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The complexity of quantum many-body systems is manifested in the vast diversity of their correla-
tions, making it challenging to distinguish the generic from the atypical features. This can be addressed
by analyzing correlations through ensembles of random states, chosen to faithfully embody the relevant
physical properties. Here, we focus on spins with local interactions, whose correlations are extremely well
captured by tensor network states. Adopting an operational perspective, we define ensembles of random
tensor network states in one and two spatial dimensions that admit a sequential generation. As such, they
directly correspond to outputs of quantum circuits with a sequential architecture and random gates. In one
spatial dimension, the ensemble explores the entire family of matrix product states, while in two spatial
dimensions, it corresponds to random isometric tensor network states. We extract the scaling behavior of
the average correlations between two subsystems as a function of their distance. Using elementary con-
centration results, we then deduce the typical case for measures of correlation such as the von Neumann
mutual information and a measure arising from the Hilbert-Schmidt norm. We find for all considered cases
that the typical behavior is an exponential decay (for both one and two spatial dimensions). We observe
the consistent emergence of a correlation length that depends only on the underlying spatial dimension
and not the considered measure. Remarkably, increasing the bond dimension leads to a higher correlation
length in one spatial dimension but has the opposite effect in two spatial dimensions.
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I. INTRODUCTION

The behavior of correlations in quantum many-body
systems is an inherently difficult problem to characterize.
Specifying a generic n-particle state requires exponen-
tially many parameters, a fact which reflects the enormous
variety of correlations possible in the quantum realm.
Nonetheless, significant insights can be gained about the
nature of correlations by utilizing random ensembles of
states. A celebrated result along this direction shows that
random states sampled uniformly from the full Hilbert
space of an n-particle system typically exhibit strong cor-
relations, as manifested by a volume-law behavior of the
entanglement entropy [1–5]. However, there is by now
clear evidence that the set of physically relevant states con-
stitutes an exponentially small subset of the full Hilbert
space of an n-particle system [6], bringing into question
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the relevance and utility of conclusions obtained under
the assumption of uniform sampling from the full Hilbert
space.

For quantum spin systems with local interactions, ten-
sor network states have been exceedingly successful at
capturing relevant properties [7]. They exhibit an area
law for the entanglement entropy by construction and
are, therefore, good candidates to represent many physi-
cally relevant many-body states. Their pre-eminent one-
dimensional representatives, matrix product states (MPS),
have been shown to represent faithfully ground states of
gapped local Hamiltonians [8–10] and have given rise to
the complete classification of topological phases of mat-
ter in one dimension [11,12]. MPS have been generalized
to their counterparts in two (or more) spatial dimen-
sions, projected entangled pair states (PEPS). While only
a weaker link between local Hamiltonians and PEPS has
been proven rigorously, two-dimensional PEPS are known
to efficiently represent a wide class of strongly correlated
states [7,13], including states with power-law [14] and
topological correlations [15–17].

The importance of defining ensembles of random tensor
network states for the purpose of exploring typical proper-
ties of physically relevant states has been recognized more
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than a decade ago [18]. MPS ensembles have been utilized
to gain insights into, among other things, the typicality of
expectation values of local observables [18,19], equilibra-
tion under Hamiltonian time evolution [20], the entropy
of subsystems [21], nonstabilizerness [22], and, most rele-
vant for this work, the behavior of correlations [23–27]. In
particular, correlation functions of random inhomogeneous
MPS (that is, MPS whose local tensors can be different)
were shown to exhibit almost surely an exponential decay
[24,28]. A qualitatively similar behavior was observed also
for correlation functions of translation-invariant MPS and
PEPS with random Gaussian entries [25]. Instead of incor-
porating the randomness directly at the level of states, one
can also consider random local Hamiltonians and examine
their ground states. The typical behavior of correlations for
this case was found to depend on the nature of randomness,
allowing for both long and short-range correlated states
[23,29,30].

Here, we approach the problem of typical correlations
in random MPS and PEPS from a more operational point
of view. We introduce families of inhomogeneous ran-
dom tensor network states that arise from a sequential
generation in a quantum computer. Such ensembles are,
by definition, directly connected to the study of quantum
circuits with a sequential architecture and random gates,
where each unitary gate is independently chosen randomly
from the uniform (Haar) measure. In the one-dimensional
case, every MPS admits such a preparation [31], where
the bond dimension dictates the number of overlapping
qudits between any two successive gates. In the two-
dimensional setting, our ensemble can be understood as
being uniform over the space of so-called isometric ten-
sor network states (isoTNS) [32], which are PEPS with a
given bond dimension. In this case, the resulting family of
random circuits is composed of two-dimensional circuits
with local overlapping gates, each resembling a tile acting
on a neighborhood of qudits [33]. Although isoTNS are
only a subfamily of PEPS, they are known to contain a rich
variety of strongly correlated states such as topological
models [34].

For the above ensembles, we study the scaling behav-
ior of the average correlations between two subsystems
as a function of their distance. We then utilize this aver-
age behavior of correlations to deduce the typical case
via concentration inequalities. Instead of using well-known
correlation functions, we perform the analysis using a mea-
sure of correlation arising from the Hilbert-Schmidt norm.
Although, in a generic many-body setting, such a mea-
sure might have undesirable properties, we show that it is
particularly suited in the context of tensor network states
because it bounds the trace distance as well as all con-
nected correlation functions. For MPS, we also consider
the Rényi-α mutual information. Given a technical conjec-
ture, we compute the average correlations for all integer
values of α ≥ 1. We then use those results to retrieve

the von Neumann mutual information [35] via analytic
continuation.

We confirm analytically the common intuition that inho-
mogeneous MPS typically exhibit exponentially decaying
correlations. We show that a single common correlation
length ξ1D persists among different measures of correla-
tion. We obtain a similar quantitative conclusion for two-
dimensional isoTNS, where we observe the emergence
of a different correlation length ξ2D that is also consis-
tent among different measures of correlation. ξ1D and ξ2D
have a surprisingly weak dependence on the underlying
bond dimension D of the tensor network, and both MPS
and isoTNS remain short-range correlated for all values
of D. However, ξ1D and ξ2D have exactly opposite behav-
iors when the bond dimension is varied; ξ1D monotonically
increases, while ξ2D monotonically decreases. Our find-
ings also establish that exponentially decaying correlations
are typical for the family of (inhomogeneous) isoTNS
and consequently for the random states produced by the
corresponding quantum circuit architecture.

While an exponential decay of correlations is not an
unexpected result for MPS, the weak dependence of the
average correlation length on the bond dimension is par-
ticularly surprising. Intuitively, one might expect that a
higher bond dimension allows for a more effective spread-
ing of correlations. Our results show that that is not the
case for most MPS. The starkly different behavior of ξ1D
and ξ2D is also remarkable. While increasing the bond
dimension affects the typical spreading of correlations only
modestly in one dimension, it is detrimental to the average
correlation length in two dimensions.

The paper is structured as follows. In Sec. II, we intro-
duce our families of sequentially generated tensor network
states and the main technical tools required to compute
their average properties. In Sec. III, we summarize our
results for both MPS and isoTNS. In Secs. IV and V, we,
respectively, discuss our findings for MPS and isoTNS in
detail. Lastly, we devote Sec. VI to final observations and
potential followups to our work.

II. PRELIMINARIES

In this section, we introduce the main technical concepts
that will be needed throughout the paper. In Sec. II A, we
review the relevant families of sequentially generated ten-
sor network states in one and two dimensions. Section II B
is devoted to the measures of correlation we are interested
to estimate. In Sec. II C, we explain how to compute aver-
ages with respect to the Haar measure. Lastly, Sec. II D
introduces the graphical notation we will use to present and
prove our results.

A. Tensor network states

In one dimension, the pre-eminent tensor network struc-
ture are matrix product states (MPS) [7]. An n-particle
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MPS with open boundary conditions and local (physical)
dimension d is given by

|ψ〉 =
∑

i1,...,in

〈L|A(1)i1 · · · A(n)in |R〉|i1 · · · in〉, (1)

where A(j ) ∈ CD×D, |L〉 ∈ CD is the left boundary condi-
tion, and |R〉 ∈ CD is the right boundary condition. D is
called the bond dimension of the MPS. A commonly used
graphical notation for Eq. (1) is

|ψ〉 = ,
(2)

where vertical (red) legs represent physical space indices(
Cd
)
, and horizontal (blue) legs represent bond space

indices
(
CD

)
.

From its definition, it might not be evident how an MPS
can be generated because each tensor A does not nec-
essarily correspond to a physical process. However, the
representation of an MPS in terms of tensors is not unique.
This can be resolved by imposing a convenient canonical
form [36]. Any MPS in such a canonical form can be seen
as a state generated sequentially by applying unitary matri-
ces U(1), . . . , U(n) ∈ U(dD) to a product state initialized in
|0〉⊗n for the physical space and |0〉 for the bond space [31].
The resulting state is given by

|ψ〉 = .

(3)

Note that the final site has dimension dD, while all other
sites have dimension d. As we will see later, the final site
will not play a significant role in our analysis, making its
different dimension not an issue. In Fig. 1(a1), we sketch an
equivalent representation of sequential generation in terms
of isometries instead of unitary matrices.

The family of MPS is thus equivalent to states resulting
from quantum circuits that have a sequential architecture
and act on input product states. The architecture is a con-
sequence of the connectivity of the MPS network [see
Fig. 1(a1)]. In this picture, larger bond dimensions trans-
late to wider gates, each acting on 1 + �logd(D)�qudits.

For example, for D = d2, one has

|ψ〉 =

(4)

= .

(5)

Naturally, using this correspondence, all of our results can
be translated to the language of quantum circuits with the
described architecture.

Projected entangled-pair states (PEPS) are the general-
ization of MPS to two (or more) dimensions [7]. Because
no simple generalization of the sequential generation of
MPS to arbitrary PEPS is known, we restrict ourselves to
the rich family of two-dimensional isometric tensor net-
work states (isoTNS), which were first defined in Ref. [32]
(see also Ref. [37]).

Much like MPS, isoTNS can be generated sequentially
by applying unitary matrices to a product state initialized
in |0〉⊗mn for the physical space [33], where m denotes
the number of rows and n the number of columns of the
underlying rectangular lattice. We will use the sequential
generation sketched in Fig. 1(b1), which is a generalization
of the one proposed in Ref. [33]. Each box corresponds
to an isometry that arises from a unitary matrix U(i,j ) ∈
U
(
dD2

)
. In particular, isometries in the bulk can be drawn

as

,

(6)

as indicated in Fig. 1(b2). The diamond in Fig. 1(b1) indi-
cates the so-called orthogonality center of the isoTNS. Its
row and column constitute the orthogonality hypersurface,
which can be treated like an MPS. That is, if an opera-
tor is supported only on the orthogonality hypersurface,
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(a1)

(b1)

(a2)

(b2)

FIG. 1. Sequential generation of MPS and isoTNS. Each circle represents a site of the finalized state and boxes represent the isome-
tries of the sequential generation. (a1) Sequential generation of an MPS with physical dimension d and bond dimension D. The
diamond indicates the origin of the process. (a2) Each isometry arises from a unitary matrix of U(dD), with input and output as shown.
The (blue) ancillary system is initialized at the first step of the sequential generation, transferred along the process, and accumulated
at the final step. (b1) Sequential generation of an isoTNS with physical dimension d and bond dimension D. In addition to indicating
the origin of the process, the diamond also indicates the orthogonality center of the isoTNS. (b2) Each isometry arises from a unitary
matrix of U

(
dD2

)
. Ancillary systems are initialized and eventually accumulated at the boundary of the isoTNS at different steps of the

sequential generation.

its expectation value with respect to the isoTNS reduces
to that of the underlying MPS [32]. Although isoTNS of
a given bond dimension form by definition only a sub-
class of PEPS, they are known to contain states with a rich
structure of correlations, such as topological models [34].
On top, their properties make isoTNS a suitable candidate
for studying correlations analytically, which is otherwise a
generally challenging task in more than one dimension.

IsoTNS correspond to quantum circuits on a two-
dimensional grid with local overlapping gates, which now
resemble tiles. Increasing the bond dimension translates
to larger tile sizes and overlaps, as in the MPS case.
The corresponding architecture is dictated by the connec-
tivity of the isoTNS network [see Fig. 1(b1)], and it is
tedious (although straightforward), which is why we refer
the reader to Ref. [33] for details.

B. Quantifying correlations

Correlations express that knowledge about one subsys-
tem can convey information about another. They are quan-
tified by different measures that frequently arise from an
information-theoretic perspective and are based on oper-
ationally motivated tasks. A prime example is the von
Neumann mutual information [35]

I(A : B) = S(�A)+ S(�B)− S(�AB), (7)

where

S(�) = − tr[� log(�)] (8)

is the von Neumann entropy. A and B are two disjoint
subsystems of a larger system, and �A and �B denote the
marginals of �AB. The von Neumann mutual information
captures the total (classical and quantum) amount of cor-
relations between A and B as it is equal to the minimum
rate of randomness required to asymptotically turn �AB

into a product state [38]. It is also a non negative quan-
tity and nonincreasing under local operations [35], both
of which are desirable properties for a measure of cor-
relation. The latter means that a quantum channel [35]
acting on A or B alone (for example, by discarding part of
a subsystem) cannot increase I(A : B). Unfortunately, the
analytical treatment of the von Neumann mutual informa-
tion is impractical because computing the logarithm of �
generally requires the knowledge of its full spectrum.

To overcome this issue, an alternative is to consider a
particular Rényi-α generalization of the mutual informa-
tion

Iα(A : B) = Sα(�A)+ Sα(�B)− Sα(�AB), (9)

where

Sα(�) = 1
1 − α

log[tr(�α)] (10)

is the Rényi-α entropy. As is apparent from the definition,
for integer values of α, its evaluation is considerably
simpler. The Rényi-α mutual information has been inves-
tigated in the context of conformal field theories [39–41],
free fermions [42], and quantum dynamics [43,44]. We
will use later that the limit of α → 1 of Iα(A : B) recov-
ers the von Neumann mutual information. The mentioned
positive aspects notwithstanding, unlike the von Neumann
mutual information, Eq. (9) does not arise from a (general-
ized) divergence [45], and the Rényi-α mutual information
can be negative [46,47] and increasing under local oper-
ations. It is thus hard to interpret it as a proper measure
of correlation in general. Nevertheless, for certain families
of initial states (see, for example, Ref. [44]), monotonic-
ity and non negativity can be restored. Henceforth, we
will mostly focus on the case of α = 2, but we will also
consider an analytic continuation on positive integer val-
ues of α. As we will show, in the present context of
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tensor network states, the case of α = 2 appropriately cap-
tures the decay of correlations at large distances between
subsystems A and B with little effort.

In addition to the previous quantities, we would also like
to probe the trace distance

T(A : B) = 1
2

‖�AB − �A ⊗ �B‖1 , (11)

where ‖ · ‖p denotes the Schatten p-norm [48]. For an
operator X , the Schatten p-norm is given by

‖X ‖p = tr
[(

X †X
)p/2

]1/p
. (12)

T(A : B) has a well-known operational interpretation as it
quantifies the optimal distinguishability between �AB and
the product of its marginals �A ⊗ �B by a two-element gen-
eralized global measurement [49]. Moreover, the trace dis-
tance upper bounds the (properly normalized) connected
correlation function [45]:

T(A : B) ≥ 2
|〈MA ⊗ MB〉 − 〈MA〉〈MB〉|

‖MA‖∞ ‖MB‖∞
(13)

Although the bound can be tight, the two quantities are
different whenever product measurements are ineffective
in distinguishing ρAB from ρA ⊗ ρB, a fact used in quantum
data hiding [50].

As one expects from its operational interpretation, the
trace distance satisfies the monotonicity property under
local operations [49]. However, T(A : B) is usually hard
to compute exactly. We will now argue that investigating

N (A : B) = ‖�AB − �A ⊗ �B‖2
2 (14)

meaningfully probes T(A : B) for tensor network states
with constant (that is, size-independent) bond dimension,
all while being much simpler to treat.

In general, for mixed many-body states, the two mea-
sures can have vast disagreement because it holds [48]
that

‖X ‖2 ≤ ‖X ‖1 ≤
√

rank(X )‖X ‖2. (15)

Both bounds are tight, and the upper bound is saturated for
X ∝ I . As such, for arbitrary mixed states of an exponen-
tially large Hilbert space, the factor rank(X ) can render the
upper bound useless. Crucially, in this work, we investigate
(random) tensor network states with fixed bond dimension
D. Let ∂R denote the boundary of a system R and |∂R| its
size (number of sites). The ranks of �A and �B are, respec-
tively, upper bounded by D|∂A| and D|∂B|, and that of �AB is

upper bounded by D|∂A|+|∂B| [7]. Thus,

rank (�AB − �A ⊗ �B) ≤ 2D|∂A|+|∂B|, (16)

yielding the bound

1
2

√
N (A : B) ≤ T(A : B) ≤

√
D|∂A|+|∂B|

2

√
N (A : B). (17)

For MPS (one dimension) with connected subsystems A
and B, the bound reads

1
2

√
N (A : B) ≤ T(A : B) ≤ D2

√
2

√
N (A : B). (18)

That is, the bound is independent of the sizes of A and B,
unlike in the generic case of Eq. (15). This suggests that,
for reasonably small bond dimension, N (A : B) is a reliable
probe of correlations [as quantified by T(A : B)] between
subsystems A and B. We will expand on this point later.

C. k-fold twirl

Let X be an operator acting on (Cq)
⊗k. The k-fold twirl

of X with respect to the Haar measure on the unitary group
U(q) is defined [51–53] as

T (k)
U (X ) =

∫
dU U⊗kX

(
U†)⊗k

. (19)

One can employ the Schur-Weyl duality for unitary groups
to show [51,54] that

T (k)
U (X ) =

∑

σ ,τ∈Sk

Wg
(
στ−1, q

)
P(q)σ tr

[
X
(
P(q)τ

)T
]

, (20)

where

P(q)π : v1 ⊗ · · · ⊗ vk �→ vσ−1(1) ⊗ · · · ⊗ vσ−1(k) (21)

is the representation of π ∈ Sk on (Cq)
⊗k, where Sk is

the symmetric group. Wg
(
στ−1, q

) = (
G−1

)
στ

[55] is the
Weingarten function, where G ∈ Rk!×k! denotes the Gram
matrix whose entries are given by

Gστ = tr
[
P(q)σ

(
P(q)τ

)T
]

= q#
(
στ−1

)

. (22)

Here, #(π) counts the number of cycles in the decomposi-
tion of π ∈ Sk into disjoint cycles. Thus, Wg(π , q) depends
only on the conjugacy class of π [54]. In Appendix A, we
show how to obtain Eq. (20) from Eq. (19) by using a result
of Ref. [54].
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D. Graphical notation

In this section, we introduce the graphical notation
used throughout this paper. To keep the images compact,
we employ the operator-vector correspondence. Let {|i〉}
denote the standard basis of Cq. Then, the operator-vector
correspondence [48] is defined by

vec(|i〉〈j |) = |i〉 ⊗ |j 〉 (23)

and extended linearly to the vector space at large.
Because we consider the standard (product) basis to be

fixed, we do not distinguish between tensors (as multidi-
mensional arrays) and their basis-independent counterparts
(such as vectors and operators). Let X be an operator act-
ing on (Cq)

⊗k. Using the operator-vector correspondence,
we denote it by

= vec(X).
(24)

Note that the orientation of the legs does not have any
meaning in our images. That is,

= = = .

(25)

When we need the transpose of an operator, we will
explicitly use

= vec XT
)
.

(26)

As such, when we contract two operators X and Y, we
mean the trace of their product:

= tr(XY )
(27)

Let us state the two most prominent operators we will
encounter. We will see

= vec
(
P (q)

σ

)
,

(28)

where the horizontal (green) leg is permutation valued, and

= vec |0〉〈0|⊗k
)
.

(29)

Their relevant contractions are

= tr
(
P (q)

σ P (q)
τ

)
= q#(στ)

(30)

and

= tr
(
|0〉〈0|⊗kP (q)

σ

)
= 1.

(31)

Moving forward, we will not explicitly write the operator
vec, as it shall be clear from the context.

With the definition of the Weingarten matrix,

= Wg στ−1, q
)
,

(32)

we can then write the k-fold twirl [see Eq. (20)] as

T (k)
U (X) = ,

(33)

where the contraction of two green legs corresponds to a
summation over the permutations of Sk.

III. SUMMARY OF RESULTS

In this paper, we analyze the average behavior of cor-
relations in random tensor network states. Through the
average, we obtain conclusions about the generic case. Our
work focuses on the disordered case, that is, the case where
each local tensor is independent. Our setting can be equiv-
alently understood as an investigation of correlations in
states resulting from quantum circuits with a sequential
architecture and random gates.

In one dimension, generic MPS are known to exhibit
exponentially decaying correlations in the translation-
invariant case [56]. This is due to the fact that injectivity
is a generic property [7]. On the other hand, injectivity
alone is not enough to guarantee an exponential decay
of correlations for an inhomogeneous sequence of ten-
sors. Nevertheless, the exponential decay of correlations
is widely expected to persist without translational invari-
ance, but it has never been rigorously studied so far in this
setting.

In two (or more) dimensions, the landscape of cor-
relations is much richer. For instance, already in two
dimensions, certain PEPS corresponding to thermal states
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of classical models are known to exhibit power-law corre-
lations [14]. Moreover, prominent topological states, such
as quantum double models [57] (which include the toric
code) and string-net models [16,17], admit a description
in terms of PEPS. On the other hand, for translation-
invariant PEPS whose tensors’ entries are drawn from a
Gaussian measure, it is known that correlations typically
decay exponentially [25].

Computing correlations in higher-dimensional systems
usually poses a significant challenge because they can
be mediated through different paths connecting the two
subsystems of interest. Here, we restrict our analysis to
two-dimensional isoTNS. This rich class of tensor net-
work states is relevant in both the analytical and the
numerical context [58–62], all while admitting a simple
physical interpretation through sequential generation [see
Fig. 1(b1)]. Moreover, its mathematical properties make
the analytical study of correlations in two dimensions
tractable.

For isoTNS, it is expected that correlations between two
subsystems decay exponentially if they are both on the
orthogonality hypersurface because the calculation reduces
to the contraction of an MPS [32]. Nonetheless, isoTNS
can represent a rich variety of topological models, as all
string-net models admit an exact and explicit description
in terms of isoTNS [34] (on the appropriate underlying lat-
tice). This motivates us to study the typical behavior of
correlations in isoTNS, particularly between subsystems
that extend beyond the orthogonality hypersurface.

To investigate the decay of correlations in our two fam-
ilies of random tensor network states, one must specify the
ensembles to draw from. Here we adopt an operational per-
spective and relate our measures of randomness directly to
the sequential generation process. Because that is defined
with respect to isometries, one can incorporate randomness
at the level of the underlying unitary matrices. A natu-
ral choice is to draw each unitary matrix from the Haar
measure on the appropriate unitary group. This approach
was introduced for MPS in Ref. [18] (see also Ref. [19]),
and it can directly be applied to higher-dimensional ten-
sor network states that admit a sequential generation, such
as isoTNS, yielding normalized states by construction.
Although one can sample random translation-invariant
states with this method, we investigate the disordered case
by drawing each unitary matrix independently from the
Haar measure.

Because we are interested in the decay of correlations,
we focus on computing average correlations between two
subsystems A and B as a function of their distance r. For
random MPS and isoTNS, we consider subsystems A and
B as sketched in Figs. 2(a) and 2(b), respectively. In both
cases, A and B stretch across a and b consecutive (hori-
zontal) sites. In Fig. 2(b), A and B touch the orthogonality
hypersurface and stretch across h vertical sites. We will
relax this condition later.

(a)

(b)

FIG. 2. We investigate average correlations between two sub-
systems A and B as a function of their (horizontal) distance r. A
and B, respectively, stretch across a and b consecutive (horizon-
tal) sites. (a) The diamond indicates the origin of the sequential
generation of the MPS. (b) In addition to indicating the origin of
the sequential generation, the diamond also indicates the orthog-
onality center of the isoTNS. For now, we restrict ourselves to
A and B that touch the orthogonality hypersurface and stretch
across h consecutive vertical sites.

For all of the measures of correlation we study, we find
that the average with respect to the considered ensemble
of states decays exponentially. We formalize this type of
behavior in Definition 1.

Definition 1.—Let C(A : B) denote a measure of correla-
tion. We say that the average of C(A : B) with respect to a
given ensemble of random states decays exponentially if

EC(A : B) = K exp
(

− r
ξ

)
+ O

[
exp

(
− r
χ

)]
, (34)

where K is constant with respect to r, and ξ > χ is the
average correlation length for C(A : B).

Remarkably, we find that a single average correlation
length persists throughout the different families of mea-
sures of correlation and that it depends only on the under-
lying spatial dimension. We later pinpoint the origin of this
behavior to the invariance of a spectral gap of a family of
transfer matrices. For MPS,

ξ =
[

log
(

d2D2 − 1
dD2 − d

)]−1

≡ ξ1D, (35a)

and for isoTNS,

ξ =
[

log
(

d2D4 − 1
dD3 − dD

)]−1

≡ ξ2D. (35b)
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Note that the average correlation length for MPS coincides
with that for isoTNS for d → dD. This seemingly small
modification will prove to change the qualitative behavior
substantially.

Before moving to the detailed presentation of our meth-
ods and results, we briefly comment on the considered
measures of correlation and the implications of our find-
ings, first for MPS and then for isoTNS.

A. Results in one dimension (MPS)

In one dimension, we compute the averages of the
Rényi-2 mutual information I2(A : B), the 2-norm expres-
sion N (A : B), and the von Neumann mutual information
I(A : B) (see Sec. II B for the definitions of the measures
of correlation), with subsystems A and B as sketched in
Fig. 2(a).

We find that the averages decay exponentially as spec-
ified in Definition 1 with the same correlation length ξ1D
(see Results 1, 2, and 3). The derivation for I(A : B) relies
on a technical conjecture (see Conjecture 1), which we will
discuss in detail later. In addition, we show that the same
conjecture is enough to assert that ξ1D is also the average
correlation length for Iα(A : B) for any integer value of
α ≥ 1 (see Corollary 4). In short, the same average cor-
relation length ξ1D persists across different measures of
correlation.

Interestingly, ξ1D depends only weakly on the bond
dimension D. In particular, for d, D ≥ 2,

ξ1D =
{

log
[

d
ζ1D(d, D)

]}−1

(36)

with

4
5

≤ ζ1D(d, D) < 1 (37)

is monotonically increasing with D.
Because we are concerned with random tensor network

states, ξ1D is obtained after averaging over realizations. It
is then natural to ask if exponentially decaying correlations
are typical and, if so, what is the typical correlation length
for an individual realization. This motivates the investi-
gation of the concentration of the distribution around its
average. To that end, we will show that it is exponen-
tially unlikely in r that N (A : B) and I(A : B) decay slower
than with ξ1D (see Corollaries 1 and 3). Our result for
N (A : B) allows us to deduce that the average of the trace
distance T(A : B) decays at least exponentially with cor-
relation length ξ ≤ 2ξ1D, and it leads to a concentration
result for T(A : B) (see Corollary 2).

As stated before, MPS are known to exhibit exponen-
tially decaying correlations [56]. However, our finding that
the average correlation length is almost independent of the
bond dimension is novel and implies that long-range cor-
related states are very atypical members of the ensemble.

B. Results in two dimensions (isoTNS)

In two dimensions, we compute the averages of the
Rényi-2 mutual information I2(A : B) and the 2-norm
expression N (A : B), where subsystems A and B are
sketched in Fig. 2(b).

As in one dimension, we find that the averages decay
exponentially as specified in Definition 1 with the same
average correlation length ξ2D (see Results 4 and 5).

The correlation length ξ2D displays a qualitatively dif-
ferent dependence on the bond dimension D. In particular,
for d, D ≥ 2,

ξ2D =
{

log
[

d
ζ2D(d, D)

]}−1

(38)

with

0 < ζ2D(d, D) ≤ 8
21

(39)

is monotonically decreasing with D, in contrast to its one-
dimensional counterpart. As such, the largest correlation
length is achieved for D = 2.

For N (A : B), we can extend the applicability of our
results to any size and shape of subsystems A and B;
we find the decay to be at least exponential with corre-
lation length ξ = ξ2D (see Corollary 5). We furthermore
prove a concentration result for N (A : B) expressing that
it is highly unlikely that N (A : B) decays slower than
with ξ2D (see Corollary 6). This also allows us to draw
a similar conclusion about the behavior of T(A : B) (see
Corollary 7).

While it is expected for isoTNS that correlations decay
exponentially if they are both on the orthogonality hyper-
surface [32], our finding that the exponential decay persists
for subsystems in the bulk is novel. Moreover, the different
behavior of ξ2D as compared to ξ1D is particularly sur-
prising; for typical isoTNS, increasing the bond dimension
reduces the average correlation length.

C. Further discussion

Here, we discuss three aspects of our results on a more
qualitative level: the absence of large average correla-
tion lengths, the opposite dependence of said correlation
lengths on the bond dimension in one and two dimensions,
and the effect of blocking sites together.

From the analytical expressions for ξ1D and ξ2D [see
Eq. (35)], it follows that, for a fixed physical dimension
d, both average correlation lengths are upper bounded
by a constant, irrespective of the bond dimension D. In
one dimension, the sequential-generation scheme corre-
sponds to actions of unitary matrices on two neighboring
d-dimensional sites together with a D-dimensional system.
The unitary matrices act as an information carrier, convey-
ing information from one physical qudit to another through
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interaction. Our results shows that, when these unitary
matrices are random and independent from each other, the
resulting correlations are, on average, weak.

The average correlation lengths for isoTNS can be
obtained from the one for MPS by replacing d → dD. This
simple fact, however, leads to ξ2D being a decreasing func-
tion of D, in contrast to ξ1D. To explain this feature, we use
the fact (which we will prove later) that ξ2D is indepen-
dent of the vertical extent h of subsystems A and B. As a
result, we can gain sufficient insight from the limiting case
of a 1 × n isoTNS, which corresponds to a certain MPS
graphically given by

.

(40)

Importantly, this MPS has local dimension dD, explaining
why the average correlation lengths coincide for d → dD.
An increase of the bond dimension of the isoTNS thus
corresponds to an increase of the local dimension of the
corresponding MPS, which dominates the behavior of ξ1D.

Finally, we comment on the effect of blocking sites
together. It holds that

ξ1D = 1
log(d)

+ O
(

1
D2

)
, (41)

implying that ξ1D ≈ 1/ log(d) for D � 1. This suggests
the following scale invariance property, valid in the con-
text of this approximation. Consider two families |ψ〉 and
|ψ̃〉 of random MPS with d̃ = dq and D̃ = D. Graphically,
for q = 2,

|ψ〉 =

(42)

and

|ψ̃〉 = .

(43)

Our simple observation is that, although it holds that ξ̃ =
ξ/q, the effective distances (that is, the number of uni-
tary matrices separating any two physical sites) are also
rescaled as r̃ = r/q. Consequently, the circuit architectures
generating |ψ〉 and |ψ̃〉 have scale-invariant (average)
correlations within the approximation ξ1D ≈ 1/log(d).

IV. CORRELATIONS IN ONE DIMENSION

In this section, we state and discuss the results for ran-
dom MPS summarized in Sec. III A in more detail. Before
doing that, we develop the tools behind our proofs in Secs.
IV A and IV B. In Sec. IV C, we compute the average of
I2(A : B), and in Sec. IV D, we investigate the decays of
N (A : B) and T(A : B). Finally, we discuss the behavior of
I(A : B) in Sec. IV E.

When computing the averages of measures of correla-
tion for random MPS, we will exploit a simplification with
respect to the scenario depicted in Fig. 2(a). Instead of
allowing for an arbitrary number of sites before subsys-
tem A, we prove our statements in the limit of c → ∞.
As we show in Appendix J, this does not constitute a lim-
itation because the c initial sites do not affect the decay
of correlations and, therefore, neither the average correla-
tion length ξ1D. Furthermore, we will see that the f sites
after subsystem B do not play a role in the computation of
average correlations, as it is expected for any sequentially
generated state.

A. Transfer matrices

The key challenge for computing the average of each
measure of correlation will be evaluating multiple expres-
sions of the form

tr
(
PE|ψ〉〈ψ |⊗k) , (44)

where

P = (
P(d)e

)⊗c ⊗ (
P(d)α

)⊗a ⊗ (
P(d)e

)⊗r

⊗
(

P(d)β
)⊗b

⊗ (
P(d)e

)⊗(f −1) ⊗ P(dD)
e . (45)
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The permutation α ∈ Sk acts on the sites comprising sub-
system A, while β ∈ Sk acts on the sites comprising B. The
exact forms of α and β as well as the number of required
replicas k depend on the considered measure of correla-
tion and will be specified later. It shall also become clear
why sites belonging to neither A nor B are acted upon by
the trivial permutation e ∈ Sk. In the following, we show
that Eq. (44), for random MPS, reduces to multiplying
matrices Tρ ∈ Rk!×k! with ρ ∈ Sk whose definition will be
natural. Because their role is analogous to the known trans-
fer matrices mediating correlations, we will also adopt this
term here.

Before introducing the transfer matrices, we must ana-
lyze E|ψ〉〈ψ |⊗k. To that end, let us define V(j ) = U(j ) ⊗
U(j ). Then, by Eq. (3),

|ψ〉〈ψ| =

(46)

and

|ψ〉〈ψ|⊗k

= .

(47)

By computing the k-fold twirl [see Eq. (33)], we obtain the
building block

=
∫

dU (j)

(48)

= ,
(49)

where the (green) dot represents a Kronecker δ on three
permutation indices. Note that we have not drawn the con-
traction of a permutation matrix with |0〉〈0|⊗k because it is
trivial by Eq. (31). The average of a random MPS is then

given by

E|ψ〉〈ψ|⊗k = .
(50)

We could, in principle, work with the building block
above. However, it is not convenient to have dangling
bond (blue) legs whose dimension grows with D. By cut-
ting permutation-valued (green) legs instead, we obtain a
building block with fixed dimension for fixed k. With that
building block, the average of a random MPS is given by

E|ψ〉〈ψ|⊗k =
(51)

The entries of the initial vector 〈Ik| ∈ Rk! are given by

= = 1,
(52)

where we have used Eq. (31). The tensors in the bulk are
given via

= ,
(53)

and the final tensor is given via

= .
(54)

Computing an expression of the form of Eq. (44) cor-
responds to contracting each tensor S with P(d)ρ , which
leads us to the promised definition of a transfer matrix
Tρ ∈ Rk!×k!. Using Eq. (30), its entries are given by

= =
(55)

=
∑

σ∈Sk

Wg(στ−1, dD)d#(σ ,p)D#(σθ−1) (56)

We define Tρ with respect to the basis defined by the map
si �→ ei, where si is the ith element of Sk = {s1, . . . , sk!},
and {ei} is the standard basis of Rk!. In Appendix D, we
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find that Tρ is block triangular if the elements of Sk are
ordered in a certain way.

As alluded to in Eq. (45), the final tensor S′ will
be contracted with the trivial permutation e ∈ Sk in our
computations. The final vector |Fk〉 ∈ Rk! is thus defined
via

= =
(57)

=
∑

σ∈Sk

Wg(στ−1, dD)(dD)#(σε) = δeτ ,

(58)

where we have used the definition of the Weingarten
function.

Using the definitions of Te and |Fk〉, it is easy to
confirm that Te|Fk〉 = |Fk〉. Graphically, this implies the
simplification

= .
(59)

From this, it also follows that E|ψ〉〈ψ |⊗k is properly
normalized:

tr
(
E|ψ〉〈ψ |⊗k) = 〈Ik|Tn−1

e |Fk〉 = 〈Ik|Fk〉 = 1 (60)

With what we have laid out above, we can write Eq. (44)
in terms of transfer matrices:

tr
(
PE|ψ〉〈ψ |⊗k) = 〈Ik|Tc

eTa
αTr

eTb
β |Fk〉 (61)

We provide a simple Mathematica package [63] that
defines Tρ with ρ ∈ Sk for k ∈ {1, . . . , 20} according to
Eq. (56). The package relies on the package provided by
the authors of Ref. [64] for evaluating the Weingarten
function.

B. Estimating the decay of correlations

The decay of the average of each measure of correlation
is necessarily determined by the r sites separating subsys-
tems A and B. As we will see in the following sections,
this will, for each measure, translate to a simple statement
in terms of the just-defined transfer matrices. In particular,
we will find that the decay of correlations is determined by
Tr

e with e ∈ Sk. Taking this as a fact for now, we connect
the decay of correlations with the spectrum of Te.

The spectrum of Te depends on k because k determines
its dimension and entries. Still, we can make general state-
ments about Te for any k ≥ 2. In particular, we will prove
the following statements in Appendices B and C.

Proposition 1.—The eigenvalues of Te with e ∈ Sk are
non negative for any k ≥ 2.

Proposition 2.—Te with e ∈ Sk is diagonalizable for any
k ≥ 2.

Proposition 3.—Let λ1 > λ2 > · · · ≥ 0 denote the dis-
tinct eigenvalues of Te with e ∈ Sk. Then, λ1 = 1, and it is
nondegenerate for any k ≥ 2 if d ≥ 2.

Given the statements above, we can expand Tr
e as

Tr
e = |R1〉〈L1| + λr

2

w2∑

μ=1

|R(μ)2 〉〈L(μ)2 | + O
(
λr

3

)
, (62)

where |R(μ)i 〉 denotes the μth right eigenvector corre-
sponding to λi, 〈L(μ)i | denotes the μth left eigenvector
corresponding to λi, and wi denotes the degeneracy of λi.

The asymptotic decay of correlations is thus determined
by the subleading eigenvalue λ2 of Te, and the average
correlation length is given by

ξ = − 1
log (|λ2|) . (63)

The argument behind this is similar to one known from
the analysis of correlations in translation-invariant MPS
[56,65], where the decay is determined by the subleading
eigenvalue of the relevant transfer matrix.

C. Rényi-2 mutual information

We start our analysis of correlations in random MPS
with the simplest case, namely the computation of the
average of the Rényi-2 mutual information

I2(A : B) = log
[
tr
(
�2

AB

)]

− log
[
tr
(
�2

A

)]

− log
[
tr
(
�2

B

)]
. (64)

The analytical treatment turns out to be comparatively
simple if one assumes that E log(X ) = log(EX ), as is fre-
quently done in this context [66–68]. The assumption can
furthermore be justified with the fact that the purities of
�A, �B, and �AB concentrate around their averages, as we
discuss towards the end of this section. That said, we will
not make the assumption further below when we study
the von Neumann mutual information. The analysis there
will require transfer matrices Tρ with ρ ∈ Sk for all k ≥ 2,
while ρ ∈ S2 will suffice here because only the averages of
purities are needed. Our first result is summarized below.

Result 1.—The average of I2(A : B) with respect to
the random MPS ensemble and subsystems A and B as
sketched in Fig. 2(a) decays exponentially as specified in
Definition 1 with the average correlation length ξ1D defined
in Eq. (35a).

Proof.—We split the proof into four steps. The exact
same structure will also appear in the proofs for the other
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measures of correlation. Thus, this proof serves as the
simplest example and a point of reference for later proofs.
Step 1: We rewrite EI2(A : B) in terms of expressions of
the form of Eq. (44). To that end, we make the assumption
that E log(X ) = log(EX ). Then,

EI2(A : B) = log
[
E tr

(
�2

AB

)]

− log
[
E tr

(
�2

A

)]

− log
[
E tr

(
�2

B

)]
. (65)

E tr
(
�2

A

)
, E tr

(
�2

B

)
, and E tr

(
�2

AB

)
can already be written in

the desired form. For example,

E tr
(
�2

AB

) = tr
(
PE|ψ〉〈ψ |⊗2) (66)

with

P = (
P(d)e

)⊗c ⊗
(

P(d)(12)

)⊗a
⊗ (

P(d)e

)⊗r

⊗
(

P(d)(12)

)⊗b
⊗ (

P(d)e

)⊗(f −1) ⊗ P(dD)
e . (67)

Step 2: We express EI2(A : B) in terms of the transfer
matrices defined in Sec. IV A. Given the previous step, it
is easy to confirm that

EI2(A : B) = log
(〈I2|Tc

eTa
(12)T

r
eTb
(12)|F2〉

)

− log
(〈I2|Tc

eTa
(12)|F2〉

)

− log
(〈I2|Tc+a+r

e Tb
(12)|F2〉

)
. (68)

Step 3: We expand EI2(A : B) in terms of the spec-
trum of Te with e ∈ S2 [see Eq. (62)]. Using the relevant
expressions for the Weingarten function, it is evident [69]
that

Te =

⎛
⎜⎜⎝

1
d2D − D
d2D2 − 1

0
dD2 − d
d2D2 − 1

⎞
⎟⎟⎠ (69)

is diagonalizable with

λ1 = 1 and λ2 = dD2 − d
d2D2 − 1

. (70)

Expanding Tc
e and taking the limit of c → ∞ yields

EI2(A : B) = log
(〈L1|Ta

(12)T
r
eTb
(12)|F2〉

)

− log
(〈L1|Ta

(12)|F2〉
)

− log
(〈L1|Tb

(12)|F2〉
)

, (71)

where we have used that 〈I2|R1〉 = 1. After expanding also
Tr

e and using that |F2〉 = |R1〉, we have

EI2(A : B) = log
(
〈L1|Ta

(12)|R1〉〈L1|Tb
(12)|R1〉

+ λr
2〈L1|Ta

(12)|R2〉〈L2|Tb
(12)|R1〉

)

− log
(〈L1|Ta

(12)|R1〉
)

− log
(〈L1|Tb

(12)|R1〉
)

. (72)

Step 4: Finally, we can write EI2(A : B) in the form of
Definition 1. That is,

EI2(A : B)

= log

(
1 + λr

2

〈L1|Ta
(12)|R2〉〈L2|Tb

(12)|R1〉
〈L1|Ta

(12)|R1〉〈L1|Tb
(12)|R1〉

)
(73)

= λr
2

〈L1|Ta
(12)|R2〉〈L2|Tb

(12)|R1〉
〈L1|Ta

(12)|R1〉〈L1|Tb
(12)|R1〉

+ O
(
λ2r

2

)
(74)

≡ K exp
(

− r
ξ

)
+ O

[
exp

(
−2r
ξ

)]
, (75)

where

K = 〈L1|Ta
(12)|R2〉〈L2|Tb

(12)|R1〉
〈L1|Ta

(12)|R1〉〈L1|Tb
(12)|R1〉

(76)

and

ξ = − 1
log(λ2)

= −
[

log
(

dD2 − d
d2D2 − 1

)]−1

= ξ1D. (77)

This concludes the proof. �
We are now in a position to discuss the concentration of

the purities of �A, �B, and �AB around their averages, which
justifies E log(X ) = log(EX ). By expanding E tr

(
�2

A

) =
〈L1|Ta

(12)|R1〉, one can confirm that

E tr
(
�2

A

) =
(

d + 1
d

)2 1
D2 + O

(
1
da + 1

D4

)
. (78)

Similarly, it holds that

E tr
(
�2

AB

) =
(

d + 1
d

)4 1
D4 + O

(
1

da+b + 1
D6

)
. (79)

The purities of �A, �B, and �AB are thus close to their
minimum values, implying concentration by Markov’s
inequality and justifying E log(X ) = log(EX ).

As discussed earlier, the Rényi-2 mutual information is
lacking many of the desirable properties that a sound mea-
sure of correlation ought to fulfill. On top, our computation
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simplifies considerably because we are using the assump-
tion that E log(X ) = log(EX ), which amounts to ignoring
statistical fluctuations in the different realizations. In the
following section, we will see that N (A : B) decays expo-
nentially with the same average correlation length ξ1D. We
will furthermore show that N (A : B) concentrates around
its average, providing evidence that fluctuations can be
safely ignored in our context.

D. Trace distance and 2-norm

In this section, we investigate average correlations as
quantified by the trace distance T(A : B). As anticipated
in Sec. II B, this is a challenging task. However, as laid out
there, the 2-norm expression N (A : B) reliably estimates
T(A : B) for the case of random MPS. Hence, we compute
the average of

N (A : B) = ‖�AB − �A ⊗ �B‖2
2 (80)

= tr
(
�2

AB

)

+ tr
(
�2

A

)
tr
(
�2

B

)

− 2 tr [�AB (�A ⊗ �B)] . (81)

Because of its connection to the Hilbert-Schmidt inner
product, the average of N (A : B) can be computed without
any simplifying assumptions. Making use of the transfer-
matrix techniques introduced above, we prove the follow-
ing result.

Result 2.—The average of N (A : B) with respect to
the random MPS ensemble and subsystems A and B as
sketched in Fig. 2(a) decays exponentially as specified in
Definition 1 with the average correlation length ξ1D defined
in Eq. (35a).

Sketch of proof.—The proof follows the same procedure
as that of Result 1. Here, we sketch the main steps and refer
to Appendix H for more details.

In Step 1, we write EN (A : B) in terms of expressions
of the form of Eq. (44). The second summand in Eq. (81)
requires permutations of S4 because

E tr
(
�2

A

)
tr
(
�2

B

) = tr
(
PE|ψ〉〈ψ |⊗4) (82)

with

P = (
P(d)e

)⊗c ⊗
(

P(d)(12)

)⊗a
⊗ (

P(d)e

)⊗r

⊗
(

P(d)(34)

)⊗b
⊗ (

P(d)e

)⊗(f −1) ⊗ P(dD)
e . (83)

The first summand and the third summand, respectively,
require only permutations of S2 and S3. In Step 2, we
thus write EN (A : B) in terms of transfer matrices Tρ with
ρ ∈ S4.

This means that the average correlation length is deter-
mined by the subleading eigenvalue of Te with e ∈ S4. Let

λ1 > λ2 > · · · ≥ 0 denote the distinct eigenvalues of Te. In
Step 3, we find that

λ1 = 1 and λ2 = dD2 − d
d2D2 − 1

, (84)

just like for Te with e ∈ S2. The former is nondegenerate,
while the degeneracy of the latter is given by the number
of transposition in S4,

w2 =
(

4
2

)
= 6. (85)

Thus, the average correlation length for N (A : B) coincides
with that for I2(A : B), as we conclude in Step 4. �

The above result establishes the exponential decay of the
average. However, one is usually interested in knowing if
typical instances are expected to have the same exponential
decay. This can be easily established by Markov’s inequal-
ity because N (A : B) is non negative and its average decays
to zero as a function of the distance r.

Corollary 1.—For subsystems A and B as sketched
in Fig. 2(a), sufficiently large r, and all 0 < ε < 1, the
random MPS ensemble satisfies

Pr
{

N (A : B) ≥ K exp
[
− (1 − ε)r

ξ1D

]}
≤ exp

(
− εr
ξ1D

)
,

(86)

where K is constant with respect to r.
Proof.—By Result 2, for sufficiently large r, we can

bound EN (A : B) ≤ K exp(−r/ξ1D). Because N (A : B) is
non negative, by Markov’s inequality, we have, for η > 0,

Pr
[

N (A : B) ≥ ηK exp
(

− r
ξ1D

)]

≤ Pr
[
N (A : B) ≥ ηEN (A : B)

]
(87)

≤ 1
η

. (88)

The result follows with η = exp(εr/ξ1D). �
The above corollary reflects that it is exponentially

unlikely in r that N (A : B) decays slower than with the
average correlation length ξ1D. Because we have already
established that the average case exhibits an exponential
decay with correlation length ξ1D, the average case is also
typical.

By combining the above result with Eq. (18), we can
now also bound the correlation length for T(A : B).

Corollary 2.—For subsystems A and B as sketched
in Fig. 2(a), sufficiently large r, and all 0 < ε < 1, the
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FIG. 3. Numerically obtained average correlation length ξ for
different d and D. The data points are obtained by fitting the aver-
age value of I(A : B) against r ∈ {5, 7, 9, 11, 13, 15} for a = b =
1. The sample size of 10 000 suffices for the error bars to lie
within the plot points. The opaque curves correspond to ξ1D [see
Eq. (35a)].

random MPS ensemble satisfies

Pr
{

T(A : B) ≥ K exp
[
− (1 − ε)r

2ξ1D

]}
≤ exp

(
− εr
ξ1D

)
,

(89)

where K is constant with respect to r.
Proof.—It holds that

ET(A : B) ≤
√

E[T(A : B)]2 (90)

≤ D2

2

√
EN (A : B) (91)

≤ K exp
(

− r
2ξ1D

)
, (92)

where, in the last line, we have assumed r to be sufficiently
large. The result follows as in the proof of Corollary 1. �

Thus, with overwhelming probability, correlations as
quantified by T(A : B) decay exponentially with ξ ≤ 2ξ1D.

E. Von Neumann mutual information

The fact that I2(A : B) and N (A : B) have the same aver-
age correlation length ξ1D motivates the question whether
other measures of correlation behave similarly. In this
section, we will provide compelling evidence that ξ1D is
indeed the average correlation length also for the von
Neumann mutual information I(A : B).

We start by numerically investigating the behavior of
I(A : B) for random MPS. We have generated MPS accord-
ing to our measure, computed the average of I(A : B), and
extracted the average correlation length from fits. As Fig. 3

shows, the numerically obtained average correlation length
coincides well with ξ1D. It should be noted that we have set
c = 0 for our numerical analysis. We discuss in Appendix J
why this does not affect the average correlation length. For
more details on our numerical analysis, see Appendix K.

We now turn to the analytical computation of the aver-
age of

I(A : B) = tr [ρAB log (ρAB)]

− tr [ρA log (ρA)]

− tr [ρB log (ρB)] . (93)

To be able to make use of the transfer-matrix techniques
introduced above, we employ two replica tricks to write
EI(A : B) in terms of expressions of the form of Eq. (44).
First, we write S(ρ) as the limit of α → 1 of Sα(ρ):

S(ρ) = lim
α→1

1
1 − α

log[tr(�α)] (94)

Second, instead of assuming again that E log(X ) =
log(EX ), we use

E log(X ) = lim
v→0

1
v

log (EX v) . (95)

We are thus dealing with expressions of the form
tr
(
PE|ψ〉〈ψ |⊗vα), which require transfer matrices Tρ with

ρ ∈ Svα (see Appendix I). This means that knowing the
spectrum of Te with e ∈ Svα for all vα ≥ 2 allows us
to draw conclusions about the decay of the average of
I(A : B).

While this is in principle a daunting task, we are able
to prove several properties of the transfer matrix Te with
e ∈ Sk for any k ≥ 2 (see Propositions 1, 2, and 3).

In Appendix D, we furthermore show that Te with e ∈ Sk
has eigenvalue

μ2 = dD2 − d
d2D2 − 1

(96)

for any k ≥ 2. Its degeneracy is at least

v2 =
(

k
2

)
, (97)

the number of transpositions in Sk. We conjecture thatμ2 is
the subleading eigenvalue of Te with e ∈ Sk for any k ≥ 2
and that it has degeneracy v2. We know this conjecture to
hold for k ∈ {2, 3, 4}, and we have numerical evidence sug-
gesting so for k ∈ {5, 6, 7} [63]. We were not able to prove
the statement outright, but in the following we argue that
it is the only missing step to show that ξ1D is the average
correlation length for I(A : B). Let us state the conjecture
formally below.
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Conjecture 1.—Let λ1 > λ2 > · · · ≥ 0 denote the dis-
tinct eigenvalues of Te with e ∈ Sk. Then, λ2 = μ2 with
degeneracy w2 = v2 for any k ≥ 2.

If Conjecture 1 holds, the properties of Te with e ∈ Sva
that are relevant for determining the decay of correlations
are independent of vα. In Appendix I, we argue that the
replica limit does not affect this and prove the following
result.

Result 3.—If Conjecture 1 holds, the average of I(A : B)
with respect to the random MPS ensemble and subsys-
tems A and B as sketched in Fig. 2(a) decays exponentially
as specified in Definition 1 with the average correlation
length ξ1D defined in Eq. (35a).

We provide a concentration result also for I(A : B). The
statement and its proof are identical to that for N (A :
B). It is exponentially unlikely in r that I(A : B) decays
slower than with the average correlation length ξ1D, and
the average case is also typical.

Corollary 3.—If Conjecture 1 holds, for subsystems A
and B as sketched in Fig. 2(a), sufficiently large r, and all
0 < ε < 1, the random MPS ensemble satisfies

Pr
{

I(A : B) ≥ K exp
[
− (1 − ε)r

ξ

]}
≤ exp

(
−εr
ξ

)
,

(98)

where K is constant with respect to r.
Another corollary of Result 3 is that ξ1D is also the aver-

age correlation length for Iα(A : B) for any integer value of
α ≥ 1. We prove also this statement in Appendix I.

Corollary 4.—If Conjecture 1 holds, for any integer
value of α ≥ 1, the average of Iα(A : B) with respect to
the random MPS ensemble and subsystems A and B as
sketched in Fig. 2(a) decays exponentially as specified in
Definition 1 with the average correlation length ξ1D defined
in Eq. (35a).

Finally, let us summarize the reason behind the persis-
tent appearance of the average correlation length ξ1D. In all
of the examined cases, the asymptotic behavior of the cor-
relations was determined by the asymptotic decay of Tr

e.
Although the transfer matrix Te with e ∈ Sk does depend
on the number of replicas k, its asymptotic decay does
not (given Conjecture 1), resulting in a common average
correlation length ξ1D across measures of correlation with
different complexity.

V. CORRELATIONS IN TWO DIMENSIONS

In this section, we state and discuss in more detail the
results for random isoTNS summarized in Sec. III B. In
Sec. V A, we develop the two-dimensional analogue to the
transfer matrices introduced in Sec. IV A, the tool behind
our proofs. In Sec. V C, we compute the average of I2(A :
B), and in Sec. V D, we investigate the decays of N (A : B)
and T(A : B).

We show the exponential decay of the average for each
considered measure of correlation and subsystems A and
B as sketched in Fig. 4(a) as a function of the horizontal
distance r between A and B. In particular, we prove that
I2(A : B) and N (A : B) have a common average correlation
length that is independent of the sizes of A and B. More-
over, thanks to the more amenable properties of N (A : B),
we are able to show that average correlations decay expo-
nentially also for subsystems A and B that do not need to
touch the orthogonality hypersurface [see Fig. 4(b)]. As
in one dimension, we prove our statements in the limit of
c → ∞.

A. Transfer matrices

As in one dimension, computing the average of each
measure of correlation will involve computing multiple
terms of the form

tr
(
PE|ψ〉〈ψ |⊗k) , (99)

where P has a similar tensor product structure as Eq. (45),
adapted to the two-dimensional setting considered here.

(a)

(b)

FIG. 4. We investigate average correlations in random isoTNS
between two subsystems A and B as a function of their hor-
izontal distance r. A and B, respectively, stretch across a and
b consecutive horizontal sites. In addition to indicating the ori-
gin of the sequential generation, the diamond also indicates the
orthogonality center of the isoTNS. (a) For Results 4 and 5, we
consider A and B that touch the orthogonality hypersurface and
stretch across h consecutive vertical sites. (b) We will provide an
additional result for the 2-norm expression N (A : B) for arbitrary
(but fixed) A and B that do not need to touch the orthogonality
hypersurface.
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The number of required replicas k again depends on the
considered measure of correlation.

We will thus need a two-dimensional analogue to the
transfer matrices introduced in Sec. IV A. In contrast to
the one-dimensional case, the size of the resulting trans-
fer matrices will also depend on the geometry of the
considered subsystems, making their analysis much more
challenging. However, the procedure of defining the ten-
sors is similar to that in one dimension. We provide an
overview here and refer to Appendix L for more details.

We define V(i,j ) = U(i,j ) ⊗ U(i,j ), where U(i,j ) ∈ U
(
dD2

)

is the unitary matrix depicted in Fig. 1(b2). By computing
the k-fold twirl [see Eq. (33)], we obtain the building block

=
∫

dU (i,j)

(100)

= .

(101)

As in one dimension, it is convenient to define a build-
ing block for which the contraction of bond (blue) legs is
implicit. This results in a tensor with only permutation-
valued (green) legs. As we show in Appendix L, the
resulting bulk tensor is given via

= .

(102)

For the sake of brevity, the expressions for the boundary
tensors are stated in Appendix L.

Computing expressions of the form of Eq. (99) corre-
sponds to contracting each tensor S with P(d)ρ . The entries
of the resulting bulk tensor Tρ ∈ Rk!×k!×k!×k! are given by

= =

(103)

=
∑

σ∈Sk

Wg(στ−1, dD2)d#(σ ,p)D#(σv−1) (104)

In our computations, the site in the top-right corner
belongs to neither A nor B. It is thus acted upon by the
trivial permutation e ∈ Sk. As we show in Appendix L, the
corresponding tensor is given by Te = |Fk〉〈Fk|.

In Appendix L, we furthermore show that a property
similar to Eq. (59) also holds for random isoTNS. That is,
tensors corresponding to the trivial permutation e ∈ Sk on
the boundary simplify. For example,

= .

(105)

As for the one-dimensional case, the proper normalization
of E|ψ〉〈ψ |⊗k follows directly from this property.

Instead of thinking in terms of contractions of two-
dimensional tensor networks, it will later prove beneficial
to think again in terms of multiplications of matrices. To
that end, for any height h of subsystems A and B [see.
Fig. 4(a)], we define

=

(106)
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as well as

= and = .

(107)

For subsystems A and B as sketched in Fig. 4(a), we can
now write Eq. (99) in terms of transfer matrices:

tr
(
PE|ψ〉〈ψ |⊗k) = 〈Ik|T c

e T a
α T r

e T b
β |Fk〉 (108)

We provide an additional Mathematica package [63] that
defines Tρ with ρ ∈ Sk for k ∈ {1, . . . , 20} according to Eq.
(104). Once again, the package relies on the one provided
by the authors of Ref. [64] for evaluating the Weingarten
function.

B. Estimating the decay of correlations

Equation (108) implies that, for subsystems A and B as
sketched in Fig. 4(a), the decay of the average of each mea-
sure of correlation will again reduce to a statement in terms
of transfer matrices. In particular, the decay will be deter-
mined by the spectrum of Te with e ∈ Sk. Notice that, in
addition to a dependence on k, the form and properties of
Te now depend also on the height h of subsystems A and
B [see. Fig. 4(a)]. However, as we prove in the follow-
ing sections, its two leading eigenvalues are independent
of h for at least k = 2 and k = 4. Crucially, this will allow
us to make statements about the decay of the averages of
I2(A : B) and N (A : B) for arbitrary h.

Note that we could, in principle, investigate vertical
separation instead of horizontal separation because

= .

(109)

The underlying exchange of indices does not affect the
spectrum of the relevant identity transfer matrix and thus
neither the average correlation length. This reflects the fact
that the sequential generation procedure is symmetric in
the horizontal and vertical spatial directions.

C. Rényi-2 mutual information

In this section, we compute the average of the Rényi-2
mutual information I2(A : B) for random isoTNS that are

generated as sketched in Fig. 1(b1). Subsystems A and B
are defined in Fig. 4(a).

As in one dimension, we will make the assumption that
E log(X ) = log(EX ) (see Sec. IV C). Step 1 of the proof
of Result 4 (see Appendix O) is thus almost identical to
Step 1 of the proof of Result 1.

Also Step 2 is largely analogous. To see this, let us
take E tr

(
�2

A

)
as an example. With A and B as defined in

Fig. 4(a) and x = (12),

E tr �2
A

)
=

(110)

=
(111)

= 〈I2|T c
e T a

x |F2〉. (112)

The resulting expression for EI2(A : B),

EI2(A : B) = log
(〈I2|T c

e T a
x T r

e T b
x |F2〉

)

− log
(〈I2|T c

e T a
x |F2〉

)

− log
(〈I2|T c+a+r

e T b
x |F2〉

)
, (113)

resembles Eq. (68) closely.
The remaining technical challenge is the analysis of the

spectrum of Te with e ∈ S2. Let λ1 > λ2 > · · · ≥ 0 denote
its distinct eigenvalues. We show in Appendix M that

λ1 = 1 and λ2 = dD3 − dD
d2D4 − 1

(114)

and that both eigenvalues are nondegenerate. In the proof,
that holds for any h, we map the contraction of tensors
defining Te with e ∈ S2 to a multiplication of matrices.
Using the Weingarten calculus, we show that Te is upper
block triangular, a property that simplifies the analysis of
its spectrum. The main difficulty is then to prove that the
specified λ2 is indeed the subleading eigenvalue for all h.
We do this by exploiting substochasticity.
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Following the same reasoning as before, we find that the
average of I2(A : B) decays exponentially as specified in
Definition 1. We prove this result in Appendix O.

Result 4.—The average of I2(A : B) with respect to the
random isoTNS ensemble and subsystems A and B as
sketched in Fig. 4(a) decays exponentially as specified in
Definition 1 with the average correlation length ξ2D defined
in Eq. (35b).

D. Trace distance and 2-norm

In this section, we show the exponential decay of
the average of N (A : B) for random isoTNS. As for the
one-dimensional case, we do that to eventually make
conclusions about the behavior of the trace distance
T(A : B).

While it is not trivial to compute the average of N (A : B)
with respect to the random isoTNS ensemble and subsys-
tems A and B as sketched in Fig. 4(a), the computation fol-
lows along the lines of what we have laid out in Sec. IV D.
In particular, we find that the decay of the average of
N (A : B) is determined by the spectrum of the transfer
matrix Te with e ∈ S4.

Let λ1 > λ2 > · · · ≥ 0 denote the distinct eigenvalues
of Te with e ∈ S4. As we show in Appendix N, for any h,

λ1 = 1 and λ2 = dD3 − dD
d2D4 − 1

. (115)

As in one dimension, the former is nondegenerate, while
the degeneracy of the latter is given by the number of
transpositions in S4,

w2 =
(

4
2

)
= 6. (116)

While the analysis of the spectrum is, in principle, similar
to that of the spectrum of Te with e ∈ S2, it is consider-
ably more technical. This is largely due to the fact that
the matrices whose multiplication defines Te with e ∈ S4
are significantly more complex. Still, we find also Te with
e ∈ S4 to be upper block triangular, allowing us to show
that the specified λ2 is indeed the subleading eigenvalue.

Given λ2 of Te with e ∈ S4 and the arguments developed
in Sec. IV D, we can state the first result of this section,
which we prove in Appendix P.

Result 5.—The average of N (A : B) with respect to the
random isoTNS ensemble and subsystems A and B as
sketched in Fig. 4(a) decays exponentially as specified in
Definition 1 with the average correlation length ξ2D defined
in Eq. (35b).

We now turn to the case of correlations in isoTNS with
arbitrary (but fixed) subsystems A and B [see Fig. 4(b)].
The decay of the average of N (A : B) for arbitrary A and
B can be bounded by employing the fact that the Schatten

2-norm satisfies [70]

‖trB (XAB)‖2 ≤
√

dim(B) ‖XAB‖2 , (117)

where XAB is any bipartite operator and dim(B) is the
dimension of the Hilbert space that is traced out. This
means that

N (A : B) ≤ d|AC|+|BC|N (A′ : B′), (118)

where A is now an arbitrary subsystem, A′ is its (mini-
mal) enclosing rectangle that touches the hypersurface, and
AC = A′ − A. B′ and BC are defined analogously for B.

Using the statement above, we can bound the decay of
the average of N (A : B) for arbitrary A and B as a straight-
forward corollary of Result 5. We stress that we consider
the regime in which the distance r between A and B grows.

Corollary 5.—For arbitrary subsystems A and B, the
average of N (A : B) with respect to the random isoTNS
ensemble decays as

N (A : B) = O
[

exp
(

− r
ξ2D

)]
, (119)

where the average correlation length ξ2D is defined in Eq.
(35b).

Finally, we state a concentration result for N (A : B),
which, in combination with Eq. (17), also allows us to
draw conclusions about the typical behavior of T(A : B).
As before, we consider arbitrary (but fixed) subsystems A
and B [see Fig. 4(b)].

Corollary 6.—For arbitrary subsystems A and B, suf-
ficiently large r, and all 0 < ε < 1, the random isoTNS
ensemble satisfies

Pr
{

N (A : B) ≥ K exp
[
− (1 − ε)r

ξ2D

]}
≤ exp

(
− εr
ξ2D

)
,

(120)

where K is constant with respect to r and the average
correlation length ξ2D is defined in Eq. (35b).

Corollary 7.—For arbitrary subsystems A and B, suf-
ficiently large r, and all 0 < ε < 1, the random isoTNS
ensemble satisfies

Pr
{

T(A : B) ≥ K exp
[
− (1 − ε)r

2ξ2D

]}
≤ exp

(
− εr
ξ2D

)
,

(121)

where K is constant with respect to r and the average
correlation length ξ2D is defined in Eq. (35b).

The proofs and discussions of these results are identical
to their one-dimensional counterparts.

The tools we have developed in this and the previous
sections should, in principle, allow us to make statements
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also about the decay of the average of the von Neumann
mutual information I(A : B) with respect to the random
isoTNS ensemble. As in one dimension, we would need
to investigate the spectrum of Te with e ∈ Sk for all k ≥ 2.
However, as the analysis of the spectrum of Te is already
quite technical for e ∈ S4 with our methods, we refrain
from tackling the spectrum for k ≥ 5 here.

VI. CONCLUSION

We have investigated the average behavior of cor-
relations between two distant subsystems A and B for
ensembles of random MPS and isoTNS. As measures of
correlation, we have considered the Rényi-α mutual infor-
mation, a measure arising from the Hilbert-Schmidt norm,
the trace distance, and the von Neumann mutual informa-
tion. We have shown that the average of each considered
measure exhibits an exponential decay. Our results can
equivalently be seen as describing states resulting from
quantum circuits with a sequential architecture and Haar
random gates.

By leveraging the Weingarten calculus, we have devel-
oped a mathematical framework that allows to infer the
average correlation length from the subleading eigenvalue
of an appropriately defined transfer matrix. We have com-
puted the averages of the Rényi-α mutual information
and the measure arising from the Hilbert-Schmidt norm
to show the emergence of an average correlation length
that depends only on the underlying spatial dimension
but not the considered measure. In particular, the aver-
age correlation length for random MPS increases weakly
with the bond dimension D and converges rapidly (as D
grows) to 1/ log(d), where d is the physical dimension. In
contrast, the average correlation length for random isoTNS
decreases with D. The highest average correlation length

for random isoTNS is achieved with the lowest nontrivial
bond dimension (D = 2).

Using elementary concentration results, we have fur-
thermore deduced the typical behavior of the measure
arising from the Hilbdert-Schmidt norm, which has in turn
allowed us to make similar statements about the trace
distance. For MPS, we have been able to give strong indi-
cations that the universal correlation length applies also
to the von Neumann mutual information, and also any
Rényi-α mutual information for integer values of α ≥ 1. It
would be interesting to prove this behavior rigorously and
also investigate its validity for isoTNS. Another possible
future direction would be to study average correlations in
more general random PEPS as well as other types of quan-
tum circuit architectures. To extend our results from the
class of isoTNS to generic PEPS, a protocol to sequentially
generate the latter would be needed.

It could also be interesting to investigate the impli-
cations of our results on state-preparation schemes and
variational algorithms for MPS and particularly isoTNS.
Regarding the former, it would be interesting to see if
typical sequentially generated states, being short-range
correlated, can be prepared by shallower circuits. On the
numerical side, we expect our findings to be relevant for
the performance of variational algorithms that approximate
long-range correlated states with MPS and isoTNS. Our
results imply that (even more for isoTNS than for MPS)
polynomially decaying states are very special examples of
the two variational families.
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APPENDIX A: K -FOLD TWIRL

In this Appendix, we present some additional details on the k-fold twirl. In particular, we go from Eq. (19) to Eq.
(20). To do this, we will need a result of Ref. [54], which appears as Corollary 2.4 in Ref. [51]. We state it without
proof as Lemma 1.
Lemma 1.—Let k be a positive integer, and (i1, . . . , ik), (j1, . . . , jk), (�1, . . . , �k), and (m1, . . . , mk) be k-tuples of
positive integers. Then,

∫
dU Ui1ji · · · Uikjk Um1�1 · · · Umk�k =

∑

σ ,τ∈Sk

Wg
(
σ−1τ , q

)
δi1mσ(1) · · · δikmσ(k)δj1�τ(1) · · · δjk lτ(k), (A1)

where the integration is with respect to the Haar measure on the unitary group U(q).
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By Lemma 1,
(
T (k)

U (X )
)

i1···ikm1···mk
=

∑

j1,...,jk
�1,...,�k

∫
dU Ui1ji · · · Uikjk Xj1···jk�1···�k Um1�1 · · · Umk�k (A2)

=
∑

j1,...,jk
�1,...,�k

∑

σ ,τ∈Sk

Wg
(
σ−1τ , q

)
δi1mσ(1) · · · δikmσ(k)Xj1···jk�1···�kδj1�τ(1) · · · δjk lτ(k) (A3)

=
∑

j1,...,jk

∑

σ ,τ∈Sk

Wg
(
σ−1τ , q

)
δi1mσ(1) · · · δikmσ(k)Xj1···jk j

τ−1(1)···jτ−1(k)
(A4)

=
∑

σ ,τ∈Sk

Wg
(
σ−1τ , q

) (
P(q)
σ−1

)
i1···ikm1···mk

tr
(
XP(q)τ

)
, (A5)

where, in the final line, we have used that
(

P(q)
σ−1

)
i1···ikm1···mk

= 〈i1 · · · ik|P(q)σ−1 |m1 · · · mk〉 (A6)

= 〈i1 · · · ik|mσ(1) · · · mσ(k)〉 (A7)

= δi1mσ(1) · · · δikmσ(k) (A8)

and that

tr
(
XP(q)τ

) =
∑

j1,...,jk

〈j1 · · · jk|XP(q)τ |j1 · · · jk〉 (A9)

=
∑

j1,...,jk

〈j1 · · · jk|X |jτ−1(1) · · · jτ−1(k)〉 (A10)

= Xj1···jk j
τ−1(1)···jτ−1(k)

. (A11)

Thus,

T (k)
U (X ) =

∑

σ ,τ∈Sk

Wg
(
σ−1τ , q

)
P(q)
σ−1 tr

(
XP(q)τ

)
(A12)

=
∑

σ ,τ∈Sk

Wg
(
στ−1, q

)
P(q)σ tr

(
XP(q)

τ−1

)
(A13)

=
∑

σ ,τ∈Sk

Wg
(
στ−1, q

)
P(q)σ tr

[
X
(
P(q)τ

)T
]

, (A14)

which coincides with Eq. (20).
In addition, let us confirm that T (k)

U

(
P(q)ρ

)
= P(q)ρ [52,53]. Indeed,

T (k)
U

(
P(q)ρ

) =
∑

σ ,τ∈Sk

Wg
(
στ−1, q

)
P(q)σ tr

[
P(q)ρ

(
P(q)τ

)T
]

(A15)

=
∑

σ ,τ∈Sk

Wg
(
στ−1, q

)
P(q)σ q#

(
ρτ−1

)

(A16)

=
∑

σ∈Sk

δρσP(q)σ (A17)

= P(q)ρ , (A18)

where, in the third line, we have used the definition of the Weingarten function.
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APPENDIX B: PROOFS OF PROPOSITIONS 1 AND 2

Proposition 1.—The eigenvalues of Te with e ∈ Sk are non negative for any k ≥ 2.
Proposition 2.—Te with e ∈ Sk is diagonalizable for any k ≥ 2.
To prove Propositions 1 and 2, we will define matrices X ∈ Rk!×k! and Y ∈ Rk!×k! so that Ck = WXY. We will then

discuss some properties of those three matrices. The proofs themselves will boil down to similarity.
We define the diagonal matrix X ∈ Rk!×k! via

Xσσ = d#(σ ). (B1)

It is evident that X is positive definite.
We define the Gram matrix Y ∈ Rk!×k! via

Yσθ = tr
[

P(D)σ

(
P(D)θ

)T
]

= D#
(
σθ−1

)

. (B2)

Y is positive semidefinite because it is a Gram matrix.
The Weingarten matrix Wg

(
στ−1, q

) = (
G−1

)
στ

is positive definite because the Gram matrix G [see Eq. (22)] is
positive definite [71].

We will need the fact that YW is positive semidefinite. YW has non negative eigenvalues because it is a product of
a positive semidefinite (Y) and a positive definite matrix (W) (see Corollary 7.6.2 of Ref. [72]). Furthermore, YW is
symmetric:

〈τ |YW|θ〉 =
∑

σ∈Sk

Wg
(
στ−1, dD

)
D#

(
σθ−1

)

(B3)

=
∑

π∈Sk

Wg
(
πθτ−1, dD

)
D#(π) (B4)

=
∑

π∈Sk

Wg
(
τθ−1π−1, dD

)
D#(π) (B5)

=
∑

π∈Sk

Wg
(
θ−1π−1τ , dD

)
D#(π) (B6)

=
∑

ϕ∈Sk

Wg
(
θ−1ϕ, dD

)
D#

(
τϕ−1

)

(B7)

=
∑

ϕ∈Sk

Wg
(
ϕθ−1, dD

)
D#

(
ϕτ−1

)

(B8)

= 〈θ |YW|τ 〉. (B9)

In the third line, we have used that Wg(α, q) = Wg
(
α−1, q

)
, and, in the fourth line, we have used that Wg(α, q) =

Wg
(
βαβ−1, q

)
. Both identities are a result of the Weingarten function being sensitive only to the conjugacy class of a

given permutation.
Proof of Proposition 1.—Ck = WXY is similar to XYW. A product of a positive definite (X ) and a positive semidefinite

matrix (YW), XYW has non negative eigenvalues. The statement follows by similarity. �
Proof of Proposition 2.—Ck = WXY is similar to XYW, which is similar to X 1/2YWX 1/2. Because YW is symmetric, so

is X 1/2YWX 1/2, which makes the latter diagonalizable. The statement follows. �

APPENDIX C: PROOF OF PROPOSITION 3

Proposition 3.—Let λ1 > λ2 > · · · ≥ 0 denote the distinct eigenvalues of Te with e ∈ Sk. Then, λ1 = 1, and it is non-
degenerate for any k ≥ 2 if d ≥ 2.
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Proof.—For what follows, it is convenient to define the transfer matrix �e with e ∈ Sk via

= = .
(C1)

Our strategy will be to prove the claimed spectral property for �e. This is enough because, for any two operators X and Y
for which XY and YX are well defined, the sets of eigenvalues of XY and YX are the same (up to zeros and the multiplicity
of the nonzero eigenvalues). By Eqs. (55) and (C1), Tρ and �ρ are related in exactly this way.

As �e arises from the contraction of the quantum channel underlying R [see Eq. (48)] with the identity permuta-
tion, it can be understood as a generalization of the k-fold twirling operator. In particular, it involves an “environment”
E of dimension

(
Cd
)⊗k that is eventually traced out. As a superoperator (that is, without using the operator-vector

correspondence), it reads [see Eq. (19)]

�e(·) =
∫

dU trE

{
U⊗k

[
k⊗

l=1

|0〉〈0|El ⊗ (·)Sl

]
(
U†)⊗k

}
, (C2)

where the integration is with respect to the Haar measure on the unitary group U(dD), E = ⊗k
l=1 El corresponds to

(
Cd
)⊗k,

and S = ⊗k
l=1 Sl corresponds to

(
CD

)⊗k. It is apparent that Eq. (C2) represents a convex combination of quantum channels
(note the Stinespring dilation form), and thus the resulting operator is also a valid quantum channel. This implies that 1 is
an eigenvalue of �e and that there is no eigenvalue of greater modulus [73].

We now prove that no other eigenvalue of the same modulus exists. To that end, we will show that �e is a primitive
channel [73], which implies said property. A quantum channel is primitive if and only if the spanning space formed by
products of its Kraus operators,

Km = span

({
m∏

k=1

Kik

})
, (C3)

is equal to the full matrix algebra for some integer m, that is, Km = MDk (C) [74]. We show that this condition is satisfied
for �e if d ≥ 2.

Indeed, the Haar integral in Eq. (C2), together with the partial trace, can be understood as a (redundant) Kraus
decomposition. Precisely, we can take

{Ki}i =
{

trE

[(
k⊗

l=1

|+〉〈ψl|El ⊗ ISl

)
U⊗k

]}

U,ψ

, (C4)

where U ∈ U(dD), |ψl〉 ∈ {|0〉, . . . , |d − 1〉} is the computational basis of the lth replica of the environment, and |+〉 =∑d−1
j =0 |j 〉/√d. The latter is a choice (instead of |0〉) made for later convenience. It remains to show that there exists an

integer m = m(k, d, D) such that Km = MDk (C) if d ≥ 2. First of all, note that the above fails for d = 1 (that is, if the envi-
ronment E is trivial). This is because span

({
U⊗k

}
U

)
coincides with the symmetric subspace over the k subsystems [48].

However, d = 2 is already enough to span the full matrix algebra.
An explicit construction to show this fact amounts to taking U to be a controlled unitary gate, where the control system

is E. In particular, consider

|ψl〉 = |δlr〉 and U = |0〉〈0|E ⊗ IS +
d−1∑

j =1

|j 〉〈j |E ⊗ VS, (C5)

where r ∈ {1, . . . , k}, and VS is unitary. This results in Kraus operators [see Eq. (C4)] of the form

IS1 ⊗ · · · ⊗ ISr−1 ⊗ V ⊗ ISr+1 · · · ⊗ ISk . (C6)
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Taking (finite) products, as Eq. (C3) dictates, is enough to build a basis of the vector space MDk (C). Note that this
construction requires two control levels (that is, d ≥ 2).

This concludes the proof. �

APPENDIX D: FURTHER PROPERTIES OF THE TRANSFER MATRIX Te

In this Appendix, we state and prove statements about the structure of the transfer matrix Te with e ∈ Sk that will
motivate Conjecture 1. We prove the statements in Appendices E, F, and G.

Moving forward, we denote Te with e ∈ Sk by Ck. Each entry

〈τ |Ck|θ〉 =
∑

σ∈Sk

Wg
(
στ−1, dD

)
d#(σ )D#

(
σθ−1

)

(D1)

of Ck ∈ Rk!×k! is a sum of k! terms. While this may sound daunting, Ck exhibits a structure that reduces its complexity.
As formalized by Proposition 4, the entries 〈τ |Ck|θ〉 of Ck exhibit a dependence on the conjugacy class of their indices.

In particular, if we know the entries of the column given by θ ∈ Sk, we also know the entries of the columns given by
permutations in the same conjugacy class as θ .

Proposition 4.—For any π ∈ Sk,

〈τ |Ck|θ〉 = 〈πτπ−1|Ck|πθπ−1〉. (D2)

Certain entries of Ck vanish, while others are given by the entries of Ck−1. Proposition 5 captures these two statements.
Proposition 5.—For all θ ∈ Sk with θ(k) = k,

〈τ |Ck|θ〉 = δk,τ(k)〈τ↓|Ck−1|θ↓〉, (D3)

where ρ↓ ∈ Sk−1 is the restriction of ρ ∈ Sk with ρ(k) = k to the permutation on {1, . . . , k − 1}.
To understand the strength of Propositions 4 and 5, let us have a look at C2 and C3, the two most simple transfer

matrices. With bases S2 = {e, (12)} and S3 = {e, (12), (13), (23), (123), (132)}, one finds that

C2 =
(

1 α

0 β

)
and C3 =

⎛
⎜⎜⎜⎜⎜⎝

1 α α α γ γ

0 β 0 0 δ δ

0 0 β 0 δ δ

0 0 0 β δ δ

0 0 0 0 ε ζ

0 0 0 0 ζ ε

⎞
⎟⎟⎟⎟⎟⎠

, (D4)

where each Greek letter corresponds to some function of d and D whose exact form is not relevant here. The entries in the
first four columns of C3 are fully determined by those of C2. The entries in the last two columns of C3 do not arise from
those of C2, but the sixth column is a permutation of the fifth.

Note that we are deliberately choosing a basis Sk = {s1, . . . , sk!} that makes the special structure of Ck more apparent.
In particular, we sort permutations so that those with i fixed points come before those with i − 1 fixed points. We group
permutations that have common fixed points and then those that are in the the same conjugacy class. Given this basis,
Propositions 4 and 5 imply that Ck is block triangular with k diagonal blocks.

We denote by C(1)k the diagonal block with τ = θ = e ∈ Sk and by C(i)k with 2 ≤ i ≤ k the diagonal block corresponding
to τ , θ ∈ Sk with k − i fixed points. The spectrum of Ck is then given by

λ (Ck) = λ
(

C(1)k

)
∪ λ

(
C(2)k

)
∪ · · · ∪ λ

(
C(k)k

)
. (D5)

It is apparent that C(1)k has a single, nondegenerate eigenvalue

μ1 = 〈e|Ck|e〉 = 1. (D6)
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C(2)k has a single, degenerate eigenvalue

μ2 = 〈(12)|Ck|(12)〉 = dD2 − d
d2D2 − 1

, (D7)

which corresponds to the expression of β in Eq. (D4). The degeneracy of μ2 is given by the size of the block, which is in
turn given by the number of transpositions in Sk,

v2 =
(

k
2

)
. (D8)

By Proposition 3, 1 is the leading eigenvalue of Ck and nondegenerate. We conjecture that μ2 is the subleading eigenvalue
of Ck and that it has degeneracy v2. The statement of Conjecture 1 holds for k ∈ {2, 3, 4}, and we have numerical evidence
suggesting so for k ∈ {5, 6, 7} [63].

Conjecture 1.—Let λ1 > λ2 > · · · ≥ 0 denote the distinct eigenvalues of Ck. Then, λ2 = μ2 with degeneracy w2 = v2
for any k ≥ 2.

As formalized by Proposition 6, the statements above hold for any transfer matrix Tρ with ρ ∈ Sk because Tρ is similar
to Ck.

Proposition 6.—For any ρ ∈ Sk,

Tρ = QT
ρCkQρ with Qρ =

∑

π∈Sk

|ρπ〉〈π |. (D9)

APPENDIX E: PROOF OF PROPOSITION 4

Proposition 4.—For any π ∈ Sk,

〈τ |Ck|θ〉 = 〈πτπ−1|Ck|πθπ−1〉. (D2)

Proof.—It holds that

〈τ |Ck|θ〉 (E1)

=
∑

σ∈Sk

Wg
(
στ−1, dD

)
d#(σ )D#

(
σθ−1

)

(E2)

=
∑

ϕ∈Sk

Wg
(
π−1ϕπτ−1, dD

)
d#

(
π−1ϕπ

)

D#
(
π−1ϕπθ−1

)

(E3)

=
∑

ϕ∈Sk

Wg
(
ϕπτ−1π−1, dD

)
d#

(
π−1ϕπ

)

D#
(
ϕπθ−1π−1

)

(E4)

=
∑

ϕ∈Sk

Wg
[
ϕ
(
πτπ−1)−1

, dD
]

d#(ϕ)D
#
[
ϕ
(
πθπ−1

)−1
]

(E5)

= 〈πτπ−1|Ck|πθπ−1〉, (E6)

where, in the second line, we have used that the conjugation map is an isomorphism. In the third line, we have used that
Wg(α, q) = Wg

(
βαβ−1, q

)
and that #(α) = #

(
βαβ−1

)
. Both identities are a result of the two functions being sensitive

only to the conjugacy class of a given permutation. �

APPENDIX F: PROOF OF PROPOSITION 5

Proposition 5.—For all θ ∈ Sk with θ(k) = k,

〈τ |Ck|θ〉 = δk,τ(k)〈τ↓|Ck−1|θ↓〉, (D3)

where ρ↓ ∈ Sk−1 is the restriction of ρ ∈ Sk with ρ(k) = k to the permutation on {1, . . . , k − 1}.
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To prove Proposition 5, we will need a number of ingredients. The main one will be Proposition 2.2 of Ref. [75], which
we state without proof as Lemma 2.

Lemma 2.—For any ρ ∈ Sk,

k−1∑

i=1

Wg
(
(ik)π , q

)+ q Wg(π , q) = δk,π(k) Wg
(
π↓, q

)
, (F1)

where (ik) denotes the transposition of elements i and k.
To use Lemma 2, we must do two things. First, we must split the sum in Eq. (D1) into certain sums of k terms. We

employ Lemma 3 to achieve this.
Lemma 3.—For any α ∈ Sk, there exists a β ∈ Sk with β(k) = k such that either α = β or α = (ik)β with i ∈ {1, . . . ,

k − 1}.
Proof.—If α(k) = k, then α = β. Otherwise, k is in exactly one of the disjoint cycles of α. Without loss of generality,

say α = (kia3a4 · · · )(b1b2 · · · ) · · · . Then, α = (ik)(ia3a4 · · · )(b1b2 · · · ) · · · ≡ (ik)β. �
Second, we must ensure that summands in Eq. (D1) with Wg(π , dD) have a factor dD while those with Wg

(
(ik)π , dD

)

do not. We achieve this with Lemma 5 whose proof employs Lemma 4 of Ref. [76], which we state without proof as
Lemma 4. The lemma also appears as Lemma 1 in Ref. [77].

Lemma 4.—Let α ∈ Sk be a transposition, and β ∈ Sk such that #(β) = u. If the elements exchanged by α are not in the
same cycle of β, then #(αβ) = u − 1.

Lemma 5.—Let ϕ, θ ∈ Sk with ϕ(k) = k and θ(k) = k. Then,

1. #
(
ϕθ−1

) = #
(
(ik)ϕθ−1

)+ 1 for all i ∈ {1, . . . , k − 1}.
2. #

(
ϕθ−1

)− #(ϕ) = #
(
(ik)ϕθ−1

)− #
(
(ik)ϕ

)
for all i ∈ {1, . . . , k − 1}.

Proof of 1.—Let ϕ, θ ∈ Sk with ϕ(k) = k and θ(k) = k. Then,
(
ϕθ−1

)
(k) = k. That is, k is in a cycle by itself and thus

not in the same cycle of ϕθ−1 as i. The statement follows with Lemma 4. �
Proof of 2.—Let ϕ, θ ∈ Sk with ϕ(k) = k and θ(k) = k. Then, i and k are not in the same cycle of neither ϕθ−1 nor

ϕ. By Lemma 4, #
(
ϕθ−1

) = #
(
(ik)ϕθ−1

)+ 1 and #(ϕ) = #
(
(ik)ϕ

)+ 1. Thus, #
(
ϕθ−1

)− #(ϕ) = #
(
(ik)ϕθ−1

)+ 1 −
#
(
(ik)ϕ

)− 1 = (
(ik)ϕθ−1

)− #
(
(ik)ϕ

)
. �

With that, we can prove Proposition 5.
Proof of Proposition 5.—By Lemma 3,

〈τ |Ck|θ〉 =
∑

σ∈Sk

Wg
(
στ−1, dD

)
d#(σ )D#

(
σθ−1

)

(F2)

=
∑

ϕ∈Sk
ϕ(k)=k

{
k−1∑

i=1

Wg
(
(ik)ϕτ−1, dD

)
d#
(
(ik)ϕ

)
D#

(
(ik)ϕθ−1

)

+ Wg
(
ϕτ−1, dD

)
d#(ϕ)D#

(
ϕθ−1

)}
. (F3)

By Lemma 5, for θ ∈ Sk with θ(k) = k,

〈τ |Ck|θ〉 =
∑

ϕ∈Sk
ϕ(k)=k

1

d#(ϕθ−1)−#(ϕ)

{
k−1∑

i=1

Wg
(
(ik)ϕτ−1, dD

)
(dD)#

(
(ik)ϕθ−1

)

+ Wg
(
ϕτ−1, dD

)
(dD)#

(
ϕθ−1

)}
(F4)

=
∑

ϕ∈Sk
ϕ(k)=k

(dD)#
(
ϕθ−1

)
−1

d#(ϕθ−1)−#(ϕ)

{
k−1∑

i=1

Wg
(
(ik)ϕτ−1, dD

)+ dD Wg
(
ϕτ−1, dD

)
}

(F5)

=
∑

ϕ∈Sk
ϕ(k)=k

d#(ϕ)−1D#
(
ϕθ−1

)
−1

{
k−1∑

i=1

Wg
(
(ik)ϕτ−1, dD

)+ dD Wg
(
ϕτ−1, dD

)
}

(F6)
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=
∑

ϕ∈Sk
ϕ(k)=k

d#
(
ϕ↓)

D
#
[(
ϕθ−1

]↓) { k−1∑

i=1

Wg
(
(ik)ϕτ−1, dD

)+ dD Wg
(
ϕτ−1, dD

)
}

, (F7)

where, in the final line, we have used that #
(
α↓) = #(α)− 1.

By Lemma 2,

〈τ |Ck|θ〉 =
∑

ϕ∈Sk
ϕ(k)=k

δk,(ϕτ−1)(k) Wg
[(
ϕτ−1)↓ , dD

]
d#

(
ϕ↓)

D
#
[(
ϕθ−1

)↓]

(F8)

= δk,τ(k)

∑

ϕ∈Sk
ϕ(k)=k

Wg
[(
ϕτ−1)↓ , dD

]
d#

(
ϕ↓)

D
#
[(
ϕθ−1

)↓]

(F9)

= δk,τ(k)〈τ↓|Ck−1|θ↓〉, (F10)

where, in the second line, we have used that
(
ϕτ−1

)
(k) = k if and only if τ(k) = k because ϕ(k) = k.

This concludes the proof. �

APPENDIX G: PROOF OF PROPOSITION 6

Proposition 6.—For any ρ ∈ Sk,

Tρ = QT
ρCkQρ with Qρ =

∑

π∈Sk

|ρπ〉〈π |. (D9)

Proof.—It holds that

〈τ |Tρ |θ〉 =
∑

σ∈Sk

Wg
(
στ−1, dD

)
d#(σρ)D#

(
σθ−1

)

(G1)

=
∑

σ∈Sk

Wg
(
ρστ−1ρ−1, dD

)
d#(ρσ)D#

(
ρσθ−1ρ−1

)

(G2)

=
∑

σ∈Sk

Wg
[
ρσ(ρτ)−1, dD

]
d#(ρσ)D#

[
ρσ(ρθ)−1

]

(G3)

=
∑

π∈Sk

Wg
[
π(ρτ)−1, dD

]
d#(π)D#

[
π(ρθ)−1

]

(G4)

= 〈ρτ |Ck|ρθ〉, (G5)

where, in the second line, we have used that Wg(α, q) = Wg
(
βαβ−1, q

)
and that #(α) = #

(
βαβ−1

)
. Both identities are a

result of the two functions being sensitive only to the conjugacy class of a given permutation. In the fourth line, we have
used that the left-multiplication map is an isomorphism. �

APPENDIX H: PROOF OF RESULT 2

Result 2.—The average of N (A : B) with respect to the random MPS ensemble and subsystems A and B as sketched in
Fig. 2(a) decays exponentially as specified in Definition 1 with the average correlation length ξ1D defined in Eq. (35a).

Proof.—We split the proof into four steps, following the structure of the proof of Result 1.
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Step 1: We rewrite EN (A : B) in terms of expressions of the form of Eq. (44). With the Hilbert-Schmidt inner product,

EN (A : B) = E tr
(
�2

AB

)+ E tr
(
�2

A

)
tr
(
�2

B

)− 2E tr [�AB (�A ⊗ �B)] . (H1)

It is then easy to confirm that

EN (A : B) = tr
{[(

P(d)e

)⊗c ⊗
(

P(d)(12)

)⊗a
⊗ (

P(d)e

)⊗r ⊗
(

P(d)(12)

)⊗b
⊗ (

P(d)e

)⊗(f −1) ⊗ P(dD)
e

]
E|ψ〉〈ψ |⊗4

}

+ tr
{[(

P(d)e

)⊗c ⊗
(

P(d)(12)

)⊗a
⊗ (

P(d)e

)⊗r ⊗
(

P(d)(34)

)⊗b
⊗ (

P(d)e

)⊗(f −1) ⊗ P(dD)
e

]
E|ψ〉〈ψ |⊗4

}

− 2 tr
{[(

P(d)e

)⊗c ⊗
(

P(d)(12)

)⊗a
⊗ (

P(d)e

)⊗r ⊗
(

P(d)(13)

)⊗b
⊗ (

P(d)e

)⊗(f −1) ⊗ P(dD)
e

]
E|ψ〉〈ψ |⊗4

}
. (H2)

Step 2: We express EN (A : B) in terms of the transfer matrices defined in Sec. IV A. Given the previous step, it is easy
to confirm that

EN (A : B) = 〈I4|Tc
eTa
(12)T

r
eTb
(12)|F4〉 + 〈I4|Tc

eTa
(34)T

r
eTb
(12)|F4〉 − 2〈I4|Tc

eTa
(12)T

r
eTb
(13)|F4〉 (H3)

= 〈I4|Tc
eTa
(12)T

r
e

(
Tb
(12) + Tb

(34) − 2Tb
(13)

) |F4〉 (H4)

≡ 〈I4|Tc
eATr

eB|F4〉, (H5)

where we have defined

A = Ta
(12) and B = Tb

(12) + Tb
(34) − 2Tb

(13). (H6)

Step 3: We expand EN (A : B) in terms of the spectrum of Te with e ∈ S4 [see Eq. (62)]. Let λ1 > λ2 > · · · ≥ 0 denote
the distinct eigenvalues of Te. It holds [63] that

λ1 = 1 and λ2 = dD2 − d
d2D2 − 1

. (H7)

The former is nondegenerate, while the degeneracy of the latter is given by the number of transposition in S4 [63],

w2 =
(

4
2

)
= 6. (H8)

Expanding Tc
e and taking the limit of c → ∞ yields

EN (A : B) = 〈L1|ATr
eB|F4〉, (H9)

where we have used that 〈I4|R1〉 = 1. After expanding Tr
e and using that |F4〉 = |R1〉, we have

EN (A : B) = 〈L1|A|R1〉〈L1|B|R1〉 + λr
2

w2∑

μ=1

〈L1|A|R(μ)2 〉〈L(μ)2 |B|R1〉 + O
(
λr

3

)
(H10)

= λr
2

w2∑

μ=1

〈L1|A|R(μ)2 〉〈L(μ)2 |B|R1〉 + O
(
λr

3

)
, (H11)

where, in the second line, we have used that

〈L1|B|R1〉 = 0, (H12)

which we prove in the following.
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In particular, we prove that 〈L1|Tb
t |R1〉 does not depend on the two elements the transposition t ∈ S4 acts upon. We need

some understanding of Tb
t as well as the eigenvectors 〈L1| and |R1〉 of Te. For the former, we make use of the fact that Tb

ρ

with ρ ∈ S4 is similar to to Tb
e with e ∈ S4,

Tb
ρ =

∑

π ,ϕ∈S4

|π〉〈ρπ |Cb
4|ρϕ〉〈ϕ|. (H13)

With

α = d2D − D
d2D2 − 1

, β = dD2 − d
d2D2 − 1

, f (u) =
u−1∑

i=0

αβ i, and g(u) = βu, (H14)

we have

(
Te|si〉

)
1≤i≤7

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 α α α α α α

0 β 0 0 0 0 0
0 0 β 0 0 0 0
0 0 0 β 0 0 0
0 0 0 0 β 0 0
0 0 0 0 0 β 0
0 0 0 0 0 0 β

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and
(

Tb
e |si〉

)
1≤i≤7

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 f (b) f (b) f (b) f (b) f (b) f (b)
0 g(b) 0 0 0 0 0
0 0 g(b) 0 0 0 0
0 0 0 g(b) 0 0 0
0 0 0 0 g(b) 0 0
0 0 0 0 0 g(b) 0
0 0 0 0 0 0 g(b)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(H15)

For getting some understanding of 〈L1|, we make use of the fact that 〈L(μ)i |R(ν)j 〉 = δij δμν . It is easy to confirm that

|R1〉 = |s1〉 and |R(μ)2 〉 = α

β − 1
|s1〉 + |sμ+1〉, (H16)

which implies that

(
〈L1|si〉

)
1≤i≤7

=
(

1
α

β − 1
α

β − 1
α

β − 1
α

β − 1
α

β − 1
α

β − 1

)
. (H17)

For any transposition t ∈ S4, it thus holds that

〈L1|Tb
t |R1〉 =

∑

π ,ϕ∈S4

〈L1|π〉〈tπ |Cb
4|tϕ〉〈ϕ|R1〉 (H18)
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=
∑

π ,ϕ∈S4

〈L1|π〉〈tπ |Cb
4|tϕ〉δs1ϕ (H19)

=
∑

π∈S4

〈L1|π〉〈tπ |Cb
4|t〉 (H20)

=
∑

π∈S4

f (b)〈L1|π〉〈tπ |s1〉 +
∑

π∈S4

g(b)〈L1|π〉〈tπ |t〉 (H21)

=
∑

π∈S4

f (b)〈L1|π〉δtπ +
∑

π∈S4

g(b)〈L1|π〉δs1π (H22)

= f (b)〈L1|t〉 + g(b)〈L1|s1〉 (H23)

= α

β − 1
f (b)+ g(b), (H24)

which is independent of the two elements the transposition t ∈ S4 acts upon. Thus,

〈L1|B|R1〉 = 〈L1|
(
Tb
(12) + Tb

(34) − 2Tb
(13)

) |R1〉 = 0. (H25)

Step 4: Finally, we can write EN (A : B) in the form of Definition 1. That is,

EN (A : B) ≡ K exp
(

− r
ξ

)
+ O

[
exp

(
− r
χ

)]
, (H26)

where

K =
w2∑

μ=1

〈L1|A|R(μ)2 〉〈L(μ)2 |B|R1〉 (H27)

and

ξ = − 1
log(λ2)

= −
[

log
(

dD2 − d
d2D2 − 1

)]−1

= ξ1D > χ . (H28)

This concludes the proof. �

APPENDIX I: PROOF OF RESULT 3 AND COROLLARY 4

Result 3.—If Conjecture 1 holds, the average of I(A : B) with respect to the random MPS ensemble and subsystems A
and B as sketched in Fig. 2(a) decays exponentially as specified in Definition 1 with the average correlation length ξ1D
defined in Eq. (35a).

Corollary 4.—If Conjecture 1 holds, for any integer value of α ≥ 1, the average of Iα(A : B) with respect to the random
MPS ensemble and subsystems A and B as sketched in Fig. 2(a) decays exponentially as specified in Definition 1 with the
average correlation length ξ1D defined in Eq. (35a).

In this Appendix, we prove Result 3 and Corollary 4. The proof of the latter will follow directly from the proof of the
former.

Proof of Result 3.—We split the proof into four steps, following the structure of the proof of Result 1. Because I(A : B)
and I2(A : B) are related, the steps are overall very similar. As is usual in the context of the replica trick [78], we will
interchange the order of some limits without rigorous justification.
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Step 1: We rewrite EI(A : B) in terms of expressions of the form of Eq. (44). To that end, we make use of Eqs. (94)
and (95). With those,

EI(A : B) = lim
α→1

lim
v→0

1
vα − v

{
log

[
E tr

(
�αAB

)v]− log
[
E tr

(
�αA
)v]− log

[
E tr

(
�αB
)v]} . (I1)

E tr
(
�αA
)v , E tr

(
�αA
)v , and E tr

(
�αAB

)v can be written in the desired form. Let us define x ∈ Sα to be the cyclic permutation
so that x(i) = i + 1 modulo α and

xw = (
α(w − 1)+ 1,α(w − 1)+ 2, . . . ,αw

) ∈ Svα (I2)

with w ∈ {1, . . . , v}. Then, for example,

E tr
(
�αAB

)v = tr
{[(

P(d)e

)⊗c ⊗ (
P(d)x

)⊗a ⊗ (
P(d)e

)⊗r ⊗ (
P(d)x

)⊗b ⊗ (
P(d)e

)⊗(f −1) ⊗ P(dD)
e

]
E|ψ〉〈ψ |⊗α

}v
(I3)

= tr
{[(

P(d)e

)⊗c ⊗
(

P(d)x1···xv
)⊗a

⊗ (
P(d)e

)⊗r ⊗
(

P(d)x1···xv
)⊗b

⊗ (
P(d)e

)⊗(f −1) ⊗ P(dD)
e

]
E|ψ〉〈ψ |⊗vα

}
. (I4)

Step 2: We express EI(A : B) in terms of the transfer matrices defined in Sec. IV A. Given the previous step, it is easy
to confirm that

EI(A : B) = lim
α→1

lim
v→0

1
vα − v

[
log

(
〈Ivα|Tc

eTa
x1···xvT

r
eTb

x1···xv |Fvα〉
)

− log
(
〈Ivα|Tc

eTa
x1···xv |Fvα〉

)

− log
(
〈Ivα|Tc+a+r

e Tb
x1···xv |Fvα〉

)]
(I5)

≡ lim
α→1

lim
v→0

1
vα − v

[
log

(〈Ivα|Tc
eATr

eB|Fvα〉
)− log

(〈Ivα|Tc
eA|Fvα〉

)− log
(〈Ivα|Tc+a+r

e B|Fvα〉
)]

, (I6)

where we have defined

A = Ta
x1···xv and B = Tb

x1···xv . (I7)

Step 3: We expand EI(A : B) in terms of the spectrum of Te with e ∈ Svα [see Eq. (62)]. At this point, we assume
Conjecture 1 to hold. That is, for any vα ≥ 2, we assume that

λ2 = dD2 − d
d2D2 − 1

(I8)

with degeneracy

w2 =
(

k
2

)
. (I9)

Expanding Tc
e and taking the limit of c → ∞ yields

EI(A : B) = lim
α→1

lim
v→0

1
vα − v

[
log

(〈L1|ATr
eB|Fvα〉

)− log (〈L1|A|Fvα〉)− log (〈L1|B|Fvα〉)
]

, (I10)

where we have used that 〈Ivα|R1〉 = 1. After expanding Tr
e and using that |Fvα〉 = |R1〉, we have

EI(A : B) = lim
α→1

lim
v→0

1
vα − v

⎧
⎨
⎩log

⎡
⎣〈L1|A|R1〉〈L1|B|R1〉 + λr

2

w2∑

μ=1

〈L1|A|R(μ)2 〉〈L(μ)2 |B|R1〉 + O
(
λr

3

)
⎤
⎦

− log (〈L1|A|R1〉)− log (〈L1|B|R1〉)
⎫
⎬
⎭ . (I11)
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Step 4: Finally, we can write EI(A : B) in the form of Definition 1. With � = max
({
λ2r

2 , λr
3

})
,

EI(A : B) = lim
α→1

lim
v→0

1
vα − v

log

⎡
⎣1 + λr

2

w2∑

μ=1

〈L1|A|R(μ)2 〉〈L(μ)2 |B|R1〉
〈L1|A|R1〉〈L1|B|R1〉 + O

(
λr

3

)
⎤
⎦ (I12)

= lim
α→1

lim
v→0

1
vα − v

⎡
⎣λr

2

w2∑

μ=1

〈L1|A|R(μ)2 〉〈L(μ)2 |B|R1〉
〈L1|A|R1〉〈L1|B|R1〉 + O(�)

⎤
⎦ (I13)

≡ lim
α→1

lim
v→0

1
vα − v

{
K̃(vα) exp

(
− r
ξ

)
+ O

[
exp

(
− r
χ

)]}
, (I14)

where

K̃(vα) =
w2∑

μ=1

〈L1|A|R(μ)2 〉〈L(μ)2 |B|R1〉
〈L1|A|R1〉〈L1|B|R1〉 (I15)

and

ξ = − 1
log(λ2)

= −
[

log
(

dD2 − d
d2D2 − 1

)]−1

= ξ1D > χ . (I16)

As ξ is independent of vα, it cannot be affected by the replica limits. K̃(vα) will converge to some K that is guaranteed
to be independent of r.

This concludes the proof. �
Proof of Corollary 4.—Using Eq. (95), it holds that

EIα(A : B) = lim
v→0

1
vα − v

{
log

[
E tr

(
�αAB

)v]− log
[
E tr

(
�αA
)v]− log

[
E tr

(
�αB
)v]} . (I17)

Thus, the proof is identical to that of Result 3 without the limit of α → 1. The statement follows. �

APPENDIX J: RESULT 3 WITH c = 0

In this Appendix, we prove a version of Result 3 with c = 0. Steps 1 and 2 of this proof are identical to Steps 1 and 2
of the proof of Result 3 with c = 0. That is, at the end of Step 2, we have

EI(A : B) = lim
α→1

lim
v→0

1
vα − v

[
log

(〈Ivα|ACr
vαB|Fvα〉

)− log (〈Ivα|A|Fvα〉)− log
(〈Ivα|Ca+r

vα B|Fvα〉
)]

. (J1)

We start the proof at Step 3.
Step 3: We expand EI(A : B) in terms of the spectrum of Te with e ∈ Svα [see Eq. (62)]. We assume Conjecture 1 to
hold. Expanding Tr

e and using that 〈Ivα|R1〉 = 1 yields

EI(A : B) = lim
α→1

lim
v→0

1
vα − v

⎧
⎨
⎩log

⎡
⎣〈Ivα|A|R1〉〈L1|B|Fvα〉 + λr

2

w2∑

μ=1

〈Ivα|A|R(μ)2 〉〈L(μ)2 |B|Fvα〉 + O
(
λr

3

)
⎤
⎦

− log (〈Ivα|A|Fvα〉)

− log

⎡
⎣〈L1|B|Fvα〉 + λa+r

2

w2∑

μ=1

〈Ivα|R(μ)2 〉〈L(μ)2 |B|Fvα〉 + O
(
λr

3

)
⎤
⎦

⎫
⎬
⎭ . (J2)
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Step 4: We write EI(A : B) in the form of Definition 1. With � = max
({
λ2r

2 , λr
3

})
,

EI(A : B) = lim
α→1

lim
v→0

1
vα − v

⎧
⎨
⎩log

⎡
⎣1 + λr

2

w2∑

μ=1

〈Ivα|A|R(μ)2 〉〈L(μ)2 |B|Fvα〉
〈Ivα|A|R1〉〈L1|B|Fvα〉 + O

(
λr

3

)
⎤
⎦

− log

⎡
⎣1 + λa+r

2

w2∑

μ=1

〈Ivα|R(μ)2 〉 〈L
(μ)

2 |B|Fvα〉
〈L1|B|Fvα〉 + O

(
λr

3

)
⎤
⎦

⎫
⎬
⎭ (J3)

= lim
α→1

lim
v→0

1
vα − v

⎡
⎣λr

2

w2∑

μ=1

〈Ivα|A|R(μ)2 〉〈L(μ)2 |B|Fvα〉
〈Ivα|A|R1〉〈L1|B|Fvα〉 + λa+r

2

w2∑

μ=1

〈Ivα|R(μ)2 〉 〈L
(μ)

2 |B|Fvα〉
〈L1|B|Fvα〉 + O(�)

⎤
⎦ (J4)

= lim
α→1

lim
v→0

1
vα − v

⎧
⎨
⎩λ

r
2

w2∑

μ=1

[
〈Ivα|A|R(μ)2 〉〈L(μ)2 |B|Fvα〉
〈Ivα|A|R1〉〈L1|B|Fvα〉 + λa

2〈Ivα|R(μ)2 〉 〈L
(μ)

2 |B|Fvα〉
〈L1|B|Fvα〉

]
+ O(�)

⎫
⎬
⎭ (J5)

≡ lim
α→1

lim
v→0

1
vα − v

{
K̃ ′(vα) exp

(
− r
ξ

)
+ O

[
exp

(
− r
χ

)]}
, (J6)

where

K̃ ′(vα) =
w2∑

μ=1

[
〈Ivα|A|R(μ)2 〉〈L(μ)2 |B|Fvα〉
〈Ivα|A|R1〉〈L1|B|Fvα〉 + λa

2〈Ivα|R(μ)2 〉 〈L
(μ)

2 |B|Fvα〉
〈L1|B|Fvα〉

]
(J7)

and

ξ = − 1
log(λ2)

= −
[

log
(

dD2 − d
d2D2 − 1

)]−1

ξ1D > χ . (J8)

Again, K̃ ′(vα) will converge to some K ′ that is guaranteed to be independent of r. While K ′ is different from K in general,
the correlation length ξ is independent of c.

APPENDIX K: NUMERICAL ANALYSIS

In this Appendix, we briefly review our numerical analysis of the von Neumann mutual information I(A : B) in
Sec. IV E. We fix d and D, and we set a = b = 1 and r = 5. (i) We generate a + r + b + 1 Haar-random unitary matrices
of U(dD) to define |ψ〉. This definition makes the assumption that there are no sites before subsystem A (that is, c = 0).
We discuss in Appendix J why this does not affect the average correlation length. By setting f = 1, we furthermore use
the fact that the sites after subsystem B do not play a role as a result of the sequential generation [see Eq. (59)]. (ii) We
compute I(A : B) with respect to |ψ〉. (iii) We repeat steps (i) and (ii) 10 000 times to compute the average of I(A : B).
(iv) We repeat steps (i) through (iii) for r ∈ {7, 9, 11, 13, 15}, plot the averages of I(A : B) against r, and fit the data to
extract the average correlation length. (v) To obtain Fig. 3, we repeat steps (i) through (iv) for different d and D.

APPENDIX L: TRANSFER MATRICES IN TWO DIMENSIONS

This Appendix expands on Sec. V A. We will state the definitions of the boundary tensors and prove Eq. (105).
From the main text, recall that we define V(i,j ) = U(i,j ) ⊗ U(i,j ). By computing the k-fold twirl, we obtain the building

block

=
∫

dU (i,j) = .

(L1)
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With that, we have

E|ψ〉〈ψ|⊗k = = ,

(L2)

where we have cut permutation-valued (green) legs instead of bond (blues) ones in the second step. The tensor S is stated
in Eq. (102). S′ and S′′ reflect the different boundary conditions.

After contracting S′ with P(d)ρ , we obtain

= =

(L3)

=
∑

σ∈Sk

Wg(στ−1, dD2)d#(σ ,p)D#(σθ−1) (L4)

at the top boundary and

= =

(L5)

=
∑

σ∈Sk

Wg(στ−1, dD2)d#(σ ,p)D#(σv−1) (L6)

at the right boundary.
We will always contract S′′ with P(d)e . The tensor in the top-right corner thus plays the same role as the final vector

|Fk〉 = e1 ∈ Rk! does in one dimension. In fact, Te = |Fk〉〈Fk|,

= = ≡

(L7)

=
∑

σ∈Sk

Wg
(
στ−1, dD2) (dD2)#(σe) = δeτ , (L8)
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where we have defined

= .

(L9)

If a tensor corresponding to e ∈ Sk is contracted with |Fk〉, it factorizes. For tensors at the top boundary, we have

= = =

(L10)

=
∑

σ∈Sk

Wg
(
στ−1, dD2) (dD2)#(σe) = δeτ , (L11)

for those at the right boundary, we have

= = =

(L12)

=
∑

σ∈Sk

Wg
(
στ−1, dD2) (dD2)#(σe) = δeτ , (L13)

and for those in the bulk, we have

= = =

(L14)

=
∑

σ∈Sk

Wg
(
στ−1, dD2) (dD2)#(σe) = δeτ . (L15)
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The identities above lead to Eq. (105):

= = =

(L16)

= = .

(L17)

APPENDIX M: SPECTRUM OF THE TRANSFER MATRIX Te WITH e ∈ S2

In this Appendix, we state and prove two lemmas concerning the spectrum of Te with e ∈ S2.
Let us start with some preliminaries. We define

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
, and |+〉 =

(
1
1

)
, (M1)

and map the contraction of tensors defining Te with e ∈ S2 to a multiplication of matrices:

= = ,

(M2)

where

=

⎛
⎜⎝

1 α α γ
0 0 0 0
0 0 0 0
0 β β δ

⎞
⎟⎠

(M3)

with

α = d2D3 − D
d2D4 − 1

, β = dD3 − dD
d2D4 − 1

, γ = d2D2 − D2

d2D4 − 1
, and δ = dD2 − d

d2D4 − 1
. (M4)
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Note that

= 0 if i �= j,

(M5)

and

N = =
(

1 α
0 β

)
(M6)

is equal to Te with e ∈ S2 for d → dD. With that, it easy to check that

= = 〈o|N |i〉〈i|.
(M7)

We also introduce an analytical notation. We define

Mj = I⊗(j −1) ⊗ M ⊗ I⊗(h−j ). (M8)

Te with e ∈ S2 is then given by

Te = (
I⊗h ⊗ 〈0|) (Mh · · · M1

) (|+〉 ⊗ I⊗h) . (M9)

With i1, . . . , ih ∈ {0, 1} and o1, . . . , oh ∈ {0, 1}, the entries of Te with e ∈ S2 are given by
(〈o1, . . . , oh| ⊗ 〈0|)(Mh · · · M1

)(|+〉 ⊗ |i1, . . . , ih〉
)
. (M10)

Our first lemma states that Te with e ∈ S2 is block triangular, where our definition of blocks arises from the indexing
of rows and columns in base 2. In particular, with 2 ≤ j ≤ h, the j th diagonal block of Te, which we denote by T (j )

e ∈
R2j −1×2j −1

, has fixed indices ih = · · · ij +1 = oh = · · · = oj +1 = 0 and ij = oj = 1. Using Eq. (M14), it is given by

T (j)
e = = .

(M11)

The first diagonal block, which we denote by T (1)
e ∈ R2×2, is given by

T (1)
e = = =

(
1 α
0 β

)
.

(M12)
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In particular, we will prove that a block of Te is zero if its defining row digit oj is higher than its defining column digit
ij , which implies that Te is upper block triangular. As the proof relies exclusively on Eq. (M7), Te inherits its upper block
triangularity from the upper triangularity of N .

Lemma 6.—Te with e ∈ S2 is upper block triangular because

(
I⊗(j −1) ⊗ 〈0| ⊗ 〈0|⊗(h−j ) ⊗ 〈0|) (Mh · · · M1

) (|+〉 ⊗ I⊗(j −1) ⊗ |1〉 ⊗ |0〉⊗(h−j )) = 0. (M13)

Proof.—From

= |0〉
(M14)

and

= 0,

(M15)

it follows that

= = 0,

(M16)

which concludes the proof. �
In our second lemma, we utilize the block triangularity of Te with e ∈ S2 to make a direct statement about its two

leading eigenvalues.
Lemma 7.—Let |λ1| > |λ2| > · · · ≥ 0 denote the distinct eigenvalues of Te with e ∈ S2. Then, for any h, λ1 = 1 and

λ2 = β. Furthermore, λ1 and λ2 are nondegenerate.
Proof.—The spectrum of Te with e ∈ S2 is given by the union of the spectra of its diagonal blocks. It is evident that the

first block T (1)
e has eigenvalues 1 and β. In the following, we show that any other diagonal block T (j )

e with 2 ≤ j ≤ h can
be written as a product of β and a strictly substochastic matrix, implying that its eigenvalues are strictly smaller than β.
We structure the proof in steps.
Step 1: We show that any diagonal block T (j )

e with 2 ≤ j ≤ h can be written as β times a matrix. From

= β|1〉,
(M17)
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it follows that

T (j)
e = = β .

(M18)

Step 2: We argue that the matrix

(M19)

is strictly column substochastic. It holds that

=

⎛
⎜⎝

1 α α γ
0 0 0 0
0 0 0 0
0 β β δ

⎞
⎟⎠

(M20)

is column substochastic. While the first column of M evidently sums to 1, the sums of the other columns are strictly
bounded by 1. As a result, Mj −1 · · · M1 is column substochastic. The boundary condition |1〉 does not affect this because
it specifies a subset of columns of the matrix Mj −1 · · · M1. In fact, it imposes strict substochasticity because this subset
does not include the only column summing to 1. Also the boundary condition 〈+| does not affect the substochasticity. The
boundary condition means that Eq. (M19) is a sum of matrices. Each of these matrices comprises a disjoint subset of rows
of the matrix Mj −1 · · · M1. Because Mj −1 · · · M1, the matrix comprising the whole set of rows, is column substochastic, so
is the sum of the matrices comprising the disjoint subsets.
Step 3: 1 and β are the only eigenvalues of T (1)

e . They are nondegenerate. Because the matrix in Eq. (M20) is strictly
column substochastic, the eigenvalues of any diagonal block T (j )

e with 2 ≤ j ≤ h are strictly smaller than β.
The statement follows. �
As a preparation for Appendix N, we provide the proofs of Lemmas 6 and 7 in analytical notation.
Proof of Lemma 6 in analytical notation.—From

(〈0| ⊗ 〈0|)M(
I ⊗ |0〉) = |0〉 (M21)

and
(〈0| ⊗ 〈0|)M(

I ⊗ |1〉) = 0, (M22)

it follows that
(
I⊗(j −1) ⊗ 〈0| ⊗ 〈0|⊗(h−j ) ⊗ 〈0|) (Mh · · · M1

) (|+〉 ⊗ I⊗(j −1) ⊗ |1〉 ⊗ |0〉⊗(h−j ))

= (
I⊗(j −1) ⊗ 〈0| ⊗ 〈0|) (Mj · · · M1

) (|+〉 ⊗ I⊗(j −1) ⊗ |1〉) (M23)

= 0, (M24)

which concludes the proof. �
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Proof of Lemma 7 in analytical notation.—As in the version with graphical notation, we structure the proof in steps,
without repeating the details.
Step 1: From

(〈1| ⊗ 〈0|)M(
I ⊗ |0〉) = β|1〉, (M25)

it follows that

T (j )
e = (

I⊗(j −1) ⊗ 〈1| ⊗ 〈0|) (Mj · · · M1
) (|+〉 ⊗ I⊗(j −1) ⊗ |1〉) (M26)

= β
(
I⊗(j −1) ⊗ 〈1|) (Mj −1 · · · M1

) (|+〉 ⊗ I⊗(j −1)) . (M27)

Step 2: It holds that
(
I⊗(j −1) ⊗ 〈1|) (Mj −1 · · · M1

) (|+〉 ⊗ I⊗(j −1)) (M28)

is strictly column substochastic.
Step 3: 1 and β are the only eigenvalues of T (1)

e . They are nondegenerate. Because the matrix in Eq. (M28) is strictly
column substochastic, the eigenvalues of any diagonal block T (j )

e with 2 ≤ j ≤ h are strictly smaller than β.
The statement follows. �

APPENDIX N: SPECTRUM OF THE TRANSFER MATRIX Te WITH e ∈ S4

In this Appendix, we state and prove two lemmas concerning the spectrum of Te with e ∈ S4. Using the same notation
as in Appendix M, we will draw on results from that Appendix.
Te with e ∈ S4 is defined by Eq. (M2), now with M ∈ R576×576. As in Appendix M, it holds that

(〈o| ⊗ 〈0|)M(
I ⊗ |i〉) = 〈o|N |i〉〈i|, (N1)

where

N = (〈+| ⊗ I
)
M
(
I ⊗ |0〉)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 α α α α α α γ γ γ γ γ γ γ γ η η η η η η ρ ρ ρ

0 β 0 0 0 0 0 δ δ δ δ 0 0 0 0 θ θ ι θ ι θ σ τ τ

0 0 β 0 0 0 0 δ δ 0 0 δ δ 0 0 ι θ θ θ θ ι τ σ τ

0 0 0 β 0 0 0 0 0 δ δ δ δ 0 0 θ ι θ ι θ θ τ τ σ

0 0 0 0 β 0 0 δ δ 0 0 0 0 δ δ θ ι θ ι θ θ τ τ σ

0 0 0 0 0 β 0 0 0 δ δ 0 0 δ δ ι θ θ θ θ ι τ σ τ

0 0 0 0 0 0 β 0 0 0 0 δ δ δ δ θ θ ι θ ι θ σ τ τ

0 0 0 0 0 0 0 ε ζ 0 0 0 0 0 0 κ κ λ λ κ λ υ υ υ

0 0 0 0 0 0 0 ζ ε 0 0 0 0 0 0 λ λ κ κ λ κ υ υ υ

0 0 0 0 0 0 0 0 0 ε ζ 0 0 0 0 κ κ κ λ λ λ υ υ υ

0 0 0 0 0 0 0 0 0 ζ ε 0 0 0 0 λ λ λ κ κ κ υ υ υ

0 0 0 0 0 0 0 0 0 0 0 ε ζ 0 0 κ λ κ κ λ λ υ υ υ

0 0 0 0 0 0 0 0 0 0 0 ζ ε 0 0 λ κ λ λ κ κ υ υ υ

0 0 0 0 0 0 0 0 0 0 0 0 0 ε ζ κ λ λ κ κ λ υ υ υ

0 0 0 0 0 0 0 0 0 0 0 0 0 ζ ε λ κ κ λ λ κ υ υ υ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 μ ν ν ν ν ξ τ ϕ τ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ν μ ν ξ ν ν τ τ ϕ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ν ν μ ν ξ ν ϕ τ τ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ν ξ ν μ ν ν τ τ ϕ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ν ν ξ ν μ ν ϕ τ τ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ξ ν ν ν ν μ τ ϕ τ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o π o π o χ ψ ψ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 π o o o o π ψ χ ψ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o π o π o o ψ ψ χ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(N2)

is equal to Te with e ∈ S4 for d → dD.
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As in Appendix M, our first lemma states that Te with e ∈ S4 is block triangular. The definition of blocks now arises
from the indexing of rows and columns in base 24. In particular, any diagonal block (but the first) is defined by ih = · · · =
ij +1 = oh = · · · = oj +1 = 0 and ij = oj �= 0. There are four classes of diagonal blocks:

(a) The first diagonal block is in its own class. It is given by

(
I ⊗ 〈0|⊗(h−1) ⊗ 〈0|) (Mh · · · M1

) (|+〉 ⊗ I ⊗ |0〉⊗(h−1)) = (
I ⊗ 〈0|)M(|+〉 ⊗ I

) = N . (N3)

(b) The second class of diagonal blocks corresponds to transpositions. ij and oj correspond to the same transposition.
There are six sub-blocks in this class because there are six different transpositions in S4.

(c) The third class of diagonal blocks corresponds to permutations with a single fixed point. ij and oj correspond to
any of the two permutations with the same single fixed point. There are four sub-blocks in this class because there
are four different choices of a single fixed point.

(d) The fourth class of diagonal blocks corresponds to permutations with no fixed point. ij and oj correspond to any of
the nine permutations with no fixed point.

In particular, we will prove that a block of Te is zero if its defining row digit oj is higher than its defining column digit
ij stand in a certain relation to each other. As the proof relies exclusively on Eq. (N1), Te again inherits its upper block
triangularity from the upper triangularity of N .

Lemma 8.—Te with e ∈ S4 is upper block triangular.
Proof.—From Eqs. (N1), it follows that

(
I⊗(j −1) ⊗ 〈oj | ⊗ 〈0|⊗(h−j ) ⊗ 〈0|) (Mh · · · M1

) (|+〉 ⊗ I⊗(j −1) ⊗ |ij 〉 ⊗ |0〉⊗(h−j )) = 0 (N4)

if

(a) ij corresponds to the trivial permutation and oj does not,
(b) ij corresponds to a transposition and oj corresponds to a different transposition or a permutation with one or no

fixed point,
(c) ij corresponds to a permutation with a single fixed point and oj corresponds to a permutation with a different single

fixed point or no fixed point,

which concludes the proof. �
In our second lemma, we utilize the block triangularity of Te with e ∈ S4 to make direct a statement about its two

leading eigenvalues.
Lemma 9.—Let |λ1| > |λ2| > · · · ≥ 0 denote the distinct eigenvalues of Te with e ∈ S4. Then, for any h, λ1 = 1 and

λ2 = β. Furthermore, λ1 is nondegenerate, and λ2 has a degeneracy of six.
Proof.—As is the case for Te with e ∈ S2, the spectrum of Te with e ∈ S4 is given by the union of the spectra of its

diagonal blocks. The two leading eigenvalues of the first diagonal block N are 1 and β. In the following, we show that
any other diagonal block can be written as a product of β and a matrix whose spectral radius is strictly bounded by 1,
implying that its eigenvalues are strictly smaller than β. We again structure the proof in steps.
Step 1: We show that any diagonal block but the first can be written as a product of β and a matrix. From Eq. (N1), it
follows that,

(a) if ij and oj correspond to the same transposition,

(
I⊗(j −1) ⊗ 〈oj | ⊗ 〈0|⊗(h−j ) ⊗ 〈0|) (Mh · · · M1

) (|+〉 ⊗ I⊗(j −1) ⊗ |ij 〉 ⊗ |0〉⊗(h−j ))

= (
I⊗(j −1) ⊗ 〈oj | ⊗ 〈0|) (Mj · · · M1

) (|+〉 ⊗ I⊗(j −1) ⊗ |ij 〉
)

(N5)

= β
(
I⊗(j −1) ⊗ 〈oj |

) (
Mj −1 · · · M1

) (|+〉 ⊗ I⊗(j −1)) , (N6)
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(b) if ij and oj correspond to any two permutations with the same single fixed point,
(
I⊗(j −1) ⊗ 〈oj | ⊗ 〈0|⊗(h−j ) ⊗ 〈0|) (Mh · · · M1

) (|+〉 ⊗ I⊗(j −1) ⊗ |ij 〉 ⊗ |0〉⊗(h−j ))

= (
I⊗(j −1) ⊗ 〈oj | ⊗ 〈0|) (Mj · · · M1

) (|+〉 ⊗ I⊗(j −1) ⊗ |ij 〉
)

(N7)

= p
(
I⊗(j −1) ⊗ 〈oj |

) (
Mj −1 · · · M1

) (|+〉 ⊗ I⊗(j −1)) (N8)

<
β

2
(
I⊗(j −1) ⊗ 〈oj |

) (
Mj −1 · · · M1

) (|+〉 ⊗ I⊗(j −1)) , (N9)

where {ε, ζ } � p < β/2 [63] depends on ij and oj ,
(c) if ij and oj correspond to any permutation with no fixed point,

(
I⊗(j −1) ⊗ 〈oj | ⊗ 〈0|⊗(h−j ) ⊗ 〈0|) (Mh · · · M1

) (|+〉 ⊗ I⊗(j −1) ⊗ |ij 〉 ⊗ |0〉⊗(h−j ))

= (
I⊗(j −1) ⊗ 〈oj | ⊗ 〈0|) (Mj · · · M1

) (|+〉 ⊗ I⊗(j −1) ⊗ |ij 〉
)

(N10)

= p
(
I⊗(j −1) ⊗ 〈oj |

) (
Mj −1 · · · M1

) (|+〉 ⊗ I⊗(j −1)) (N11)

<
β

9
(
I⊗(j −1) ⊗ 〈oj |

) (
Mj −1 · · · M1

) (|+〉 ⊗ I⊗(j −1)) , (N12)

where {μ, ν, ξ , o,π , τ ,ϕ,χ ,ψ} � p < β/9 [63] depends on ij and oj .

Step 2: We now argue that the spectral radius of the matrix
(
I⊗(j −1) ⊗ 〈oj |

) (
Mj −1 · · · M1

) (|+〉 ⊗ I⊗(j −1)) (N13)

is strictly bounded by 1 for 2 ≤ j ≤ h. It holds that the spectral radius of M is bounded by 1. While the first column of
|M | sums to 1, the sums of the other columns are strictly bounded by 1 [63]. As a result, the spectral radius of Mj −1 · · · M1
is bounded by 1. The boundary condition |o〉 does not affect this because it specifies a subset of columns of the matrix
Mj −1 · · · M1. In fact, it imposes a strict bound because this subset does not include the only column summing to 1. Also
the boundary condition 〈+| does not affect the bound on the spectral radius. The boundary condition means that Eq. (N13)
is a sum of matrices. Each of these matrices comprises a disjoint subset of rows of the matrix Mj −1 · · · M1. Because the
spectral radius of Mj −1 · · · M1, the matrix comprising the whole set of rows, is bounded by 1, so is the sum of the matrices
comprising the disjoint subsets.
Step 3: 1 and β are the two leading eigenvalues of the first diagonal block N . They are nondegenerate. Because the
spectral radius of the matrix in Eq. (N13) is strictly bounded by 1, the eigenvalues of any other diagonal block are strictly
smaller than β.

The statement follows. �

APPENDIX O: PROOF OF RESULT 4

Result 4.—The average of I2(A : B) with respect to the random isoTNS ensemble and subsystems A and B as sketched
in Fig. 4(a) decays exponentially as specified in Definition 1 with the average correlation length ξ2D defined in Eq. (35b).

Proof.—We split the proof into four steps, following the structure of the proof of Result 1. The steps are overall very
similar to those of that proof.
Step 1: We rewrite EI2(A : B) in terms of expressions of the form of Eq. (99). As in one dimension, we make the
assumption that E log(X ) = log(EX ). Then,

EI2(A : B) = log
[
E tr

(
�2

AB

)]− log
[
E tr

(
�2

A

)]− log
[
Etr

(
�2

B

)]
. (O1)

E tr
(
�2

A

)
, E tr

(
�2

B

)
, and E tr

(
�2

AB

)
can be written in the desired form [see Eqs. (66) and (67)].

Step 2: We express EI2(A : B) in terms of the transfer tensors defined in Sec. V A and use Eq. (106) to map contractions
of two-dimensional tensor networks to multiplications of matrices. The latter is enabled by our definition of subsystems
A and B [see Fig. 4(a)]. We have done this for E tr

(
�2

A

)
in graphical notation in Sec. V C [see Eqs. (110) and (111)]. It is

easy to confirm that

EI2(A : B) = log
(〈I2|T c

e T a
(12)T r

e T b
(12)|F2〉

)− log
(〈I2|T c

e T a
(12)|F2〉

)− log
(〈I2|T c+a+r

e T b
(12)|F2〉

)
. (O2)
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Step 3: We expand EI2(A : B) in terms of the spectrum of Te with e ∈ S2, which we consider in Appendix M. Because we
know λ1 and λ2 as well as their algebraic and geometric multiplicities, we do not need Te to be diagonalizable. Expanding
T c

e and taking the limit of c → ∞ yields

EI2(A : B) = log
(〈L1|T a

(12)T r
e T b

(12)|F2〉
)− log

(〈L1|T a
(12)|F2〉

)− log
(〈L1|T b

(12)|F2〉
)

, (O3)

where we have used that 〈I2|R1〉 = 1. After expanding T r
e and using that |F2〉 = |R1〉, we have

I2(A : B) = log
[〈L1|T a

(12)|R1〉〈L1|T b
(12)|R1〉 + λr

2〈L1|T a
(12)|R2〉〈L2|T b

(12)|R1〉 + O
(
rv−1λr

3

)]

− log
(〈L1|T a

(12)|R1〉
)− log

(〈L1|T b
(12)|R1〉

)
, (O4)

where v denotes the size of the largest Jordan block with respect to λ3.
Step 4: Finally, we can write EI2(A : B) in the form of Definition 1. With � = max

({
λ2r

2 , rv−1λr
3

})
,

EI2(A : B) = log

[
1 + λr

2

〈L1|T a
(12)|R2〉〈L2|T b

(12)|R1〉
〈L1|T a

(12)|R1〉〈L1|T b
(12)|R1〉

+ O
(
rv−1λr

3

)
]

(O5)

= λr
2

〈L1|T a
(12)|R2〉〈L2|T b

(12)|R1〉
〈L1|T a

(12)|R1〉〈L1|T b
(12)|R1〉

+ O(�) (O6)

≡ K exp
(

− r
ξ

)
+ O

[
exp

(
− r
χ

)]
, (O7)

where

K = 〈L1|T a
(12)|R2〉〈L2|T b

(12)|R1〉
〈L1|T a

(12)|R1〉〈L1|T b
(12)|R1〉

(O8)

and

ξ = − 1
log(λ2)

= −
[

log
(

dD3 − dD
d2D4 − 1

)]−1

= ξ2D > χ . (O9)

This concludes the proof. �

APPENDIX P: PROOF OF RESULT 5

Result 5.—The average of N (A : B) with respect to the random isoTNS ensemble and subsystems A and B as sketched
in Fig. 4(a) decays exponentially as specified in Definition 1 with the average correlation length ξ2D defined in Eq. (35b).

Proof.—We split the proof into four steps, following the structure of the proof of Result 1. The steps are overall very
similar to those of the proof of Result 2 (see Appendix H).
Step 1: We rewrite EN (A : B) in terms of expressions of the form of Eq. (99). As in one dimension, with the Hilbert-
Schmidt inner product,

EN (A : B) = E tr
(
�2

AB

)+ E tr
(
�2

A

)
tr
(
�2

B

)− 2E tr [�AB (�A ⊗ �B)] . (P1)

The right-hand side can be written in the desired form [see Eq. (H2)].
Step 2: We express EN (A : B) in terms of the transfer tensors defined in Sec. V A and use Eq. (106) to map contractions
of two-dimensional tensor networks to multiplications of matrices. The latter is enabled by our definition of subsystems
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A and B [see Fig. 4(a)]. It is easy to confirm that

EN (A : B) = 〈I4|T c
e T a

(12)T r
e T b

(12)|F4〉 + 〈I4|T c
e T a

(34)T r
e T b

(12)|F4〉 − 2〈I4|T c
e T a

(12)T r
e T b

(13)|F4〉 (P2)

= 〈I4|T c
e T a

(12)T r
e

(
T b
(12) + T b

(34) − 2T b
(13)

) |F4〉 (P3)

≡ 〈I4|T c
e AT r

e B|F4〉, (P4)

where we have defined

A = T a
(12) and B = T b

(12) + T b
(34) − 2T b

(13). (P5)

Step 3: We expand EN (A : B) in terms of the spectrum of Te with e ∈ S4, which we consider in Appendix N. Because we
know λ1 and λ2 as well as their algebraic and geometric multiplicities, we do not need Te to be diagonalizable. Expanding
T c

e and taking the limit of c → ∞ yields

EN (A : B) = 〈L1|AT r
e B|F4〉, (P6)

where we have used that 〈I4|R1〉 = 1. After expanding Tr
e and using that |F4〉 = |R1〉, we have

EN (A : B) = 〈L1|A|R1〉〈L1|B|R1〉 + λr
2

w2∑

μ=1

〈L1|A|R(μ)2 〉〈L(μ)2 |B|R1〉 + O
(
λr

3

)
(P7)

= λr
2

w2∑

μ=1

〈L1|A|R(μ)2 〉〈L(μ)2 |B|R1〉 + O
(
λr

3

)
, (P8)

where, in the second line, we have used that

〈L1|B|R1〉 = 0, (P9)

which we prove in the following.
As in the proof of Result 2 (see Appendix H), we prove that 〈L1|T b

t |R1〉 does not depend on the two elements the
transposition t ∈ S4 acts upon. In fact, the proof follows from the proof of Eq. (H12) of that Appendix. We just need two
additional considerations. First, the proof of Lemma 8 is not specific to the trivial permutation e ∈ S4. In particular, Tρ
exhibits an upper block triangular structure for any ρ ∈ S4. The first diagonal block is given by Tρ with ρ ∈ S4,

(
〈si|Tρ |sj 〉

)
1≤i≤24
1≤j ≤24

= Tρ , (P10)

which implies that
(
〈si|T b

ρ |sj 〉
)

1≤i≤24
1≤j ≤24

= Tb
ρ . (P11)

Second, the eigenvectors 〈L1| and |R1〉 of Te with e ∈ S4 arise from those of Te with e ∈ S4. That is,

|R〉1 = s1 and
(
〈L1|si〉

)
1≤i≤7

=
(

1
α

β − 1
α

β − 1
α

β − 1
α

β − 1
α

β − 1
α

β − 1

)
. (P12)

〈L1|T b
t |R1〉 thus does not depend on the two elements the transposition t ∈ S4 acts upon because 〈L1|Tb

t |R1〉 does not. This
implies that

〈L1|B|R1〉 = 〈L1|
(
T b
(12) + T b

(34) − 2T b
(13)

) |R1〉 = 0. (P13)
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Step 4: Finally, we can write EN (A : B) in the form of Definition 1. That is,

EN (A : B) ≡ K exp
(

− r
ξ

)
+ O

[
exp

(
− r
χ

)]
, (P14)

where

K =
w2∑

μ=1

〈L1|A|R(μ)2 〉〈L(μ)2 |B|R1〉 (P15)

and

ξ = − 1
log(λ2)

= −
[

log
(

dD3 − dD
d2D4 − 1

)]−1

= ξ2D > χ . (P16)

This concludes the proof. �
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