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We explore the rich nature of correlations in the ground state of ultracold atoms trapped in state-dependent
optical lattices. In particular, we consider interacting fermionic ytterbium or strontium atoms, realizing a two-
orbital Hubbard model with two spin components. We analyze the model in one-dimensional setting with the
experimentally relevant hierarchy of tunneling and interaction amplitudes by means of exact diagonalization
and matrix product states approaches, and study the correlation functions in density, spin, and orbital sectors as
functions of variable densities of atoms in the ground and metastable excited states. We show that in certain
ranges of densities these atomic systems demonstrate strong density-wave, ferro- and antiferromagnetic, as well
as antiferroorbital correlations.

I. INTRODUCTION

By means of near-resonant laser fields, advances in cooling,
trapping, and loading neutral atoms in optical lattices have al-
lowed a detailed study of unique properties of quantum many-
body systems. A major appeal of these studies is the possi-
bility of realizing strongly-correlated phases. They are inter-
esting not only on their own, but also from the viewpoint of
using atoms in optical lattices as universal quantum simula-
tors of electrons in crystalline materials [1]. In turn, a key fea-
ture of electrons in strongly-correlated solid-state compounds,
e.g., in the transition-metal oxides, is the fermions possession
of spin and orbital degrees of freedom, which are equally vi-
tal for many emerging phenomena. Therefore, realization and
control over many-body systems with the capabilities for all
relevant internal degrees of freedom of “elementary” particles
become highly important.

Recently, a two-orbital Fermi-Hubbard system has been re-
alized with ultracold alkaline-earth(-like) atoms (AEAs) in
a state-dependent optical lattice (SDL) [2–4]. This model
has been a subject of many theoretical studies due to addi-
tional unique phenomena peculiar to multiorbital lattice sys-
tems: ferromagnetism, orbital ordering, orbital-selective Mott
states, spinful excitons, etc. Now, important questions ap-
pear about the optimal regimes for the realization of partic-
ular strongly-correlated phenomena within novel cold-atom
systems. In this paper, we address the mentioned questions
by performing theoretical analysis of the two-orbital Fermi-
Hubbard model with experimentally-relevant parameters cor-
responding to particular AEAs and quasi-one-dimensional ge-
ometry of SDL. Compared to previous theoretical studies of
the one-dimensional Fermi-Hubbard model with two orbital
and two spin flavors (see, e.g., Refs. [5–9],), here we system-
atically explore ground-state properties of AEA systems in a
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wide range of lattice fillings and experimentally relevant in-
teraction and hopping amplitudes.

II. SYSTEM, MODEL, AND METHODS

A. Fermionic isotopes of Yb and Sr atoms in state-dependent
optical lattices

Our research is motivated by recent developments in ex-
periments with ultracold gases of alkaline-earth(-like) atoms,
which offer advantages over the more traditionally used
alkali-metal atoms. The latter allowed investigating many in-
teresting systems, but the relative simplicity of their internal
structure introduced certain limitations. In turn, AEAs, in
particular the fermionic isotopes of strontium and ytterbium
(87Sr, 171Yb, and 173Yb) set truly unexplored perspectives
for the investigation of new states of matter [10, 11]. These
atomic systems possess two key properties: (i) the existence
of a long-lived metastable 3P0 electronic state (denoted be-
low as e) coupled to the 1S0 ground state (denoted below as g)
through an ultranarrow optical transition and (ii) the vanishing
electronic angular momentum (J = 0) in both of these states.
The metastable state offers an additional degree of freedom,
since its interaction properties – both with light and with other
states – differ strongly from the ground state. This allows ex-
perimental realization of the two-band Hubbard model.

The study focuses on ultracold gases of strontium or yt-
terbium atoms being prepared in two different orbital states
|g⟩ and |e⟩, and two different nuclear (pseudo-)spin states |↑⟩
and |↓⟩. Thanks to successful experiments with measurements
of interactions for all three fermionic isotopes: 87Sr, 171Yb
and 173Yb, where the s-wave scattering amplitudes for intra-
and inter-orbital interactions were relatively well determined
[4, 12–17], we can summarize these (up to a certain accuracy)
in Table I. Note that there is a different hierarchy in values
of the given scattering amplitudes for each fermionic isotope.
This means that every atomic system can be unique and im-
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agg aee a+eg a−eg Refs.
173Yb 199.4 306.2 1878 220 [14, 16, 17]
171Yb ≈ 0 104 240 389 [4, 14, 15]
87Sr 96.2 176.0 169 68 [12, 13]

TABLE I. Intra- and inter-orbital s-wave scattering lengths of
fermionic AEL atoms in units of the Bohr radius a0 with the rep-
resentative references (for more detailed information on measure-
ments, see also the references therein).

portant for an enhancement or suppression of specific many-
body correlations in certain regimes.

In general, the near-resonant laser field with a certain wave-
length � creating the optical lattice interacts differently with
atoms in the states |g⟩ and |e⟩, thus the lattice can be viewed
as state-dependent. However, it is usually possible to deter-
mine a particular “magic” wavelength �m at which atoms in
two orbital states have equal polarizabilities, i.e., the lattice
depth becomes equal for both orbital components. Below, we
use both the magic-wavelength and SDL options. In particu-
lar, we set that the state-dependent lattice with a moderate am-
plitude is created along one spatial direction, while a stronger
confinement via the magic-wavelength optical lattice is act-
ing in transversal directions. In this respect, the system can
be viewed as effectively quasi-one-dimensional. For definite-
ness, we assume that SDL is created along the x direction and
has a moderate amplitude Vx = 5Er, where Er = ℏk2∕2m is
the recoil energy of an atom with the mass m and ℏ is Planck’s
constant. The state-independent (“magic-wavelength”) con-
finement is realized by taking Vy = Vz = 18Er (with �m ≈
759 nm [2] and �m ≈ 813 nm [18] for Yb and Sr isotopes,
respectively). For convenience of the analysis, we choose the
polarizability ratio to be equal for all atoms, p = 2.1 in par-
ticular (for ytterbium isotopes this results in �SDL ≈ 690 nm
[19], while for strontium atoms this yields �SDL ≈ 739 nm
[20]).

Below, we also focus on homogeneous (but finite-size) sys-
tems neglecting all effects originating from the trapping po-
tential. These can be naturally included in the theoretical for-
malism, but the analysis of the effects related to additional
inhomogeneities goes beyond the scope of the current study.

B. Two-orbital Hubbard model and coupling amplitudes

Within the tight-binding approximation, the system can be
described by the two-orbital Hubbard model:

 =
∑

i,,�
t (c

†
i�ci+1� + H.c.) −

∑

i,
�ni +int , (1)

FIG. 1. Sketch of hopping and interaction processes in the one-
dimensional two-orbital Hubbard model with two different spin
states (↑ and ↓). Ugg and Uee are the intraorbital interactions between
the atoms in the ground (g) and excited (e) states, respectively. V de-
notes the direct interaction between atoms in different orbital states,
while Vex represents indirect (exchange) interaction between them.
tg and te correspond to the hopping amplitudes of atoms between the
nearest-neighbor sites.

where

int =
∑

i,
U

∑

�<�′
ni�ni�′ + V

∑

i,�<�′,<′
ni�ni′�′ (2)

+(V − Vex)
∑

i,�,<′
ni�ni′�

+Vex
∑

i,�<�′,<′
c†i�c

†
i′�′ci�′ci′� .

The indices ,  ′ = {g, e} and �, �′ = {↑, ↓} denote the or-
bital states and the nuclear Zeeman spin states, respectively.
The operator c†i� (ci�) creates (annihilates) an atom in the
internal state |�⟩ at the site i = 1,… , L, where L is the size
of the chain. The local density operator of atoms in the orbital
state  is ni =

∑

� ni� and ni� = c†i�ci� . For a particu-
lar orbital state  , t is the hopping amplitude and � is the
chemical potential. The local interaction amplitudes within
the lowest-band approximation for both g and e orbital states
can be estimated by

U′ = g′ ∫ d3rw2 (r)w
2
′ (r), (3)

with w (r) being the Wannier function of an atom in the or-
bital state  , and the coupling g′ = 4�a′∕m, where a′
is the scattering length of two atoms in the states  and  ′
(see Table I). For inter-orbital scattering, two different scat-
tering lengths a±eg (and correspondingly two amplitudes U±eg
computed as in (3)) appear, for the triplet (+) or singlet (−)
configuration of the pair of atoms. In terms of them, on-site
direct and exchange interactions are obtained respectively as
V = (U+eg + U

−
eg)∕2 and Vex = (U+eg − U

−
eg)∕2. Note that the

inter-orbital exchange interaction Vex can be separated into its
density-density and spin-flip contributions, see the terms in
the second and the third lines of Eq. (2), respectively.

The one-dimensional system described by the Hamilto-
nian (1) (see also Fig. 1) can be experimentally realized with
AEL atoms in the state-dependent optical lattices, as specified
in Sec. II A. In the given form, the model is also closely re-
lated to solid-state realizations, since it contains all relevant
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interaction and hopping processes peculiar to electrons in two
distinct orbital states in crystalline materials.

C. Numerical approaches

Among theoretical approaches, the exact diagonalization
(ED) provides a direct way to extract full information about
eigenstates of the quantum many-body system with access to
all the relevant physical observables, e.g., the local densities,
double occupancies, spin-spin and orbital-orbital correlations,
etc. However, the application of the ED approach is strongly
limited by an exponential growth of the corresponding Hilbert
space. Since in the model (1) there are four internal degrees
of freedom of fermions per site, this sets a restriction to the
system size L ≈ 5 available for a direct numerical analysis if
no additional optimizations are applied.

Fortunately, the last decades brought a new generation of
non-perturbative techniques for numerical analysis of quan-
tum many-body problems. Among them, tensor network (TN)
methods [21–26] provide efficient descriptions of quantum
many-body strongly correlated states based on their entangle-
ment properties. The paradigmatic example of TN state is
the matrix product state (MPS) ansatz [27–29]. MPS-based
approaches capture the entanglement area law [30] in one
spatial dimension, and underlie the successful density matrix
renormalization group (DMRG) [22, 31] algorithm, state-of-
the-art method for numerical quasi-exact solution of strongly-
correlated problems in one dimension, which effectively min-
imizes the energy over the set of MPS.

Here, we optimize variationally an MPS ansatz to study the
ground state of the two-orbital Fermi-Hubbard model for up
to L = 40 sites, and analyze its many-body correlation func-
tions. We compare and benchmark our results against ED re-
sults for smaller system sizes. Note that the two-orbital Fermi-
Hubbard model was also the subject of previous DMRG stu-
dies with the solid-state parametrization of the interaction am-
plitudes [5, 6] and partially AEA-like parametrization at half-
filling in Refs. [7–9]. In contrast, here we employ a hierarchy
of the interaction amplitudes dictated by the scattering lengths
in the cold-atom realizations (see Table I) and perform sys-
tematic analysis in a wide range of atomic densities.

Whereas the details of the numerical method can be found
in the literature [21, 22], let us briefly outline the main ingre-
dients in the MPS approach for the system under study. The
MPS ansatz for the state of a quantumN-body system has the
following form:

|Ψ⟩ =
d
∑

i1…iL=1
tr
(

Ai11 …AiLL
)

|i1… iL⟩, (4)

where |ik⟩ are the single-site basis states (with d being the
dimension of the single-site Hilbert space) and each Aikk is a
D ×D matrix, where D is called the bond dimension [32].

The MPS is a convenient ansatz for the ground state of lo-
cal one-dimensional Hamiltonians. Although it is possible
to use TN directly for fermionic systems [33–36], for one-
dimensional problems it is convenient to employ the Jordan–

Wigner (JW) transformation [37] and map the original two-
orbital Fermi–Hubbard model (1) to the Hamiltonian of a spin
chain.

In order to apply the JW transformation, we define a linear
order for the fermionic modes ci� according to the general-
ized index m = 4(i−1)+2(i −1)+ i� (m = 1,… , 4L), where
i,� = {1, 2} number the internal orbital and spin fermionic
modes on the site i. For later convenience, we also define the
internal state linear index for each site k = 2(i − 1) + i� ,
taking values k = 1,…4. The fermionic operators are thus
mapped to strings of the spin-1/2 Pauli matrices as

c†m =
m−1
∏

q=1
(−�zq ) ⋅ �

+
m , cm =

m−1
∏

q=1
(−�zq ) ⋅ �

−
m . (5)

Note that the density operator for a single fermionic mode n̂m
can be written as n̂m = c†mcm = �+m�

−
m = �0m, where �0 is the

projection operator

�0 =

(

1 0
0 0

)

. (6)

Therefore, in terms of these matrices, we express the system
Hamiltonian (1) as follows

 =
L−1
∑

j=1

4
∑

k=1
tk

(

�+j,k

4
∏

l=k+1
�zj,l

k−1
∏

l=1
�zj+1,l�

−
j+1,k + H.c.

)

+
L
∑

j=1

(

Ugg�
0
j,1�

0
j,2 + Uee�

0
j,3�

0
j,4

)

−
L
∑

j=1

4
∑

k=1
�k�

0
j,k

+ V
L
∑

j=1

(

�0j,1�
0
j,4 + �

0
j,2�

0
j,3

)

+ (V − Vex)
L
∑

j=1

(

�0j,1�
0
j,3 + �

0
j,2�

0
j,4

)

− Vex
L
∑

j=1

(

�+j,1�
−
j,2�

−
j,3�

+
j,4 + H.c.

)

. (7)

Being a sum of local terms of the range up to four consec-
utive spin sites, the Hamiltonian (7) can be easily written as
a matrix product operator (MPO) [38], and treated with stan-
dard MPS numerical algorithms [39, 40]. The latter proceed
by treating Eq. (4) as a variational ansatz and iteratively mini-
mizing the energy ⟨Ψ||Ψ⟩∕⟨Ψ|Ψ⟩ with respect to each ten-
sor Aj , until convergence is achieved. Having access to the
ground-state wave function, one can calculate the correspond-
ing expectation values of operators of interest.

As an additional verification of ED and MPS numerical re-
sults (as well as for a better understanding of physical mech-
anisms), at ng ≈ 1 and ne ≈ 1 we considered the strong cou-
pling limit for the Hubbard model (1), t ≪ U′ . In this limit,
one can treat the tunneling as a perturbation and perform the
Schrieffer-Wolff transformation to obtain an analytic form of
the effective Hamiltonian. This aspect of studies will be dis-
cussed in more detail in Sec III C.
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te Ugg Uee V Vex
173Yb 0.2591 9.238 18.13 37.031 25.646
171Yb 0.2591 0 6.157 15.005 -3.363
87Sr 0.2591 4.16 9.727 5.724 2.439

TABLE II. Amplitudes of the Hubbard parameters for 173Yb, 171Yb,
and 87Sr atoms in units of the tunneling amplitude tg .

III. RESULTS

The band-structure calculations (similar to those performed
in Ref. [19]) with the choice of parameters for the optical lat-
tice specified in Sec. II A result in the values of the Hubbard
parameters summarized in Table II. Note that the inter-orbital
interaction amplitudes V and Vex for 173Yb are additionally
renormalized due to the fact that the “bare” amplitude U+eg ex-
ceeds the band gap (see also Ref. [19] for details), while for
other atoms all the amplitudes are moderate and obtained di-
rectly by means of Eq. (3).

In particular, for a gas of 173Yb atoms we observe a hierar-
chy of the interaction amplitudes similar to the one employed
in recent theoretical studies with dynamical mean-field theory
(DMFT) for a quasi-two-dimensional and three-dimensional
geometries of SDL [19, 41]. There, the authors pointed out a
peculiar antiferrorbital (AFO) ordering instability in this sys-
tem (also called as orbital density wave, see, e.g., Refs. [7–
9]) among other strongly-correlated phases, antiferromagnetic
(AFM) and ferromagnetic (FM), in particular (see also Fig. 2).
Although DMFT is an approximate method, it is important
to verify whether the main observations remain valid for a
quasi-one-dimensional geometry of SDL with the more ac-
curate methodology employed here (see Sec. II C).

A. Spin-averaged local observables

Due to the computational limitations mentioned in
Sec. II C, we perform ED calculations for a system size up to

FIG. 2. Schematic representation of magnetic and orbital ordering
for particular average fillings of the lattice sites. Blue color corre-
sponds to the ground-state atoms (g), while yellow color depicts the
excited-state atoms (e).

L = 5. Despite the limited size, the ED results already indi-
cate several important features of the system under study. De-
pending on the ratio between the densities of g and e atoms in
the lattice, different correlations can be effectively enhanced
in the density (or “charge density”, if one uses an analogy
to solid-state realizations), spin, and orbital sectors. The ED
approach also enables a straightforward temperature analysis
and serves as an accurate control of the MPS approach.

In order to find a trade-off between calculation time and
capturing all the relevant features of the system, while em-
ploying MPS we chose L = 20 (and D = 260) to represent
the central and the most complete results of the study. All the
calculations were performed for the fixed number of g and e
atoms [42]. Note that below we focus mostly on spin-balanced
configurations with the corresponding condition N↑ = N↓
for the total number of particles N� =

∑

i ni� in each spin
state �. It is worth mentioning that for the odd total number
N = N↑ +N↓ of atoms in the system, N↑ is set as rounding
down of N∕2 to the closest integer value.

We start our analysis with the on-site double occupancy
Dgg of g atoms, which can be viewed as the global observable
easily accessible in the experiments with ultracold multicom-
ponent fermionic mixtures in the lattice (see, e.g., Ref. [43]).
This observable is determined as Dgg =

1
L
∑

i
⟨nig↑nig↓⟩. As

we will see below, Dgg can be viewed as a good indicator of
the onset of nearest-neighbor magnetic correlations in gases
of 173Yb or 87Sr atoms, while for 171Yb there is no such cor-
respondence.

The dependence of the doubly-occupied sites with g atoms
on the variable densities ng and ne is shown in Fig. 3 (up-
per row). Pauli exclusion principle imposes restrictions on
the double occupancy Dgg ≤ 1 and the densities ng,e ≤ 2.
Note that we further restrict the range of density of e atoms,
ne ≤ 1, according to the experimental limitations connected
with an increase of lossy collisions with a further growth of
ne [10]. It is clearly visible that for the 173Yb isotope there
is a strong suppression of the Dgg at ng ≈ ne ≈ 1. The
reason for this behavior lies in the hierarchy of the on-site
interactions. In comparison to 171Yb, where the intraorbital
interaction amplitude for g atoms vanishes (Ugg ≈ 0), for
173Yb the doubly-occupied sites would significantly increase
the ground-state energy of the system. The observed suppres-
sion ofDgg close to ng ≈ ne ≈ 1 is also related to the enhance-
ment of the nearest-neighbor magnetic correlations, which are
discussed in Sec III B (see Fig. 4). Similar to 173Yb, in a gas
of strontium-87 atoms one can observe qualitatively similar
behavior of the double occupancy.

In Fig. 3 (lower row) we also analyze the density-wave
modulation by calculating the site-averaged amplitude, Δn =
1
L
∑

i, |⟨ni⟩− n |. This quantity demonstrates a different be-
havior to the double occupancy. As we will see below, its
enhancement can be used as an additional indicator of the or-
bital correlations (171Yb and 173Yb), while its suppression can
be attributed to the onset of antiferromagnetic correlations in
the Mott-insulating regimes with n = 1 or n = 2 (87Sr and
173Yb).
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FIG. 3. Site-averaged double occupancy of g atoms Dgg (the upper
row) and density modulation Δn (the lower row) depending on the
filling of g (x axis) and e (y axis) orbital states, for three isotopes:
87Sr, 173Yb and 171Yb (from the left to the right side) and L = 20
sites. The values of both observables are coded in colors.

B. Spin and orbital resolved nearest-neighbor correlators

In this subsection, we discuss features of the nearest-
neighbor correlators, i.e., the spin-spin ⟨Si ⋅ Si+1⟩ and orbital-
orbital ⟨T zi T

z
i+1⟩ ones. The local spin operator contains contri-

butions from both orbital flavors, Si = Sig +Sie, where the or-
bital components Si = (Sxi , S

y
i , S

z
i ) are expressed in terms

of conventional spin-1/2 Pauli matrices asSri =
1
2c
†
i��

r
��′ci�′

for r = (x, y, z). In turn, the orbital correlator is defined in
terms of the operator T zi =

1
2
∑

�=↑,↓ c
†
i��

z
′ci′� .

Figure 4 presents the dependence of the site-averaged spin-
spin correlators ⟨Si ⋅ Si+1⟩ and ⟨Szi S

z
i+1⟩ on the densities of g

and e atoms. One can observe that in case of 173Yb, the cor-
relator ⟨Szi S

z
i+1⟩ reveals the antiferromagnetic ordering along

diagonals ng + ne = 1 and ng + ne = 2 (AFM-1 and AFM-2
configurations, respectively; see also Fig. 2), which is mani-
fested by the negative value of ⟨Si ⋅ Si+1⟩. Note that particu-
larly in these regions we observe a strong suppression of the
double occupancy Dgg (see Fig. 3). In turn, the 87Sr system
exhibits weaker AFM correlations along the same diagonals
as 173Yb due to lower values of the interaction parameters,
but with a similar correspondence in suppression of the Dgg
signal. Surprisingly, a gas of 171Yb atoms with the AFM on-
site Hund’s coupling (Vex < 0, see Table II) does not demon-
strate any AFM correlations at ng ≈ ne ≈ 1. The reason
for that originates from the different hierarchy of the interac-

0

0.5

1

0 1 2 0 1 2 0 1 2

-0.5 0.5

0

0.5

1

0 1 2 0 1 2 0 1 2

FIG. 4. Dependencies of the site-averaged spin-spin correlators
(coded in color), ⟨Si ⋅ Si+1⟩ (upper row) and ⟨Sz

i S
z
i+1⟩ (lower row),

on the average fillings ng and ne for three isotopes: 87Sr, 173Yb and
171Yb (from left to right) obtained with the MPS approach at L = 20.

tion amplitudes and thus a different ground state in the strong-
coupling limit (see also Sec. III C for more details).

Next, one can notice that for both isotopes with ferromag-
netic Hund’s coupling (173Yb and 87Sr with Vex > 0, see Ta-
ble II) there are certain regimes with a strong FM signal in
the correlator ⟨Si ⋅ Si+1⟩. This FM signal is almost absent
in the correlator ⟨Szi S

z
i+1⟩ due to the constraint for finite size

and zero total polarization, N↑ = N↓. In turn, due to the
AFM exchange interaction (Vex < 0) in the 171Yb system,
no ferromagnetic correlations develop, which also results into
direct correspondence between the depicted spin-spin correla-
tors ⟨Si ⋅ Si+1⟩ and ⟨Szi S

z
i+1⟩ in the whole diagram.

Therefore, the fillings ng and ne, as well as the type of
atomic isotope, determine four different magnetic orderings,
depicted schematically in Fig. 2, that we label AFM-1 (ng +
ne ≈ 1), AFM-2 (ng + ne ≈ 2), AFM-3 (ng + ne ≈ 3) and FM.
We performed additional calculations in the regions ne > 1
(not shown in figures), which demonstrate that the spin-spin
(as well as orbital-orbital) correlators are symmetric with re-
spect to reflections from the line (ng + ne) = 2. This fact is
directly related to the particle-hole symmetry in both orbital
flavors and can be useful for verification and control purposes.

Finally, Fig. 5 shows the dependence of the orbital-orbital
correlators ⟨T zi T

z
i+1⟩ on the average densities of g and e atoms.

In the case of 173Yb, one can observe antiferroorbital order-
ing around ng = 1 and ne = 0.5 (see also Fig. 2), which is
manifested by negative correlations. Remarkably, the posi-
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1
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FIG. 5. Dependencies of the site-averaged orbital-orbital correlators
⟨T zi T

z
i+1⟩ (coded in color) on the average fillings ng and ne for three

isotopes: 87Sr, 173Yb and 171Yb (from left to right) obtained with the
MPS approach at L = 20.

tion and extent of this phase is in a good agreement with the
previous DMFT studies of quasi-2D lattice systems [19]. The
main feature of the AFO phase is the alternating occupation
of neighboring lattice sites by atoms in different orbital states.
For illustrative purposes, the idealized configuration (that we
name AFO-1) at ng = 1 and ne = 0.5 is shown in Fig. 2. Note
that the AFO-like density modulations also emerge in the case
of a gas of strontium atoms with the corresponding maximum
of the signal at ng = 1 and ne = 0.5, but with a lower magni-
tude.

Let us also discuss the dependence of the correlator
⟨T zi T

z
i+1⟩ for the case of 171Yb isotope shown in Fig. 5. In

contrast to 173Yb and 87Sr atomic systems, one observes the
strongest AFO signal at ng = ne = 1 (labeled as AFO-2
in Fig. 2). AFO-2 is a bipartite ordering similar to AFO-1.
However, the main difference is that the neighboring lattice
sites are occupied alternately by pairs of g or e atoms. The
reason for the AFO instability (which completely suppresses
the AFM correlations, see Fig. 4) in this particular regime for
171Yb system originates from the different hierarchy of the
interaction amplitudes and thus a different ground state in the
strong-coupling limit (see also Sec. III C). Note also the al-
ternating vertical-stripe suppression features in the values of
the correlator ⟨T zi T

z
i+1⟩ in Fig. 5. We ascribe these to the

finite-size effects and vanishing Ugg . In particular, the sup-
pression is observed at odd values of the total number of g
atoms in the system Ng , when pairs of g atoms cannot be any
longer uniformly distributed along the chain (on every second
site). With an increase of the system size these suppression
features become less pronounced and we expect them to van-
ish in the thermodynamic limit (L → ∞). Let us also note
that the AFO correlations are usually accompanied by sizeable
density modulations (the charge-density wave) on the nearest-
neighbor lattice sites. This can be concluded, in particular,
from the corresponding comparison of Figs. 3 and 5.

C. Strong-coupling limit at half filling

Let us analyze in detail a regime with ng ≈ 1 and ne ≈ 1,
when hopping processes can be viewed as a perturbation. The
numerical ED and MPS results suggest strong correlations of
different types in this region. In particular, the structure of
these depends on the atomic isotope: there are clear indica-
tions of the AFM correlations for 173Yb and 87Sr, while in the
system consisting of 171Yb atoms the AFO correlations be-
come the leading ones (see Figs. 4 and 5). Since the interac-
tion amplitudes are much larger than the hopping amplitudes
for all three atomic species (see also Table II), it is natural to
employ the strong-coupling expansion.

To proceed, we restrict ourselves to two lattice sites and bal-
anced spin configurations for both g and e components. The
atomic limit (tg = te = 0) already sets the different lowest-
energy states depending on the atomic isotope. In particular,
for the 171Yb atoms the ground state corresponds to the AFO-
2 configuration shown in Fig. 2 with the zeroth-order contribu-
tion to the energyEAFO0 = (Uee+Ugg)∕2 per lattice site. At the
same time, for other species, due to different hierarchy of the
interaction amplitudes, the lowest-energy state is degenerate
and formed by the local spin-triplet states (S = 1, see Fig. 1)
consisting of pairs of g and e atoms on each lattice site with
the zeroth-order contribution to the energy E0 = (V + Vex).
This degeneracy is removed by accounting for the hopping
processes and results in the AFM-2 configuration shown in
Fig. 2.

To verify the above statements and to estimate the char-
acteristic magnetic (or orbital) couplings, we apply the
Schrieffer-Wolff transformations [44] and arrive at the follow-
ing effective Hamiltonian at half filling:

AFM
eff =

∑

⟨ij⟩,≠′

4t2
U + Vex

(

Si ⋅ Sj −
ninj
4

)

ni′nj′

+int , (8)

where the orbital-resolved spin-operators S are defined as
above (see Sec. III B). Note that for the validity of this model
it is necessary that t2 ≪ (U + Vex), which is guaranteed for
the systems under study (see Table II).

By performing a similar strong-coupling expansion for the
AFO-2 configuration (see also Fig. 2), we obtain the following
effective model:

AFO
eff =

∑

⟨ij⟩

∑

�≠�′,≠′

4t2
2V − U − Vex

T zi�T
z
j�ni�′nj′�′

+int . (9)

Here, the applicability of the model is related to the condi-
tion t2 ≪ (2V − U − Vex), which is also guaranteed for the
systems under study (see Table II).

We can conclude that both the AFO and the AFM corre-
lations are mainly driven by the hopping of g atoms (under
assumption that tg > te). At the same time, the denomina-
tors in the corresponding couplings are different due to the
different structure of the ground and virtual states in different
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regimes. Let us also note that we checked that the hierarchy
of the ground-state energies at ng ≈ 1 and ne ≈ 1 remains
unchanged for each atomic isotope with tuning of the polariz-
ability ratio and the SDL depth.

IV. CONCLUSION

We studied many-body correlations peculiar to the ground
state of the gaseous systems consisting of interacting
fermionic ytterbium or strontium atoms in state-dependent
optical lattices. Our theoretical analysis for a quasi-one di-
mensional geometry of SDL revealed a substantial number
of distinct regimes with characteristic magnetic, orbital, and
density correlations. We calculated both single- and two-site
(as well as the spin-averaged and spin-resolved) observables,
which can be measured in the corresponding experimental re-
alizations with ultracold atoms. In particular, the obtained re-
sults are relevant not only for experiments with an access only
to the averaged observables (e.g., double occupancy, density
distribution, compressibility, etc), but also for experiments
with the single-site resolution (quantum gas microscope) tech-
niques in AEAs [45–47].

Although we restricted ourselves to certain values of the lat-
tice depth and polarizability ratio, the comparison of different
atomic isotopes provides useful information on how the nec-
essary regimes can be approached and analyzed in different
atomic systems. Our results open also interesting directions

toward realization of complex inhomogeneous systems, where
the trap curvature can be adjusted to enhance one specific or
several different phases in different spatial regions of the trap.
Furthermore, the employed approaches can be extended to ac-
count for thermal effects and to perform the entropy analy-
sis, which is valuable from the experimental point of view.
A good qualitative agreement of the results for 173Yb gas
with Ref. [19] constitutes an indication that the main strongly-
correlated regimes for all three atomic systems should remain
stable and could be observed in the higher-dimensional sys-
tems at finite temperature.
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Lett. 115, 265302 (2015).

[18] M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, Nature
435, 321 (2005).

[19] A. Sotnikov, N. Darkwah Oppong, Y. Zambrano, and A. Cichy,
Phys. Rev. Res. 2, 023188 (2020).

[20] M. S. Safronova, Z. Zuhrianda, U. I. Safronova, and C. W.
Clark, Phys. Rev. A 92, 040501 (2015).

[21] F. Verstraete, V. Murg, and J. Cirac, Adv. Phys 57, 143 (2008).
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