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A B S T R A C T   

Precisely charting the maturation of core neurocognitive functions such as reinforcement learning (RL) and 
flexible adaptation to changing action-outcome contingencies is key for developmental neuroscience and adja
cent fields like developmental psychiatry. However, research in this area is both sparse and conflicted, especially 
regarding potentially asymmetric development of learning for different motives (obtain wins vs avoid losses) and 
learning from valenced feedback (positive vs negative). In the current study, we investigated the development of 
RL from adolescence to adulthood, using a probabilistic reversal learning task modified to experimentally 
separate motivational context and feedback valence, in a sample of 95 healthy participants between 12 and 45. 
We show that adolescence is characterized by enhanced novelty seeking and response shifting especially after 
negative feedback, which leads to poorer returns when reward contingencies are stable. Computationally, this is 
accounted for by reduced impact of positive feedback on behavior. We also show, using fMRI, that activity of the 
medial frontopolar cortex reflecting choice probability is attenuated in adolescence. We argue that this can be 
interpreted as reflecting diminished confidence in upcoming choices. Interestingly, we find no age-related dif
ferences between learning in win and loss contexts.   

1. Introduction 

Adolescence is a pivotal period of neurocognitive development in 
which cognitive flexibility and reinforcement-driven learning play a 
critical role (Dahl et al., 2018; Hauser et al., 2015). Precisely charting 
their maturation can help us, for example, tailor educational programs 
to different age groups and understand potentially consequential 
developmental difficulties. 

A prominent hypothesis suggests that lower executive control and 
higher plasticity during childhood and adolescence might be “evolu
tion’s way of […] resolving the explore/exploit trade-off” (Gopnik et al., 
2017) by promoting temporarily enhanced exploration and flexibility. 
Thus, the transition from childhood to adulthood is thought to mimic the 

early phases of “simulated annealing” optimization algorithms, which 
gradually reduce how much they explore new solutions in favor of 
exploiting known ones (Gopnik et al., 2017). In the reinforcement 
learning models often employed to study human learning, this would 
correspond to a high decision temperature parameter (also called 
“reinforcement sensitivity” or “choice stochasticity”), i.e., a state where 
feedback / learnt values exert less influence on instrumental behavior 
and thus produces randomness. Indeed, several studies show enhanced 
choice switching and higher temperatures in youth, indicating dimin
ished reinforcement sensitivity (e.g., Christakou et al., 2013; Crawley 
et al., 2020; Eckstein et al., 2021; Javadi et al., 2014; see Bolenz et al., 
2017; Nussenbaum and Hartley, 2019 for reviews). 

However, this narrative is complicated by studies differentiating 
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between positive and negative reinforcement. Evidence from self- 
reports and functional neuroimaging (mainly during gambling/risk 
taking tasks) suggests that adolescence might in fact be characterized by 
relatively heighted reward sensitivity and/or reduced punishment 
sensitivity (Barkley-Levenson and Galván, 2014; Davidow et al., 2016; 
Ernst et al., 2005; Galvan et al., 2006; Schreuders et al., 2018; although 
see e.g., Bjork et al., 2004). Indeed, there is an indication that adoles
cents might learn more easily from wins than from losses (Palminteri 
et al., 2016). On the other hand, reports of age differences in learning 
rates for positive and negative feedback are incongruous (Christakou 
et al., 2013; Jones et al., 2014; Rosenbaum et al., 2022; van den Bos 
et al., 2012), as are findings of age effects on the neural coding of reward 
prediction errors (RPEs) (Christakou et al., 2013; Cohen et al., 2010; 
Hauser et al., 2015; Javadi et al., 2014; van den Bos et al., 2012). 

There may be several reasons for these inconsistencies. First, differ
ences in self-reported or neural sensitivity to rewards may not 
straightforwardly translate to differences in reinforcement learning and 
instrumental behavior. Second, they could be produced by a conflation 
of differential sensitivity to valenced feedback (positive, negative) and 
differential effects of motivation (gain rewards, avoid loss) on learning. 
Asymmetric sensitivity to valenced feedback is often adaptive, for 
example in probabilistic tasks when positive feedback carries more 
reliable information than negative feedback. Meanwhile, differential 
learning to obtain rewards and to avoid losses represents a (maladap
tive) learning bias. If, as has been suggested, adolescents become more 
task-optimal with age (Nussenbaum and Hartley, 2019), the develop
mental trajectories of learning from valenced feedback and learning in 
different motivational contexts may diverge. As a consequence, these 
trajectories may interfere in different ways depending on task set-ups 
and thus produce inconsistencies. Thus, for example, Eckstein et al. 
(2021) and Hauser et al. (2015) report opposite effects of age on 
learning rates for positive and negative feedback in similar probabilistic 
reversal learning tasks. This may have come about because in Eckstein 
et al.’s (2021) study, the outcomes available were wins and neutral 
events, while in Hauser et al.’s (2015) study, there were losses as well as 
wins. These are difficult to tease apart because effects of motivational 
context and feedback valence were not differentiated in these studies. 
Experimentally separating these factors is therefore a necessary next 
step in charting the development of RL. 

In the present study, we employed cross-sequential design to inves
tigate the development of reinforcement learning in a sample of ado
lescents and younger and older adults (12–45 years). We use a 
probabilistic reversal learning task to be able to capture cognitive flex
ibility and exploration. We aimed, first, to replicate the relatively 
consistent previous finding of enhanced choice switching in adolescence 
compared to adulthood. Second, we disentangle learning in different 
motivational contexts (gain rewards vs avoid losses) from valenced 
feedback processing (positive vs. negative) by having participants un
dergo two rounds of probabilistic reversal learning – one in which 
positive feedback were monetary wins and negative feedback were 
neutral outcomes, and another where feedback were neutral outcomes 
and negative feedback were monetary losses – and by introducing a post- 
task test measuring how well participants learned from wins compared 
to losses in the main task (Frank et al., 2004; Palminteri et al., 2016). 
Based on the literature, we expected younger participants to perform 
worse when trying to avoid losses (Palminteri et al., 2016), and to 
process valenced feedback less optimally (i.e., less staying after positive, 
more switching after negative feedback) compared to older participants 
(Crawley et al., 2020; Javadi et al., 2014). The latter implies overall 
worse performance in adolescents because switching is maladaptive 
when reward-contingencies are stable (which is true for the majority of 
the task). Third, we aimed to identify differences in computational 
processes that may underly age differences in behavior. Previous work 
indicated increased choice stochasticity/decreased reinforcement 
sensitivity (Eckstein et al., 2021; Javadi et al., 2014; Nussenbaum and 
Hartley, 2019) and decreased counterfactual inference in youths 

(Palminteri et al., 2016). We expected these to account for the hypoth
esized behavioral effects, i.e., lower reinforcement sensitivity and 
counterfactual inference especially in the loss condition. Finally, we 
aimed to chart the development of the neural representations of RPEs 
and relative value (choice probability). Following our behavioral hy
potheses, we expected diminished coding of relative value and coun
terfactual RPEs in the (ventro)medial prefrontal cortex (vmPFC) 
(Busemeyer et al., 2019; Reiter et al., 2016, 2017), particularly in the 
loss condition, in youths. For completeness, we also examined conven
tional prediction errors in an explorative analysis. 

2. Methods 

2.1. Participants and procedure 

As part of a larger cross-sequential study on the role of reinforcement 
learning in binge-eating disorder, we recruited N = 95 right-handed 
healthy participants between the ages of 12 and 45 from the partici
pant pool of the Max Planck Institute for Human Cognitive and Brain 
Sciences, as well as via advertisements in local schools, universities, GP 
practices, gyms, and shops. Before their first visit, potential participants 
were screened via telephone and excluded if they reported being over- or 
underweight, pregnant or breast-feeding, color vision deficient, if they 
had any contra-indications for MRI scanning (e.g. large tattoos, tinnitus, 
dental braces etc.), if they themselves suffered from or reported first- 
degree family history of epilepsy or schizophrenia, as well as if they 
reported suffering from diabetes, thyroid dysfunction, dyslexia, or 
having used psychoactive drugs in the past 3 months. At their first visit, 
participants were additionally screened for present and past mental 
health problems using the German version of the SCID (Wittchen, 1997) 
and excluded if they met criteria for any current or past diagnosis 
(except for specific phobias). The study protocol consisted of a battery of 
interviews, questionnaires, physical examinations, neuropsychological 
assessments, and tasks (reported in full elsewhere). As part of this pro
tocol, participants performed a probabilistic reversal learning task 
during functional magnetic resonance imaging (MRI) and completed a 
post-task probabilistic selection task (~30 min after the end of the main 
task). Additionally, they completed the Trail-Making Test (Reitan, 
1958), the digit-symbol-substitution task (Wechsler, 2008), a digitalized 
version of the digit span task (Wechsler, 2008) and a vocabulary test 
(Wortschatztest) (Schmidt and Metzler, 1992). A minimum of 6 months 
after their first visit (max 41 months, median = 8.71 months), partici
pants were re-invited for a follow-up session in which they repeated the 
SCID screening, the probabilistic reversal learning task and the post-task 
probabilistic selection task (without MRI measurement). The follow-up 
interval of 6 months was originally chosen so as to allow for change in 
binge eating symptoms, however, due to restrictions in the context of the 
Covid-19 pandemic, many participants could not be reassessed within 
this timeframe. All participants provided written informed consent 
(parental consent and assent for minors) and were compensated for their 
time (money or an Amazon voucher for minors) separately after the 
initial and follow up sessions. 

Information on demographics and neuropsychology is summarized 
in Table 1. Note that as both the adolescents and adults were originally 
selected to match a clinical sample in terms of age and gender, the age 
distribution of the current sample is non-uniform, nor are there equal 
numbers of male and female participants per age bracket (for a histo
gram by gender, please refer to Fig. S1.) In addition, a number of adult 
participants were taken from a parallel study that shared the same 
protocol but did not include a follow up, such that the drop-out is 
considerably higher in adult participants. At the follow-up SCID 
screening, one person reported having had a major depressive episode in 
the interim and one person met criteria for current major depressive 
disorder. Both participants were retained for the analysis. 
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2.2. Task 

The probabilistic reversal learning task (PRLT) employed in this 
study (see also Boehme et al., 2015; Deserno et al., 2020; Reiter et al., 
2016, 2017 for similar implementations), consists of two blocks of 140 
trials in which participants make repeated binary choices between two 
cards. The cards are associated with different probabilities of winning 
(+10 cents) or not winning ( ± 0 cents) (80%− 20% and 20%− 80%, 
respectively) in the win block, and of losing (− 10 cents) or not losing ( 
± 0 cents) in the loss block (order counterbalanced). Neutral outcomes ( 
± 0 cents) signal negative feedback (no win) in the win condition, and 
positive feedback (no loss) in the loss condition. Independent from 
feedback valence, the motivational context in the two blocks is different: 
in the win condition, the goal is to collect as many rewards as possible; in 
the loss condition, the goal is to avoid losses. In each trial, after making a 
choice by pressing a button (button box in the MRI, “n” and “m” keys on 
the PC for training), participants are shown a feedback screen (a picture 
of a 10-cents coin with a green plus sign for wins, a picture of a 0 cents 
coin for neutral outcomes, a picture of a 10-cents coin with a red minus 
sign for losses) for 0.5 s. Feedback (positive vs negative) is read out at 
each trial from a pre-defined schedule that was designed to match the 
reward/loss probabilities (i.e., for an 80%-win stimulus, 1 in every 5 
choices was not rewarded). The feedback screen is followed by a vari
able inter-trial interval with a mean of 2.5 s, in which participants are 
shown a fixation cross (Fig. 1 – A, upper panel). After an initial acqui
sition phase (1st to 35th trial) the cards’ reward contingencies flip 5 
times (after the 35th, 55th, 70th, 85th, and 105th trial), such that the 

Table 1 
Demographics and Neuropsychological Assessment.   

Adolescents 
(Age ≤ 18) 

Adults 
(Age > 18) 

Statistic and p- 
Value 

N 40 55  
Age 14.80 ( ±

1.66) 
28.68 ( ±
5.58)  

Follow-up Interval (years) 1.08 ( ±
0.75) 

1.09 ( ±
0.76) 

t(73) = 0.1, p 
= 0.92 

Drop-out 7.50% 30.91% X2(1) = 7.64, p 
= 0.01 

Gender (% female) 50.00% 60.00% X2(1) = 0.94, p 
= 0.33 

Years of education (full-time) 8.39 ( ±
1.71) 

17.29 ( ±
3.89) 

t(93) = 13.54, 
p < 0.01 

TMT-A (seconds) 24.13 ( ±
8.72) 

19.53 ( ±
5.62) 

t(93) = − 3.12, 
p < 0.01 

TMT-B (seconds) 52.94 ( ±
25.42) 

39.47 ( ±
11.63) 

t(92) = − 3.44, 
p < 0.01 

Digit Span Forward (levels 
achieved) 

5.85 ( ±
1.14) 

6.69 ( ±
1.53) 

t(93) = 2.93, p 
< 0.01 

Digit Span Backwards (levels 
achieved) 

4.80 ( ±
0.99) 

5.38 ( ±
1.52) 

t(93) = 2.11, p 
= 0.04 

Digit-Symbol-Substitution Task 
(symbols completed) 

67.60 ( ±
14.90) 

82.04 ( ±
15.31) 

t(93) = 4.59, p 
< 0.01 

Wortschatztest (raw score) 21.43 ( ±
7.79) 

33.75 ( ±
2.66) 

t(93) = 10.9, p 
< 0.01  

Fig. 1. A, upper panel – Design of the probabilistic reversal learning task (PRLT). In each condition (block), participants make 140 binary choices between two 
abstract stimuli (cards) with different probabilities of obtaining rewards, neutral outcomes, or losses (rewards and neutral outcomes in the win condition, neutral 
outcomes and losses in the loss condition). They are instructed to gain as much and lose as little money as possible, depending on condition. At each trial, the stimuli 
are shown for a maximum of 1500 ms or until the participant responds. A frame then appears around the chosen card. This screen is shown for the remainder of 
1500 ms, i.e., for 1500 ms minus the response time. Then, a feedback screen with either a picture of a 10-cents coin (wins), a picture of a 0-cents coin (neutral 
outcomes), or a picture of a minus 10-cents coin (losses) is shown for 500 ms. Wins and neutral no-wins are available in the win condition and neutral no-loss and loss 
are available in the loss condition. Finally, participants see a fixation cross for a variable intertrial interval (mean 2500 ms). A, lower panel – Reward contingencies. 
In the first 35 trials, the same stimuli each have a 20%- and 80%-win/loss probability, respectively. Their contingencies then reverse 5 times over the course of the 
task in a perfectly anticorrelated manner, which requires participants to flexibly adapt their behavior in order to gain and avoid losing money. The task ends with 
another 35 trials in which the reward contingencies no longer change. B – Post-task test: probabilistic selection task. Approximately 30 min after the PRLT, par
ticipants complete a short bonus task, in which the stimuli from both the win and the loss blocks and two novel stimuli (instructed as being neutral, i.e., yielding 
0 cents outcomes) are presented in all 15 possible pairings (3 times for each pair). Participants are instructed to try to earn as much and lose as little money as 
possible as before. No feedback is provided. 
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previously more lucrative/less losing stimulus now becomes the more 
frequently neutral/losing one, and vice versa. For details, see Fig. 1 – A, 
lower panel. At both test sessions, participants are instructed before the 
task that one card is always better than the other, that a winning card 
does not always win (probabilistic feedback), and that a card that has 
been good for a while may worsen, with the other card then becoming 
better over time (reversals). They also perform two rounds of 20 training 
trials (without reversal). To ensure that all participants understood the 
task, they were asked to explain it to the experimenter, who, if they felt 
the participant did not understand the task, explained it in their own 
words. 

In the bonus task, a probabilistic selection task, the stimuli from the 
two blocks of the PRLT and two novel stimuli (instructed as yielding a 
neutral outcome, i.e., neither win nor loss) are presented in all possible 
pairings, 3 times for each pair (totaling 45 trials). For each pair, par
ticipants have to pick the stimulus they thought most likely to produce a 
win / avoid a loss, without receiving feedback, equivalent to the “test 
phase” of the Frank probabilistic stimulus selection task (Frank et al., 
2004) (Fig. 1 – B). 

The experiment was implemented in Psychtoolbox (3.0.13) using 
Octave (4.2.2). The PRLT was displayed on a white screen using a pro
jector in the MRI, and on a monitor outside the MRI for training pur
poses. The same monitor was used to display the probabilistic selection 
task. 

2.3. Analysis of behavior – PRLT 

We used trial-by-trial logistic mixed effects models to estimate ac
curacy (probability of choosing the currently more lucrative/less likely 
to lose card) and stay-switch behavior (probability of sticking with the 
same card as in the previous trial after positive and negative feedback), 
using the package glmer in R (version 4.1.0). As predictor variables, we 
included age (z-scored, per timepoint), condition (win vs. loss), and 
previous feedback (positive vs. negative) for stay-switch behavior. As an 
explorative analysis, we also looked at the effect of age on reaction times 
after positive and negative feedback, in the different conditions, using a 
linear mixed effects model. All our models employed a maximal random 
effects structure to the extent possible (Barr et al., 2013); we report the 
exact models in the supplement. Results were considered significant at 
p < .05, with p-values derived using Wald-Z tests in the case of GLMMs 
(as implemented in glmer) and Satterthwaite’s method (as implemented 
in the lmerTest package) in the case of LMMs. 

The task has different parts with stable or changing outcome prob
abilities, which we expected – normatively – to affect both accuracy and 
switching behavior (more switching and less accuracy in volatile pha
ses). We thus decided to include those task dynamics in the models to 
account for this variance and thus increase power. However, there is no 
established standard as to how this should be done. We therefore used 
model selection to arbitrate between four schemes: (1), one which dif
ferentiates between an acquisition phase encompassing the trials before 
the first reversal (35 per block) and a reversal phase covering the 
remaining trials; (2), one which differentiates between two stable phases 
covering the trials before the first and after the last reversal (i.e., the first 
and last 35 trials) and a volatile phase encompassing the remaining 
trials, (3) one differentiating between pre-reversal trials, i.e., the trials 
leading up to a reversal (105 trials per block), and post reversal trials, i. 
e., the 5 trials directly following each reversal (25 trials per block), and 
(4) one which does not account for task dynamics at all. Model selection 
was performed based on BICs. We report the results from the best fitting 
model (for model comparison, see Table S2). 

2.4. Analysis of behavior – probabilistic selection task 

Probabilistic stimulus selection tasks similar to the one we imple
mented have been analyzed in different ways. Thus, for example, Frank 
et al. (2004) calculated how often participants choose the best stimulus 

over the others and compared it to how often they avoid the worst 
stimulus, in novel pairs, to dissociate how well people learn from wins 
vs. losses. Palminteri et al., in a similar task, estimated the choice 
probability for each stimulus as a function of motivational context 
(obtain win vs. avoid loss) and whether or not the choice was “correct”, 
i.e., the one which is more likely to lead to a win / avoid a loss (Pal
minteri et al., 2016). The Frank approach is “nested” in the Palminteri 
approach in so far as a difference between the rate at which individuals 
choose the best and avoid the worst stimulus would emerge as an 
interaction between motivational context and “correctness” or accuracy. 
We therefore implemented a strategy akin to Palminteri’s, predicting 
choice rates of the familiar stimuli based on motivational context, ac
curacy, and age, adding another factor representing whether choices 
were between two familiar stimuli or between a familiar and a novel 
stimulus. 

2.5. Computational modelling of behavior 

In order to identify individual differences in processes underlying 
behavior in this task, we fit 12 different reinforcement learning models 
based on Q-Learning (Watkins and Dayan, 1992) to the data. Note that 
we employ a reinforcement sensitivity parameter within the update 
equation instead of an inverse temperature parameter as part of the 
softmax decision rule to quantify the impact of feedback / learnt values 
on choices. For detailed descriptions (including equations), please refer 
to the supplement. Parameter estimation was performed using empirical 
Bayesian estimation in an expectation maximization procedure, imple
mented in MATLAB R2020b using the emfit toolbox (Huys et al., 2011, 
2012; Huys and Schad, 2015) (details in the supplement). We performed 
model selection on the estimated models based on the integrated 
Bayesian Information Criterion (Huys et al., 2012) in the entire sample 
as well as separately for adolescents (participants ≤18) and adults 
(participants >18) to make sure both groups were best fit by the same 
model. The best model (overall and in both groups) proved to be a full 
double update model with separate reinforcement sensitivities (ρ) for 
positive and negative feedback, a single learning rate (α) and a softmax 
decision policy (Eqs. (1) through (3); p: probability, Q: expected value, 
a: action, t: trial). 

p(ai) =
exp

(
Qai

)

∑K
j=1exp

(
Qaj

) Eq. 1  

Qa,t+1 = Qa,t + α
(
ρ+/− ∗ r − Qa,t

)
Eq. 2  

Qaunchosen ,t+1 = Qaunchosen ,t +α
( (

− ρ+/− ∗ r
)
− Qaunchosen ,t

)
Eq. 3  

We took this model forward for further analysis, computing linear mixed 
effects models to gauge the effects of age, condition, and feedback on the 
fitted parameters. To ascertain that any age effects were not driven by 
age-related differences in model fit at chance level, we repeated all 
analyses excluding individuals with chance fit. To determine whether an 
individual was fit better than chance or not, we submitted the mean per- 
trial likelihood (p(action,trial | fitted model)) to a binomial test against 
0.5. If the average fit did not significantly differ from 0.5, the individual 
was excluded from the analysis. As for the raw behavior, we also re-ran 
models differentiating between cross-sectional age-differences and lon
gitudinal development where age effects came out significant. 

2.6. Simple effects analyses 

For all models, we performed simple-effects analyses to break down 
interactions. Simple effects are effects of one variable evaluated at a 
specific level of another variable. We calculate these simply by changing 
the reference level (coded as zero) of our categorical variables (note that 
in the initial models, all our categorical variables are effect-coded, i.e., 
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sum to zero). For example, to break down an interaction between age 
and condition, we separately examine the (simple) age effect when the 
win condition is coded zero and when the loss condition is coded zero. 
The coding of all other variables remains the same. We report only ef
fects of interest, for full model outputs, please refer to https://osf.io/ 
ptxs6. 

2.7. Analysis of longitudinal development 

It is conceivable that within-subject development effects differ 
depending on age (such that, for example, younger people change more 
from the first to the second assessment). We therefore took models with 
significant age effects forward for further analysis in which we differ
entiated between cross-sectional (between-subject) age differences and 
longitudinal (within-subject) development. To do that, we included 
cross-sectional age variance (subjects’ mean age across timepoints, z- 
scored) and longitudinal age variance (the difference between subjects’ 
age at each time point and their individual mean age, z-scored) as 
separate variables in the model, where they were also allowed to 
interact (Neuhaus and Kalbfleisch, 1998; Vanes et al., 2020). Because 
these are post-hoc, confirmatory analyses, we only included predictors 
that significantly interacted with age in these models. Note that we 
cannot differentiate between individual training/session effects and 
within-subject development, which complicates the interpretation of 
longitudinal age effects. However, the presence of a cross-sectional age 
effect can reassure us that we are not merely picking up a practice effect. 

2.8. fMRI preprocessing 

For scanning sequences, please refer to the supplement. The fMRI 
data was preprocessed using SPM12 (http://www.fil.ion.ucl.ac.uk/ 
spm/software/spm12) in MATLAB 2020b. First, the functional and 
structural images’ origin was set to approximately the location of the 
anterior commissure in order to aid later co-registration and normali
zation. The functional images were then slice-time corrected and voxel- 
displacement maps were computed based on the field maps. Subse
quently, they were realigned and unwarped, accounting for motion, 
distortion, and the interaction between motion and distortion, and 
spatially normalized to MNI (Montreal Neurological Institute) space 
based on the normalization parameters generated during the segmen
tation of each participant’s anatomical scan. Finally, they were 
smoothed using an isotropic Gaussian kernel of 8 mm full width at half 
maximum. Field-map correction, normalization, and head motion were 
individually checked. Two participants were excluded from MRI ana
lyses due to problems with the structural scan (missing slices). There 
were no exclusions due to artifacts, normalization failures or excessive 
head motion (maximum mean framewise displacement mm in the X, Y 
and Z directions in any subject: 0.06 mm, 0.25 mm, 0.44 mm). 

2.9. fMRI analysis 

Before 1st level statistical analysis, the data was high-pass filtered 
with a cut off at 128 s. We then applied event-related analyses using the 
general linear model implemented in SPM12, modeling feedback onsets, 
cue onsets, missing trials, and the 6 movement parameters. 

Parametric modulators were constructed and added to the model as 
follows. First, we derived, for each individual, trial-by-trial prediction 
errors (PEs) from the fitted computational models. To be able to 
differentiate the neural representation of actual and inferred (counter
factual) feedback, we computed both single and double update predic
tion errors. For the former, we used the single update (SU) model with 
separate reinforcement sensitivities for positive and negative feedback 
and a single learning rate (corresponding to Eqs. (1) and (2), without Eq. 
(3) above; see supplement for details). Note that we fixed the positive 
reinforcement sensitivity to 1 and the negative reinforcement sensitivity 
to − 1 to have the prediction errors on the same scale (bounded between 

+1 and − 1), to separate effects of the learning rate and reinforcement 
sensitivities, and to avoid problems with the estimation of the correla
tion between the BOLD signal and RPEs (Katahira and Toyama, 2021). 
To capture the additional counterfactual information contained within 
prediction errors from the (winning) double update (DU) model, we 
generated trial-by-trial prediction errors from that model and subtracted 
the SU prediction errors (see Reiter et al., 2017 for a similar approach). 
The SU and DU prediction errors were included as orthogonalized 
parametric modulators on the feedback regressor. Second, we generated 
trial-by-trial choice probabilities for each individual based on the fitted 
parameters of the winning double update model. The inferred choice 
probability is a function of the relative expected values of the two op
tions and can be interpreted as confidence in the upcoming choice. 
Third, from the choice probabilities, we constructed a control regressor 
reflecting trial-by-trial model-fit, where choices predicted with 
below-chance accuracy (<50%) were coded as 1 and 0 otherwise. We 
include this regressor to remove variance solely associated with poor 
model fit. The choice probabilities and model-fit regressors were 
included as orthogonalized parametric modulators on the cue regressor. 
This was done for both conditions (win and loss block) in a single model, 
where each block was modeled as a separate session. The regressors 
were convolved with the canonical hemodynamic response function in 
SPM12. For the second level analyses, we estimated random effects 
ANOVAs, also in SPM12, on the contrast images of the parametric 
modulators with a condition factor (win/loss block) and a covariate 
reflecting age. Thus, we estimated a model predicting chance fit coding 
from age and condition, a model predicting choice probability coding 
from age and condition, and a model predicting PE coding from age, 
condition, and single vs. double update. Results were considered sig
nificant at pFWE< .05, where family-wise error correction was applied to 
the peak level. 

Finally, we performed post-hoc mediation analyses to probe whether 
age effects on behavior might be mediated by neural differences. To this 
end, we used Wager et al.’s Mediation Toolbox (https://github.com/ 
canlab/MediationToolbox) for MATLAB (Version 1.0.0. from 8 Nov 
2021). 

3. Results 

As outlined in more detail in the methods section, we analyzed cross- 
sectional and longitudinal data (two time-points) from the probabilistic 
reversal learning task and the post-task selection test as follows. First, to 
assess age effects on task performance, we subjected the behavioral 
reversal learning data from both the initial and the follow up sessions to 
the same generalized linear mixed effects models (GLMM). As different 
phases of the task have different behavioral requirements, we accounted 
for task dynamics in these models to reduce error variance and increase 
power. Second, we estimated a separate GLMM for the post-task selec
tion test in order to assess age differences in how well stimuli were 
learned in the main task. That is, we tested how often familiar stimuli 
from the win and loss conditions are chosen over each other and novel 
stimuli. Third, we performed computational modelling on the behav
ioral data of the main task, again based on both timepoints, and sub
jected the parameters of the winning model – from both the initial and 
the follow-up session – to linear mixed effects models testing age effects. 
Fourth, for all significant age effects, we re-ran models to separate the 
effects of within-subject aging (from the first to the second session) and 
between-subject age differences. Finally, we took the first-session 
computational parameters forward to produce regressors, which we 
used to analyze the fMRI data collected during the first test session. 

In this section, we only report significant age effects in detail. For full 
results tables from all models reported below, please refer to the 
supplement. 
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3.1. Behavior 

3.1.1. Accuracy 
The model differentiating between trials leading up to and following 

reversals best accounted for the data (Table S1). It revealed a significant 
age x trial-type interaction effect (OR = 0.87, z = − 2.64, p = .008), such 
that older participants tended to be more accurate in pre-reversal and 
less accurate in post-reversal trials than younger participants (Fig. 2 – 
A). Simple effects analyses suggested that the interaction was driven 
primarily by the positive effect of age on accuracy in pre-reversal trials 
(OR = 1.25, z = 1.93, p = .053) and less so by the negative effect of age 
on accuracy in post-reversal trials (OR =.95, z = − 1.58, p = .114), 
although neither effect was by itself significant. The interaction between 
age and condition did not reach significance (p = .09). 

3.1.2. Stay-switch-behavior 
A model differentiating between the acquisition phase and the 

remainder of trials best accounted for the data (Table S2). It revealed a 
four-way interaction between age, phase, condition, and previous 
feedback (OR = 0.95, z = − 2.95, p = .003) in addition to a three-way 
interaction between age, phase, and condition (OR = 0.96, z = − 2.11, 
p = .04), a three-way interaction between age, previous feedback and 
phase (OR = 1.05, z = 2.76, p = .006), and a main effect of age (OR =
1.22, z = 2.17, p = .03). Unpacking this, simple effects analyses showed 
an age by phase interaction for staying after negative feedback (OR 
=.93, z = − 2.32, p = .021), which was driven by a stronger positive 
effect of age in the acquisition (OR = 1.33, z = 3.32, p = .001) than the 
reversal phase (OR = 1.15, z = 2.21, p = .027) (Fig. 2 – B). There were 
no condition-specific age effects on staying after negative feedback (OR 
=.99, z = − 0.23, p = .82). Further simple effects analyses looking at 
staying after positive feedback showed that age had no effect during the 
acquisition phase of the loss condition (OR = 1.02, z = 0.17, p = .87) 
and only marginal effects in the other conditions and phases (acquisition 
– win condition: OR = 1.24, z = 1.91, p = .056; reversal phase: OR =
1.02, z = 1.65, p = .099) (Fig. S4). Given that the effect of age on staying 
after positive feedback was not significant in any phase or condition, we 
refrain from interpreting it (Fig. 3). 

3.1.3. Explorative – reaction times 
A model differentiating between the acquisition phase and the 

remainder of trials best accounted for the data (Table S1). It revealed an 
interaction between age and previous feedback (β = − 0.03, t 
(45897) = − 3.32, p < .001), such that older participants responded 
faster than younger participants, in particular after positive feedback 

(β = − 1.83, t(45897) = − 4.10, p < .001) and less so after negative 
feedback (β = − 1.77, t(45897) = − 3.98, p < .001). The interaction be
tween age and condition did not reach significance (β = 0.02, t 
(45897) = 1.33, p = .18). 

3.1.4. Probabilistic selection task 
Our model predicting the choice rate for each stimulus based on 

motivational context (i.e., win or loss stimulus in the PRLT), accuracy (i. 
e., better or worse stimulus in the PRLT), familiarity (choice against a 
familiar or a novel stimulus) and age showed a main effect of motiva
tional context (β = 0.05, t(1288) = 4.203, p < .001), such that partici
pants more often chose stimuli from the win than from the loss block, as 
well as an interaction between age and familiarity (β = 0.047, t 
(1288) = 5.019, p < .001), such that when faced with a familiar and a 
novel stimulus, younger participants more often chose the novel stim
ulus (regardless of motivational context) than older participants (s. 
Fig. 2 – C). The interaction between age and condition did not reach 
significance (β = 0.013, t(1288) = 1.016, p = .31). 

3.2. Computational modelling 

3.2.1. RL model selection 
A full double update model with separate reinforcement sensitivities 

for positive and negative feedback and a single learning rate had the best 
evidence (lowest integrated BIC = 30,261, distance to next lowest ΔBIC 
= 209) across the whole sample, as well as in adolescents (participants 
≤18) and adults (participants >18) considered separately (Figs. S6 
through S8). This model updates the values for the chosen and unchosen 
options to the same extent (double update) and equally fast after posi
tive and negative feedback (single learning rate), but allows for differ
ential impact of positive and negative feedback on expected values and 
choices (separate reinforcement sensitivities for positive and negative 
feedback). 

3.3. RL parameters – reinforcement sensitivity 

A linear mixed effects model predicting reinforcement sensitivity 
parameter values from age, feedback and condition revealed an inter
action between age and previous feedback (β = 0.11, t(672) = 2.586, 
p = .01), such that older participants were relatively more sensitive to 
positive (simple effect of age: β = 0.23, t(672) = 1.893, p = .059) than 
to negative feedback (simple effect of age: β = 0.005, t(672) = 0.102, 
p = .919). This did not change when we excluded individuals fit at or 
below chance level. The interaction between age and condition did not 

Fig. 2. A – Predicted probability of choosing the more advantageous card, by age and trial-type, based on a generalized linear mixed effects model. Midnight-blue 
dots reflect accuracy in pre-reversal trials, steel-blue dots reflect accuracy in post-reversal trials. Correlation coefficients are between age and predicted values per 
trial-type. B – Predicted probability of staying with the same choice after negative feedback, by age and task phase, based on a generalized linear mixed effects model. 
Burgundy dots reflect switching in the acquisition phase of the task, rose dots reflect switching in the reversal phase. Correlation coefficients are between age and 
predicted values for each task phase. C – Predicted choice rates in the probabilistic selection task following the PRLT for familiar over novel stimuli, based on a linear 
mixed effects model. In all plots, there are up to two dots per person and color: one reflecting the initial session, one the follow up session (where data was available). 
Connecting lines are drawn between timepoints. 
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reach significance (β = − 0.002, t(672) = − 0.14, p = .89). For 
completeness, we compared and plotted parameters from the single and 
double update models, showing a stronger age effect on single update 
reinforcement sensitivities (refer to the supplement for details). 

3.3.1. RL parameters – learning rate 
A linear mixed effects model predicting the learning rate from age 

and condition revealed no effects of age (all p > .39). This did not 
change when we excluded individuals fit at or below chance level. The 
interaction between age and condition did not reach significance 
(p = .46). 

3.3.2. RL recovery and posterior predictive checks 
In order to ensure that the model fit our subjects’ behavior well on a 

qualitative level, we simulated 100 datasets based on the fitted model 
parameters of each subject. The recovered data generally captured the 
participants’ parameters well and reproduced the observed effects of age 
(Figs. S12 and S13). As a proof-of-concept analysis, we also show that 
stay-switch behavior – and, as a consequence, accuracy – is determined 
predominantly by the sensitivity to positive feedback. Thus, sensitivity 
to positive feedback accounts for 72.25% (r = .85) of the variance in 
staying after positive feedback, and 51.84% (r = .72) of the variance in 
staying after negative feedback, with the learning rate accounting for 
only 16.81% (r = .41) and 12.96% (r = .36) respectively (see supple
ment for more details). 

3.4. Differential contributions of within- and between-subject 
development 

Given that within-subject development effects may differ depending 
on age, we repeated all our analyses differentiating between (cross- 
sectional) age-differences and (longitudinal) development. The results 
suggest that the age effects reported above were driven primarily by 
cross-sectional variance (for detailed results, please refer to the 
supplement). 

3.5. fMRI 

3.5.1. Prediction error coding 
As expected based on previous studies (e.g., Abler et al., 2006; 

McClure et al., 2004; O’Doherty et al., 2007), participants showed 
robust correlations between prediction errors at feedback onset derived 
from the single update model and BOLD signals in the striatum at the 
group level (Fig. 4 – A, full results tables in supplement). Fig. 4 – B shows 
activation associated with unique variance in double update prediction 
errors which is not already contained in the single update prediction 
error, i.e., the variance attributable to the counterfactual inference 
incorporated within the double-update model. This was coded mostly in 
the vmPFC, hippocampus and PCC (full results tables in supplement). 
There was no evidence of age differences in single or double update 
prediction error coding, and neither changed depending on condition 
(motivational context). 

3.5.2. fMRI – choice probability coding 
At the group level, trial-by-trial choice probability at cue onset was 

correlated positively with BOLD signal in the (v)mPFC and PCC (Fig. 4 – 
C, full results tables in supplement). There was no effect of condition on 
the neural coding of choice probability. 

However, it was modulated by age in the medial prefrontal cortex/ 
frontal pole, such that older participants showed stronger neural rep
resentation of choice probability in this area (Fig. 5 – A, [− 4,64,12], 
k = 17, t = 3.51, pFWE =.03, small-volume corrected using the group- 
level activation map). Next, we examined brain-behavior relationships 
related to choice probability coding in the medial frontal pole. Because 
choice probability is linked to reinforcement sensitivity, we focused on 
staying after negative feedback (averaged across conditions and phases) 
and familiarity preference in the post-task test. Parameter values 
extracted at the peak coordinate correlated significantly with both 
staying after negative feedback (r = .36, p < .001) and familiarity 
preference (r = .24, p = .03). Subsequent mediation analyses showed 
that the effect of age on staying after negative feedback was partially 
mediated by choice probability coding in the mFPC (Fig. 5 – B). In 
contrast, the association between choice probability coding in the mFPC 

Fig. 3. A – Reinforcement sensitivity (averaged across conditions), by age and feedback. Left panel: reinforcement sensitivity for positive feedback; right panel: 
reinforcement sensitivity for negative feedback. The correlation coefficients reflect the relationship between sensitivity values and age. B – Learning rate (averaged 
across conditions), by age. The correlation coefficient reflects the relationship between learning rates and age. A & B – There are up to two dots per plot and person: 
one reflecting the initial session, one the follow up session (where data was available). Connecting lines are drawn between timepoints. 
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and familiarity preference was no longer significant when age was 
controlled for (Fig. S14). 

For activation associated with the control regressor reflecting poor 
trial-by-trial model fit (predicted choice probability below 50%), please 
refer to the supplement. 

4. Discussion 

In this study, we show that performance during stable phases of the 
probabilistic reversal learning task, i.e., prior to reversals, improves 
linearly with age. Our results indicate that this is driven by excessive 
response switching following negative feedback. Computationally, this 
could be accounted for by lower sensitivity to positive feedback in 
younger participants: thus, in younger participants, positive feedback 
had less of an impact on the expected values of the two choice options 
(and the difference between them), such that negative feedback in 
subsequent trials induced switching more readily. In the brain, there was 
no evidence of differences in reward prediction error coding between 
adolescents and adults. However, reduced sensitivity to positive feed
back was reflected in diminished activation of the medial frontopolar 
cortex as a function of choice probability in youths. Interestingly, we 
found no age-related differences between learning in win and loss con
texts, nor differences in the extent to which adolescents and adults used 
inferred counterfactual feedback, in either behavior or fMRI. 

Our behavioral results are in line with evidence showing similarly 

enhanced switching (less win/stay and/or more lose/shift behavior) 
(Crawley et al., 2020; Javadi et al., 2014; Van Den Bos et al., 2009) and 
greater choice stochasticity/reduced reinforcement sensitivity (Chris
takou et al., 2013; Crawley et al., 2020; Decker et al., 2015; Javadi et al., 
2014; Moutoussis et al., 2021; Rodriguez Buritica et al., 2019; although 
see Davidow et al., 2016) in younger (adolescent) individuals. We 
extend this literature by differentiating between sensitivity to positive 
and negative feedback. Thus, we provide evidence that enhanced 
switching behavior might be computationally accounted for by insuffi
cient sensitivity to positive feedback rather than enhanced sensitivity to 
negative feedback or overall lower reinforcement sensitivity. This 
interpretation is supported by our explorative analysis of reaction times: 
congruent with previous research (Decker et al., 2016b; Eckstein et al., 
2021), it shows that younger participants respond more slowly than 
older participants, especially after positive feedback. According to 
drift-diffusion accounts (McDougle and Collins, 2021; Mormann et al., 
2010; Pedersen et al., 2017), it takes longer to sample noisy information. 
Hence, this may be indicative of relatively elevated uncertainty as to the 
value of choice options our younger participants, which has previously 
been shown to decrease across adolescence (Reiter et al., 2021). 

Moreover, we point to a neural correlate of these behavioral effects, 
showing reduced coding of trial-by-trial choice probability in the medial 
frontopolar cortex in youth. This signal can be read as confidence in an 
upcoming choice and partially mediated a key behavioral readout, i.e., 
switching after negative feedback. The medial frontopolar cortex has 

Fig. 4. Group-level (positive) effects of re
gressors derived from computational modelling. 
A – prediction errors at feedback onset derived 
from a single update RL-model. B – additional 
(counterfactual) information incorporated in 
double update prediction errors (calculated as 
the difference between PEs derived from the 
double and single update models). C – choice 
probability as derived from the double update 
model. All maps are thresholded at pFWE < .05 
(peak-level, no minimum cluster size). Blob 
colors represent t-values.   
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previously been implicated in tracking choice probabilities (Daw et al., 
2006). It has been proposed to be involved in arbitrating between 
exploration and exploitation, specifically by monitoring the relative 
value of current behavior and triggering exploration (Mansouri et al., 
2017). In line with this role, the medial PFC’s connectivity has been 
shown to be associated with choice stochasticity (Moutoussis et al., 
2021). In this sense, the involvement of this region supports our inter
pretation that reduced sensitivity to feedback, and consequently relative 
value, might drive adolescent over-switching in the PRLT. Importantly, 
this region and its connectivity, along with other regions of the PFC, are 
known to mature substantially and asymmetrically relative to subcor
tical structures in adolescence (Casey et al., 2008; Dahl et al., 2018; 
Dumontheil et al., 2008). 

Our behavioral findings may thus be associated with the stage of 
development of the adolescent brain (although we do not explicitly test 
this). Alternatively or epiphenomenally, they might reflect an adaptive 
response to adolescents’ specific (social) environment. Thus, adoles
cents’ choice behavior may be uniquely adapted towards navigating 
environments full of novel stimuli and volatile affordances (Eckstein 
et al., 2021; Hartley and Somerville, 2015). Reduced sensitivity to 
positive feedback allows for rapid and flexible responses in case reward 
contingencies change or new opportunities arise. In our task, this is not 
always helpful as most trials occur in relatively stable phases, where 
exploration comes at a steep performance cost. But the (social) envi
ronment of youths might be (perceived as) one in which reward con
tingencies arise and change rapidly and unpredictably. In such 
environments, exploration and continuous readiness to modify behavior 
is the most optimal course of action. Consistent with reduced reliance on 
previous feedback, younger participants more frequently chose novel 
over familiar stimuli (regardless of whether the familiar stimuli were 

win or loss stimuli) in a post-task test. However, this may also reflect a 
separate novelty-seeking effect in youths, as has been reported previ
ously (Dubois et al., 2022). This is also suggested by the neurobehavioral 
mediation, which was only significant for staying after negative feed
back but not for the novelty effect. 

Interestingly, our analysis suggested that both adolescents’ and 
adults’ task behavior was best fit by a model incorporating full coun
terfactual inference. This is somewhat surprising, since counterfactual 
learning relies on the utilization of inferred knowledge about the envi
ronment, which has been found to increase from adolescence to adult
hood (Decker et al., 2016a; Palminteri et al., 2016). In addition, this 
process is thought to primarily recruit prefrontal brain structures, which 
are known to exhibit protracted development well into adulthood 
(Casey et al., 2008). At the same time, two previous studies on proba
bilistic reversal learning in youths similarly reported model selection 
favoring double update models (Eckstein et al., 2021; Hauser et al., 
2015; but see Boehme et al., 2017 for evidence of effects of pubertal 
status). This suggests that comparatively simple counterfactual infer
ence might already be nearly fully functional in adolescents, even 
though they might not always be able to optimally use it. In the future, 
more sophisticated methods to investigate counterfactual learning (e.g., 
Boorman et al., 2011; Li and Daw, 2011) may be helpful to precisely 
characterize its development. 

Contrary to our hypotheses, we found no differential effects of 
motivational context across the age range. Instead, our data suggests 
that participants of all ages found the win condition “easier”. Thus, 
participants switched less and responded more quickly in the win con
dition than the loss condition. In line with this, the computational 
modelling showed clear condition effects on both the reinforcement 
sensitivities and the learning rate, such that parameters were more 

Fig. 5. A – Association between the positive neural correlates of model-predicted choice probability and age. Blob colors represent t-contrast values, thresholded at 
p < .001 uncorrected for visualization. B – Mediation analysis showing a partial mediation of the relationship between age and stay-switch behavior after negative 
feedback by choice probability coding in the mFPC. * p < 0.05; ** p < 0.01; *** p < 0.001. 
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optimal (more extreme sensitivities and learning rates) in the win con
dition. The observed absence of interactions between age and motiva
tional context is somewhat at odds with evidence of enhanced reward 
sensitivity in adolescents (Somerville et al., 2010; Somerville and Casey, 
2010) as well as previous evidence of altered performance in loss con
texts (Palminteri et al., 2016; although see Bolenz and Eppinger, 2022). 
It is possible that such effects are subtle, and our study was insufficiently 
powered to detect them; alternatively, heighted reward sensitivity in 
adolescence might not straightforwardly translate to differential 
learning from wins and losses. Further studies disentangling feedback 
valence and motivational context will be needed to clarify this point. 

Unexpectedly, differential analyses showed little contribution of 
within-subject effects to the overall age effects. However, as mentioned, 
our study design does not allow us to clearly differentiate between in
dividual training/session effects and longitudinal development, so that 
we hesitate to overinterpret this. On the other hand, the dominant 
contribution of cross-sectional age effects reassures us that the overall 
effects do not merely reflect practice. Future studies should attempt to 
distill within-subjects development and its interaction with age by 
sampling from a narrower age range (e.g., Ziegler et al., 2019) and/or 
extending the follow up interval, which might alleviate the confound 
problem by increasing the signal-to-noise ratio for true development 
effects and making training effects less likely. 

In conclusion, the current study adds to a growing body of evidence 
showing that the development of reinforcement learning from adoles
cence to adulthood is characterized by decreasing novelty seeking and 
response shifting, especially after negative feedback, leading to poorer 
returns in environments with stable reward contingencies in youths. We 
show that enhanced response shifting can be computationally accounted 
for by increasing sensitivity to positive feedback. The behavioral effects 
were linked to diminished activity of the medial frontopolar cortex 
reflecting trial-by-trial choice probability in adolescents, putatively 
reflecting confidence in the upcoming choice. Future studies should 
further elucidate the exact time course and the drivers of normative RL 
development, both proximal (what are the underlying cognitive pro
cesses?) and ontogenic (what are the underlying psychobiological 
maturation processes?), to identify vulnerable periods in which 
disruption could cause future mental health problems. 
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