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Abstract

Integrated Assessment Models (IAMs) play an important role in climate policy decision making
by combining knowledge from various domains into a single modelling framework. However,
IAMs have been criticised for simplifying assumptions, reliance on negative emission techno-
logies, as well as for their power of shaping discourses around climate policy. Given these
controversies and the importance of IAMs for international climate policy, model evaluation is
an important means of analysing how well IAMs perform and what can be expected of them.
While different proposals for evaluating IAMs exist, they typically target a specific model type
and are mostly reliant on a combination of abstract criteria and concrete evaluation meth-
ods. I enrich these perspectives by reviewing approaches from the philosophy of modelling and
analysing their applicability to three canonical IAMs: DICE, REMIND, and IMAGE. The het-
erogeneity of IAMs and the political and ethical dimensions of their applications imply that
using any single evaluation criterion can not capture the complexities of IAMs. In order to
allow for the inclusion of these aspects into the evaluation procedure, I develop the idea of ex-
pectations, which captures the complex web of user aims, modelling purposes and evaluation
criteria. Through this lens, I find that DICE is a useful tool for investigating the effects of
different assumptions, but should not be expected to provide quantitative guidance. IMAGE,
on the other hand, has proven to be suitable for projecting environmental impacts, but should
not be expected to analyse questions that require a description of macroeconomic processes.
REMIND can be used for an assessment of different theoretically possible mitigation pathways,
but should not be expected to provide accurate forecasts. Further, I find that all three IAMs fail
to deliver a comprehensive and informative model commentary, i.e. modellers do not sufficiently
inform their audience about the appropriate domain of application, critical modelling choices
and assumptions, or about how to interpret model results. Expectations for IAMs are often not
clearly formulated, due to user aims which are hard to assess and vague purpose statements by
modellers. As clearly formulated expectations form the basis of further evaluations of IAMs, I
conclude that modellers should place more emphasis on informative model commentaries, with
a special focus on the interpretation of IAM results.
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CHAPTER 1. INTRODUCTION

1 Introduction

Integrated Assessment Models (IAMs) are important tools for informing climate policy decision
making. These models combine knowledge from various domains into a single framework, with
the explicit aim of informing policy and supporting decision making (Parson & Fisher-Vanden,
1997; Rotmans & Asselt, 1996). Generally, IAMs consist of natural science and economics
modules, in order to capture both the physical and socioeconomic causes and effects of climate
change (Farmer et al., 2015; Weyant, 2017). They are used to develop quantitative scenarios
for the Intergovernmental Panel on Climate Change (IPCC; Bruce et al., 1996; IPCC, 2014),
to calculate the social cost of carbon for policy appraisal (SCC; Helm, 2005; Nordhaus, 2017),
or to investigate the effects of different policy options on mitigation scenarios (Bauer et al.,
2020; Bertram et al., 2015; Hof et al., 2009; van Beek et al., 2020). Furthermore, IAMs are
also used as tools for exploring the relative importance of a certain issue within a simple model
(Dennig et al., 2015; Moore & Diaz, 2015). Through these modelling activities, IAMs have
played influential roles in debates about climate targets (Aldy & Stavins, 2020; Dietz et al.,
2018; Edenhofer et al., 2010; Nordhaus, 1993; van der Wijst et al., 2021) and in discussions on
different mitigation options (Edenhofer et al., 2005; Grubler et al., 2018; Luderer et al., 2012).

From their advent in the 1990s until the present, IAMs have been subject to criticism, with
increasingly fervent debates in recent years (Bosetti, 2021; Gambhir et al., 2019; Keen, 2020;
Keppo et al., 2021; Pielke & Ritchie, 2021; Pindyck, 2017; Weyant, 2017). The models have
been criticised for being based on ‘arbitrary’ assumptions (Pindyck, 2013a; Rosen & Guenther,
2015), relying on speculative negative emission technologies (Anderson & Peters, 2016; Beck &
Oomen, 2021; Haikola et al., 2019; Low & Schäfer, 2020; Workman et al., 2021), and amplifying
and legitimising specific climate policy narratives, e.g. of a market-based gradual readjustment
of the world economy (Anderson & Jewell, 2019; Asefi-Najafabady et al., 2020; Beck & Krueger,
2016; Ellenbeck & Lilliestam, 2019; McLaren & Markusson, 2020). Yet, defendants of IAMs
argue that much of the criticism stems from a misunderstanding about the nature of integrated
assessment modelling. In their view, IAMs are tools to systematically explore different futures,
without claiming that these results are especially probable or desirable (Anderson & Jewell,
2019; Gambhir, 2019; Peace & Weyant, 2008). Consequently, a model could be unrealistically
simplified through strong assumptions and still be considered a useful tool for generating insights
– if applied and interpreted properly (Weyant, 2009).

But how can we judge the quality of IAMs and what can reasonably be expected of them?
Evaluation of IAMs has garnered much attention in the early days of IAMs, with a focus on the
challenges of integrating different academic disciplines and on developing guidelines for ‘good
practice’ in integrated assessment (Morgan & Dowlatabadi, 1996; Parson, 1996; Ravetz, 1997;
Risbey et al., 1996). In recent years, the discourse on IAM evaluation has gained traction again
(Hamilton et al., 2019; Schwanitz, 2013; Wilson et al., 2021). Now, the focus has been shifted
towards conducting IAM evaluation on practice. Many proposals entail rather abstract criteria
such as “appropriateness, interpretability, credibility, and relevance” (Wilson et al., 2021, p. 12)
on the one hand, and very concrete evaluation methods on the other hand. These proposed
methods include historical simulations which are compared against data (Millner & McDer-
mott, 2016; Wilson et al., 2013), diagnostic indicators that capture complex model behaviour
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CHAPTER 1. INTRODUCTION

in standardised metrics (Harmsen et al., 2021; Kriegler, Petermann et al., 2015), or stylised his-
torical patterns and trends (Schwanitz, 2013). However, the papers acknowledge the difficulties
that arise from evaluating models of open systems (Schwanitz, 2013) in a context of structural
epistemic and societal uncertainty (Wilson et al., 2017).

Evaluation of IAMs is further complicated by their heterogeneity. Most of the above-
mentioned proposals for IAM evaluation focus on a specific subset of model types. Earlier
works on IAMs usually distinguished policy evaluation models from policy optimisation models,
where the former simulate biophysical impacts of climate change and the latter optimise globally
aggregated welfare in light of climate change (Bruce et al., 1996; Mastrandrea, 2010; Nordhaus,
2013; Tol, 2006). In more recent works, authors tend to distinguish between benefit-cost IAMs
(BC-IAMs) and detailed-process IAMs (DP-IAMs). BC-IAMs are highly aggregated models that
perform cost-benefit analyses, comparing benefits of avoided climate damages to costs of mitig-
ation policies, in order to determine economically ‘optimal’ climate policies. DP-IAMs, as the
name suggests, have a detailed representation of sectors and processes that are important for cli-
mate mitigation, primarily energy and the land use systems. They are mainly used to calculate
cost-efficient mitigation pathways for reaching a given climate target, often in the context of the
IPCC. Most model evaluation papers have focused on the IPCC-relevant DP-IAMs (Kowarsch,
2016b; Schwanitz, 2013; Wilson et al., 2021). An evaluation account that encompasses all types
of IAMs and accounts for their relative strengths and weaknesses is thus missing.

In this thesis, I develop a perspective on model evaluation that can be applied to different
categories of IAMs. This perspective is informed by approaches from the philosophy of modelling,
through which I aim to shed a light on overlooked aspects of IAM evaluation. A useful starting
point for evaluating a model is to analyse how well it represents the system being modelled. Yet,
every model misrepresents its target system to some extent, as simplifications and idealisations
are an essential feature of modelling itself (Knuuttila, 2009; Mäki, 2020). Consequently, model
evaluation has to account for different kinds of idealisations and different kinds of functions that
models fulfil – leading to a range of perspectives on what models are, how they are used and
what makes them useful. Among those are the concept of epistemic tools (Knuuttila, 2011) and
the notion of a model as a combination of structure and stories (Gibbard & Varian, 1978), where
stories link the model to the real world (Morgan, 2001). Through the lens of epistemic tools,
for example, IAMs can be analysed with respect to how they are constructed and justified, as
well as how they are adapted and manipulated in application. Stories, on the other hand, can
help illuminating how models are used to learn about the world, e.g. through a baseline scenario
telling the story of a world without (further) climate policy, or through a scenario telling the
story of a world with ambitious climate policy.

Both the philosophical literature on modelling and the IAM literature on model evaluation
can contribute insights into what these models are and into criteria that could be used for eval-
uating them. However, the heterogeneity of IAMs and the variety of epistemic, political and
ethical dimensions that play a role in their application (Beck & Krueger, 2016) make the use
of a single perspective with a single evaluation criterion impossible – or, at the very least, un-
satisfactory. Instead, I develop the idea of expectations, which captures the fact that IAMs are
tied up in a complex web of different user needs, different modelling approaches and different
criteria for model evaluation. An expectation, as I understand it, is defined by the combination
of a purpose in the view of modeller, an aim that a user might have with respect to the model,
and an associated evaluation criterion. One such expectation could, for example, consist of the
criterion of realisticness, coupled to the modeller’s purpose of describing interacting socioeco-
nomic and climate systems, and be held by policymakers demanding robust evidence on which
to base their decisions.
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CHAPTER 1. INTRODUCTION

In this thesis, I use the perspective of expectations to evaluate three canonical IAMs: DICE
(Nordhaus, 2018b), REMIND (Baumstark et al., 2021) and IMAGE (Stehfest et al., 2014).
Through that, I analyse relative strengths and weaknesses of the three models and attempt to
match them with different types of expectations, respectively. By selecting these three models,
I span the range of different IAM types according to the two main classifications as introduced
above: DICE stands for cost-benefit models (policy optimisation and BC-IAM), REMIND for
cost-effectiveness models (policy optimisation and DP-IAM), and IMAGE for biophysical impact
models (policy evaluation and DP-IAM).

Before proceeding to the evaluation of the three IAMs, I will take a closer look at the
literature around model evaluation in Chapter 2. For IAMs, which include elements of natural
science as well as economic models, the perspectives provided by the philosophy of modelling
are especially interesting. I will discuss how models can represent a target system despite their
manifold idealisations, what it means for a model to be adequate for its purpose, and how
the application of models relies on interactions between modellers, audiences and purposes,
among other elements. Subsequently, I will review how the literature on IAM evaluation has
changed since the 1990s, how useful existing approaches are, and how the perspectives on model
evaluation can help to enrich the notion of expectations for IAMs. In Chapters 3-5, I evaluate
DICE, REMIND and IMAGE, respectively. The focus is placed on the relative strengths and
weaknesses of these models, by analysing how they represent their target systems, how and
for which purposes they are used, and which interpretations modellers suggest for their IAMs.
On this basis, I examine possible expectations of the three models and judge the respective
IAMs against these. In Chapter 6, I compare findings from the three evaluated IAMs, with
the aim of assessing which expectations link best with each model, and how well the respective
models clarify what could reasonably be expected of them. Finally, in Chapter 7, I reflect
on the performed evaluation and highlight what can be gained by adopting the perspective of
expectations. Based on the findings of previous chapters, I conclude with a proposal to place
more emphasis on interpreting IAMs and developing better model commentaries, such that
model evaluation can be based on clearly formulated expectations.

3



CHAPTER 2. MODEL EVALUATION AND EXPECTATIONS

2 Model Evaluation and Expectations

The term ‘model’ can have very different meanings – ranging from architecture and fashion all
the way to climate science. Even when restricting the scope to science alone, the term can
refer to phenomena as varied as the standard model in physics, a model organism in biology,
a box model for stocks and flows, or a dynamical computer model. Despite this multiplicity
of usages, Mäki (2001) suggests that all models have one thing in common: they “are used
to represent something beyond themselves” (p. 9936). A model is thereby a representation
of something else, called the target system (Frigg & Hartmann, 2020; Knuuttila, 2011). As
partial representations of a target system, some authors argue, models are neither true nor false
(Bailer-Jones, 2003). Instead, models should resemble their target system closely enough – i.e.
be a sufficiently realistic representation – to allow investigations into the real-world features of
interest (Mäki, 2005). IAMs, in Mäki’s approach to representation, would aim to be sufficiently
realistic representations of their target system, e.g. the coupled socioeconomic and climate
system on a centennial timescale (see Figure 1 for a conceptual overview of the involved systems).
Accordingly, evaluating IAMs would involve checking the degree of fit or similarity between the
model and the represented real-world systems.

Analysing models as representations of target systems is complicated, however, by the ques-
tion of how to determine the success of this representational relationship (Knuuttila, 2011). In
other words: when is the model realistic enough? Who decides that and according to which
criteria? By necessity, a model is less detailed than its target system, such that the repres-
entation involves unrealistic assumptions and simplifications (Bailer-Jones, 2003; Mäki, 1992).
How, then, can a highly idealised model with false assumptions still be of help? Some authors
argue that models are able to yield insights into their target system despite unrealistic assump-
tions, because modelling involves isolating certain causal mechanisms of interest (Cartwright,
2009; Mäki, 1992). This method of isolation is akin to scientific experimentation – all causal
factors except for the one under investigation are artificially sealed off through deliberately false
assumptions (Mäki, 2005). In the context of economic modelling, however, this approach –
starting from a target system and then continuously sealing off confounding influences until
one gets to the isolated core – has been challenged by Sugden (2000), on the grounds that
modellers don’t actually proceed like that. Rather, he argues, models in economics should be
seen as constructions that behave sufficiently credibly for making inferences from the world of
the model to the real world. Both accounts agree, however, that highly idealised models can
be used to explain real-world phenomena. In the first view, this is possible because idealised
models isolate some core causal mechanism of the considered target system. In the second view,
it is possible because models provide a credible account of how the world – or an aspect of it –
could be. IAMs rely strongly on idealisations (Staub-Kaminski et al., 2014). Evaluating them
would therefore entail to specify which core mechanism of the target system has been isolated,
or by which merits the model can be considered a depiction of a credible world.

The focus on models and their representational relationship with a target system leaves
important questions open, for example: What is the purpose of the model? Parker (2020)
rejects the idea that evaluation could proceed solely by judging “how accurately and completely
a model represents a target” (p. 458). Instead, she argues that model evaluation should assess
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CHAPTER 2. MODEL EVALUATION AND EXPECTATIONS

Figure 1: Conceptual framework of an IAM as a representation of its target system,
which consists of various subsystems.

model quality only relative to a given purpose – by judging whether the model has properties that
make it suitable for this purpose. This adequacy-for-purpose approach entails a change of focus
– away from evaluating the model as such, towards evaluating its adequacy for a particular
purpose – and places more emphasis on the tool-like characteristics of a model. Models can
thereby be seen as “representative tools” (Parker, 2009, p. 235), in that they are related to
a target system, but the required realisticness of representation is determined by the purpose
of the tool (see Figure 2). On a similar note, Knuuttila (2011) argues that seeing models as
epistemic tools allows for analysing how models are actually used and how they are able to
yield knowledge. For IAMs, this implies that concrete purposes and applications have to be
considered. These purposes can consist of comparing different mitigation pathways, estimating
economically ‘optimal’ emission pathways, understanding systemic interactions, or highlighting
key uncertainties (Weyant, 2017).

IAMs are used for a variety of purposes, which can include analysing ‘what is’ questions
as well as ‘what could be’ or ‘what should be’ questions (Schwanitz, 2013, p. 124). Against
this backdrop, it is helpful to distinguish different functions that a model can fulfil. Knuuttila
and Morgan (2012, p. 73) propose six epistemic functions of economic models: suggesting ex-
planations, carrying out experiments for policy advice, making predictions, deriving solutions to
theoretical problems, exploring the limits and range of possible outcomes of the model, and de-
veloping theory. Depending on which function the model is supposed to fulfil, it will be expected
to adhere to different standards. For instance, a famous instrumentalist position holds that an
economic model meant for prediction should not have to worry about unrealistic assumptions,
as long as it “yields sufficiently accurate predictions” (Friedman, 1953, p. 15). Conversely, if
the model is meant to explain causal mechanisms, Sugden (2000) argues that models should
persuade about the credibility of their assumptions, while predictive skill can be considered sec-
ondary. Models, as seen in the case of IAMs, can fulfil different functions by being purposefully
constructed and manipulated – and exactly this versatility turns them into useful epistemic
tools (Knuuttila, 2011). For IAMs, the generation of policy-relevant knowledge is especially
important. In order to fulfil this function, models are often used by varying assumptions, ex-
ploring the scope of possible policy consequences and analysing trade-offs between policy options
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CHAPTER 2. MODEL EVALUATION AND EXPECTATIONS

Figure 2: Conceptual framework of an IAM and its target system, in addition to the
purpose it is being used for and shaped by.

(Knuuttila & Morgan, 2012; Kowarsch, 2016b). At this point, however, IAMs leave the realm of
purely epistemic functions and further considerations about political and ethical consequences
of model-based policy advice enter the picture (Frank, 2017; Kowarsch, 2016b).

A different perspective on modelling can be taken by considering stories as an integral part
of models and model application. Gibbard and Varian (1978), for example, define a model as
the combination of “a story with a specified structure” (p. 666). Thereby, the structure is made
of assumptions and mathematics and can be considered an uninterpreted system, where only
the story makes sense of the structural elements. Morgan (2001) builds on this definition by
arguing that storytelling is also an important part of using a model. Thereby, a model in use
is always accompanied by a story that links it to real world. The link between model world
and real world is established by providing narrative answers to specific questions, often ‘what if’
questions. Here, the connection to IAMs is obvious, as they are often characterised as tools for
analysing ‘what if’ questions (Anderson & Jewell, 2019; Beck, 2017; Gambhir, 2019; Nordhaus,
2014; Weyant, 2017). Many IAM uses can thus be analysed through the lens of stories. The
SSP scenarios, for instance, are a set of five storylines which are quantified by structurally very
different IAMs (van Vuuren et al., 2017). Therefore, by looking at the stories told through
model use, we can evaluate not only the static properties of what a model is, but also the
variable questions that arise during its application.

In order to assess how models operate in a context of different purposes and users, Mäki
(2009) developed a framework that captures the dynamics of various elements of the modelling
process (see Figure 3). The distinction between the model and its target system forms the basis,
but is complemented by several other factors. Most importantly, the framework includes an
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Source: Mäki (2018, p. 221)

Figure 3: Analytical framework of the modelling process by Mäki. An agent A uses
a model M to represent a target R for a given purpose P , addressing an
audience A and applying a model commentary C that identifies and aligns all
other modelling components (Mäki, 2009).

agent who decides to use the model because they consider it adequate for a certain purpose.
Additionally, there is an audience that is being addressed by the agent and confronted with the
modelling results. It is the responsibility of the modelling agent to provide the audience with
a model commentary which is supposed to convey “ideas about how the other components in
the modelling endeavour play out their roles in coordination with one another. What is the
point of using radically unrealistic assumptions? [...] What’s the proper domain of application
of a model? What precise purpose(s) can a given model be used for? What uncertainties are
involved in model use?” (Mäki, 2018, p. 222) The inclusion of an agent that chooses and uses the
model and of an audience that is addressed, allows to illuminate some of the dynamics around
IAMs. Agents, for example, can be big modelling groups, individual researchers that use a given
IAM, or the developer of the model. The audience for IAM can vary between policymakers, the
scientific community, climate modellers, or the general public. According to this framework, it
is the task of the agent to deliver a model commentary that takes the different possible purposes
of IAMs and the varying audiences into account. Such a commentary would therefore have
to consider several of the previously discussed aspects, such as the credibility of the modelled
world, the stories told through modelling, or the political and ethical implications of specific
assumptions and idealisations.

The question of IAM evaluation has also concerned modellers themselves, and many views
relate to philosophical discussions. Morgan and Dowlatabadi (1996) analyse the target system
of IAMs by asking what exactly the ‘climate problem’ is and who the climate decision makers
are. Based on that, they evaluate whether the idealisations at the heart of IAMs enable them
to capture the main mechanisms of the target system. For example, they argue that the ideal-
isation of modelling the whole world by a single decision maker fails to capture one of the most
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CHAPTER 2. MODEL EVALUATION AND EXPECTATIONS

Source: Wilson et al. (2021, p. 14)

Figure 4: Framework consisting of evaluation methods which contribute to the testing
of IAMs against four evaluation criteria (Wilson et al., 2021).

“fundamental characteristics of the climate problem”, such that IAMs “may confuse more than
they clarify” (pp. 339f). Parson (1996) reflects more broadly about the criteria that should
be used for evaluating IAMs. He argues that IAMs should not be judged by the same stand-
ards as the disciplinary models that they consist of, because trying to fulfil all disciplinary
standards simultaneously would make the integration into a single model impossible. Instead,
evaluation criteria should emerge based on the epistemic purpose of the modelling exercise and
on the requirement of delivering useful policy advice. Risbey et al. (1996) also propose that an
overall evaluation of IAMs should be dependent on their purpose, especially when considering
which factors to include into the model. Additionally, they argue that components of IAMs
should be evaluated based on disciplinary standards, while interdisciplinary standards should
be developed to evaluate the process of combining different disciplinary building blocks. In this
respect, the authors emphasise the distinction between heuristic tools and forecasting tools and
argue that, while IAMs can be used in both ways, an IAM evaluation should always consider
whether model results are meant to yield qualitative insights (heuristic tools) or quantitative
predictions (forecasting tools). Lastly, Risbey et al. (1996) argue that modellers should docu-
ment IAM assumptions and explicitly examine their implications, and call for greater diversity
of approaches towards IAMs.

More recently, Schwanitz (2013) has revisited the issue of IAM evaluation. She argues that
IAMs got increasingly complex as well as increasingly relevant to the policy process, such that
more effort should be put into evaluating them. In her view, this evaluation “should be un-
derstood as a continuous effort of testing whether the model can fulfill its purpose” (p. 121).
Based on this definition, a model is never fully ‘validated’, but wound up in an iterative process
of ongoing model evaluation. Concretely, Schwanitz (2013) proposes the following steps: “set-
ting up an evaluation framework, scrutiny of the conceptual model, code verification and model
documentation, model performance tests, uncertainty and sensitivity analysis, documentation of
the evaluation process, as well as communication to stakeholders” (p. 125). Wilson et al. (2021)
develop another systematic evaluation framework, specifically for DP-IAMs. They justify this
focus by emphasising the differences between the two types of IAMs. In their view, DP-IAMs
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are “complex ‘black boxes’” (p. 3) that require enhanced interpretability and transparency,
while BC-IAMs are widely accessible, but requiring critical discussions of assumptions and gen-
eral modelling approaches. Implicitly, they thus separate DP-IAMs from any discussions on
assumptions and general approaches and limit themselves to technical evaluation approaches.
The authors propose a framework consisting of four evaluation criteria (appropriateness, in-
terpretability, credibility, and relevance) which are assessed through six methods: historical
simulations, near-term observations, stylised facts, model hierarchies, model inter-comparison
projects and sensitivity analysis (see Figure 4). Thus, in combining rather abstract definitions
of IAM evaluation with concrete methodologies, Wilson et al. (2021) provide a good overview of
existing methods, but little guidance on how IAMs could be evaluated with a less methodological
focus.

From the vantage point of pragmatist philosophy, Kowarsch (2016b) undertakes an evaluation
of IAM-based literature underlying the IPCC reports. He bases it on a perspective of circular
science-policy interaction, according to which possible policy pathways should first be compre-
hensively mapped, subsequently be evaluated by society, and finally be iteratively readjusted
based on the societal judgement (Edenhofer & Kowarsch, 2015). The three evaluation criteria
that emerge from this view are: “relevance for the exploration of policy pathways, transparency
and diversity of value judgements, and scientific and epistemic quality” (Kowarsch, 2016b, p.
174). The first criterion involves analysing whether IAMs address the actual problems that
climate policymakers are faced with and whether IAMs are capable of outlining the implica-
tions of different climate policy choices. The second criterion involves analysing whether IAMs
incorporate “alternative and disputed ethical viewpoints” (p. 184) including their implications,
and whether IAMs are sufficiently transparent about their ethical viewpoints and the reasoning
behind them. Lastly, the third criterion involves analysing the credibility and reliability of the
scientific material underlying IAMs, with a special focus on the treatment of uncertainties and
questions regarding value judgements and objectivity.

In light of the question of what can reasonably be expected of IAMs, how useful are the
reviewed approaches to modelling and model evaluation? The literature on IAM evaluation
yields a broad range of criteria. Yet, it is not always clear which ones to choose and how
to operationalise them. The philosophy of modelling, on the other hand, yields a variety of
perspectives on what models are and how they are used for epistemic purposes. Yet, it seems
unlikely that there is any one approach that fits perfectly to IAMs. Further, these philosophical
accounts of modelling mainly focus on epistemic aspects, while IAMs are fundamentally tied
to politics and ethics, in addition to their epistemic characteristics (Beck & Krueger, 2016;
Funtowicz & Ravetz, 1994; van der Sluijs, 2002). Therefore, an evaluation of IAMs requires
an approach that is able to incorporate the broader sociopolitical context of IAMs as well as
its epistemic aspects. This leads me to propose the notion of expectations – what is expected
of IAMs, how can we assess whether they live up to it, and which expectations of IAMs are
justified in the first place? Answering any of these questions requires some consideration of
users holding an expectation, of the purpose that modellers have in mind for the model, and of
an evaluation criterion that its performance can be judged against. It is through this triad that
I define an expectation: as an evaluation criterion combined with a modeller’s purpose and a
model user’s aim. Hereby, I deviate from Mäki’s distinction between a modelling agent and an
audience, as the term ‘audience’ does not fully capture the various roles that non-modellers play
in the application of IAMs. I call everyone a users, if they have a connection to or an interest in
the modelling exercise without running the models themselves. ‘Modeller’ conversely refers to
model developers and those researchers that are engaged in the process of model advancement.

The focus on expectations of IAMs as the main unit of analysis allows me to incorporate
several of the above-mentioned approaches into the evaluation of DICE, REMIND and IMAGE.
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For example, the criterion of realistically representing a target system could be a promising
starting point for evaluating a given model. Subsequently, this criterion can be linked to a
purpose as specified by the modeller, and to certain aims or demands from model users. Model
use could be evaluated through the stories that are told, by assessing the credibility of the
modelled worlds, or by analysing how the model operates as an epistemic tool. Again, in order
to form an expectation, these criteria subsequently have to be complemented with purposes and
user perspectives. By analysing IAMs in light of different approaches to evaluation, possible
expectations for them emerge. These can subsequently be critically evaluated against what a
given model can actually deliver. Through this procedure, the evaluation of DICE, REMIND
and IMAGE does not have to postulate a single set of criteria for all IAMs, but can instead be
adapted to the particularities of the respective models.
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3 DICE

The Dynamic Integrated Climate-Economy (DICE) model was introduced by William Nordhaus
(1992). It is a BC-IAM and can be characterised as a policy optimisation model (Nordhaus
& Sztorc, 2013). DICE is one of the most influential IAMs (Aldy & Stavins, 2020) and in
2018, its developer William Nordhaus was awarded the Nobel Memorial Prize in Economics
“for integrating climate change into long-run macroeconomic analysis” (Nobel Prize Outreach,
2022). I base the following evaluation on DICE-2016R2, as described in Nordhaus (2018b). For
more detailed elaborations on elements that have not changed between model versions, I often
turn to the latest full model documentation (Nordhaus & Sztorc, 2013) and the background
provided in Nordhaus (2013).

3.1 Target System of DICE

The aim of DICE is to model the whole causal loop of climate change policy, from greenhouse
gas (GHG) emissions through global warming and impacts back to political measures that
affect GHG emissions (Nordhaus & Sztorc, 2013). The target system of DICE can therefore be
conceptualised as a combination of the climate system, the global economy and global climate
policy. In a very simplified form, DICE tries to represent all these elements (see Figure 5).

The DICE climate module translates an emissions path1 into a path describing global mean
surface temperature. Subsequently, a damage function translates different levels of global tem-
perature into associated economic damages, by generating a loss ratio relative to a given produc-
tion level2. Finally, the model includes a representation of global macroeconomic quantities such
as population or GDP, and a mechanism for deciding on the amount of climate change policy.
In DICE, the macroeconomic structure is represented by a neoclassical economic growth model
(Nordhaus, 2017), and the decision structure is based on maximising a social welfare function
which takes into account both the benefits of avoided climate damages and the costs of climate
mitigation. These climate mitigation options are modelled through mitigation cost curves, for
which the cost of reducing industrial and energy-related CO2 emissions is globally aggregated.
The cost of pursued mitigation policies and economic damages of climate change finally close
the loop by affecting GDP and GHG emissions.

As a starting point for the evaluation of DICE, I will analyse how well it represents its target
system. In turn, I look at the climate module, damage function and macroeconomic module of
DICE, and critically evaluate the modelling choices taken and, where possible, their effect on
model results.

The DICE climate module is purposefully kept parsimonious for the sake of transparency
and tractability (Nordhaus & Sztorc, 2013). It consists of a three-box carbon cycle model3 and
equations for translating the atmospheric carbon content into radiative forcing and ultimately

1 I use ‘path’ or ‘pathway’ as equivalent terms for ‘time series’.
2 For simplicity, I use the terms ‘production’, ‘(economic) output’ and ‘GDP’ interchangeably.
3 One box stands for the atmosphere, another for the upper ocean and biosphere, and the third box for the

deep ocean.
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Source: Nordhaus (2019, p. 1995)

Figure 5: Structure of DICE along the causal loop of climate change policy, as presented
by Nordhaus (2019) in his Nobel Prize lecture. The dashed arrows with ques-
tion marks indicate that the links between climate damages and implemented
policies are not fully in place yet – however, they are represented in the DICE
model.

into global mean surface temperature. Through this concise formulation, the aim is to capture
the main mechanisms at work in the climate system. However, Dietz et al. (2021) have shown
that the qualitative dynamics of carbon cycle and temperature are inconsistent with the beha-
viour of Earth System Models (ESMs)4. For one, they find that DICE overestimates the time
between GHG emissions and subsequent warming, which makes climate damages appear as to
occur further in the future. Secondly, DICE overestimates the absorptive capacity of the oceans
– while ESMs project a decrease of the ocean’s function as a carbon sink with further climate
change, the DICE climate module models an increased carbon sink with further emissions (Dietz
et al., 2021; Hall & Behl, 2006). Several studies have adapted the DICE model by introducing
formulations of the climate module that are more in accordance with ESMs (Calel & Stainforth,
2017; Dietz et al., 2021; Hänsel et al., 2020). These studies show that changes in the climate
system representation can alter the resulting warming level by about half a degree.

The climate sensitivity parameter (describing the amount of long-term warming caused by
a doubling of CO2 concentrations) has been at the centre of several controversies around IAMs
(Pindyck, 2013b; Weitzman, 2009b). This is due a combination of its importance for estimating
future climate change and its high uncertainty – the parameter range considered likely spans
several degrees (IPCC, 2021, p. 7:197; Roe & Baker, 2007). As a consequence, this parameter
can change the economically ‘optimal’ warming level by up to a degree (Gillingham et al., 2018;
Glanemann et al., 2020). Weitzman (2009b) has shown that fat tails of the climate sensitivity
probability distribution5 could introduce structural instability into cost-benefit analyses of cli-
mate change. On that basis, he argues that the widespread practice of representing uncertain

4 Dietz et al. (2021) compare DICE and other IAMs to a best-fit of the CMIP5 ensemble.
5 ‘Fat tail’ here refers to the behaviour of the probability distribution for high levels of warming, where the

associated probability declines extremely slowly (Roe & Baker, 2007). As a consequence, catastrophic high-
level warming still has a non-negligible probability.
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climate sensitivity by a best-guess estimate makes “IAM-based CBAs [...] especially and un-
usually misleading” (Weitzman, 2009b, p. 18). On the other hand, Roe and Bauman (2013)
caution not to overemphasise the small probability of large warming, as this warming would
only ensue on a very long timescale.

Overall, the DICE climate model is successful at capturing the general dynamics of climate
change in a small number of equations. However, it suffers from two main shortcomings: the
inconsistency of its qualitative dynamics with ESM projections and the disregard of uncertainty
in key parameters. As to the first point, DICE can be and has been adapted to include a
climate model that behaves more realistically (e.g. Hänsel et al., 2020). Similarly, the exclusion
of uncertainty can be tackled through stochastic model formulations (Cai et al., 2015; Cai &
Lontzek, 2019; Dietz & Stern, 2015; Lemoine & Traeger, 2016).

The damage function of DICE has been criticised for a long time (Ackerman & Finlayson,
2006; Azar, 1998; Howard & Sterner, 2017; Keen, 2020; Moore & Diaz, 2015; Pezzey, 2019;
Weitzman, 2009a). One major point of critique concerns its functional form. DICE uses a
quadratic function which is fitted to damage estimates from the literature. The main reason for
this functional form seems to be that it is the most simple nonlinear convex function (Nordhaus
& Moffat, 2017). However, it is unclear whether a quadratic function is a good representation of
actual economic damages from future climate change (Ackerman & Finlayson, 2006; Pindyck,
2017). While Nordhaus and Moffat (2017) argue that the exponent of the polynomial damage
function does not matter much and is rather overestimated than underestimated, Weitzman
(2012) contends that such a quadratic damage function highly underestimates the impacts of
low-probability catastrophic warming. Independent of the functional form, the calibration of
the damage function is controversial. Howard and Sterner (2017) demonstrate the difficulties
of providing estimates by calculating values which are several times higher than Nordhaus and
Moffat (2017) – based on the same set of studies. Nordhaus (2013) recognises the problems
in quantifying climate damages by stating that “the usefulness of this approach [is limited] for
catastrophic climate change” (p. 1084).

In the context of uncertainty about climate sensitivity, Weitzman (2009b) showed that low-
probability, high-impact events significantly alter the results of an expected utility calculation
about climate change. This lack of robustness is exacerbated, he finds, by the fact that two
equally defensible formulations of a damage function yield wildly different utility losses (Weitz-
man, 2010). On the one hand, the standard multiplicative formulation, as used in DICE, impli-
citly assumes substitutability between consumption and climate damages, as might be adequate
in a case where impacts mainly affect material wealth. On the other hand, the additive formu-
lation assumes weak substitutability between consumption and damages, as might be adequate
when impacts affect ecosystems or health (Bastien-Olvera & Moore, 2021; Sterner & Persson,
2008). The estimation of economic damages from climate change is thus inextricably linked to
choices about the degree of substitutability between material wealth and natural capital (Drupp
& Hänsel, 2021).

Beyond that, there is a discussion about how to model climate damages in general – as a
reduction of economic production at a single point in time only or as a reduction of economic
growth which has long-term negative effects on economic production. The DICE model uses the
former approach, in which damages occur instantaneously and have no longer-lasting adverse
effects on the economy. Yet, Moore and Diaz (2015) argue that damages induced by climate
change are likely to have effects on economic growth rates, especially on those of low-income
countries. The general question of whether impacts should be modelled as damaging output flows
or capital stocks has lead to a big debate (Burke et al., 2015; Kalkuhl & Wenz, 2020; Stern,
2013), and changes to the associated assumptions have been shown to alter the economically
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‘optimal’ level of warming by around one degree (Glanemann et al., 2020; Moore & Diaz, 2015).
On top of all the difficulties of providing a realistic representation of future climate damages,
there is the uncertain modulating factor of adaptation (de Bruin et al., 2009). Damages from
climate change can be reduced through adaptation, depending on societies’ adaptive capacities
and the amount of resources mobilised for that purpose.

Overall, the damage function of DICE is likely not a very realistic representation of real future
climate damages. This is partly due to the immense difficulties of projecting damages into a
future with global temperatures for which there is no empirical data, and further exacerbated
by degrees of freedom with respect to functional form and by arguably normative assumptions,
e.g. about the substitutability between material and natural capital. Recent studies, however,
point to an emerging consensus that climate damages will likely be higher than projected by
DICE (Burke et al., 2015; Diaz & Moore, 2017; Howard & Sterner, 2017; Kalkuhl & Wenz, 2020;
Piontek et al., 2021).

DICE models macroeconomic dynamics through a neoclassical growth model which repres-
ents the following dynamics: Output is generated based on capital, labour and technology, and
subsequently reduced by damage and mitigation costs (Nordhaus & Sztorc, 2013). The remain-
ing net output is distributed on present-day consumption and investment, where investment
leads to higher capital stocks in the future. Labour, which is proportional to global population
(Nordhaus, 2018b), is included as an exogenous variable based on UN projections (Nordhaus
& Sztorc, 2013). Similarly, technology (total factor productivity, TFP) is calibrated such as
to make the model align with projections of global GDP by Christensen et al. (2018). Capital
finally emerges endogenously, based on allocation decisions at each time step.

Importantly, the model operates with only a single commodity which represents the global
economy. This means that the model is blind to heterogeneities between or within regions,
thereby excluding ethical and political issues of inequality (Asefi-Najafabady et al., 2020; Farmer
et al., 2015; Jafino et al., 2021). Further, doubts about DICE’s capability of modelling long-term
macroeconomic dynamics are raised due to the assumption of exogenous technological change
(Acemoglu et al., 2012; Popp, 2004) and the exclusion of energy in the production function
(Edenhofer et al., 2005; Keen, 2020). Nonetheless, the neoclassical economic growth model is
considered one of the most important models in macroeconomics, due to its ability of giving
insights into mechanics of economic growth (Acemoglu, 2009, p. 318). Similarly, Nordhaus and
Sztorc (2013) justify the use of this model with the fact that it is “standard to the economic
growth literature” (p. 8). Yet, the authors also acknowledge that, due to the “very long time
frame” of the model, projections and assumptions are based on “very thin evidence” (p. 8).

In fact, Millner and McDermott (2016) have shown that the DICE model is unable to repro-
duce 20th-century patterns of economic growth. The authors compare the trajectories for TFP
and GDP generated by DICE with historically realised values and conclude that “the version of
the neoclassical growth model that DICE relies on could be subject to structural errors on the
temporal scales relevant to climate polices [sic]” (Millner & McDermott, 2016, p. 4).

3.2 Purposes of DICE

William Nordhaus has always emphasised that DICE is supposed to provide guidance for climate
policy (Nordhaus, 1992, 2018a). Mainly, this is done by calculating economically ‘optimal’ levels
of climate change mitigation and global warming, by comparing alternative policy pathways, or
by estimating the SCC. Nordhaus grants that this policy guidance can not be based on exact
values because of the “highly simplified representations of the complex economic and geophysical
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realities” (Nordhaus, 2013, p. 1093) that DICE embodies. However, in his view, this does not
diminish its value, because IAMs are supposed to act as conceptual frameworks for analysing
complex and uncertain systems (Nordhaus, 2014). Consequently, the value of DICE is not
given by merits of being an accurate representation of real-world processes, but by its ability to
conduct ‘if ..., then ...’ analyses (Weyant, 2017).

This entails a change of focus from analysing how the model represents to analysing how the
model is used. Morgan (2001) suggests that model use can be captured by analysing the stories
that are employed to answer ‘what if?’ questions. Stories, in this sense, are the devices that link
models to the world. Evaluating the ability of DICE to conduct ‘if ..., then ...’ analyses therefore
entails an analysis of the story that is being told about how the mathematical structure links
to actual climate policy. Further, for an ‘if ..., then ...’ analysis conducted by DICE to claim
authority, it has to provide reasons to believe that causal mechanisms in the model can tell us
something about real-world mechanisms. For Sugden (2000), this involves that the model depicts
a ‘credible world’ – which requires assumptions that are internally coherent and in resonance
with “what is known about causal processes in the real world” (p. 26).

In his own description of how DICE is used, Nordhaus (2013, p. 1095) mentions several
applications: 1) generating consistent projections; 2) calculating impacts of alternative assump-
tions; 3) estimating uncertainties and their effect on model output; 4) evaluating costs and
benefits of alternative policies. Of the six epistemic functions listed by Knuuttila and Morgan
(2012), the DICE purposes according to Nordhaus come closest to ‘exploring the limits and
range of possible outcomes’ and ‘carrying out experiments for policy advice’. One might ask,
however, which properties of DICE warrant that the model is actually adequate for achieving
these purposes.

The internal consistency of DICE projections is ensured by the abstract formalism of the
model, as the mathematical equations come with basic accounting relations and the components
of the model are fully coupled. Therefore, no model quantity is ‘lost’ and internal contradictions
can be excluded.

Due to its compact formulation, the DICE model is relatively accessible and can be scrutin-
ised and modified by different actors. By being completely open-source, anyone can construct
own versions of the model or play around with different settings of the standard model. Con-
sequently, there are a range of different versions of DICE6 and a vast literature that examines
the DICE model under different assumptions (Ackerman & Finlayson, 2006; Dietz & Stern,
2015; Glanemann et al., 2020; Grubb et al., 2021; Hänsel et al., 2020; Sterner & Persson, 2008).
This property of DICE resonates with Knuuttila’s (2011) account of models as epistemic tools,
whereby modellers “learn from models by constructing and manipulating them” (p. 267). The
concise structure, together with the openly available code, makes DICE into an important vehicle
for assessing different assumptions, for academic discussion about them, as well as for estimating
the impact of uncertainties.

Finally, is DICE adequate for evaluating costs and benefits of alternative policies? Having
analysed how well the climate module, damage function and macroeconomic module represent
their target system, DICE does not seem capable of providing accurate assessments of costs and
benefits. Nordhaus readily admits the limited ability of DICE to project future conditions, yet
also cautions to “recognize that the key issue about the uncertainty about long-term projections

6 Examples include a regionalised version RICE (Nordhaus, 2010), R&DICE with induced innovation (Nord-
haus, 2002), ENTICE with endogenous technological change (Popp, 2004), AD-DICE with adaptation (de
Bruin et al., 2009), a stochastic version DSICE (Cai et al., 2012), gro-DICE with climate damages impact-
ing economic growth (Moore & Diaz, 2015), and NICE which includes a inter- and intraregional inequality
(Dennig et al., 2015).
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is whether they have a large impact upon current policies” (Nordhaus, 2013, p. 1106). Previ-
ous analysis suggests that different specifications of climate sensitivities or climate damages, for
example, can indeed have a large impact on policy-relevant model output. This does not neces-
sarily mean that DICE is unsuited for evaluating costs and benefits. It implies, however, that
a single model run with a certain set of assumptions can not claim much authority. Rather, it
is the comparison of different model assumptions and specifications that leads to insights about
key dynamics and trade-offs, and only the accumulation of many different model runs can hope
to shed a light on plausible ranges for costs and benefits.

On similar terms, Morgan (2001) notes that “it is only by asking questions and telling stories
that we explore and demonstrate the full range of features and outcomes” (p. 369) entailed by
the model. In this sense, it is a valid epistemic strategy to explore different parameter settings
and experiment with different model structures in order to get a grasp of possible stories that
DICE could tell about climate change and mitigation policies. The plausibility of a single story,
however, must be subject to subsequent scrutiny. For a baseline scenario as modelled by DICE,
for example, it is unclear whether it really depicts a credible world of no further climate policy,
given the low damage estimate and omission of heterogeneities in the world economy. Overall,
DICE can be useful to the evaluation of costs and benefits, but not in any conclusive way.
Rather, it serves as a tool for telling a range of more or less credible stories, which can be used
as input into a more encompassing debate about costs and benefits of different policy options.

In order to provide useful guidance to policy and achieve the stated goals of DICE, trans-
parency about model assumptions and their effects on model results is key (Weyant, 2014). The
recent literature on IAMs emphasises the importance of making code and basic documentation
openly available (Bistline et al., 2021; Robertson, 2020; Schwanitz, 2013; Skea et al., 2021) Ac-
cordingly, new model versions of DICE are accompanied with updated model documentations,
in which changes are outlined. In these as well as in other papers, Nordhaus engages with
debates about assumptions on discounting (Nordhaus, 2011), climate damages (Nordhaus &
Sztorc, 2013), technological change (Nordhaus, 2013) or the possibility of catastrophic warming
(Nordhaus, 2009).

Further, many authors argue that it is not sufficient to make code and documentation trans-
parent. Instead – in line with Mäki’s (2018) concept for model commentary – it is considered
the responsibility of modellers to proactively make “structural assumptions explicit [...] and
communicat[e] value-laden assumptions” (Bistline et al., 2021, p. 11; see also Beck & Krueger,
2016; Kowarsch, 2016b; Skea et al., 2021). At first sight, DICE can be considered to live up
to these standards, as Nordhaus frequently positions himself on ethically sensitive and contro-
versial topics. Yet, it is unclear whether that is a response to the frequent criticism of DICE
or an intrinsically motivated effort of highlighting ethically sensitive modelling choices. While
discounting is discussed at great length, issues such as distributive justice or substitutability
of material and natural capital are barely mentioned in the DICE documentation7. By being
open-source and comprehensive enough to be ran on private computers, DICE enables other
researchers to point out critical and ethically sensitive assumptions – as has been done for dis-
tributive justice (Ackerman et al., 2009; Budolfson et al., 2017; Dennig et al., 2015; Stanton,
2011) and substitutability and relative prices (Bastien-Olvera & Moore, 2021; Drupp & Hänsel,
2021; Sterner & Persson, 2008). However, the model commentary by the original developer
carries special weight in the debate. Therefore, a selective discussion of assumptions, as in the
DICE documentation, can be problematic. While DICE offers all the ingredients for an open
and transparent discussion of critical assumptions and their implications, Nordhaus himself does

7 Nordhaus (2013) discusses the simplification of “a single commodity to represent all consumption, invest-
ment, and public goods and services” (p. 1093). However, he discusses only the implications for modelling
international trade and not the distributive consequences.

16



CHAPTER 3. DICE

not always live up to the standards of providing a comprehensive model commentary.

3.3 Interpreting DICE

So far, I have not analysed the decision structure of DICE. The model decides on the amount of
production spent for consumption, investment and for climate change mitigation in each period
by maximising a social welfare function. This function is the sum of discounted utilities over
the modelling time frame. Utility of a given time step is based on per-capita consumption levels
and calculated through a concave function. This implies that additional consumption yields
less additional utility as consumption levels increase. The parameter η that determines the
curvature of the utility function is often called inequality aversion8 (Nordhaus, 2017). As a
consequence, higher consumption levels (which are assumed to be in the future) contribute less
to social welfare than lower, present-day consumption levels. However, this parameter is not
able to capture all kinds of inequalities that are relevant for climate policy. Because of being
idealised such as to only represent one global commodity, DICE cannot account for consumption
inequalities between different world regions (Sterner & Persson, 2008)9.

On top of being valued less on the basis of inequality aversion, future utilities are also dir-
ectly discounted through a parameter δ, the rate of pure time preference. Utilities in future
time periods are thereby valued lower than present-day utilities purely because of their tem-
poral distance. In the context of climate change, discounting choices are particularly important
because of the long timescales involved. While the costs of climate mitigation are mainly to be
borne by earlier generations, the benefits of mitigated climate change will fall primarily on later
generations. Thereby, the relative weights which are placed utilities in the near as opposed to
the far future, are a crucial parameter with large effects in the results of IAMs (Drupp et al.,
2018; Emmerling et al., 2019; Heal, 2017; Hof et al., 2008; Nordhaus, 2014; Stern, 2008).

In the DICE model, δ and η are determined on the basis of the Ramsey rule ρ = δ+ηg, where ρ
is the social discount rate and g the growth rate of consumption10 (Drupp et al., 2018). Thereby,
for every point in time, the social discount rate ρ describes the total rate at which consumption
is discounted. DICE calibrates ρ such that it corresponds to real-world interest rates (Nordhaus,
2011). In practice, this means that ρ is set to be equal to an observed market interest rate – the
determination of which is not obvious (Frisch, 2013; Giglio et al., 2015; Kowarsch, 2016a) – and
subsequently the two parameters δ and η are chosen such that the Ramsey rule holds. Resulting
from this are the DICE parameter values δ = 1.5% and η = 1.45, which in conjunction with
growth rate assumptions lead to a social discount rate of around 4.25% per year11 (Nordhaus,
2018b). The approach of choosing δ and η such that the social discount rate reflects observed
rates of return on capital, is often referred to as ‘descriptive’, in contrast to an alternative,
‘prescriptive’ approach that views these modelling choices as normative parameters requiring
ethical justifications (Arrow et al., 1996; Azar, 1998). This terminology goes back to the second

8 The parameter η is also referred to as ‘intertemporal elasticity of substitution’ (Heal, 2017).
9 In contrast to DICE, the regionalised model RICE is able to account for differences between world regions.

Nevertheless, RICE treats spatial inequality differently to intertemporal inequality, such that it effectively
exhibits no spatial inequality aversion. A further interpretation of η is risk aversion, i.e. inequality aversion
with respects to different possible states of an uncertain world. DICE, being deterministic does not include
this (Nordhaus, 2013). However, there are extensions of DICE that separate between risk aversion and
temporal inequality aversion (Ackerman et al., 2013).

10 The Ramsey rule in this form is only valid in a deterministic setting (Drupp et al., 2018), and in situations
where “the project under evaluation is marginal to the path of future consumption” (Dietz et al., 2008, p.
13). Nonetheless, it is often used in climate economics, e.g. in DICE.

11 Due to variable growth projections, the social discount rates is also non-constant. The 4.25% figure refers
to the average rate throughout this century. As economic growth is projected to fall over time (Christensen
et al., 2018), the social discount rate is even higher in the near future.
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assessment report of the IPCC (Bruce et al., 1996) and is widely used (e.g. Beck & Krueger,
2016; Kelleher, 2017; Nordhaus, 2013; Weyant, 2014), despite large problems with separating
descriptive from prescriptive aspects in time discounting (Heilmann, 2017). Proponents of the
descriptive approach claim that it results in a more realistic representation of market realities,
because parameters are chosen such that the model “generate[s] savings rates and rates of
return on capital that are consistent with observations” (Nordhaus & Sztorc, 2013, p. 37). The
proponents of the prescriptive approach, on the other hand, argue that a descriptive approach
would only make sense in a marginal context, where considered impacts do not have an effect on
future consumption (Dietz et al., 2008) and in a situation where the distribution of consumption
losses can be disregarded (Frisch, 2018; Sterner & Persson, 2008)12. In the context of climate
change, where decisions have to be taken by society as a whole, Stern (2008) argues that the
parameters δ and η should be chosen based on ethical considerations.

These two approaches to discounting reveal two very different interpretations of the whole
modelling endeavour of DICE. The descriptive interpretation, as propagated by William Nord-
haus, sees IAMs as “a description of how economies and real-world decision makers (consumers,
firms, and governments) actually behave” (Nordhaus, 2013, p. 1110). This account is based
on the notion that optimisation can compute the equilibrium of a market economy, provided
there are no externalities13. Consequently, the descriptive interpretation of DICE sees the max-
imisation of the social welfare function as “an algorithm for finding the outcome of efficient
competitive markets” (Nordhaus & Sztorc, 2013, p. 1111), which does not necessarily have
compelling normative properties. Instead, the welfare maximisation of DICE is interpreted as
a projection of how countries with the same preferences as today’s countries would act if the
GHG externality was fully priced and thereby internalised (Kelleher, 2019).

The prescriptive interpretation, on the other hand, sees IAMs as tools for ranking differ-
ent pathways according to the criterion of maximal welfare (Kelleher, 2022). Importantly, this
approach is mathematically identical – it uses the same social welfare function. Formally, the pro-
ponents of the prescriptive approach to discounting only choose the two determining parameters
of the social welfare function differently, based on strictly normative considerations (Dietz et al.,
2008; Stern, 2008). However, beyond choosing different parameters, they have a fundamentally
different view of the modelling endeavour as such. According to the prescriptive interpreta-
tion, the DICE model is not a tool for computing market equilibria. Instead, optimising the
social welfare function is seen as a way of normatively comparing and ranking alternative policy
pathways (Kelleher, 2022).

Following the framework of Mäki (see Figure 3), it is the modeller’s job to provide an inform-
ative model commentary that includes guidance on how to interpret the model. In light of the
two different interpretations of DICE, Nordhaus himself is not always consistent in his model
commentary. In the most recent model documentation, he describes the social welfare func-
tion as “ranking different paths of consumption” and being “affected by two central normative
parameters” δ and η (Nordhaus & Sztorc, 2013, p. 6). This resonates strongly with the pre-
scriptive interpretation of DICE. On the other hand, he insists that the baseline scenario should
be an attempt at projecting economic and environmental variables from a positive14 perspective
(p. 8). Taken together, the Nordhaus interpretation of DICE seems to consist of descriptively

12 A further argument states that investments in climate change mitigation can only sensibly be compared
to very long-term assets, for which there is little conclusive evidence on interest rates (Giglio et al., 2015;
Kowarsch, 2016a). However, these rates are most likely considerably lower than those assumed by DICE.

13 An externality is an unintended impact of an economic agent’s decision on another agent’s utility or profit
(Perman et al., 2003, p. 134). In the case of climate change, every emission of GHGs reduces the utility of
people that (will) suffer from global warming and it is therefore called a negative externality.

14 For simplicity, I treat ‘positive’ and ‘descriptive’, as well as ‘normative’ and ‘prescriptive’ synonymously,
respectively.
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projecting a baseline scenario and then prescriptively ranking different pathways with climate
policy (Kelleher, 2022). While this might be considered a minor detail within the model docu-
mentation, it has very real consequences for the interpretation of model output, and thereby for
the climate policy debate. Nordhaus, in his communication of DICE assumptions and result,
imposes prescriptive interpretations on a descriptive modelling exercise – which leads Kelleher
(2019) to conclude that it is “very unclear why he feels entitled to assign the label ‘optimal’ to
the outcome of his quasi-predictive exercise and to associate that outcome with ‘idealized’ and
‘economically desirable’ policy” (p. 101).

3.4 Expectations for DICE

Evaluating DICE has revealed several possible expectations for it. The first expectation is linked
to the purpose of calculating costs and benefits of climate policy pathways. An associated
evaluation criterion would be sufficient forecasting skill to accurately project mitigation costs
and avoided climate damages. This expectation is linked to model users aiming to obtain
quantitative policy guidance from DICE. These users could be policymakers, or institutions
like the Interagency Working Group (IWG) of the United States, which estimates the SCC to
be used by all government bodies (Metcalf & Stock, 2017). Implicitly, Pindyck (2017) voices
this expectation when claiming that IAMs “have no empirical (or even theoretical) grounding
and thus [...] cannot be used to provide any kind of reliable quantitative policy guidance” (p.
103). Pindyck concludes that “economists should not claim that IAMs can forecast climate
change and its impact or that IAMs can tell us the magnitude of the SCC” (p. 112). These
quotes reveal the expectation that an IAM should provide quantitative guidance on the SCC and
accurate forecasts to an audience of policymakers, while being empirically (and theoretically)
grounded. For several reasons, DICE can not fully live up to this. First of all, forecasting and
quantitative accuracy do not form part of its stated goals (Nordhaus, 2013). Consequently,
DICE prioritises tractability and transparency over detail (Nordhaus, 2011). Secondly, the
target system encompasses the world economy, the climate system and climate decision-making
– all of it on a centennial timescale. Due to the complex nature of the target and associated
uncertainties, accurate forecasting seems hardly achievable in principle.

The second expectation is linked to the purpose of learning about the behaviour of the
model and its target system, for example by calculating impacts of alternative assumptions.
An associated evaluation evaluation could be the performance of the model as an epistemic
tool – how easily can it be manipulated and what aspects of the model facilitate learning
about its behaviour? (Knuuttila, 2011) Another criterion – combining credible worlds in the
sense of Sugden (2000) with stories in the sense of Morgan (2001) – could be the credibility
of stories being told through model use. This second expectation of DICE could be raised by
model users who want to understand qualitative dynamics around climate policy or investigate
the importance of different mechanisms or issues. Users could for example be academics with
an epistemic interest in the model results. However, they could also be political institutions
or thinktanks who use the model to highlight the relevance of a certain issue linked to their
political agenda (e.g. the WWF: Johnson et al., 2020). Often, this expectation is voiced in
terms of ‘providing insight’ (Bauer et al., 2020; Botzen & van den Bergh, 2014; DeCanio, 2005;
Leimbach, Bauer, Baumstark, Lueken et al., 2010). While this phrasing is a useful term as a
contrast to ‘providing numbers’ or accurate forecasts, it is too vague to be easily translated into
an evaluation criterion. As Huntington et al. (1982) state, “when models become viewed as
tools more for developing insights than for forecasting numbers, [...] an assessment of how the
models are used is as important as understanding their structures” (p. 450). Yet, criteria for
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evaluating model use are challenging to derive. In the analysis of DICE, I have focused on the
concrete manipulability in the sense of an epistemic tool, on the type of stories that the model
can tell, and on the credibility of the possible worlds it depicts. I was able to show that DICE
does indeed provide a modelling framework that works well as an epistemic tool, through its
tractability and open-source code. It is able to tell a range of different stories about the world,
but the interpretation of them is often ambiguous. Finally, for a modelled counterfactual world
to be credible, there has to be some significant similarity between the model world and the real
world (Sugden, 2000). Whether the similarity can be judged significant will obviously depend
on the respective application, such that it can not be evaluated for the DICE model as such. I
note, though, that through this aspect of similarity, questions of realisticness enter the picture
again – claiming that a model is used ‘only’ for generating insights does not entirely liberate it
from concerns about its fit to the real world.

Finally, there is an expectation that is linked to the evaluation criterion of transparency. For
modellers, this “serves the purpose of mitigating misinterpretations or errors by users of model
results” (Schwanitz, 2013, p. 125), whereas users may be “more concerned about high-level
model design, key technical assumptions, and critical modeling practices” (Skea et al., 2021,
p. 3). DICE satisfies basic requirements of transparency, like the availability of model code
and documentation. Increasingly, though, there are calls for what Bistline et al. (2021) coined
deep transparency – which describes the communication of potentially value-laden assumptions
and modelling choices. When using IAMs in the context of policy advice, modellers should
thus provide model commentaries which include these critical assumptions as well as coherent
interpretations about the way in which model results connect to the real world. Concerning the
communication of critical assumptions, DICE is somewhat ambiguous – the model document-
ations include discussions of discounting and damage functions, but not of inequality (Dennig
et al., 2015) or substitutability between material wealth and natural capital (Bastien-Olvera
& Moore, 2021; Neumayer, 1999; Nordhaus & Sztorc, 2013). With respect to the interpreta-
tion of model results, my analysis has revealed two contrasting perspectives on DICE’s decision
structure – the descriptive and the prescriptive interpretation. Each one is internally consistent,
but it demands different parameter choices for the social welfare function and fundamentally
different conceptions of the whole modelling endeavour. I found that DICE, in its standard
formulation, does not separate clearly between the two interpretations. As a result, it paints the
image of a descriptive model with a prescriptive application, which makes its model commentary
very ambiguous.

What can be learned from the analysis of DICE along different evaluation criteria and emer-
ging expectations? First, the analysis of how DICE represents its target system highlights the
huge challenges of modelling in the context of climate policy, while also shedding light on sev-
eral questionable modelling choices embodied in DICE. Second, an analysis of how DICE is used
shows how its tractability and manipulability enable a broad discourse about modelling assump-
tions and alternative formulations, such that DICE in its various forms can be used to tell many
different stories about global climate change (Beck, 2018). Third, I was able to show that the
model commentary about DICE is often vague and ambiguous. Partly, this is due to discussing
assumptions selectively, and partly through inconsistencies in the interpretation of modelling
result. Overall, DICE can be described as a model with limitations in its representation of the
target system, which can nevertheless be useful to the academic and policy discussion through
its easy manipulability, provided that modellers are consistent and comprehensive in their model
commentary.
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4 REMIND

The REgional Model of INvestments and Development (REMIND) has been introduced by
Leimbach, Bauer, Baumstark and Edenhofer (2010). It is based on the single-region model
MIND (Edenhofer et al., 2005), which places special emphasis on the modelling of endogenous
technological change in energy technologies. REMIND has been used in the context of the
IPCC (IPCC, 2014) and it is one of the five IAMs that are used to quantify an SSP marker
scenario (Kriegler et al., 2017). I base the following evaluation on REMIND 2.1 as documented
in (Baumstark et al., 2021), unless otherwise specified. Details on older model versions are
primarily referring to REMIND 1.6 (Luderer et al., 2015).

4.1 Target System of REMIND

REMIND is a hybrid model, combining a top-down macroeconomic model with a bottom-up
energy system model (Baumstark et al., 2021; Leimbach, Bauer, Baumstark & Edenhofer, 2010).
In addition to these macroeconomic and an energy system modules, it includes a land-use module
and a climate module1 (see Figure 6).

By placing emphasis on the energy system, REMIND has a detailed representation of the
biggest anthropogenic GHG sources. Together with its disaggregated macroeconomic system
representation, it is thereby able to model dynamics of the “global energy-economy-emissions
system”, with a strong focus on climate change mitigation options (Baumstark et al., 2021, p.
6571). In order to evaluate REMIND, an obvious starting point is thus to analyse how well it
represents the energy-economy-emissions system.

As the successor of the MIND model (Edenhofer et al., 2005), REMIND explicitly models
technological learning and prides itself with an especially high resolution of different energy
carriers and conversion technologies (Leimbach, Bauer, Baumstark & Edenhofer, 2010). Its
energy system module is based on cost optimisation, such that the model chooses the energy
technologies that meet macroeconomically prescribed energy demand at least total cost. Natur-
ally, energy prices for different technologies play a crucial role in this type of model. REMIND
calibrates each region’s energy system parameters to data by the International Energy Agency
(IEA), and generates future energy costs based on technology-specific assumptions (Luderer
et al., 2015). For fossil fuels, the model assumes rising extraction costs as low-cost deposits
get depleted. For renewables, on the other hand, learning rates are implemented, such that
wind and photovoltaic (PV) investment costs decrease with 12% and 20% respectively for every
doubling of total installed capacity (Krey et al., 2019). Therefore, the more renewable energy
facilities are deployed, the cheaper they get – a dynamic that leads to nonlinear effects and path
dependencies which are missing in many other IAMs.

Nonetheless, REMIND has repeatedly been found to project too conservative developments of

1 While REMIND features a simple climate module and a simple land use module of its own, it is mostly run
in conjunction with MAgPIE (Dietrich et al., 2020) for agriculture and land use modelling and MAGICC6
(Meinshausen et al., 2011) for climate modelling. The simple modules within REMIND are calibrated to
emulate those two models, respectively.
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Source: Luderer et al. (2015, p. 4)

Figure 6: Structure of REMIND. The macroeconomic and the energy system module are
hard-linked, such that the macroeconomic module determines energy demand,
which is covered by the energy system module and whose costs are fed back to
the macroeconomic module. Trade can occur in general goods, energy carriers
or emission permits.

renewable energies, and especially PV installations (Creutzig et al., 2017; Ives et al., 2021; Wilson
et al., 2013). While the assumed learning rate of PV of 20% was actually close to the historically
realised rate of 22.5% (Creutzig et al., 2017), modellers typically also assume floor costs, i.e.
prices at which the cost decline levels off. These floor costs for PV have repeatedly been overtaken
by reality throughout the last decade, such that they had to be corrected downwards (Ives et al.,
2021). Ives and colleagues blame the complexity and size of DP-IAMs for this misjudgement,
claiming that these models have been disaggregated so much that it is hard to understand
which assumption is driving the results, thereby making the models less transparent and harder
to evaluate. The difficulty of making appropriate technological assumptions is further illustrated
by Luderer et al. (2012), where REMIND projects the future transport energy mix as consisting
to a large extent of liquefied coal in combination with carbon capture and storage (CCS), while
completely disregarding electric vehicles – modelling choices that already ten years later seem
incomprehensible. To the credit of REMIND modellers, though, the model’s assumptions are
frequently updated, such that new developments in PV technology and electric vehicles have
swiftly been implemented into newer model versions (Creutzig et al., 2017; Luderer et al., 2015).

A different challenge to REMIND’s ability to represent the real-world energy system lies in
the critique of Trutnevyte (2016), which finds that energy models based on cost optimisation per-
form poorly at reproducing historical patterns of energy transition. To make the cost-optimised
scenarios more realistic, REMIND introduces cost-markups for fast scaling-up of investment,
for storage and for grid integration, among other adjustments (Baumstark et al., 2021; Luderer
et al., 2015). It remains unclear, however, to which extent these modifications contribute to
REMIND’s ability of representing future dynamics in the energy system.

The macroeconomic structure of REMIND is, similarly to DICE, based on a neoclassical
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Source: Luderer et al. (2015, p. 12, original quality)

Figure 7: Production structure of REMIND: Different production factors and energy
carriers, coupled at each level with constant elasticities of substitution (CES)
σ, as indicated by the colour scheme.

growth model. A major difference to DICE, however, is that REMIND is a regionalised model,
such that it has production functions for each of the eleven regions and incorporates trade flows
between those (Leimbach, Bauer, Baumstark, Lueken et al., 2010). The production functions
are based on the three partly substitutable factors capital, labour and energy. The addition
of energy as a production factor distinguishes REMIND from DICE, as does the choice of the
more general, nested structure with constant elasticities of substitution (CES). This means that
the production factor energy branches into its component parts with different elasticities of
substitution at different levels of branching, all the way down to the level of final energy carriers
(see Figure 7). This structure has been criticised by Kaya et al. (2017) because of failing to match
historically observed patterns. The authors argue that, in CES modelling, elasticities have to
be assumed without much empirical basis. At the same time, these choices are very influential
on final modelling results, as evidenced by Truong (2009), who finds that a formulation with
non-constant elasticities of substitution can reduce modelled mitigation costs by about half.
Further, Kaya et al. (2017) find that CES functions tend to “propagate the status quo of energy
shares” (p. 8). For example, they criticise that REMIND artificially constrains substitution
of non-electric stationary energy with power-based alternatives (third branching in Figure 7),
which ultimately biases the model towards bioenergy.

In each region, resulting economic output is distributed on consumption, investment into
the capital stock or the energy system, or on trade (Luderer et al., 2015). In this sense, the
macroeconomic structure of REMIND is very similar to the DICE model. Thereby, doubts
about the appropriateness of using an economic growth model for climate policy, as raised by
Millner and McDermott (2016), equally apply. REMIND circumvents the problem of having
to rely on projections from its own growth model by calibrating its efficiency parameters such
that it aligns with exogenous scenarios, such as OECD’s2 economic growth projections (Dellink

2 OECD stands for ‘Organisation for Economic Co-operation and Development’ and it represents a group of
38 high-income countries.
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et al., 2017; Luderer et al., 2015).

Overall, REMIND’s energy system and macroeconomic modules aim to provide a detailed
and disaggregated representation of the energy-economy-emissions system. However, the ana-
lysis revealed that the disaggregation leads to many free parameters that require techno-economic
assumptions – each associated with its own uncertainties. Further, economic and technological
assumptions also interact. Assumed elasticities of substitution, for example, play an influential
role in determining which energy technology receives how much investment, which in turn alters
energy costs. Yet, despite the strong dependence of its result on specific modelling choices,
REMIND has the advantage of representing a comprehensive range of different energy techno-
logies, which, in conjunction with the separation into regions, makes it potentially very useful
for modelling mitigation pathways.

4.2 Using REMIND

On its own website, REMIND is described by two paragraphs of text. The first one starts by
introducing REMIND as “a numerical model that represents the future evolution of the world
economies” (PIK, 2022) – this aspect of representing its target system has been investigated in
the previous section. The second paragraph describes REMIND as a model that “aims to help
policy and other decision makers to plan ahead” – analysing how this is achieved will be the
purpose of this section.

As a fundamental prerequisite for supporting long-term planning, Baumstark et al. (2021)
repeatedly stress the ability of “investigating internally consistent transformation pathways” (pp.
6572, 6579). This internal consistency of the pathways modelled by REMIND is guaranteed by
the fact that it is a fully coupled model – modelling the economy in general rather than partial
equilibrium. That means that all subsystems develop in constant interaction, guaranteeing that
one single solution of the optimisation problem is found across all economic sectors (Bauer et al.,
2008; Nikas et al., 2019).

The internally consistent transformation pathways are subsequently compared to each other,
in order to explore synergies and trade-offs. Before discussing this comparison of pathways,
however, it is useful to take a closer look at how they are generated, and how this is shaped by
REMIND’s model structure. The macroeconomic module of the original REMIND model had
no representation of economic damages from climate change (Luderer et al., 2015). Thereby, the
only way in which GDP is reduced is through investment into climate mitigation – which means
that REMIND can not be used to conduct cost-benefit analyses3. Instead, REMIND is mostly
used for cost-effectiveness analysis. This means that global temperature change is exogenously
constrained through the introduction of a climate target, and the model performs a constrained
optimisation for calculating the most cost-efficient pathways that reaches the target. A typical
research question would, for example, investigate the techno-economic feasibility of reaching the
2 degree target and identify the cheapest way of doing so (Baumstark et al., 2021).

This leads to two types of pathways: the baseline path which is derived by unconstrained
optimisation and policy pathways derived from constrained optimisation. Each of these pathways
can be understood as a credible world in the sense of Sugden (2000). By assuming a situation
without climate policy (or damages), the baseline path is certainly not realistic, but it aims to
depict a credible, counterfactual world – like a thought experiment asking what would happen
in a fantasy world without climate change. Policy pathways can similarly be understood to

3 Since 2021, REMIND allows for the inclusion of a damage function (Schultes et al., 2021). I will talk about
this below and, for now, describe the way in which REMIND used to and still mostly does operate.
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model credible worlds under certain assumptions about technology, socioeconomic development,
international cooperation or political ambition. In contrast to the baseline path, there is a
large variety of different policy pathways, each exploring the consequences of a certain set of
assumptions4. Thereby, every policy pathway can also be understood as a story told through
REMIND. As Morgan (2001) claims that “we only fully understand our model when we have
identified all the specific stories that it can encompass or tell about the world” (p. 380), REMIND
could be evaluated as to what kind of policy pathways it is able to and actually does model –
and which stories it is not able to tell.

By comparing these two types of pathways, or types of stories told by REMIND, policy
and technology options for climate mitigation can be explored. This comparison can be used
to derive the total mitigation costs of achieving a certain target, or for assessing the scale of
required investments in specific mitigation technologies. However, the comparison of policy
pathways against no-policy baselines has been subject to criticism (Burgess et al., 2020; Grant
et al., 2020; Stern, 2016). After all, baseline scenarios which project economic dynamics in a
world without mitigation also operate in a completely unrealistic world without damages from
ongoing climate change5. Therefore, the baseline scenario will always appear cheaper, as it
is subject to neither mitigation costs nor damage costs. As a consequence, cost-effectiveness
analysis by design excludes the possibility that rapid decarbonisation might overall be cheaper
than continuing present-day trends, as suggested by some recent papers (Grubb et al., 2021;
Kelleher, 2019; Way et al., 2021) – this being a story that REMIND is not able to tell.

A second problem that arises from the omission of climate damages concerns the modelled
policy pathways themselves. While being constrained by a temperature target, they also operate
in a counterfactual world without climate change. However, it is not hard to imagine how ongoing
climate change could affect mitigation, e.g. economically through altered investment patterns
or biophysically by reducing bioenergy options. To account for these influences, REMIND
has recently complemented its modelling framework with a damage module, which is based
on regional climate indicators and is able to incorporate several damage functions from the
literature (Schultes et al., 2021). The inclusion of damage costs into the calculation of mitigation
pathways, they find, roughly doubles the resulting constrained-‘optimal’ carbon price. Before the
introduction of its damage module, REMIND was thus restricted to telling stories without any
climate damage, both for the baseline and the policy pathways. This illustrates the importance
of model structure in determining both the questions that can be asked and the answers that
can be obtained through the model.

Through intertemporal optimisation, REMIND implicitly assumes that the ‘social planner’
who is allocating resources has perfect knowledge about all future developments, including costs
of and substitution possibilities between technologies. It also assumes efficient markets – no
unemployment, no overproduction, no underinvestment – and other highly idealising assump-
tions (Staub-Kaminski et al., 2014). Most of these idealisations are not actually fulfilled in
reality (Sanstad & Greening, 1998). Therefore, results of these model runs are often considered
first-best scenarios that illustrate a theoretical best-case (Baumstark et al., 2021). In this ter-
minology, second-best scenarios are those that include different types of ‘imperfections’, aiming
to be a better representation of reality. As the model documentation of REMIND puts it, its
central strength is “its ability to calculate first-best mitigation strategies that provide bench-
mark development pathways against which mitigation scenarios under sub-optimal settings can

4 The SSP scenarios consist of five different baseline pathways (Riahi et al., 2017); thereby REMIND can
model more than a single baseline scenario. Generally, however, there is always several policy pathways for
each baseline scenario.

5 In the words of the modellers: “In the reference scenario [...] we simulate a development as if climate change
has no economically and socially important effects” (Leimbach, Bauer, Baumstark & Edenhofer, 2010, p.
161). Since Schultes et al. (2021), REMIND is capable of modelling a development with climate impacts.
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be compared” (Luderer et al., 2015, p. 35).

Besides enhancing tractability, these idealisations also fulfil specific epistemic functions. By
devising idealised benchmark scenarios first and subsequently introducing limitations (such as
the unavailability of a technology, lack of international cooperation, non-functioning markets,
...), the relative effect of idealising assumptions can be estimated (Bauer et al., 2012; Leim-
bach & Bauer, 2021). Assuming perfect foresight is, while completely unrealistic, helpful for
a policy advice tool because it guarantees that long-term consequences get appropriate weight
in the model’s decision mechanism (Luderer et al., 2012). REMIND, for example, places spe-
cial emphasis on dynamics of technological learning, which will make renewable energy very
cheap once it has received sufficient investment (Creutzig et al., 2017). If the model’s decision
mechanism was more myopic, these projected long-term dynamics would not be fully accounted
for – leading to less cost-efficient pathways. As a consequence of these idealisations, REMIND
is a useful epistemic tool that is well-positioned to explore effects of different assumptions.
Conversely, however, REMIND modellers also acknowledge that the idealisations introduce a
“distinct normative component” (Baumstark et al., 2021, p. 6593). That is, modelling how a
perfectly knowledgeable ‘social planner’ would allocate resources can not serve as a descriptive
projection of future developments, but is instead seen as a normative benchmark scenario that
is preferable to scenarios with less idealised assumptions.

4.3 Transparency of REMIND

To some extent, normative elements are unavoidable when modelling climate change – a global
issue that is deeply connected to social and ethical questions (Stern, 2008; van der Sluijs, 2002).
It is against this background that Bistline et al. (2021) call for IAMs to proactively make
the consequences of value-laden modelling choices explicit. Ellenbeck and Lilliestam (2019)
emphasise that IAMs – whether they like it or not – are also powerful political tools with strong
influence on the climate policy discourse. Consequently, they encourage integrated assessment
modellers to document not only what was done, but also why, such that justifications and
theoretical backgrounds of modelling choices come to light. Having analysed the nuanced ways
in which REMIND acts as an epistemic tool, by combining descriptive representations with
strategic idealisations, I will now evaluate how well it fares with respect to the documentation
and communication of its critical assumptions.

Before getting to the transparency of critical assumptions in REMIND, some background on
its decision structure is useful. In REMIND, all regions have their own social welfare functions,
which are aggregated in a weighted sum to yield global welfare – the quantity that the model
maximises. As in DICE, social welfare functions in REMIND have the parameters δ for the rate
of pure time preference and η for inequality aversion (Luderer et al., 2015). The model comes
with two different algorithms for determining this aggregation – and at the same time global
trade patterns: the Negishi approach and the Nash approach. Both fulfil the constraint of having
market-clearing equilibrium prices for all traded goods and a so-called intertemporal budget con-
straint. The latter is imposed to make sure that, over the whole time span, balances of payment
for each region are zero. The Nash algorithm calculates global equilibrium prices by maxim-
ising regional welfare for each region separately. It is therefore considered a non-cooperative
solution (Luderer et al., 2015). The Negishi approach first imposes global equilibrium prices
and then adjusts a set of welfare weights such that each region fulfils its intertemporal budget
constraint. This is considered a cooperative solution, as the welfare maximisation is performed
from a global point of view. The Negishi weights have the effect that utility is valued more for
some regions than for others, in order to avoid redistribution of wealth from richer to poorer
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regions. REMIND has an inequality aversion parameter of η = 1, such that an algorithm tasked
with maximising global welfare will allocate more future consumption to poorer regions, thereby
leading to redistribution. Negishi weights and the regional budget constraints are means of
ensuring that this redistribution does not occur in the model – essentially a mechanism of ce-
menting current global inequalities (Stanton, 2011). REMIND modellers justify this method
with its achievement of Pareto-optimality (Leimbach, Bauer, Baumstark, Lueken et al., 2010),
i.e. situations where nobody could be made better-off without making someone else worse-off.
However, the Pareto-optimal outcome is blind to preexisting inequalities and therefore readily
accepts to perpetuate them (Nelson, 2008) – against the intuitions of inequality aversion as
encoded in the utility function6.

In a comparison of different DP-IAMs regarding the transparency of assumptions on bioen-
ergy with carbon capture and storage (BECCS), Butnar et al. (2020, p. 11) come to the
conclusion that REMIND performs well at documenting “wider system settings such as general
discount rate, carbon pricing regime, or availability of other NETs [negative emission techno-
logies].” On the other hand, they find it “difficult to separate transparency from completeness
(i.e. what the IAMs do not include or is implicit)” (p. 11). Indeed, the model documentation of
REMIND barely mentions excluded factors (Baumstark et al., 2021) – an omission also noted
by Ellenbeck and Lilliestam (2019). Sensitivity analyses are partly referenced to in REMIND’s
model description. For example, Giannousakis et al. (2021) analyse the effect of different tech-
nological assumptions on model output. However, the sensitivity of models to non-technological
assumptions, such as the discount rate, is not reported. While the model documentation de-
scribed mechanics and structure of REMIND in clear and comprehensible language, there is not
much discussion of robustness, uncertainties, omissions, or ethical and political implications.
This can be exemplified through the examples of discounting, learning rates and distributive
aspects.

The documentation of REMIND 1.6 states that the model assumes a rate of pure time
preference and an inequality aversion of 3% and 1, respectively. The justification is that these
values yield a social discount rate of 5-6%, which is taken to be in line with interest rates observed
on capital markets (Luderer et al., 2015). By this reasoning, REMIND endorses the so-called
descriptive approach to discounting, even though the justification of this choice and its ethical
implications are not elaborated on. In the newest documentation of REMIND 2.1, information
on discounting is even more sparse. There are no numerical values for crucial parameters and no
indication of the reasoning for choosing them is given. Given that Emmerling et al. (2019) show
substantial impacts of changes to the social discount rate on the timing of emission reductions
and on the amount of negative emission technologies, this is a serious omission.

Learning-by-doing effects, modelled through learning rates and floor costs, have been shown
to have a significant impact on mitigation scenarios (Creutzig et al., 2017; Edenhofer et al.,
2005), and both the reasoning and the associated parameters have been outlined in Luderer
et al. (2015). Surprisingly, the newest model documentation only mentions learning-by-doing
effects, but does not elaborate on either the parameters, the empirical foundation or the influence
of these effects on model output. Given that learning-by-doing effects recently led Way et al.
(2021) to suggest that a fast energy transition might be cheaper than a slower one, more context
on these technology assumptions would be desirable.

Aspects of distribution play no role in REMIND’s model descriptions. Neither the implic-
ations of omitting intraregional inequalities by choosing a single representative agent for each

6 There are arguments for separating intertemporal and spatial η into two distinct values – mainly because
of evidence that many people exhibit different implicit aversions to different dimensions of inequality (Dietz
et al., 2008; Hepburn & Beckerman, 2007).
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region (Budolfson et al., 2017), nor the interregional distributive effects encoded in Negishi
weights (Stanton, 2011) are discussed. Given the increased calls to deepen transparency about
ethically and politically sensitive modelling assumptions (Bistline et al., 2021; Kowarsch, 2016b;
Skea et al., 2021), it is hard to understand why the REMIND documentation places so little
emphasis on these topics.

What the authors of REMIND do place great emphasis on, is the distinction between pre-
dictive and exploratory modelling. On several occasions in the document they stress that “these
self-consistent scenarios are not to be understood as forecasts but rather as projections that
depend on a broad set of assumptions” (Baumstark et al., 2021, p. 6579). Through these
qualifications about what can reasonably be expected of the model, the authors ensure trans-
parency and avoid misunderstandings. All the more, though, it is difficult to understand why
the “specific assumptions” that future projections are conditional on, get so little attention in
REMIND’s model description.

4.4 Expectations for REMIND

Expectations for REMIND can be clustered into three ideal types. The first one, as voiced on
its own website, is linked to REMIND providing a representation of the world economy, with a
focus on energy and climate aspects (PIK, 2022). This expectation entails a descriptive modelling
strategy, whereby long-term developments and trade dynamics are supposed to approximate real-
world dynamics. Evaluation criteria would therefore be measures of fit or similarity between
REMIND and future macroeconomic behaviour. Users holding this expectation could have
interests in the economic aspects of climate mitigation and reliable and realistic cost projections,
for example energy companies or government agencies. For the energy sector, REMIND does
indeed provide a detailed representation of more than 50 technologies (Luderer et al., 2015).
Similarly, it is able to provide a detailed representation of climate and land-use dynamics when
coupled to MAGICC6 and MAgPIE. Nevertheless, projections have shown to been very sensitive
to assumptions such as learning rates or elasticities of substitutions. Consequently, REMIND
could be considered a realistic representation of energy, land use and climate systems only in
the sense that it includes most relevant elements and processes, but not in the sense that it is
able to reliably project those into the future. REMIND’s macroeconomic representation is more
idealised – it includes eleven regions and trade among those, but no further heterogeneities in
the form of income groups per region or economic sectors. Instead, REMIND relies heavily on
exogenous pathways for socioeconomic parameters, mainly from SSP scenarios (Soergel et al.,
2021). Thereby, the model can indirectly be used to study future developments in the world
economy, but its own dynamic representation of socioeconomic parameters is limited.

A second expectation is linked to REMIND providing policymakers with insights on the
synergies and trade-offs between different mitigation pathways, in order to facilitate long-term
planning. Naturally, this expectation is often held by actors from the policy process. Yet, also
people who are academically involved in the topic of climate mitigation could have an interest to
develop further understanding of the qualitative system behaviours around climate mitigation.
Evaluation criteria linked to this expectation are connected to REMIND’s ability to analyse
interactions of different factors and assumptions in a systematic manner. Emphasis could be
placed on consistency, tractability, or flexibility of the model to be adapted for different kinds
of analyses. Due to REMIND’s high resolution of technologies, it is capable of projecting a
broad variety of different mitigation pathways. It can generate alternative scenarios either by
running with different exogenous assumptions (e.g. on economic growth or population; Kriegler
et al., 2017) or by introducing targeted changes to certain model components, such as allow-
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ing for trade imbalances (Leimbach & Bauer, 2021), restricting the use of certain technologies
(Bauer et al., 2012), or restricting the spread of regional carbon prices while allowing for finan-
cial transfers (Bauer et al., 2020). Thereby, REMIND can generate a large variety of internally
consistent pathways and serve as an epistemic tool. However, in contrast to DICE, the model is
so complex that it is mainly used by its developers and not easily adapted by other researchers.
Further, the quantification of synergies and trade-offs for long-term planning is a challenge to
REMIND, as its policy-relevant outputs are sensitive to technological assumptions (Creutzig
et al., 2017), assumptions about negative emissions (Giannousakis et al., 2021) and the dis-
count rate (Emmerling et al., 2019) – it is thus restricted to providing qualitative insights into
mitigation pathways.

Lastly, there is an expectation of REMIND which stems from its importance for the climate
policy process and its discursive power (Cointe et al., 2019; Ellenbeck & Lilliestam, 2019), and
concerns the model commentary. This expectation could be held by model users from the policy
process, by other researchers from within the IPCC process, or by the general public and media.
On behalf of modellers, this expectation is linked to the purpose of mitigating misinterpretations
and making the model more accessible to the public (Schwanitz, 2013). It entails efforts towards
being transparent about REMIND’s underlying assumptions, the paradigms ingrained in the
modelling framework, and the possible consequences of alternative modelling choices. Associated
evaluation criteria are transparency and value diversity (Kowarsch, 2016b). While REMIND
provides extensive model documentation, detailed justifications for modelling choices are sparse,
and critical assumptions are often neither highlighted nor compared to alternatives. Particular
room for improvement of REMIND’s model commentary lies in the further delineation between
descriptive and normative elements. The model clearly states its descriptive ambition, and notes
the distinctly normative elements to scenario projections. However, REMIND modellers do not
provide much guidance on where the boundary between those two domains lies – whereby many
model elements are left ambiguously underspecified with respect to their purpose.

The evaluation of REMIND along different criteria and emerging expectations revealed two
interesting characteristics of the model. First, questions of representation and criteria regarding
model use are tightly coupled in the case of REMIND. The model is used to produce and com-
pare different ‘credible worlds’. In order to provide valuable insights into possible mitigation
pathways, it thus needs both a certain degree of realisticness and a certain degree of flexibility.
These two aspects can complement each other; the disaggregated and detailed energy system
module of REMIND, for example, can make the model both more realistic and more suitable
to model various policy pathways. However, the two aspects can also interfere with each other;
idealisations like a ‘social planner’ with perfect foresight contribute to REMIND’s suitability
as an epistemic tool for producing policy-relevant output, but they do so at the expense of
a more realistic representation of macroeconomic dynamics. Second, the model commentary
about REMIND is often ambiguous and fragmentary. Its model description does not provide
much insight into omitted factors, alternative modelling choices or implications of critical as-
sumptions. Thereby, it also fails to clarify potential conflicts between the above-mentioned aims
of descriptively representing a target system while being flexible enough to model a large variety
of pathways. Overall, REMIND has the potential of both modelling mitigation pathways in
great detail and assessing alternative policy options, but it is fraught with uncertainties in its
representation of technology and the economy, which are exacerbated by a lack of clarity and
guidance on how to interpret model results.
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5 IMAGE

The Integrated Model to Assess the Greenhouse Effect (IMAGE) was originally introduced
by Rotmans (1990). Over the course of its history, its scope has broadened to include more
environmental problems, and accordingly the name was changed to ‘Integrated Model to Assess
the Global Environment’ (Stehfest et al., 2014). IMAGE has been frequently used on the context
of the IPCC (Bruce et al., 1996; IPCC, 2014), but also in assessments of other international
bodies such as the UN Environment Programme, the OECD, or the European Commission
(Stehfest et al., 2014). I base the following evaluation on the version IMAGE 3.0 as documented
in Stehfest et al. (2014).

5.1 Target System of IMAGE

The stated aim of IMAGE is to provide a “comprehensive integrated modelling framework of
interacting human and natural systems” (Stehfest et al., 2014, p. 17). It is structured along
the causal chain of climate change and other global environmental problems, by starting with
socioeconomic drivers, modelling their impact on the natural environment and finally the effect
on human development. As Figure 8 shows, IMAGE consists of two main components, the
Human system and the Earth system. The Human system comprises the agriculture and land-
use sector as well as the energy system, while the Earth system consists of land components and
a climate module. The two systems are linked through land use and emissions, which allow for
feedbacks between climate developments, agriculture and the energy sector.

IMAGE can thus be analysed as a representation of the Human and Earth system, with a
focus on those subsystems that play important causal roles in global sustainability problems like
climate change. This representational core is complemented with drivers, impacts and policy
responses. Drivers are exogenous model inputs that provide projections of population, eco-
nomic indicators, policy assumptions and other socioeconomic parameters. Impacts are detailed
model outputs, with separate components for different global environmental challenges respect-
ively. Policy responses are assumptions that affect every other component of IMAGE, such that
impacts can be compared for situations with different policy configurations.

The single IMAGE modules, each representing a certain subsystem or process, are developed
separately from each other and can vary in terms of spatial or temporal resolutions (Stehfest
et al., 2014). For model evaluation, these components are primarily assessed in isolation through
sensitivity analyses and the introduction of alternative model formulations. Further, the per-
formance of IMAGE as a whole has frequently been assessed through model intercomparison
projects (Kriegler, Riahi et al., 2015; Luderer et al., 2018; McCollum et al., 2018; Tavoni et al.,
2015; Vrontisi et al., 2018).These structured comparisons of different IAMs allow for drawing
inferences about specific tendencies or emerging properties of a model, as compared to others.
For example, IMAGE has been shown to respond strongly to carbon prices, while projecting
comparatively low mitigation costs (Kriegler, Petermann et al., 2015).

In comparison to other IAMs, IMAGE has a very detailed representation of biophysical pro-
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Source: Stehfest et al. (2014, p. 18)

Figure 8: Structure of IMAGE 3.0. The Human system and the Earth system form the
modelling core, exogenous drivers provide socioeconomic and political path-
ways, policy responses alter individual model components as well as drivers,
and finally environmental and human impacts are calculated.

cesses as well as environmental and human development indicators (Stehfest et al., 2014). As
such, it is well positioned to analyse land use dynamics and interactions with other sustainability
issues such as biodiversity (Doelman et al., 2018; Molotoks et al., 2018; van Vuuren et al., 2015).
Conversely, IMAGE has less detail on economic and policy issues than other IAMs. In fact, as
can be seen in Figure 8, it has no macroeconomic module at all. Instead, economic processes
in the agriculture and energy sector are modelled as part of the respective modules. For ex-
ample, international trade in fossil fuels is represented within the energy supply submodule. All
socioeconomic variables which are not part of the agriculture or energy sector, are exogenously
prescribed by the drivers.

As an exemplary component of IMAGE, I will briefly analyse its energy system and the way
in which it represents its target system. The energy system module of IMAGE is called TIMER
(PBL, 2005). Similar to IMAGE as a whole, TIMER is a simulation model (Stehfest et al.,
2014). This means that the system behaviour is projected into the future based on a set of
deterministic algorithms and the initial state of each variable. In order to be in accordance with
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observed trends, the model is calibrated against historical data from 1971-2015 (van Vuuren et
al., 2021). TIMER models energy demand based on exogenous economic variables and a bottom-
up description of different economic sectors. For every sector, it assumes a similar evolution of
energy intensity over time – an initial increase as the sector develops and finally a decline as
the sector grows more mature (PBL, 2005, pp. 25f). TIMER also accounts for technological
developments by introducing autonomous energy efficiency increases dependent on the economic
growth rate (van Ruijven et al., 2010). In several uncertainty analyses of TIMER, those two
assumptions have been shown to have the highest influence on model output (Risbey et al.,
2005; Van der Sluijs et al., 2002; van Vuuren et al., 2008).

After having simulated energy demand, TIMER calculates energy conversion and supply
(Stehfest et al., 2014). The resulting energy mix is dominated by two main mechanisms: resource
depletion and technological change. The former increases costs over time, especially for non-
renewable resources, while the latter reduced costs. This cost reduction is, as in REMIND,
modelled through learning curves, whereby costs decline as a power function of cumulative
capacity. In contrast to REMIND, TIMER models learning-by-doing dynamics for almost all
energy sources. Renewable sources, however, exhibit the strongest learning effects. The value of
the learning rate strongly influences long-term price trends, such that this parameter is found to
be among the most influential on TIMER’s results (Edenhofer et al., 2010; Risbey et al., 2005).
Overall, TIMER represents the energy system with high technological detail and is judged to be
moderately robust to changes in assumptions: one of the modellers thinks that results “could
probably be changed by a factor of two or so without much tinkering with parameter values,
but not by a factor of ten without requiring implausible changes to the model” (Risbey et al.,
2005, p. 66).

Being a simulation model, decisions in TIMER are not taken under the assumption of perfect
foresight. This implies that the trajectories simulated by TIMER are not necessarily intertem-
porally ‘optimal’ (Stehfest et al., 2014). Further, TIMER is not able to “examine macroeconomic
consequences of mitigation strategies, such as GDP losses” (Stehfest et al., 2014, p. 74), be-
cause it is not directly linked to a macroeconomic module. In fact, as a macroeconomic module
is absent from IMAGE in general, this statement is valid for the whole modelling framework.
Thereby, monetary feedbacks between components are not well represented, which risks to dis-
regard environmental impacts of technological investments (Pauliuk et al., 2017).

5.2 Using IMAGE

According to the IMAGE developers, the model has three main objectives (Stehfest et al., 2014,
p. 14): 1) analysing large-scale and long-term interactions between human development and
the natural environment; 2) indicating key interlinkages and associated levels of uncertainty;
3) identifying response strategies to global environmental change based on an assessment of
options for mitigation and adaption. While having a representation of key human and environ-
mental processes is crucial for these objectives, process representation alone is not sufficient for
explaining how, for example, response strategies are identified. In order to understand that, it
is helpful to look at a central narrative that permeates the IMAGE documentation. The model
is structured around two types of stories: a baseline scenario that projects a world without
“deliberate, drastic changes changes in prevailing [...] developments”, and policy scenarios that
include measures to prevent unwanted impacts (Stehfest et al., 2014, p. 14). Comparing the im-
pacts of the baseline with those of a policy scenario is one way in which IMAGE helps to identify
response strategies. Further, it often features qualitatively different policy scenarios in order to
explore the range of possible pathways for achieving certain goals. For example, IMAGE is used
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to analyse trade-offs and synergies between different ways of achieving climate and biodiversity
targets, by projecting three different policy and socioeconomic scenarios called ‘Global techno-
logy’, ‘Decentralised solutions’ and ‘Consumption change’ (van Vuuren et al., 2015). While all
three pathways achieve the targets, they do so in different manners, which allows for a broad
assessment of possible policy options and associated impacts.

Each scenario run aims to describe a certain possible climate change trajectory (van Vuuren,
Isaac et al., 2011). Scenario modelling can thus be analysed in terms of ‘credible worlds’ (Sugden,
2000) – each projection aims to depict a stylised and contingent, but plausible future develop-
ment. For a modelled world to be credible, it has to be coherent in its assumptions, and these
in turns have to cohere with intuitions about causal processes in the real world (Sugden, 2000).
This means that not any set of assumptions is equally valuable for learning about the real world.
If IMAGE wants to tell compelling stories about possible future worlds, it would not be sufficient
to model any combination of scenario assumptions. Instead, there has to be some form of judge-
ment in selecting scenario drivers that are both coherent among themselves and with respect
to real-world developments. IMAGE chooses drivers based on an exercise where brief and con-
sistent scenario storylines are formulated first, in order to ensure coherence for the subsequent
implementation of assumptions in different model components (Stehfest et al., 2014, p. 36). To
the extent that they are able to capture the relevant causal processes for a research question,
IMAGE scenarios can thus be treated as credible worlds. This ability to project credible scen-
arios based on different socioeconomic and policy assumptions makes IMAGE a useful tool for
global sustainability-related assessments. In the context of climate change, these assumptions
are mainly provided by RCP or SSP scenarios (Riahi et al., 2017; van Vuuren, Edmonds et al.,
2011). The RCP scenarios span four different emission pathways, while the SSPs outline five
narratives of global socioeconomic development. IAMs are then used to quantitatively project
the implications of respective scenario assumptions.

Since the different SSPs are fully specified socioeconomic narratives, they can fully take the
role of determining overarching dynamics, while the core IMAGE model simulates associated
agriculture, energy, land use and climate processes, including feedbacks among them. As part
of the IPCC scenario process, IAMs often conduct a form of cost-effectiveness analysis – by
constraining the model such as to stay below a certain climate target. Most models do this
by imposing a constraint on the optimisation routine. IMAGE, however, does not feature an
optimisation mechanism. It is therefore complemented by the FAIR model (den Elzen & Lucas,
2005), which is able to force the IMAGE model onto an emissions pathway that is consistent
with a given exogenous target. The FAIR model is a decision support tool that calculates the
cheapest path towards a target, while taking into account different types of GHGs (Stehfest et al.,
2014). The mitigation costs that these calculations are based on, come from IMAGE, to which
FAIR is coupled. Similar to IMAGE, FAIR features different regions, such that it can analyse
effects of regional climate targets and emissions trading under different effort-sharing regimes
(Hof et al., 2009). Further, FAIR is used to derive economic variables for different IMAGE
pathways. It can, for example, estimate aggregated mitigation and damage costs (Hof et al.,
2008) or analyse the effects of adaptation on climate policy (Hof et al., 2010). The inclusion of
FAIR into the IMAGE framework is thus an interesting case that shows the flexibility of the
modelling framework. While IMAGE, as a simulation model, has no way of assessing minimum-
cost strategies and other macroeconomic issues, modellers found a way of extending it such that
it is able to fulfil its purposes within the IPCC process.
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5.3 Transparency of IMAGE

As seen above, the core of IMAGE aims to provide a representation of biophysical processes
of global change and energy and agriculture systems. Based on different socioeconomic drivers
and policy assumptions, it is used to analyse policy options and impacts of different possible
pathways. In the IPCC process, it is used to quantify SSP scenarios and perform climate
policy analyses together with the FAIR model. Each of these applications comes with different
requirements, and it is on the modelling agent to provide a model commentary that explicates
the model’s different roles and the resulting consequences (Mäki, 2009).

The release of IMAGE 3.0 has been accompanied by an extensive model documentation
in the form of a book (Stehfest et al., 2014). What sets is apart from other documentations,
e.g. DICE’s or REMIND’s, is the fact that it is both very structured and accessible. The
whole modelling framework is introduced in non-technical language, including comparisons to
other IAMs and background on the history and applications of IMAGE. Then, as can be seen
in Figure 8, each component is described in isolation. These descriptions all follow the same
structure, consisting of: ‘introduction’, ‘model description’, ‘policy issues’, ‘data, uncertainties
and limitations’, ‘key publications’ and ‘input/output table’. Thereby, every model component
is contextualised, described in detail and critically discussed. The inclusion of policy issues in
every module is structured along IMAGE’s two main stories: baseline developments and policy
interventions. This guarantees that, for IMAGE as a whole, justifications for modelling choices
within every component are provided, and policy-relevant alternatives are outlined.

The documentation of IMAGE is also revealing of what IMAGE modellers consider the
model to be: a detailed description of human and environmental processes, which analyses the
effects of exogenous socioeconomic drivers and differentiates between baseline developments and
policy interventions. While IMAGE can be used to support the analysis of normative futures,
it is not perceived to be normative itself – the over 350 pages long model documentation does
not contain the words ‘ethical’, ‘moral’, ‘prescriptive’ or ‘normative’1. In light of the fact that
this documentation also includes the climate policy model FAIR, which for example allocates
emission permits and mitigation costs across time and space, one would expect it to at least
acknowledge the ethical importance of the modelled phenomena.

5.4 Expectations for IMAGE

The main expectation for IMAGE is linked to the portrayal of IAMs in its model documentation,
as “describ[ing] the key processes in the interaction of human development and the natural
environment” (Stehfest et al., 2014, p. 14). Related to that are evaluation criteria of realisticness
and completeness, in that an IAM should include everything that is ‘key’ in a sufficiently realistic
description. Users holding this expectations could be institutions or actors that need detailed
projections of both environmental and social processes – such as governments, planning agencies
or reinsurance companies. Relevant users who could expect a complete and sufficiently realistic
description of its target system are also international institutions, such as the OECD, which
used IMAGE to develop an environmental baseline scenario (OECD, 2012). IMAGE, as can be
seen from its structure in Figure 8, incorporates a large amount of environmental processes and
impacts. The level of detail of IMAGE is described as “intermediate complexity” (Stehfest et al.,
2014, p. 14) – it is thus not able to resolve fine-grained spatial or temporal dynamics. One of

1 To be precise, ‘normative’ does occur once, but not in the context of IMAGE. It is used to describe the
Global Energy Assessment to which it contributed. Further, ‘norms and values’ are discussed, but as part
of socioeconomic drivers, not as part of IMAGE itself.
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the main weaknesses of IMAGE is the omission of economic processes that involve several model
components. Thereby, consistency in monetary flows is not automatically guaranteed, which
can lead to a failure of capturing the emission effects related to shifting investments (Pauliuk
et al., 2017). The expectation of describing key processes of human development and the natural
environment is thus only partly fulfilled – while a large amount of environmental processes are
accounted for, processes of human development are limited to agriculture, land use and the
energy system, disregarding further macroeconomic effects.

A second expectation for IMAGE is connected to serving as a useful tool for policy advice.
In its model documentation, this is phrased as: “IMAGE can be used as a tool to construct
long-term scenarios and is often deployed to feed policy analysis”. (Stehfest et al., 2014, p. 9).
The model users in this case are easily identified as belonging to the policy process. Associated
evaluation criteria are more difficult to establish. A look at how IMAGE is used for policy advice
reveals that it mainly works through scenario projections: the impacts of a range of different
policy scenarios are compared to the impacts of a baseline scenario (Stehfest et al., 2014, p.
15). A key evaluation criterion is thus the ability of reliably assessing the merits and down-
sides of scenarios. Since IMAGE does not aggregate its results into a single monetary metric,
this means that the individual projections of environmental impacts, such as temperature rise,
water scarcity or biodiversity loss must be reliable enough to form a basis for decision-making.
Interestingly, this second expectation is thereby not fundamentally different from the first ex-
pectation which is connected to a realistic representation of the target system. Additionally,
though, being able to project many alternative scenarios also requires a certain flexibility that
enables the model to be readily adapted. For IMAGE, this is facilitated through its clear sep-
aration of the representational core, consisting of Human and Earth system, on the one hand,
and socioeconomic drivers and policy assumptions on the other hand. For a particular scenario
projection, the representational core does not usually have to be modified and most scenario
assumptions can be included as part of drivers and policies. Thereby, IMAGE lends itself well
to projecting impacts of different scenarios. However, this conversely implies that scenarios
have to be previously specified for the whole modelling time frame and interactions between the
representational core and socioeconomic and policy variables can not be assessed.

Lastly, IMAGE is faced with an expectation linked to providing a comprehensive and in-
formative model commentary. This expectation can be held by any user who is trying to make
sense of IMAGE results – thereby mainly people connected to the policy process or from within
academia. Further, as IMAGE is one of the models used in IPCC reports (IPCC, 2014), a wide
range of users have an interest in understanding how it works, for example journalists or citizens.
An associated evaluation criterion is transparency, or deep transparency as defined by Bistline
et al. (2021). As analysed above, IMAGE has a very comprehensive and well-structured model
documentation. The scope and objectives are introduced, and baseline and policy developments
for every model component are outlined, respectively. Further, each element of the modelling
framework comes with a discussion of data sources, limitations and uncertainties. Thus, IM-
AGE performs very well with respect to this expectation – with the caveat of not providing any
guidance on identifying potentially normative elements of the modelling exercise.

Evaluating IMAGE has highlighted two aspects that set it apart from other IAMs. First, the
model has a well-defined target system, consisting mainly of agriculture and land use systems,
the energy system and the climate system. In order to represent these systems, IMAGE resorts
to simulation based on exogenous drivers, has a decisively descriptive aim and a high resolution
both spatially and in terms of processes. Thereby, it is structurally comparable to climate models
from the natural sciences. In fact, in an overview publication about Earth System Models of
Intermediate Complexity (EMICs, Claussen et al., 2002), IMAGE was cited as an example.
Second, IMAGE is interesting in that the requirements for its use as a policy-relevant tool align
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largely with its aim of realistically representing a target system. Thereby, it is able to provide
a consistent account and model commentary about its own working and the interpretation of
its results. This is facilitated by the fact that most IMAGE applications rely on projecting
the impacts of specific scenarios. In the IPCC context, however, it is often used to conduct
cost-effectiveness analyses by coupling it to the FAIR model, which introduces the risk of losing
consistency with respect to the interpretation of simulation and optimisation, and descriptive
and normative purposes, respectively. Overall, IMAGE can be characterised as a comprehensive
model of human impacts on the environment, which is able to analyse different policy options and
flexible enough to be used for climate change mitigation analysis, but not suitable for analysing
macroeconomic processes.
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6 Discussion

6.1 Target System

All three analysed IAMs have – more or less explicitly – referenced the target system they
aim to represent. Often, this is expressed through language of causality. DICE aims to cap-
ture the whole causal loop from emissions to policy that again affects emissions, and IMAGE
aims to capture the causal chain of global environmental change, from socioeconomic drivers
to environmental and human development impacts. This distinction between a causal loop and
a causal chain is reflected by their respective model structures, with circular causality in the
policy optimisation model DICE and more linear causality in the policy evaluation model IM-
AGE. REMIND, on the other hand, describes its target system – without alluding to a flow of
causality – as “the global energy–economy–emissions system” (Baumstark et al., 2021, p. 6571).

The main dividing line in how the three IAMs represent their targets is the level of detail.
While DICE tends to model processes with only a few equations, REMIND and IMAGE have
detailed representations of energy and land use sectors – the main emission sources and thereby
biggest levers for mitigation. DICE, on the other and, represents these sectors with limited
detail and in a very stylised manner. Here, they are modelled through simple mitigation cost
curves that do not distinguish different technologies and do not exhibit temporal dynamics
(Gillingham & Stock, 2018; Grubb et al., 2021). REMIND and IMAGE both represent different
energy technologies in great detail and provide technology-specific assumptions on endogenously
determined future cost developments. These assumptions have also been subject to criticism,
e.g. for introducing many more degrees of freedom (Ives et al., 2021), for underestimating the
cost decline of solar energy (Creutzig et al., 2017) or for relying heavily on BECCS (Lenzi et al.,
2018). Nevertheless, the ability of representing a large amount of mitigation technologies and
their endogenous cost trajectory – however uncertain – clearly sets REMIND and IMAGE apart
from DICE.

A second dividing line separates IMAGE, with its focus on biophysical processes and sim-
ulation, from REMIND and DICE, both based on economic growth models and intertemporal
optimisation. Despite this division, all three models face challenges in representing the economic
aspects of their target system. DICE and REMIND suffer from the inability of the growth model
to capture long-term dynamics (Millner & McDermott, 2016) and from the many idealisations
that this framework requires (Staub-Kaminski et al., 2014). IMAGE, on the other hand, suffers
from the fact that it does not capture macroeconomic feedback at all – economic processes in
IMAGE are represented either within a model component or as externally provided relationships.
Deep challenges to the three IAMs are further posed by the representation of economic damages
from climate change. DICE is the only model that has included damage representations from
the beginning, but its modelling choices are subject to serious doubt (Diaz & Moore, 2017). I
have not evaluated the performance of REMIND’s recently incorporated damage module, but
it faces the same empirical and theoretical challenges as DICE’s. However, the representation
of economic dynamics is also impacted by the omission of climate damages – as was the case
for REMIND until 2021 and is still the case for IMAGE. While IMAGE does include climate
impacts, these do not translate into a reduction of GDP, which is provided exogenously.
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6.2 Purpose and Use

The three IAMs share some essential features in the way in which they are used. The concept of
pathway is key to all models, especially the duality between a baseline path and a policy path.
This setup allows for the comparison of climate inaction and climate action. However, this is done
in terms of different metrics for the three IAMs. DICE and REMIND both compare pathways in
terms of their effect on global welfare. Additionally, REMIND often compares further quantities
related to technologies and regions, whereas IMAGE mainly compares pathways in terms of their
impacts on the environment and human development. The perspective of models as structure
and story (Gibbard & Varian, 1978) has proven to be a useful lens for capturing these features
of IAMs. The baseline pathway and the policy pathway can both be understood as a story told
through the model. According to Morgan (2001), the function of a story is to link the model
to the world. In that sense, IAMs are related to the world of climate policy through these
two stories: one in which no (further) climate policy is undertaken and one in which certain
climate policies are implemented. Further, IAMs perform the role of epistemic tools by being
easily manipulated to incorporate different assumptions or constraints, which leads to a whole
range of additional pathways. Thereby, it is not only one policy pathway that is compared to a
baseline path, but different policy pathways which can be compared among each other in order
to determine the relative effects of different assumptions and mechanisms.

The applications of the three IAMs are nonetheless very different. REMIND and IMAGE
are often used within the IPCC scenario framework consisting of SSP and RCP scenarios. As
such, they are employed to provide comprehensive and consistent projections of possible futures,
as well as to analyse specific policy options and interactions among them. Thereby, they tell
stories about high and low challenges to mitigation and adaptation respectively, which provide
an important framing for further research use or policy advice (van Vuuren et al., 2017). DICE,
on the other hand, operates on a much more aggregated and simplified level. It is often adapted
by other researchers in order to investigate the effect of specific assumptions or processes on
‘optimal’ levels of warming or the SCC. Based on its open-source model code, a large collection
of adapted DICE models has emerged. The aggregate nature of DICE and the fact that it can
easily modified by other researchers, are thus key elements of how the model operates as an
epistemic tool. This property of DICE also clearly distinguishes it from REMIND and IMAGE,
which are both developed at larger research institutions and not normally adapted by other
researchers.

6.3 Interpretations and Transparency

While all three IAMs are able to produce a wide range of climate mitigation pathways, the
interpretation of these model results is not always obvious. For example, do these pathways
depict the world as it is, as it could be, or as it should be? I have analysed how literature around
DICE is torn between two different interpretations of its modelling framework, as it is partly
aiming to descriptively represent real-world dynamics, while also providing normative guidance
on ‘optimal’ climate policy. Similar complications arise for REMIND, where the interpretation
of a descriptive representation of the world economy under climate change is coupled to the
interpretation of idealised scenarios that serve as benchmarks. The interpretation of IMAGE is
more consistent in this respect; it is unequivocally taken to be a descriptive representation of the
Human and Earth System, where normative elements enter through exogenous scenarios and
the climate policy model FAIR. The documentation of FAIR, however, is also not entirely clear
about how its modelling is to be interpreted. To some extent, all three IAMs suffer from a form
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of conflation of descriptive and normative modelling elements. IMAGE, of the three models, is
the most consistent in its interpretation, by separating the descriptive core from socioeconomic
and policy aspects – and by outsourcing its interpretation problems to the FAIR model.

The transparency of critical assumptions has been an important element of my model eval-
uation. More broadly, Mäki’s (2009, 2018) concept of a model commentary captures the way
in which modellers communicate about their models, about what they do, and about how to
interpret the results. I find that, while all three IAMs come with regularly updated model de-
scriptions, critical assumptions with ethical dimensions are only discussed for DICE – and even
here not in all cases. REMIND, by being structurally similar, is confronted with many of the
same modelling choices that DICE discusses, yet they are often not acknowledged by its model
commentary. On top of giving guidance on the justification and effect of specific assumptions, a
model commentary should clarify the role and purpose of the model. Part of this is an account
of how the model should be interpreted. As seen in the previous paragraph, DICE and REMIND
both fail to provide a consistent account about the model’s interpretation – which is a serious
shortcoming to any model commentary.

6.4 Expectations

Each of the three IAMs was evaluated according to three expectations. These expectations
followed similar patterns for each model, but were adapted to specificities that emerged from
the previous analysis along different evaluation criteria and perspectives on modelling. This
assessment and evaluation of expectations for DICE, REMIND and IMAGE is thus not without
limitations. A different emphasis in the analysis of each IAM would likely have lead to slightly
different expectations. Further, some elements of the expectation concept are hard to pin down,
most notably the aims of model users. By basing the thesis largely on academic literature, these
perspectives are more abundant than those from non-academic model users. A last complicating
factor in the formulation of distinct expectations for each of the three models lies in the discourse
around IAMs. In much of the literature discussing the merits and problems of IAMs, this is done
so under the general term of ‘IAMs’, which complicates the assessment of expectations which are
more specific to a certain type of IAMs. For these reasons, the analysed expectations should be
regarded as illustrative examples, rather than a result of comprehensive expectation mapping.
Nonetheless, the comparison of these illustrative expectations for all three IAMs allows me to
draw some inferences both about the respective models and the expectations of them.

The first expectation for the three IAMs varies between them, but it shares a certain de-
scriptive element. For DICE, this expectation is linked to calculating the costs and benefits of
different climate policy options through quantitative forecasts. The model was found not to be
able to live up to this – however, it is also not the aim of DICE to provide reliable quantitative
forecasts. For REMIND, the expectation is about representing future developments of the world
economy. It was found to partially live up to it, through its detailed energy system module and
regionalised macroeconomic module. However, the macroeconomic representation is still very
aggregated and REMIND is not capable of capturing the temporal evolution of socioeconomic
parameters endogenously, but relies mainly on exogenous projections. For IMAGE, the first ex-
pectation is linked to describing key processes of interacting environmental and human systems.
The model was found to partially fulfil this – in that it provides a very detailed representation
of environmental, energy-related and agricultural processes, while lacking a representation of
overarching socioeconomic processes. A comparison of the three models reveals that DICE is
expected to represent aggregated costs and benefits, while REMIND and IMAGE are rather
expected to provide detailed process representations.
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The respective second expectation of the evaluated IAMs is connected to model purposes
and their usefulness as epistemic tools. For DICE, this expectation encompasses the purpose
of learning about the represented system through targeted manipulations of the model. It was
found to be able of fulfilling this, due to its tractability and open-source code, which make it into
a flexible epistemic tool and led to a range of variations of the DICE model. For REMIND, this
expectation is connected to the assessment of mitigation pathways as well as synergies and trade-
offs between them. It is found to live up to this through its flexible modelling framework and
its detailed representation of mitigation options. However, REMIND is only capable of yielding
qualitative insights, as its quantitative projections are fraught with uncertainties. For IMAGE,
the second expectation is similarly connected to the provision of policy-relevant information
through the assessment of different scenarios. The model is found to be capable of living up this
expectation, as it is designed to project the impacts of different scenario assumptions. However,
the separation between scenario drivers and resulting projections implies that IMAGE can not
account for socioeconomic processes affecting scenario drivers. A comparison of the three IAMs
shows that they are all expected to be flexible enough to run a variety of pathways and thereby
tell a variety of stories that highlight aspects of their target systems.

The third expectation is similar for all three IAMs, and it is linked to transparency and
the provision of a comprehensive and informative model commentary. DICE was found to fulfil
this expectation partially, in that it discusses at least some critical modelling choices and their
implications. REMIND fails at providing sufficient transparency about critical assumptions,
whereas IMAGE is successful at giving a comprehensive assessment of its critical modelling
choices. However, all three IAMs have difficulties with respect to a comprehensive model com-
mentary that includes the question of whether the models and their output should be interpreted
descriptively or normatively – and where to draw the boundary between respective aspects.

Overall, evaluating expectations for the analysed models reveals some high-level common-
alities: All three IAMs are unable to provide quantitative forecasts of their target system, but
they are flexible enough to yield qualitative insights by modelling many different pathways. At
the same time, they have room for improvement in terms of their model commentary, both for
highlighting critical assumptions and for providing guidance on descriptive and normative model
interpretations.
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7 Conclusion

Having analysed DICE, REMIND and IMAGE according to the expectations that they are
faced with, what can be said about the usefulness of this approach? The main motivation for
developing it lies in the fact that there are a variety of possible evaluation criteria, where none
seem apt for evaluating more than certain aspects of IAMs. Through the notion of expectations,
I was able to couple these criteria to specific modelling purposes and user perspectives, and
thereby evaluate IAMs in a more comprehensive way. The flexibility of this approach also means
that there is no straightforward way of determining an expectation. Whether all expectations
have been mapped, or whether the ones that have been analysed are the most prominent ones,
is difficult to establish. However, I was able to obtain an illustrative set of expectations for each
model, by analysing how the model works, how its purposes are portrayed by the modellers
and how this relates to certain demands from model users. And it is through analysing this
interaction between models, purposes and users that the most interesting findings of this thesis
emerged.

Based on the previous analysis of each model, I return to the question of what can reasonably
be expected of IAMs. DICE has proven to be a useful tool for investigating the relative effects
of different assumptions on model output. It can therefore be expected to yield insights about
specific aspects of climate policy, but should not be asked to provide quantitative guidance.
IMAGE, on the other hand, has proven to be suitable for projecting the environmental impacts
of different socioeconomic and policy pathways. It can therefore be expected to contribute to a
better understanding of global environmental change and the impacts of certain policy choices,
but should not be used for analysing questions that require a description of macroeconomic
processes. REMIND shares features of both DICE and IMAGE, and it can be expected to
investigate effects of different assumptions on technology, economic indicators or climate policy,
while providing detailed pathways of mitigation technologies. Yet, the precise output about
different regions and technologies should not be seen as a forecast, but rather as an assessment
of different theoretically possible scenarios.

The evaluation of IAMs has also shown how the elements that constitute an expectation
– purpose, user and criterion – can be rather general and ambiguous. On the one hand, this
is a challenge for the expectations approach as such. On the other hand, it reveals something
very important about IAMs themselves, and about how they are used. I was able to show that,
while the analysed IAMs are well-documented in general, they are not always clear about the
model purpose and the interpretation of its results. Yet, questions about whether a model is
seen as modelling the world from a descriptive or a normative standpoint, deeply affect the
expectations for it. As users partly base their view of the model on the way in which it is
presented by the developer, model commentary is particularly important to the formulation of
clear expectations. In an ideal world, models and the expectations of them would match. In
reality, however, expectations of IAMs are not always met with according capabilities on behalf
of the models. While working to improve IAMs would be one possible way of reacting to this
mismatch, I suggest to take an alternative route. Rather than solely focusing on making the
models align with expectations, much could be gained by adjusting expectations to what the
models can actually deliver. If IAM users were able to voice their needs more clearly, and
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if modellers were to provide a better model commentary about what the models can deliver
and how that is to be interpreted, evaluation could be based on a much more solid footing.
Altogether, evaluating IAMs along possible expectations of them has revealed their respective
strengths and weaknesses and provides the basis for further discussions about what IAMs are
capable of, what we can expect of them, and how these questions are communicated. This
last point captures the biggest room for improvement around IAMs: Expectations can only be
formulated clearly on the basis of an informative model commentary – and we can only evaluate
a model if we know what to expect of it.
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and Pirani, A. and Connors, S.L. and Péan, C. and Berger, S. and Caud, N. and Chen, Y. and Goldfarb,
L. and Gomis, M.I. and Huang, M. and Leitzell, K. and Lonnoy, E. and Matthews, J.B.R. and Maycock,
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Mäki, U. (1992). On the method of isolation in economics, idealization iv: Intelligibility in science, edited by craig
dilworth. Poznan Studies in the Philosophy of the Sciences and the Humanities.
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tegrated Climate System Sciences selbstständig verfasst und keine anderen als die angegebenen
Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet-Quellen – ben-
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Einer Veröffentlichung der vorliegenden Arbeit in der zuständigen Fachbibliothek des Fachbereichs
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