the zeros distribute on the unit
circle. The semicircle structure arises from the marginal na-
ture of the coupling that induces different RG-flow behaviours
between the left half plane VR < 0 and the right half plane
VR > 0.

This semicircular distribution of Yang-Lee zeros may uni-
versally be found in various systems with Fermi-surface insta-
bilities to e.g., charge-density wave (CDW) or anisotropic su-
perconducting pairing, since those instabilities are described
by similar RG behavior with marginal couplings [27]. In fact,
the system with CDW instability can be described by a mean-
field analysis similar to the BCS theory [29–31].

Conclusion.—In this Letter, we have investigated the Yang-
Lee singularity in BCS superconductivity and found that the
Yang-Lee zeros distribute on the phase boundary in the com-
plex plane of the interaction strength. We have also explored
the Yang-Lee critical behaviour and obtained critical expo-
nents We have performed RG analysis of an arbitrary system
with marginal intearaction and shown that Yang-Lee zeros dis-
tribute on a semicircle.

The Yang-Lee singularity introduced in this Letter is not
only an interesting mathematical property but also experimen-
tally realizable. In fact, the non-Hermitian BCS model can
be realized in open quantum systems [22, 32]. The complex-
valued interaction strength describes the effect of two-body
loss in ultracold atoms. For example, inelastic two-body
losses can be induced by utilizing a Feshbach resonance [33–
35] or photoassociation [36, 37].

While we have focused on the quantum phase transition,
it is worthwhile to investigate how the Yang-Lee singularity
is connected to a superconducting phase transition at finite
temperature. We also believe that Yang-Lee singularity can
emerge in other non-Hermitian many-body systems such as
the non-Hermitian Bose-Hubbard model [38].
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Yang-Lee Zeros on the Phase Boundary

We begin from considering the three-dimensional non-Hermitian BCS Hamiltonian

H =
∑
kσ

ξkc
†
kσckσ −

U

N

∑
k,k′

′
c†k↑c

†
−k↓c−k′↓ck′↑, (S.1)

where U = UR + iUI and the prime in
∑′

k indicates that the sum over k restricted to |ξk| < ωD with ωD being the curoff
energy. The mean-field Hamiltonian is given by

HMF =
∑
kσ

ξkc
†
kσckσ +

∑
k

′
[∆̄0c−k↓ck↑ + ∆0c

†
k↑c
†
−k↓] +

N

U
∆̄0∆0, (S.2)

where ∆0 = − U
N

∑
kL〈c−k↓ck↑〉R and ∆̄0 = − U

N

∑
kL〈c

†
k↑c
†
−k↓〉R represent the superconducting gap. The right and left

ground states of the mean-filed Hamiltonian HMF are given by [22]

|BCS〉R =
∏
k

(uk + vkc
†
k↑c
†
−k↓)|0〉, (S.3)

|BCS〉L =
∏
k

(u∗k + v̄∗kc
†
k↑c
†
−k↓)|0〉, (S.4)

where the parameters uk, vk and v̄k are complex coefficients and take the specific form of

uk =

√
Ek + ξk

2Ek
, vk = −

√
Ek − ξk

2Ek

√
∆0

∆̄0
, v̄k = −

√
Ek − ξk

2Ek

√
∆̄0

∆0
. (S.5)

Here Ek =
√
ξ2
k + ∆2

k is the dispersion relation of Bogoliubov quasiparticles where ∆k = ∆0θ(ωD − |ξk|) with θ(x) being
the Heaviside step function. Note that ∆̄0 6= ∆∗0. In the following we take a gauge [22] in which ∆0 = ∆̄0 ∈ C.

The gap equation at absolute zero reads as [22]

N

U
=
∑
k

′ 1

2
√
ξ2
k + ∆2

0

. (S.6)

Provided that the density of states is constant and given by ρ0, the above equation can be simplified as√
ω2
D + ∆2

0 + ωD
∆0

= e
1

ρ0U . (S.7)
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The solution to the gap equation is given by ∆0 = ωD

sinh
(

1
ρ0U

) . To be specific,

∆0 =
2ωD

exp
[

1
ρ0|U |2 (UR − iUI)

]
− exp

[
− 1
ρ0|U |2 (UR − iUI)

]
=

ωD

sinh
(

UR
ρ0|U |2

)
cos
(

UI
ρ0|U |2

)
− icosh

(
UR

ρ0|U |2

)
sin
(

UI
ρ0|U |2

) , (S.8)

and its real part is given by

Re[∆0] = ωD
sinh

(
UR

ρ0|U |2

)
cos
(

UI
ρ0|U |2

)
(

sinh
(

UR
ρ0|U |2

)
cos
(

UI
ρ0|U |2

))2

+
(

cosh
(

UR
ρ0|U |2

)
sin
(

UI
ρ0|U |2

))2 . (S.9)

At the quantum phase transition point, the real part of the gap vanishes, which gives cos
(

UI
ρ0|U |2

)
= 0, or equivalently, UI

ρ0|U |2 =
π
2 . This determines the condition for the phase boundary [22]

(ρ0πUR)2 + (ρ0πUI − 1)2 = 1 . (S.10)

This condition restricts the imaginary part of the gap ∆0 as

Im[∆0] = ωD
cosh

(
UR

ρ0|U |2

)
sin
(

UI
ρ0|U |2

)
(

sinh
(

UR
ρ0|U |2

)
cos
(

UI
ρ0|U |2

))2

+
(

cosh
(

UR
ρ0|U |2

)
sin
(

UI
ρ0|U |2

))2

=
ωD

cosh
(

UR
ρ0|U |2

) . (S.11)

The phase transition is related to the existence of Yang-Lee zeros on the phase boundary. The partition function of Bogoliubov
quasi-particles in a finite-size system at finite temperature 1/β is

Z =
∏
k

(1 + e−βEk) . (S.12)

Since we only consider the case with a large β, we directly substitute Eq. (S.8) into the dispersion relation [41]. For the points
not on the phase boundary, we have Re[Ek] > 0, which indicates that the partition function cannot vanish. However, on the
critical line (S.10), the gap ∆0 becomes purely imaginary and therefore Yang-Lee zeros can emerge. The partition function on
the phase boundary can be decomposed as

Z =
∏

k,|ξk|<Im∆0

(
1 + e−iβ

√
(Im∆0)2−ξ2k

)
×

∏
k,|ξk|>Im∆0

(
1 + e−β

√
ξ2k+∆2

k

)
. (S.13)

The first product vanishes for the momentum k that satisfies the condition

β

√
(Im∆0)

2 − ξ2
k = (2n+ 1)π, (S.14)

where n is an arbitrary integer. This condition is equivalent to

|ξk| =

√
(Im∆0)

2 −
(

2n+ 1

β
π

)2

. (S.15)

Further, we take the thermodynamic limit. Since Im∆0 < ωD, we can always find the momentum k in the energy shell satisfyting
the condition (S.15) for an arbitrarily large β. Hence, Yang-Lee zeros distribute on the phase boundary (S.10).
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Correlation Functions on the Phase Boundary

In this section, we calculate the correlation functions on the phase boundary to elucidate the critical behavior at the Yang-Lee
singularity. Here we firstly consider the momentum distribution of the particles

L〈c†kσckσ〉R = L 〈BCS| c†kσckσ |BCS〉R . (S.16)

Using the expression of the BCS states, we obtain

L〈c†k↑ck↑〉R = L〈c†k↓ck↓〉R = v2
k =

1

2
− ξk

2Ek
=

1

2
− ξk

2
√
ξ2
k + ∆2

k

. (S.17)

Similarly, we have

L〈c†k↑ck↓〉R = L〈c†k↓ck↑〉R = 0 . (S.18)

Then we perform the Fourier transformation to

C(x− x′) := L〈c†σ(x)cσ(x′)〉R =

ˆ
d3k

(2π)3

(
1

2
− ξk

2
√
ξ2
k + ∆2

k

)
eik·(x−x

′) . (S.19)

We drop the first term on the right-hand side of Eq. (S.19) since it is proportional to the delta function δ(x). Here, we replace
the integral with

´ ′ d3k
(2π)3 for the momentum with |ξk| < ωD since we are only concerned with the long-range behaviour of the

correlation function. In the following, we will replace x− x′ with x for convenience. Then the correlation function is given by

C(x) = −
ˆ ′ d3k

(2π)3

ξk

2
√
ξ2
k + ∆2

0

eik·x, (S.20)

To extract the long-range behaviour of the correlation function, we expand the energy spectrum around the Fermi surface as
ξk ' vF (k − kF ), where vF and kF are the Fermi velocity and the Fermi momentum, respectively. Then the integration can be
simplified as

C(x) ' −
ˆ ′ ρ0

2
dξk sin θdθ

ξk

2
√
ξ2
k + ∆2

0

e
i
ξk
vF
x cos θ

eikF x cos θ , (S.21)

where x = |x| and ρ0 is the density of states at the Fermi surface. With the integration over θ, we have

C(x) ' −1

2

ˆ ωD

−ωD
ρ0dξk

ξk sin
((

ξk
vF

+ kF

)
x
)

(
ξk
vF

+ kF

)
x
√
ξ2
k + ∆2

0

= −ρ0vF

ˆ ωD

0

dξk
ξk

x
√
ξ2
k + ∆2

0

(−ξk)
sin(kFx) cos

(
ξk
vF
x
)

(vF kF )2 − ξ2
k

+ vF kF
cos(kFx) sin

(
ξk
vF
x
)

(vF kF )2 − ξ2
k


' −ρ0vF

ˆ ωD

0

dξk
ξk

x
√
ξ2
k + ∆2

0

vF kF
cos(kFx) sin

(
ξk
vF
x
)

(vF kF )2 − ξ2
k

' −ρ0
cos(kFx)

kFx

ˆ ωD

0

dξk
ξk sin

(
ξk
vF
x
)

√
ξ2
k + (Re∆0)2 − (Im∆0)2 + 2iRe∆0Im∆0

. (S.22)

Since we expand the energy around the Fermi surface, we assume the condition ωD � µ = vF kF and neglect the first term in
the bracket in the second equality of (S.22). Here we also replace (vF kF )2 − ξ2

k with (vF kF )2 due to this approximation. By
defining

k :=
ωD

Im∆0
= cosh(

UR
ρ0|U |2

), a :=
Re∆0

Im∆0
, (S.23)
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we rewrite the integral as

C(x) ' −ρ0
Im∆0 cos(kFx)

kFx

ˆ k

0

dt
t sin( Im∆0x

vF
t)

√
t2 + a2 − 1 + 2ia

, (S.24)

where we change the integration variable from ξk to t = ξk
Im∆0

. Here we separate the correlation function into the real and
imaginary parts as

C(x) ' −ρ0
cos(kFx)

kFx
(F1(x) + iF2(x)), (S.25)

where

F1(x) = Im∆0Re

[ˆ k

0

dt
t sin( Im∆0x

vF
t)

√
t2 + a2 − 1 + 2ia

]
, F2(x) = Im∆0Im

[ˆ k

0

dt
t sin( Im∆0x

vF
t)

√
t2 + a2 − 1 + 2ia

]
. (S.26)

Since this integral is dominated by the region where t ' ±
√

1− a2, changing the upper bound of the integral will not influence
the long-range behaviour of the correlation function. Hence, we set k →∞ here for convenience. We will illustrate this point in
the following numerical simulation with a finite upper bound. When we consider the correlation function on the phase boundary,
we have a = 0. Hence, the function F1(x) in the real part of the correlation function takes the form of

F1(x) = Im∆0Re

[ˆ k

0

dt
t sin( Im∆0x

vF
t)

√
t2 − 1

]
' Im∆0

ˆ ∞
1

dt
t sin( Im∆0x

vF
t)

√
t2 − 1

. (S.27)

To calculate this function, we introduce another function G1(x) as

G1(x) := Im∆0

ˆ ∞
1

dt
cos( Im∆0x

vF
t)

√
t2 − 1

= −Im∆0
π

2
N0

(
Im∆0

vF
x

)
, (S.28)

where N0 is the 0-th order Bessel function of the second kind. The relationship between these two functions is

F1(x) ' − vF
Im∆0

G′1(x) . (S.29)

Therefore, the real part of the correlation function is

Re[C(x)] ' π

2
ρ0vF

cos(kFx)

kFx
N ′0

(
Im∆0

vF
x

)
. (S.30)

When we take the limit x→∞, we have

lim
x→∞

N ′0(x) =

√
2

π
cos
(
x− π

4

) 1

x1/2
−
√

2

π

1

2
sin
(
x− π

4

) 1

x3/2
'
√

2

π
cos
(
x− π

4

) 1

x1/2
. (S.31)

Thus, the real part of the correlation function has the long-range behaviour as

lim
x→∞

[
π

2
ρ0vF

cos(kFx)

kFx
N ′0

(
Im∆0

vF
x

)]
∼ 1

x3/2
. (S.32)

Then we turn to consider the function F2(x) as the imaginary part of the correlation function. On the phase boundary, we can
rewrite it as

F2(x) = Im∆0Im

[ˆ k

0

dt
t sin( Im∆0x

vF
t)

√
t2 − 1

]
= −Im∆0

ˆ 1

0

dt
t sin( Im∆0x

vF
t)

√
t2 − 1

(S.33)

Similarly, we can also define another function G2(x) as

G2(x) = −Im∆0

ˆ 1

0

dt
cos( Im∆0x

vF
t)

√
t2 − 1

=
π

2
J0

(
Im∆0

vF
x

)
, (S.34)
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where J0 is the 0-th order Bessel function of the first kind. The relationship between these two functions is also given by

F2(x) = −vFG′2(x). (S.35)

Then the imaginary part of the correlation function is equivalent to

Im[C(x)] ' π

2
ρ0vF

cos(kFx)

kFx
J ′0

(
Im∆0

vF
x

)
. (S.36)

Thus we have a similar long-range behaviour for the imaginary part of the correlation function as

lim
x→∞

[
π

2
ρ0vF

cos(kFx)

kFx
J ′0

(
Im∆0

vF
x

)]
∼ 1

x3/2
. (S.37)

To summarize, the correlation function takes the form of

lim
x→∞ L 〈BCS| c†σ(x)cσ(x) |BCS〉R ' lim

x→∞

π

2
ρ0vF

cos(kFx)

kFx
(N ′0(

Im∆0

vF
x) + iJ ′0(

Im∆0

vF
x))

=: (A(l) + iB(l))x−3/2 , (S.38)

where

A(l) =

√
π

2
ρ0

√
Im∆0vF
kF

cos(kF
vF

Im∆0
l) cos(l − π

4
) ,

B(l) =

√
π

2
ρ0

√
Im∆0vF
kF

cos(kF
vF

Im∆0
l) sin(l − π

4
) , (S.39)

and l = Im∆0

vF
x. The anomalous dimension is defined byC(x) ∝ x−D+2−η [26], whereD is the spatial dimension of the system.

From Eq. (S.38), we can see that the correlation length diverges on the phase boundary and that the anomalous dimension is
given by η = 1/2. In addition, we present the numerical plot of the integrals F1 and F2 on the phase boundary in Fig. S1 with
detailed fitting parameters shown in Table. I. In the numerical calculation we take a finite upper bound k given in Eq. (S.23).
These two functions are related to the correlation function as C(x) = ρ0

cos(kF x)
kF x

(F1(x) + iF2(x)). The fitting results indicate
that F1(l) is propotional to sin(l + π

4 )l−0.5 and F2(l) is proportional to sin(l + 3π
4 )l−0.5. Those results are consistent with our

analytical result in Eq. (S.38) and indicate that the correlation length diverges on the phase boundary.

Correlation Function Near the Phase Transition

To calculate the critical exponent of correlation length, we consider the correlation functions near the phase boundary. The
real part of the gap ∆0 is given by

Re[∆0] = ωD
sinh

(
UR

ρ0|U |2

)
cos
(

UI
ρ0|U |2

)
(

sinh
(

UR
ρ0|U |2

)
cos
(

UI
ρ0|U |2

))2

+
(

cosh
(

UR
ρ0|U |2

)
sin
(

UI
ρ0|U |2

))2 . (S.40)

For convenience, we here consider the shift of the interaction strength by δUR ∈ R from a point U on the phase boundary.
It can be replaced by an arbitrary amount δU along any direction. Up to the first order of δUR, we have cos

(
UI

ρ0|U |2

)
=

cos
(
π
2 −

πURδUR
|U |2

)
= sin

(
πURδUR
|U |2

)
' πURδUR

|U |2 . Then the real part is shown to be proportional to δUR:

Re∆0 '
πωDUR
|U |2

sinh
(

UR
ρ0|U |2

)
cosh2

(
UR

ρ0|U |2

)δUR ∝ δUR . (S.41)

The imaginary part of the gap remains the same as in Eq. (S.11) up to the same order of δUR: Im∆0 = ωD
cosh( UR

ρ0|U|2
)

and

a =
πUR
|U |2

tanh(
UR

ρ0|U |2
)δUR (S.42)
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FIG. S1. (a) Real part F1(l) and (b) imaginary part F2(l) of the correlation funtion on the phase boundary which are defined in Eqs. (S.27)
and (S.33). Here (ρ0UR, ρ0UI) = ( 1

π
, 1
π
) and l = Im∆0

vF
x. The fitting parameters are shown in Table I.

F1(l)

Fitting Function F1(l) =
a1 sin(l+a2)

la3

a1 1.246(1.129, 1.363)
a2 0.786(0.783, 0.789)
a3 0.499(0.485, 0.513)
R2 0.9990

F2(l)

Fitting Function F2(l) =
a1 sin(l+a2)

la3

a1 −1.199(−1.190,−1.209)
a2 −0.7884(−0.7883,−0.7884)
a3 0.4924(0.4912, 0.4936)
R2 0.9999

TABLE I. The left and right tables show fitting parameters for F1(l) and F2(l) on the boundary, respectively. Here (ρ0UR, ρ0UI) = ( 1
π
, 1
π
).

The values in the parentheses show the range of error bars. The parameter R2 represents the confidence of the fitting, which is defined as the
ratio of the sum of squares of the regression (SSR) and the total sum of squares (SST).

from Eq. (S.23). Then we turn to the correlation function near the phase boundary.
The long-range behavior of the correlation functions is governed by the properties of the integral in Eq. (S.24). In Fig. S2, we

numerically plot F1 and F2 with (ρ0UR, ρ0UI) = ( 1
π ,

1
π ) and ρ0δUR = 1×10−4 � 1. F1 is fitted by an oscillating exponential

decay which is shown by the blue curve in Fig. S2(a): F1(l) ∝ sin(l + π
4 )e−l/ξr , where ξr = 420.9. F2 behaves similarly as

shown by the blue curve in Fig. S2(b): F2(l) ∝ sin(x + 3π
4 )e−x/ξi with ξi = 417.6. Here l = Im∆0

vF
x is the same as in the

previous section. We can see the behaviours of the real and the imaginary parts of the correlation function are very close to each
other. The detailed fitting parameters are shown in Table II.

Furthermore, we numerically calculate the dependence of the correlation lengths on the deviation ρ0δUR from the phase
boundary. The correlation lengths of the real part and the imaginary part are shown seperately in Fig. S3. We find that both
of the correlation lengths are inversely proportional to the deviation from the phase boundary, i.e. ξ−1 ∝ a. To derive the
dependence analytically, we consider the integral

´∞
0
t sin(tx)√

t2+m2
with m ∈ C and take the limit of k → ∞ in Eq. (S.26) since

this limiting procedure will not change the long-range behavior. We have
ˆ ∞

0

t sin(tx)√
t2 +m2

= − d

dx

ˆ ∞
0

cos(tx)√
t2 +m2

= −K ′0(x) , (S.43)

where Kν(x) is the ν-th order modified Bessel function of the second kind. By substituting the expression for this special
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FIG. S2. (a) Real part F1(l) and (b) imaginary part F2(l) of the correlation function near the boundary (see Eq. (S.26)). These two figures are
near the phase boundary with (ρ0UR, ρ0UI) = ( 1

π
, 1
π
) with ρ0δUR = 1 × 10−4 � 1 and l = Im∆0x

vF
. The fitting parameters are shown in

Table II.

F1(l)

Fitting Function F1(l) = a1 sin(a2l − a3)e
− l
ξr

a1 0.1287(0.1153, 0.1420)
a2 1(0.9996, 1)
a3 −0.7843(−0.6798,−0.8887)
ξr 420.9(349.6, 492.3)
R2 0.9962

F2(l)

Fitting Function F2(l) = a1 sin(a2l − a3)e
− l
ξi

a1 −0.1292(−0.1285,−0.1299)
a2 1(1, 1)
a3 0.7810(0.7756, 0.7864)
ξi 417.6(414, 421.3)
R2 0.9937

TABLE II. The left and right tables show fitting parameters for F1(l) and F2(l) near the boundary, respectively. Here (ρ0UR, ρ0UI) = ( 1
π
, 1
π
)

with ρ0δUR = 1× 10−4 � 1. The values in the parentheses are the corresponding error bars. The parameter R2 represents the confidence of
the fitting, which is defined as the ratio of the sum of squares of the regression (SSR) and the total sum of squares (SST).

function, we have for x→∞
ˆ ∞

0

dt
t sin(xt)√
t2 +m2

∝ e−mx√
mx

=
exp[−Re(m)x− iIm(m)x]√

mx
. (S.44)

From the definition C(x) ∝ e−x/ξ of the correlation length ξ [26], we obtain

ξ−1 ∼ Re(m) . (S.45)

From Eq. (S.24), the parameter m is given by m = a+ i. Hence, the relationship between ξ and a is given by

ξ ∝ a−1, (S.46)

which agrees with our numerical simulatiion results in Fig. S3. From the expression of a in Eq. (S.42), we can see that the
correlation length is inversely proportional to the deviation from the phase boundary ξ−1 ∝ δUR, which indicates the critical
exponent ν = 1 from the definition ξ ∝ (δU)−ν [26]. However, on the real axis of the interaction strength U , this analysis fails
because Im∆0 = 0 on the whole real axis. From Eq. (S.22), the correlation function for UI = 0 is proportional to
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FIG. S3. Dependence of the correlation lengths ξr and ξi on ρ0δUR � 1. Here we use the function f(x) = a
x

to fit the data with
a = 0.08815(0.08784, 0.08846); 0.08985(0.08957, 0.09014) and R2 = 0.9990; 0.9992, respectively.

C(x) ∝
ˆ ∞

0

t sin(xt)√
t2 + s2

, (S.47)

where we redefine t = ξk
vF

and s = Re∆0. On the real axis, the real part of the gap is given by

s = Re∆0 =
ωD

sinh( 1
ρ0UR

)
. (S.48)

For UR → 0, we have s = ωDexp(− 1
ρ0UR

)→ 0 and thus the correlation length is given by

ξ−1 ∝ exp(− 1

ρ0UR
) . (S.49)

We can find that the correlation length cannot be represented by the polynomial form of δUR, which indicates that the critical
behavior on the real axis is indeed different from that on the upper half complex plane with UI 6= 0. As shown in Sec. , this
difference in the critical behavior can be understood from the RG flow.

Thermodynamic Quantities on the Phase Boundary

In this section, we calculate critical exponents associated with non-analyticity of thermodynamic quantities on the phase
boundary. The condensation energy of the non-Hermitian BCS model is given by [22]

∆E = − N

UR + iUI
(Im∆0)

2 −N
ˆ ωD

−ωD
dξkρ0

(√
ξ2
k + ∆2

0 − |ξk|
)
. (S.50)

Note that here we have subtracted the energy of non-interacting fermions from the energy (S.50). The integration is seperated
into two parts. The second term of the integral is given by

2ρ0

ˆ ωD

0

dξkξk = ρ0ω
2
D . (S.51)
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The first term on the phase boundary is given by

−2

ˆ ωD

0

dξkρ0

√
ξ2
k + ∆2

0 = −2

ˆ ωD

0

dξkρ0

√
ξ2
k − (Im∆0)

2
.

We first focus on the real part of the energy. Since

Re
[
−2

ˆ ωD

0

dξkρ0

√
ξ2
k − (Im∆0)

2

]
= −2

ˆ ωD

Im∆0

dξkρ0

√
ξ2
k − (Im∆0)

2

= (−2ρ0) (Im∆0)
2

[
1

4
sinh

(
2UR
ρ0|U |2

)
− 1

2

UR
ρ0|U |2

]
, (S.52)

the real part of the energy is

Re[∆E] = −N UR
|U |2

(Im∆0)
2 − 2Nρ0 (Im∆0)

2

[
1

4
sinh

(
2UR
ρ0|U |2

)
− 1

2

UR
ρ0|U |2

]
+Nρ0ω

2
D

= Nρ0

[
ω2
D −

1

2
(Im∆0)

2 sinh
(

2UR
ρ0|U |2

)]

= Nρ0ω
2
D

1− 1

2

sinh
(

2UR
ρ0|U |2

)
cosh2

(
UR

ρ0|U |2

)
 . (S.53)

In a similar manner, we calculate the imaginary part of the condensation energy on the phase boundary as

Im[∆E] = − N

|U |2
(−UI) (Im∆0)

2 − 2Nρ0

ˆ Im∆0

0

dξk

√
ξ2
k − Im∆0

=
2UIN

2|U |2
(Im∆0)

2 − 2Nρ0 (Im∆0)
2 × π

4

=
N

2
ρ0 (Im∆0)

2

[
2UI
ρ0|U |2

− π
]

= 0 . (S.54)

Thus the imaginary part of the condensation energy vanishes on the phase boundary.
We here relate the order χ of Yang-Lee zeros with the non-analycity of the condensation energy. According to the definition

of the order of the Yang-Lee zeros in the main text, we have

χ ' βωD

πcosh( UR
ρ0|U |2 )

(S.55)

at absolute zero. Using Eq. (S.53), we find

∆E = 4Nρ0ω
2
D(1−

√
1− 4(

πχ

βωD
)2) . (S.56)

Since UR
ρ0|U |2 → ∞ near U = 0, the expressions for the condensation energy and the order of Yang-Lee zeros can be simplified

as

∆E = Nρ0ω
2
De
−2

UR
ρ0|U|2 , χ/β =

ωD
π
e
− UR
ρ0|U|2 . (S.57)

Thus, we have

∆E =
π2Nρ0

β2
χ2 ∝ (χ/β)2 , (S.58)

which means that we can read the condensation energy along the real axis from the order of Yang-Lee zeros on the upper half
complex plane. From this power-law relation, we define the critical exponent φ as χ/β ∝ (∆E)φ and obtain φ = 1/2.
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Next, we show that the compressibility exhibits critical behavior near the phase boundary. The compressibility is defined by
κ = ∂2F

∂µ2 where ξk = εk − µ and F = − 1
β logZ is the free energy of the Bogoliubov quasiparticles. We have

κ = −
∑
k

∆2
k

(ξ2
k + ∆2

k)3/2
= −N

ˆ ωD

−ωD
ρ0dξk

∆2
0

(ξ2
k + ∆2

0)3/2
. (S.59)

Firstly, we consider the compressibility at points on the phase boundary. By substituting the gap in Eqs. (S.9) and (S.11) into
the compressibility (S.59), we can rewrite it as

κ = N

ˆ ωD

−ωD
ρ0dξk

(Im∆0)2

(ξ2
k − (Im∆0)2)3/2

. (S.60)

This integral diverges since Im∆0 < ωD for all the points on the boundary. Hence, the compressibility exhibits singularity at
each point on the boundary. This cannot occur in the Hermitian case since the integral in Eq. (S.59) is finite for a real gap ∆0.
Near the phase boundary with an infinitesimal deviation δUR, we obtain

κ ' N
ˆ ωD

−ωD
ρ0dξk

(Im∆0)2

(ξ2
k − (Im∆0)2 + 2iRe∆0Im∆0)3/2

= N

ˆ A

−A
ρ0ds

1

(s2 − 1 + 2iRe∆0/Im∆0)3/2
, (S.61)

where A := cosh
(

UR
ρ0|U |2

)
. Since the points near the value s = 1 dominantly contribute to the integral, we expand the integral

around this point as

ˆ c

0

ρ0dδs
1

(2δs+ 2ia)3/2
= −[

1√
2ia+ c

− 1√
2ia

], (S.62)

where c is a positive constant. Under the limit a→ 0, the integral is propotional to a−1/2. Hence, we obtain the critical exponent
ζ = 1/2, which is defined as κ ∼ (δU)−ζ near the phase boundary.

We note that the critical exponents η and ζ are not independent. Here we show the relation between η and ζ for the energy
spectrum that can be expanded as (k − kE)1/n around a gapless point k = kE . When n is an integer, such dispersion relation
appears near an n-th order exceptional point in non-Hermitian systems [40]. For those energy spectra, the long-range behavior
of the correlation function takes the form as

C(x) ∝ x−2+1/n . (S.63)

From the definition of the anomalous dimension, we find η = 1 − 1
n . Similarly, we find that the critical behavior of the

compressibility near the phase boundary is

κ ∝
ˆ A

−A
ρ0dξk

1

(ξ2
k − 1 + 2iRe∆0/Im∆0)2− 1

n

∝ (δU)−1+ 1
n , (S.64)

which indicates that ζ = 1− 1/n. Thus, we have

η = ζ . (S.65)

Finally, we discuss the dynamical critical exponent z. From the definition of dynamical critical exponent z in Ref. [26], we
here define it as

Re∆0 ∝ ξ−z. (S.66)

By referencing (S.40) and (S.46), we obtain

Re∆0 ∝ ξ−1 ∝ δU. (S.67)

Hence, we have z = 1.
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Pair Correlation Function

The pair correlation function is defined by

ρ2(r1σ1, r2σ2; r′1σ
′
1, r
′
2σ
′
2) := L〈c†σ1

(r1)c†σ2
(r2)cσ′

2
(r′2)cσ′

1
(r′1)〉R . (S.68)

Here we set r1 = r2 = R and r′1 = r′2 = 0 to consider the correlation between two Cooper pairs. Without loss of generality,
we assume σ1 = σ′1 =↑, σ2 = σ′2 =↓. With Wick’s theorem, we can simplify the pair correlation function as

ρ2(R ↑,R ↓; 0 ↑, 0 ↓) = L〈c†↑(R)c†↓(R)c↓(0)c↑(0)〉R
= L〈c†↑(R)c†↓(R)〉RL〈c↓(0)c↑(0)〉R + L〈c†↑(R)c↑(0)〉RL〈c†↓(R)c↓(0)〉R . (S.69)

As shown in Eq. (S.38), the second term in Eq. (S.69) decays as |R|−3/2 on the phase boundary. Thus, in the limit of |R| → ∞,
the pair correlation function is given by

lim
|R|→∞

ρ2(R ↑,R ↓; 0 ↑, 0 ↓) = L〈c†↑(0)c†↓(0)〉RL〈c↓(0)c↑(0)〉R

=
1

N2

∑
k1,k2

L〈c†k1↑c
†
−k1↓〉RL〈c−k2↓ck2↑〉R

=

(
∆0

U

)2

, (S.70)

where we have used the translational invariance and the definition ∆0 = − U
N

∑
k L〈c−k↓ck↑〉R. We note that the long-distance

limit of the pair correlation function does not vanish on the phase boundary:

lim
|R|→∞

ρ2(R ↑,R ↓; 0 ↑, 0 ↓) = − (Im∆0)2

U2
6= 0 . (S.71)

This non-vanishing behavior of the correlation function at the critical point is due to the non-Hermitian nature of the critical
phenomenon. In fact, in nonunitary critical phenomena, the correlation function at the critical point can diverge as a function of
the distance rather than decay [4].

Renormalization Group Theory of Non-Hermitian BCS Superconductivity

Here we consider the renormalization-group (RG) flow of the interaction strength to elucidate that the Yang-Lee singularity
corresponds to the RG critical line. The one-loop beta function β1(U) is given at the order of U2 by [27, 39]

dV

dt
= V 2 =: β1(U) , (S.72)

where dt = −dΞ
Ξ is the relative width of the high-energy shell, Ξ is the cutoff of the energy ξk and V = ρ0U is the dimensionless

interaction strength. Here t is considered as the RG-flow parameter. We take the two-loop correction into account and consider
the terms of the order of U3. After the two-loop calculation, we will see that the RG equation reproduces the phase boundary
shown in Fig. 1 in the main text.

Up to just one integral over the momenta, the higher-order contribution to the beta function comes from the correction for the
high-momentum propagator. Actually, the self-energy for the high-momentum propagator shown in Fig. S4 is given by

Σ(k,Ω) =

ˆ
dω

2π

U

iω − ξk
eiω0+

= Uθ(−ξk), (S.73)

where Ω is the frequency for the external leg. Here we introduce a factor eiω0+

to ensure the convergence [27]. Therefore, the
propagator is modified as

G(k,Ω) =
1

iΩ− ξk
+

Uθ(−ξk)

(iΩ− ξk)2
. (S.74)
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FIG. S4. Feynman diagrams for the self-energy correction and the renormalization of the interaction strength. The right diagram is the BCS
diagram.

By including the self-energy diagram in Fig. S4, we can find the corrected contribution from the BCS diagram. After integrating
out the energy shell (−Ξ,−Ξ + dΞ) of ξk, we obtain the two-loop correction β2(U) to the beta function as

β2(U) =
1

2
ρ0ΞU2

(ˆ
dΩ

2π

U

(iΩ− Ξ)2

1

−iΩ− Ξ
+

ˆ
dΩ

2π

1

iΩ− Ξ

U

(iΩ + Ξ)2

)
(S.75)

= −ρ
2
0U

3

2
, (S.76)

where we define ρ0 = 1/(2Ξ) since 1
N

∑
k = 1 =

´
ρ0dξk is satisfied [22]. Hence, the RG equation up to two-loop order is

written as
dV

dt
= V 2 − 1

2
V 3 . (S.77)

The RG flow diagram for Eq. (S.77) is shown in Fig. S5(c).
As can be seen from Eq. (S.77), the RG flow has a nontrivial fixed point at V = 2 and a critical line depicted as the blue curve

in Fig. S5. This critical line separates the whole space into two phases, with one flowing to the origin and the other flowing
to the nontrivial fixed point. The analytical expression for the critical line can be derived as follows [28]. We rewrite the RG
equation (S.77) as

dVR
dt

= V 2
R − V 2

I −
1

2
V 3
R +

3

2
VRV

2
I , (S.78)

dVI
dt

= 2VRVI −
3

2
VIV

2
R +

1

2
V 3
I , (S.79)

where VR = Re(V ), VI = Im(V ). On the critical line, the interaction parameter flows towards VR = 2
3 , VI = ∞, which can

be derived from the condition dVR
dt = 0 with VI → ∞. The specific expression of the critical line can be obtained through

integration of Eq. (S.77) as

t = − 1

V f
+

1

2
lnV f − 1

2
ln(2− V f) +

1

V
− 1

2
lnV +

1

2
ln(2− V ) , (S.80)

where the superscript f denotes the final value of the interaction parameter. Since V f
I →∞ and V f

R → 2
3 on the critical line, the

imaginary part of Eq. (S.80) reads as

0 =
π

2
− VI
V 2
R + V 2

I

− 1

2
arctan

VI
VR
− 1

2
arctan

VI
2− VR

. (S.81)

This is the equation defining the phase boundary. Around the origin, the expression of this critical line (S.81) can be expanded
as

0 = − VI
V 2
R + V 2

I

+
π

2
, (S.82)
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FIG. S5. Canonical RG flow for coupling strength V for general Hermitian and non-Hermitian Hamiltonians with the RG flow equation
dV
dt

= aV 2 + bV 3. In the diagram (a) and (c), the parameters are set to be a = 1 and b = −1/2. In the diagram (b) and (d), the parameters
are set to be a = −1 and b = 1/2. For b > 0, there is neither a nontrivial stable fixed point nor a critical line.

which is consistent with the phase boundary (S.10) obtained from the mean-field theory. The RG result confirms the validity of
the mean-field analysis.

By taking V f to be pure imaginary, we obtain the energy scale Trecur that characterizes the reversion of the RG flow [28]:

t =
i

V f
I

+
1

2
lnV f

I + i
π

4
− 1

4
ln(4 + (V f

I )2)− i

2
(2π − arctan

V f
I

2
) +

1

V
− 1

2
lnV +

1

2
ln(2− V ) . (S.83)

If we assume |V | � 1, the above equation (S.83) can be rewritten as

0 =
1

V f
I

+
π

4
+

1

2
arctan

V f
I

2
− VI
V 2
R + V 2

I

− 1

2
arctan

VI
VR
− 1

2
arctan(

VI
2− VR

), (S.84)

e−t =

√√√√√4 + (V f
I )2

V f
I

exp(− VR
V 2
R + V 2

I

)(
|V |
|2− V |

)
1
2 . (S.85)

From the second equation, we have the reversion temperature Trecur at which the RG flow reaches a point (0, V fI ) on the
imaginary axis:

Trecur ∼ e−t =

√√√√√4 + (V f
I )2

V f
I

exp(− VR
V 2
R + V 2

I

)(
|V |
|2− V |

)
1
2 . (S.86)
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Near the phase boundary in which V fI � 1, we can obtain the simplified expression for the reversion temperature as

Trecur ∼ e−t = exp(− VR
V 2
R + V 2

I

)(
|V |
|2− V |

)
1
2 . (S.87)

Finally, we consider a general canonical RG equation for a marginal interaction V up to the order of V 3:

dV

dt
= aV 2 + bV 3. (S.88)

In Fig. S5, we show both the Hermitian case and the non-Hermitian case. We find that there are only two types of RG flows for
a marginal interaction. The first type with b < 0 is shown in Fig. S5(a,c). In the Hermitian case, it has a nontrivial stable fixed
point, whereas in the non-Hermitian case, it has a critical line. The second type with b > 0 is shown in Fig. S5(b,d). In the
Hermitian case, it has a non-trivial unstable fixed point, whereas in the non-Hermitian case, it shows no critical line. Hence, we
can see that only the first type of RG flows has a phase boundary and a phase transition.

We can also derive the critical line for the genral canonical RG flow with arbitrary a and b < 0. Integrating Eq. (S.88) with
respect to t, we obtain

t = − 1

aV f
− b

a2
lnV f +

b

a2
ln (a+ bV f) +

1

aV
+

b

a2
lnV − b

a2
ln (a+ bV ). (S.89)

On the critical line for VI →∞ and VR → − a
3b , the imaginary part of Eq. (S.89) reads as

0 = − bπ

a|a|
− 1

a

VI
V 2
R + V 2

I

+
b

a2
arctan

VI
VR

+
b

a2
arctan (− bVI

a+ bVR
). (S.90)

Near the origin, this critical line can be expanded as

0 = − VI
V 2
R + V 2

I

− bπ

|a|
, (S.91)

where VR > 0 if a > 0 and VR < 0 if a < 0, which are both a semicircle.


	Yang-Lee Singularity in BCS Superconductivity
	Abstract
	 References
	 Contents
	 Yang-Lee Zeros on the Phase Boundary
	 Correlation Functions on the Phase Boundary
	 Correlation Function Near the Phase Transition
	 Thermodynamic Quantities on the Phase Boundary
	 Pair Correlation Function
	 Renormalization Group Theory of Non-Hermitian BCS Superconductivity


