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ABSTRACT

Social media platforms are known to optimize user engagement

with the help of algorithms. It is widely understood that this practice

gives rise to echo chambers— users are mainly exposed to opinions

that are similar to their own. In this paper, we ask whether echo

chambers are an inevitable result of high engagement; we address

this question in a novel model. Ourmain theoretical results establish

bounds on the maximum engagement achievable under a diversity

constraint, for suitable measures of engagement and diversity; we

can therefore quantify the worst-case tradeoff between these two

objectives. Our empirical results, based on real data from Twitter,

chart the Pareto frontier of the engagement-diversity tradeoff.

CCS CONCEPTS

• Information systems→ Social networks; • Theory of com-

putation → Design and analysis of algorithms.
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1 INTRODUCTION

It is no secret that social media companies heavily rely on al-

gorithms to optimize user engagement. This practice has a well-

documented dark side that is widely scrutinized and debated. For

example, writing recently in the New York Times, the technology

pioneer Jarron Lanier coins the term “Twitter poisoning” to de-

scribe “a side effect that appears when people are acting under an

algorithmic system that is designed to engage them to the max”

[21].
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Perhaps themain reason that optimized engagement is so broadly

decried is that it may lead to increased political polarization through

the formation of echo chambers, where users are only exposed to

viewpoints and opinions that closely align with their own. In the

pages of the Washington Post, [17] lament that “the features that

facilitate a right-wing echo chamber on Facebook— such as [. . . ]

how the algorithms work to maximize engagement— are inten-

tional choices.”
1
This statement is supported by a paper by the

same authors [18] and grounded in a large, important body of prior

work [7, 23, 28, 29].

In several studies, however, there is somewhat mixed evidence

for the relation between algorithms, the diversity of content users

consume, and political polarization [5, 9]. In fact, an influential

paper casts doubt on the very idea that eliminating echo chambers

and showing more diverse information sources leads to reduced

polarization [4]. But even the lead author of that paper concedes

that, on Twitter, “breaking up the echo chambers that prevent

cross-party discussion about market-based solutions to climate

change, for example, might be more successful” than having broad

conversations about politics [3].

This debate notwithstanding, it seems that academics and pun-

dits largely agree on one underlying assumption: There is a tradeoff

between user engagement and the diversity of information they

are exposed to. In other words, if a social media platform wishes

to maximize engagement and optimize its revenue, it would nec-

essarily have to expose users to the posts or tweets they are most

likely to engage with, thereby limiting diversity of information and

creating echo chambers.

In this paper, we aim to quantify the engagement-diversity trade-

off. Our high-level research question is this: How much engagement

must be sacrificed in order to guarantee a given level of diversity of

information? We are particularly interested in identifying scenarios

where diversity of information comes at little cost to engagement,

as in such scenarios, it is more likely that social media platforms

would be willing to break up echo chambers.

Our approach and results. We base our terminology on Twitter,
2

but our model and analytical results are relevant to most social

media platforms, including Facebook. As usual, we represent the

social network as a directed graph,
3
where the nodes are users and

1
Ironically, they give Twitter as a positive example, at least in terms of the stated

intentions of its founder and former CEO, Jack Dorsey.

2
While Twitter has recently been rebranded as X, we prefer to keep the old terminology

(e.g., “tweets”) for historical consistency.

3
For Facebook we would simply have bidirectional edges between friends.
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an edge from 𝑖 to 𝑗 means that 𝑖 follows 𝑗 . We also assume that

tweets are partitioned into 𝑇 types, and each user 𝑖 has probability

𝑝𝑡𝑖 of retweeting a tweet of type 𝑡 .

We model the propagation of tweets in the network as a discrete-

time (Markov decision) process where, in each step, users are ex-

posed to tweets from their followees, as well as tweets directly

shown to them by the platform. This latter component is the al-

gorithmic injection policy, which presents to each user tweets of

different types, subject to a budget constraint. Note that this model-

ing choice matches Twitter’s default view, where users are shown

a combination of tweets shared by their followees and some algo-

rithmically selected tweets that originate in non-followees. The

injection policy itself is time-independent, that is, users are exposed

to the same mixture of types in each round; as we prove, this is

without loss of generality (assuming that the network and retweet

probabilities are fixed, of course).

We can now quantify engagement by measuring the number

of retweets in the system (in the limit as the number of rounds

grows). This is a natural measure in our simple model; a more

elaborate model may take into account the affinity of users to

different tweet types; as we discuss in Section 5, our results extend

to this setting. There are many ways to quantify diversity in our

model; our measure is the minimum, across users 𝑖 and tweet types

𝑡 , of the number of tweets of type 𝑡 seen by user 𝑖 (in the limit as

the number of rounds grows). This is a rather onerous choice, as

it requires that every user be exposed to every tweet type; such

a pessimistic view means that any positive results are especially

robust.

To analyze the tradeoff between engagement and diversity, we

are interested in two injection policies: the one that maximizes

engagement and the one that maximizes engagement subject to

achieving at least 𝛿-diversity for a given 𝛿 ≥ 0. The cost of 𝛿-

diversity, then, is the fraction of the engagement of the former

policy that is sacrificed by employing the latter policy.

Our main theoretical result is an upper bound on the cost of

𝛿-diversity. Assuming the average retweet probability of each user

is at least 𝛼 and each retweet probability is at most 𝛽 > 0, and that

𝛿 ≤ 1/𝑇 , the cost of 𝛿-diversity is at most 𝑇𝛿 (1 − 𝛼/𝛽), and this

bound is tight. Qualitatively, the implication is that with a user

base that is generally engaged (high average retweet probability 𝛼

compared to the maximum 𝛽), the cost of 𝛿-diversity is small. This

bound is both trivial and tight in the special case where the graph

is empty; our result is encouraging in that it demonstrates that the

very same bound still holds despite the nontrivial complications

arising from the dynamics of retweets in a general social network.

To obtain a more nuanced understanding of the engagement-

diversity tradeoff in practice, we also conduct experiments on a

large dataset from Twitter. We process the data to extract the social

network graph and, based on hashtags, infer four types of tweets

and their associated retweet probabilities. We then measure the cost

of 𝛿-diversity as the retweet probabilities are scaled up. The results

show that the practical tradeoff is far better than the worst-case

bound, and that the cost of diversity is typically (though, surpris-

ingly, not always) monotonically decreasing in the magnitude of

retweet probabilities. Finally, we discuss how a policy-maker can

operationalize these results.

Related work. Needless to say, the literature on social networks

and recommender systems is vast, and there is a large body of work

on diversity in recommender systems, specifically; see, e.g., the

survey by Kunaver and Poz̆rl [20].

Perhaps the most relevant papers are those that consider the im-

pact of algorithms on diversity through field experiments [2, 14, 22].

In particular, Holtz et al. [14] study the engagement-diversity trade-

off via a field experiment on Spotify. Their control and treatment

groups were given podcast recommendations to maximize engage-

ment; in the case of the treatment group, the recommendation

algorithm was personalized, whereas, in the case of the control

group, recommendations were based on demographics. Treatment

significantly increased engagement and significantly decreased

diversity (measured through the category tags of podcasts). The

authors conclude that “these findings highlight the need for aca-

demics and practitioners to continue investing in personalization

methods that explicitly take into account the diversity of content

recommended.” A bit further afield, Huszár et al. [16] report results

from a field experiment on Twitter, where the control group was

shown tweets in reverse chronological order, without algorithmic

personalization. They find evidence for algorithmic amplification

of certain political groups; specifically, they conclude that the main-

stream political right enjoys higher algorithmic amplification than

the mainstream political left. This paper reinforces the connection

between algorithms and political polarization on Twitter, but it

does not examine the engagement-diversity tradeoff.

In general, previous theoretical models have considered either

engagement or information diversity separately. For example, in

a recent model of media consumption on social media platforms,

engagement was defined as the total time spent on a platform [19].

Information diversity, on the other hand, has previously, for in-

stance, been conceptualized as information entropy with respect

to different content types [25]. Crucially, however, to our knowl-

edge, no previous work has examined the relationship between

user engagement and information/content diversity within a single

theoretical framework.

Our model draws inspiration from linear models of social learn-

ing, such as that of DeGroot [8]. But there are fundamental differ-

ences. On a conceptual level, models of social learning typically

focus on the convergence of opinion dynamics and the impact of the

underlying graph structure; there is typically no decision making

during the process. By contrast, in our model we are dealing with

an optimization problem faced by a central planner. Moreover, we

are interested in the tradeoff between novel measures of engage-

ment and diversity. On a technical level, dynamics in a model like

DeGroot are captured by a Markov chain, whereas our model gives

rise to a Markov decision process, due to the injection policy.

2 MODEL AND MACHINERY

In this section, we introduce our stylized model of the Twitter

social network, its dynamics, and key definitions. Additionally, we

describe a computational framework for analyzing the engagement-

diversity tradeoff and provide theoretical results in support of the

robustness of our modeling choices.

Social network instance. There is a set of 𝑛 users denoted [𝑛] =
{1, . . . , 𝑛}. As is standard in social networks, users may follow each
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other. We represent this in the canonical way using a follower graph

𝐺 = ( [𝑛], 𝐸) with users as vertices and a (directed) edge (𝑖, 𝑗) ∈ 𝐸
present when user 𝑖 follows user 𝑗 . We use following(𝑖) to denote
the number of users 𝑖 follows (i.e., 𝑖’s outdegree in 𝐺).

There are𝑇 types of tweets [𝑇 ] = {1, . . . ,𝑇 } (indexed by 𝑡 ) users
can view in their feeds of content. Users’ feeds are determined

by what type of tweets the users they follow engage with. By

retweeting, the user propagates this type through the follower

graph. In the next timestep, followers of the user will be able to view

and further distribute the tweets. Thus, specific types of content

can spread through the network from a small set of initial adopters

to a potentially much larger group.

In more detail, it is assumed that upon seeing a tweet, each user

has a probability of retweeting this tweet determined by its type.

This is denoted by a type’s retweet probability vector p𝑡 ∈ [0, 1)𝑛
where 𝑝𝑡𝑖 is the probability user 𝑖 retweets a tweet of type 𝑡 . The

collection of retweet probability vectors of all types is denoted by

p = (p𝑡 )𝑡 ∈[𝑇 ] . We assume that followers do not get the exact same

tweet as the original tweet, in order to avoid addressing the case of

a retweet loop in this theoretical framework. Instead, retweeting

propagates the type and not its specific realization.

States. A type state x(𝑘 )𝑡 ∈ R𝑛 represents the expected number

of tweets of type 𝑡 being seen by the users. The component 𝑥
(𝑘 )
𝑡𝑖

is the (expected) number of tweets of type 𝑡 seen by a user 𝑖 at

time 𝑘 . We use x(𝑘 ) = (x(𝑘 )𝑡 )𝑡 ∈[𝑇 ] to denote the collection of all

type states and simply call it a state. We will use x to refer to an

unparameterized state (without a timestep).

User feed. In ourmodel, there are twoways a tweet may end up in

a user’s state (i.e., be seen on their feed), either directly from another

user they follow or injected by the social network. In general, we

will assume that the former is exogenous and given as part of the

system while the latter is a policy we (as the social network) have

control over. To understand the former, suppose a user 𝑖 follows a

user 𝑗 and 𝑗 sees a tweet of type 𝑡 at time 𝑘 . The probability that

𝑖 sees this tweet at time 𝑘 + 1 we assume to be

𝑝𝑡 𝑗
following(𝑖 ) , that

is, it is the probability that 𝑗 retweets this tweet scaled down by

the number of users 𝑖 follows. Observe that this is well-defined as

following(𝑖) ≥ 1 by the assumption that 𝑖 follows 𝑗 . The scaling

down is to account for the fact that if 𝑖 follows many users, they

will not necessarily see all the retweets in their feed.
4
We use a type

matrix A𝑡 ∈ R𝑛×𝑛 to store these seen probabilities, where

𝐴𝑡𝑖 𝑗 =

{
𝑝𝑡 𝑗

following(𝑖 ) if 𝑖 follows 𝑗

0 otherwise

.

We again use A = (A𝑡 )𝑡 ∈[𝑇 ] to denote the collection of all type

matrices. Note that if the state for type 𝑡 at time 𝑘 is x(𝑘 )𝑡 , then at

time 𝑘 + 1, each user will see A𝑡x
(𝑘 )
𝑡 based on retweets only.

To represent a social network’s injection, we define an injection

policy b = (b𝑡 )𝑡 ∈[𝑇 ] where each b𝑡 ∈ [0, 1]𝑛 . The component 𝑏𝑡𝑖

4
This scaling down is admittedly a controversial modeling choice. One could alter-

natively assume that each user has a fixed “attention budget,” but that would lead to

nonlinear dynamics. Scaling down by following(𝑖 ) is a way of realistically bounding
the number of tweets users see— after all, if a user follows thousands of people, they

will not have time to peruse all their tweets—while preserving the linearity of the

model. It thus strikes a good balance between realism and technical tractability.

represents the expected number tweets shown to user 𝑖 of type 𝑡 .

In addition, we require that for each user 𝑖 ,
∑
𝑡 𝑏𝑡𝑖 ≤ 1, i.e., only at

most one tweet “unit” can be injected at each time step.

Dynamics and limiting behavior. For an injection policy b, we
obtain the following dynamics on tweets seen in the system. At

time 0 for each type 𝑡 , we simply have x(0)𝑡 = b𝑡 . For all times

𝑘 ≥ 0, we have x(𝑘+1)𝑡 = A𝑡x
(𝑘 )
𝑡 + b𝑡 ; in words, the tweets seen

by users in time 𝑘 + 1 are retweets by others they follow along

with direct injections to them. Abusing notation slightly, we allow

matrix and vector operations to work over collections, i.e., writing

x(𝑘+1) = Ax(𝑘 ) + b to refer to all types. Notice that for each type

individually, this is a standard linear dynamical system. However,

this formulation is unusual because the constraint on policies b
(one unit per user) is across types, creating interdependences.

Unraveling the recursion, we see that the 𝑘’th timestep can be

written as x(𝑘 ) =
∑𝑘−1
ℓ=0 Aℓb and, by linearity, it can be written as

x(𝑘 ) = (∑𝑘−1ℓ=0 Aℓ )b. Since the sum of each row of A𝑡 is strictly less

than one, the spectral radius of each type, 𝜌 (A𝑡 ), is less than one

(this follows from, e.g., the Gershgorin circle theorem). This implies

that the limit lim𝑘→∞
∑𝑘−1
ℓ=0 Aℓ exists and approaches (I − A)−1,

where I is the identity matrix [15]. Since this limit matrix will come

up so often, we will use the notation A∗
𝑡 = (I −A𝑡 )−1 and similarly

A∗ = (I − A)−1. However, using this detail, we see that the state

also converges to a “limiting state” A∗b. We will use x(b) = A∗b
to denote the limiting state of policy b (recall this really means the

collection of x(b)𝑡 = (A∗
𝑡 )−1b𝑡 ).

Engagement and diversity. Two desirable properties guide our

analysis. The engagement of a state x is denoted eng(x) = ∑
𝑡 ⟨p𝑡 , x𝑡 ⟩.

It captures the expected number of retweets generated by the state

x. In some sense, this assumes that a user’s “engagement” with a

tweet is simply the likelihood of them retweeting it. However, as we

discuss in Section 5, the coupling of engagement and retweet proba-

bility is unnecessary; we primarily do so for ease of presentation as

it seems like a reasonable choice for such an engagement parameter.

The diversity of a state x is denoted div(x) = min𝑡 ∈[𝑇 ],𝑖∈[𝑛] 𝑥𝑡𝑖 ,
i.e., the fewest (expected) tweets of any type seen by any user. We

say that a state satisfies 𝛿-diversity if div(x) ≥ 𝛿 . Additionally, we
extend the notions of engagement and diversity to injection polices

by simply having them operate on their limiting state. Formally,

we have eng(b) = eng(x(b)), div(b) = div(x(b)), and b satisfies

𝛿-diversity exactly when x(b) does.
We let 𝑂𝑃𝑇 𝑒𝑛𝑔 (𝐺, p) be the optimal engagement for graph 𝐺

and retweet probabilities p, that is, the maximum over injection

policies b of eng(b). We sometimes will write 𝑂𝑃𝑇 𝑒𝑛𝑔 if 𝐺 and p
are clear from the context.

To understand the engagement-diversity tradeoff, we are espe-

cially interested in the optimal engagement achievable under a

diversity constraint. We denote this by 𝑂𝑃𝑇𝛿 (𝐺, p), parameterized

by 𝛿 , that is, the maximum over injection polices b with div(b) ≥ 𝛿
of eng(b). We will again sometimes write 𝑂𝑃𝑇𝛿 if 𝐺 and p are

clear from context. Notice that it is always feasible to guarantee

𝛿-diversity for 𝛿 ≤ 1/𝑇 since the policy with 𝑏𝑡𝑖 = 1/𝑇 for all 𝑖 and

𝑡 achieves this. However, for 𝛿 > 1/𝑇 , there are instances where no
policy achieving 𝛿-diversity exists. Hence, from now on, we will

only focus on 𝛿 ≤ 1/𝑇 .

290



WWW ’24, May 13–17, 2024, Singapore, Singapore Fabian Baumann, Daniel Halpern, Ariel D. Procaccia, Iyad Rahwan, Itai Shapira, and Manuel Wüthrich

Cost of 𝛿-diversity. Finally, we define cost𝛿 (𝐺, p) = 1 − 𝑂𝑃𝑇𝛿

𝑂𝑃𝑇 𝑒𝑛𝑔 .

This captures the multiplicative loss on optimal engagement by

imposing 𝛿-diversity, i.e., a cost of .2 for 𝛿 = .1 means that 20% of

engagement is lost by enforcing .1-diversity. From another perspec-

tive, 1 − cost
𝛿 (𝐺, p) as a function of 𝛿 plots the Pareto frontier of

the trade-off between engagement and a given diversity level.

Optimizing engagement and diversity. As it turns out, computing

𝑂𝑃𝑇 𝑒𝑛𝑔 amounts to solving a linear program. Namely, we have

that eng(b) = ∑
𝑡 ⟨p𝑡 , x(b)𝑡 ⟩ =

∑
𝑡

〈
p𝑡 ,A∗

𝑡 b𝑡
〉
=

∑
𝑡 𝑝

⊤
𝑡 A

∗
𝑡 b𝑡 . This

is a linear objective in variables 𝑏𝑡𝑖 for 𝑡 ∈ [𝑇 ] and 𝑖 ∈ [𝑛]. This
objective will come up quite often throughout our analysis, so we

introduce the notation c𝑡 = (𝑝⊤𝑡 A∗
𝑡 )⊤ to be the vector of coefficients

on the b𝑡 = (𝑏𝑡1, . . . , 𝑏𝑡𝑛) variables. As before, we use the notation
c = (c𝑡 )𝑡 ∈[𝑇 ] . We can interpret a value 𝑐𝑡𝑖 as the total engagement

generated in the system by injecting a unit of type 𝑡 to user 𝑖 . This

allows us to write the engagement as eng(b) = ∑
𝑡 c⊤𝑡 b𝑡 .

Since the constraints of being a valid injection policy are also

linear, we can write the whole program as

maximize:

∑︁
𝑡

c⊤𝑡 b𝑡

subject to:

∑︁
𝑡

𝑏𝑡𝑖 ≤ 1, 𝑖 ∈ [𝑛]

𝑏𝑡𝑖 ≥ 0 𝑡 ∈ [𝑇 ], 𝑖 ∈ [𝑛] .

We will refer to this linear program as the engagement-optimal

program. An interesting observation is that the optimal value and

solutions of the program have a simple closed form. Notice that

there are no constraints involving distinct users; the only constraint

is that for each user, the total injection is at most one. Hence, the

optimal policy is to spend this budget of one only on the tweet

type 𝑡 with the largest objective coefficient 𝑐𝑡𝑖 . In other words, an

optimal policy is to: (1) for each user 𝑖 , set a single 𝑏𝑡𝑖 for a type

𝑡 maximizing 𝑐𝑡𝑖 to 1 (or any linear combination of maximizing

types), and (2) set all other 𝑏𝑡 ′𝑖 to 0. This achieves engagement∑
𝑖 max𝑡 𝑐𝑡𝑖 .

Things become less straightforward if we wish to optimize en-

gagement subject to 𝛿-diversity, that is, if we wish to compute

𝑂𝑃𝑇𝛿 . The 𝛿-diversity constraint is also linear, so this remains a

linear program, identical to the previous, with the added constraint

(A∗
𝑡 b𝑡 )𝑖 ≥ 𝛿, 𝑡 ∈ [𝑇 ], 𝑖 ∈ [𝑛]. We refer to this program as the 𝛿-

diversity program. Unlike before, however, it does not seem to have

a concise closed form.

Robustness of the modeling choices. One modeling choice that

may initially seem unnatural is to define engagement and diversity

in the limiting state. An alternate formulation is to have a time

horizon 𝐾 and consider what occurs at each timestep. For example,

one could define engagement to be the average (or equivalently

sum) engagement over all timesteps, i.e.,
1

𝐾+1
∑𝐾
𝑘=0

eng(x(𝑘 ) ). Sim-

ilarly, one could instead require that 𝛿-diversity be satisfied at every

timestep rather than just in the limit. In such a model, requiring

injection policies to be identical in every timestep may be overly

restrictive. A priori, it seems plausible that substantially better poli-

cies exist that change over time; for example, they can oscillate

between different injections or modify what they inject once cer-

tain levels of diversity have spread through the network. Hence,

we could even allow injection policies to be time-dependent, chang-

ing what they inject depending on the timestep (in contrast to our

time-independent program solutions). However, as we formalize

and prove in Appendix A, the time-independent engagement poli-

cies computed by our programs remain nearly optimal with these

alternative definitions; this holds even when compared to the more

powerful time-dependent strategies. We therefore expect such a

model to lead to qualitatively similar results.

Relation to the Twitter recommendation algorithm. In March 2023,

Twitter published its recommendation algorithm.
5
Twitter shows

tweets to a given user according to two criteria: (i) tweets from

users they follow, and (ii) tweets that are selected by the aforemen-

tioned recommendation algorithm in order to maximize the user’s

engagement. Currently, Twitter has a separate feed for each of these

criteria (the “following” feed and the “for you” feed), while we con-

sider only a single feed that is generated using both criteria. This

simplifies exposition and is conceptually similar, assuming Twitter

users look at both feeds. In our dynamics, x(𝑘+1)𝑡 = A𝑡x
(𝑘 )
𝑡 + b𝑡 ,

(i) corresponds to the first term and (ii) corresponds to the second

term.

The Twitter recommendation algorithm extracts a large number

of features for each tweet and user in order to predict the engage-

ment a tweet will generate for a given user; it then selects the

tweets that maximize it. Among other features, the Twitter algo-

rithm extracts communities from the social network (the largest

communities are “pop,” “news,” and “soccer”) and then represents

users and tweets in terms of their affinities with these communities.

There is a natural correspondence to our simplified model, with the

features of a tweet summarized as its type 𝑡 ∈ [𝑇 ]. Interestingly,
then, the Twitter recommendation algorithm selects the injected

tweets b by maximizing eng(b) = ∑
𝑡 c⊤𝑡 b𝑡 , which is a myopic opti-

mization of engagement, i.e., it does not take into account future

engagement produced by an injection, nor does it ensure diversity.

3 THEORETICAL BOUNDS ON THE

ENGAGEMENT-DIVERSITY TRADEOFF

We now turn to providing bounds on the cost of 𝛿-diversity. In

order to prove upper bounds, rather than focusing on optimal in-

jection policies, we consider algorithms that, while not optimal, are

easier to analyze. We begin this section by defining two. To do so,

recall that 𝑐𝑡𝑖 , the coefficient in the optimal programs, represents

engagement generated in the limiting state by injecting a unit of

type 𝑡 tweet to user 𝑖 . For each user 𝑖 , let 𝑓𝑖 ∈ argmax𝑡 𝑐𝑡𝑖 be a

tweet type generating maximal engagement. Additionally, recall

that 𝑂𝑃𝑇 𝑒𝑛𝑔 =
∑
𝑖 max𝑡 𝑐𝑡,𝑖 , achieved by injecting a unit of 𝑓𝑖 to

each user 𝑖 .

Definition 1. The 𝛿-uniform policy for each user 𝑖 injects 𝛿 of each

type 𝑡 and spends the remaining 1−𝑇𝛿 budget on 𝑓𝑖 . More formally,

𝑏𝑡𝑖 = 𝛿 for 𝑡 ≠ 𝑓𝑖 and 𝑏 𝑓𝑖𝑖 = 1 − (𝑇 − 1)𝛿 .

This policy is 𝛿-diverse as it directly injects at least 𝛿 of every

type to all users. Using the 𝛿-uniform policy, we can immediately

derive a worst-case bound on cost
𝛿 (𝐺, p) for all graphs 𝐺 and

5
https://blog.twitter.com/engineering/en_us/topics/open-source/2023/twitter-

recommendation-algorithm
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retweet probabilities p. Indeed, regardless of the underlying values,

by injecting 1− (𝑇 −1)𝛿 units of 𝑓𝑖 , we have that it achieves engage-
ment at least (1 − (𝑇 − 1)𝛿)∑𝑖 max𝑡 𝑐𝑡𝑖 = (1 − (𝑇 − 1)𝛿)𝑂𝑃𝑇 𝑒𝑛𝑔 .
Since𝑂𝑃𝑇𝛿 must be at least the engagement of this policy, we have

cost
𝛿 (𝐺, p) = 1 − 𝑂𝑃𝑇𝛿

𝑂𝑃𝑇 𝑒𝑛𝑔
≤ (𝑇 − 1)𝛿 (1)

as a worst-case bound.

Note that the bound of Equation (1) is, in some cases, tight. In-

deed, consider an empty graph where all users have a positive

retweet probability for only one type. In an empty graph, the limit-

ing state is exactly equal to the injection policy. Hence, to achieve

𝛿-diversity, it is necessary to inject 𝛿 of all types to everybody, but

this means only a (1 − (𝑇 − 1)𝛿) fraction of the policy can be spent

on types from which users derive any engagement.

However, to get beyond this worst-case bound, we need to ana-

lyze slightly more intricate policies. The next policy is based on the

following idea: Suppose we wish to inject tweets such that, in the

limiting state, every user sees exactly 𝛿 of each type. Notice that

computing this policy is not, in fact, too difficult. For a fixed type 𝑡 ,

the injected b𝑒𝑥𝑡 would need to satisfy A∗
𝑡 b
𝑒𝑥
𝑡 = 𝛿1. Expanding the

definition A∗
𝑡 = (I − A𝑡 )−1 and multiplying on both sides, we have

that b𝑒𝑥𝑡 = 𝛿 (1 −A𝑡1). Hence, we have that 𝑏𝑒𝑥𝑡𝑖 = 𝛿

(
1 − ∑

𝑗 𝐴𝑡𝑖 𝑗

)
.

It is not immediately obvious that the collection b𝑒𝑥 is a valid injec-

tion policy; however, we can prove this is the case. Indeed, notice

each 𝑏𝑒𝑥
𝑡𝑖

≤ 𝛿 because entries in A are nonnegative, so by our re-

striction that 𝛿 ≤ 1/𝑇 , ∑𝑖 𝑏𝑒𝑥𝑡𝑖 ≤ 1. Further, our normalization by

following(𝑖) in A𝑡 ensures that
∑
𝑗 A𝑡𝑖 𝑗 ≤ max 𝑝𝑡𝑖 ≤ 1, so each

𝑏𝑒𝑥
𝑡𝑖

≥ 0.

Since this sum

∑
𝑗 A𝑡𝑖 𝑗 will come up frequently, we define inc𝑡𝑖 =∑

𝑗 A𝑡𝑖 𝑗 . Intuitively, inc𝑡𝑖 is the “incoming weight” from all the

users 𝑖 follows. If all users were shown exactly 1 unit of type 𝑡 at

time 0, then, in the next time step, 𝑖 would see inc𝑡𝑖 units. It follows

that, in a steady state where all users see 𝛿 of type 𝑡 , to ensure

they see 𝛿 of type 𝑡 at the next time step, they must be injected

𝛿 (1 − inc𝑡𝑖 ).
We can now use b𝑒𝑥 to define a new injection policy.

Definition 2. The 𝛿-exact policy first injects b𝑒𝑥 = 𝛿 (1 − inc𝑡𝑖 ) of
type 𝑡 to each user 𝑖 and then spends the remaining 1 − 𝛿 ∑

𝑡 (1 −
inc𝑡𝑖 ) on 𝑓𝑖 . More formally, 𝑏𝑡𝑖 = 𝛿 (1 − inc𝑡𝑖 ) for 𝑡 ≠ 𝑓𝑖 and

𝑏 𝑓𝑖𝑖 = 1 − 𝛿 ©­«𝑇 − 1 −
∑︁
𝑡≠𝑓𝑖

inc𝑡𝑖
ª®¬ .

Since the 𝛿-exact policy is injecting only more than b𝑒𝑥 , clearly
all users see at least 𝛿 of each type in the limit, so it must be 𝛿-

diverse. Using the 𝛿-exact policy, we derive what we view as our

main theoretical result.

Theorem 1. Fix constants 𝛼 ≤ 𝛽 with 𝛽 > 0. For all graphs 𝐺

and retweet probabilities p such that for each user 𝑖 (1) their average

retweet probability is at least 𝛼 , i.e., 1

𝑇

∑
𝑡 𝑝𝑡𝑖 ≥ 𝛼 , and (2) their

maximum retweet probability is at most 𝛽 , i.e.,max𝑡 𝑝𝑡𝑖 ≤ 𝛽 , it holds

that

cost
𝛿 (𝐺, p) ≤ min

{
𝑇𝛿

(
1 − 𝛼

𝛽

)
, (𝑇 − 1)𝛿

}
.

Further, for all 𝛼 ≤ 𝛽 with 𝛽 > 0, there are instances 𝐺 and p
satisfying (1) and (2) such that the inequality is tight.

Proof. Fix some 𝛼 and 𝛽 , a graph𝐺 , and retweet probabilities p
satisfying the theorem requirements. Notice that the upper bound

of (𝑇 − 1)𝛿 follows from the theoretical worst-case discussed above.

So for this proof, we show an upper bound of 𝑇𝛿 (1 − 𝛼
𝛽
). To prove

the theorem, we analyze the engagement derived from the 𝛿-exact

policy. We partition the users 𝑉 = 𝐼 ⊔𝑂 where 𝐼 is the set of inside

users that follow at least one other and 𝑂 is the set of outside users

that do not follow anybody. For each outside user 𝑖 ∈ 𝑂 , since they
do not follow anybody, the policy spends the entire 𝛿 on each type

in the first part, and then spends the remaining 1−𝑇𝛿 on 𝑓𝑖 . For the
inside users 𝑖 ∈ 𝐼 , as the average retweet probability for each user

they follow is at least 𝛼 , the sum of all incoming edges (even after

scaling down by the number of followers) is at least 𝑇𝛼 . Hence,

there is a remaining budget of at least 1 −𝑇𝛿 +𝑇𝛿𝛼 to spend on 𝑓𝑖 .

Next, let us consider the engagement derived. Recall that𝑂𝑃𝑇 𝑒𝑛𝑔 =∑
𝑖∈[𝑛] max𝑡 𝑐𝑡𝑖 .We define𝐸𝐼 =

∑
𝑖∈𝐼 max𝑡 𝑐𝑡𝑖 and𝐸𝑂 =

∑
𝑖∈𝑂 max𝑡 𝑐𝑡𝑖

to be engagements derived from injecting to inside and outside users

respectively. Note that 𝑂𝑃𝑇 𝑒𝑛𝑔 = 𝐸𝐼 + 𝐸𝑂 . Now let us consider the

engagement of the 𝛿-exact policy. Notice that by the first part alone,

each user sees 𝛿 of each type, and by the 𝛼 lower bound, they must

derive 𝛿𝑇𝛼 engagement from this. In the second part, outside users

𝑖 contribute (1 −𝑇𝛿)max𝑡 𝑐𝑡𝑖 and inside users 𝑖 contribute at least

(1 − 𝑇𝛿 + 𝑇𝛿𝛼)max𝑡 𝑐𝑡𝑖 . Putting this together, we have that the

total engagement is at least

𝑛𝑇𝛿𝛼︸︷︷︸
First part

+ (1 −𝑇𝛿)𝐸𝑂︸        ︷︷        ︸
Outside user second part

+ (1 −𝑇𝛿 +𝑇𝛿𝛼)𝐸𝐼︸                ︷︷                ︸
Inside user second part

. (2)

Our goal then is to show that (2) is at least(
1 −𝑇𝛿

(
1 − 𝛼

𝛽

))
𝑂𝑃𝑇 𝑒𝑛𝑔 .

We begin by showing that

(1 − 𝛽)𝐸𝐼 + 𝐸𝑂 ≤ 𝛽𝑛. (3)

To that end, we consider a modified instance (𝐺, p′) where the

graph remains the same, but we set p′ such that 𝑝′
𝑡𝑖
= 𝛽 for all 𝑡 and

𝑖 . Notice that this has only increased the values of p. Let c′ be the
corresponding c values and define 𝐸′

𝐼
and 𝐸′

𝑂
analogously using c′.

Since increasing retweet probabilities can only increase the values

𝑐𝑡𝑖 , this also holds for 𝐸𝐼 and 𝐸𝑂 , so (1−𝛽)𝐸𝐼 +𝐸𝑂 ≤ (1−𝛽)𝐸′
𝐼
+𝐸′

𝑂
.

Hence, it is sufficient to show that (1 − 𝛽)𝐸′
𝐼
+ 𝐸′

𝑂
≤ 𝛽𝑛.

In this modified instance, all types are symmetric, so 𝑐′
𝑡1𝑖

= 𝑐′
𝑡2𝑖

for all types 𝑡1 and 𝑡2. Hence, the vector (max𝑡 𝑐𝑡1, . . . ,max𝑡 𝑐𝑡𝑛) =
c′
1
, i.e., the vector for type 1 (or any c𝑡 vector for that matter). Let

A′
1
be the type matrix of type 1 in the modified instance, so 𝐴′

1𝑖 𝑗
=

𝛽

following(𝑖 ) if 𝑖 follows 𝑗 and 0 otherwise. Recall that (c′
1
)⊤ =

(𝛽1)⊤ (I − A1)−1.
Let b′

1
be the vector where 𝑏′

1𝑖
= 1 if 𝑖 is an outside user and

𝑏′
1𝑖
= 1− 𝛽 if 𝑖 is an inside user. The value (1− 𝛽)𝐸′

𝐼
+ 𝐸′

𝑂
is exactly

equal to

⟨c′
1
, b′

1
⟩ = (c′

1
)⊤b′

1
= (𝛽1)⊤ (I − A1)−1b′1 .
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Another interpretation of this is the engagement derived in the

limiting state after injecting (1 − 𝛽) of type 1 to inside users and 1

unit of type 1 to outside users.

We first claim that (𝐼 − A′
1
)−1b′

1
= 1, the all ones vector. Indeed,

such a solution is the unique y that satisfies (𝐼 − A′
1
)y = b′

1
. Notice

that for the all ones vectors, for outside users, the 𝑖’th row of A′
1

is all 0s, so the term is 0, and for inside users, the 𝑖’th row has

following(𝑖) number of terms each with value
𝛽

following(𝑖 ) , so
the corresponding component is 1 − 𝛽 . Therefore, 1 is the limiting

state, and the engagement is exactly (𝛽1)⊤1 = 𝑛𝛽 . This equality

implies (1 − 𝛽)𝐸′
𝐼
+ 𝐸′

𝑂
≤ 𝛽𝑛, as needed.

From Inequality (3), by simple algebra, we get

𝑛 + 𝐸𝐼 ≥
𝐸𝐼 + 𝐸𝑂

𝛽
=
𝑂𝑃𝑇 𝑒𝑛𝑔

𝛽
.

Using this inequality, we have

𝑛𝑇𝛿𝛼 + (1 −𝑇𝛿)𝐸𝑂 + (1 −𝑇𝛿 +𝑇𝛿𝛼)𝐸𝐼
= 𝑛𝑇𝛿𝛼 +𝑇𝛿𝛼𝐸𝐼 + (1 −𝑇𝛿)𝑂𝑃𝑇 𝑒𝑛𝑔

= 𝑇𝛿𝛼 (𝑛 + 𝐸𝐼 ) + (1 −𝑇𝛿)𝑂𝑃𝑇 𝑒𝑛𝑔

≥ 𝑇𝛿𝛼𝑂𝑃𝑇 𝑒𝑛𝑔

𝛽
+ (1 −𝑇𝛿)𝑂𝑃𝑇 𝑒𝑛𝑔

=

(
1 −𝑇𝛿 + 𝑇𝛿𝛼

𝛽

)
𝑂𝑃𝑇 𝑒𝑛𝑔

=

(
1 −𝑇𝛿

(
1 − 𝛼

𝛽

))
𝑂𝑃𝑇 𝑒𝑛𝑔

as needed.

To show tightness, consider an empty graph 𝐺 where, for all

users 𝑖 ,

𝑝𝑡𝑖 =

{
𝛽 if 𝑡 = 1

max

{
𝛼 − 𝛽−𝛼

𝑇−1 , 0
}

if 𝑡 ≠ 1

.

For ease of notation, we let 𝛾 = max

{
𝛼 − 𝛽−𝛼

𝑇−1 , 0
}
. Notice that the

maximum retweet probability is 𝛽 and 𝛼 − 𝛽−𝛼
𝑇−1 is the exact value

for other types to get the average retweet probability to 𝛼 ,

𝛽 + (𝑇 − 1)
(
𝛼 − 𝛽−𝛼

𝑇−1

)
𝑇

=
𝛽 + (𝑇 − 1)𝛼 − 𝛽 + 𝛼

𝑇
= 𝛼

so the true average is

𝛽 + (𝑇 − 1)𝛾
𝑇

= max

{
𝛽

𝑇
, 𝛼

}
≥ 𝛼.

Further, notice that since the graph is disconnected, the limiting

state is exactly the injection policy. In this case, one policy is to

inject only type 1which gives engagement𝑛𝛽 . Hence,𝑂𝑃𝑇 𝑒𝑛𝑔 ≥ 𝑛𝛽 .
To be 𝛿-diverse, a policy must inject at least 𝛿 of each type to all

users and can therefore inject at most 1− (𝑇 − 1)𝛿 to type 1. Hence,

𝑂𝑃𝑇𝛿 ≤
©­­­«𝛽 (1 − (𝑇 − 1)𝛿)︸              ︷︷              ︸

type 1

+ (𝑇 − 1)𝛿𝛾︸     ︷︷     ︸
other types

ª®®®¬𝑛.
Plugging these inequalities in, we have

cost
𝛿 (𝐺, p) = 1 − 𝑂𝑃𝑇𝛿

𝑂𝑃𝑇 𝑒𝑛𝑔

≥ 1 − (𝛽 (1 − (𝑇 − 1)𝛿) + (𝑇 − 1)𝛿𝛾) 𝑛.
𝛽𝑛

= 1 −
(
1 − (𝑇 − 1)𝛿 + (𝑇 − 1)𝛿𝛾

𝛽

)
= (𝑇 − 1)𝛿

(
1 − 𝛾

𝛽

)
= 𝑇𝛿

𝑇 − 1

𝑇

(
1 − 𝛾

𝛽

)
= 𝑇𝛿

(
1 − 1

𝑇
− (𝑇 − 1)𝛾

𝑇 𝛽

)
= 𝑇𝛿

(
1 − 𝛽 + (𝑇 − 1)𝛾

𝑇
· 1
𝛽

)
= 𝑇𝛿

(
1 −max

{
𝛼,
𝛽

𝑇

}
1

𝛽

)
= 𝑇𝛿

(
1 −max

{
𝛼

𝛽
,
1

𝑇

})
= min

{
𝑇𝛿

(
1 − 𝛼

𝛽

)
, (𝑇 − 1)𝛿

}
. □

One special case of particular interest is when users are ho-

mogeneous, that is, all having the same retweet probabilities, say

𝑝1 ≥ · · · ≥ 𝑝𝑇 . In this case, as long as we were not in the degenerate

case where 𝑝𝑡 = 0 for all 𝑡 , the bound simplifies to:

cost
𝛿 (𝐺, p) ≤ 𝛿 (

∑︁
𝑡≠1

(1 − 𝑝𝑡

𝑝1
)) .

This bound is at least as strong as the theoretical worst case and

strictly stronger when it is not the case that 𝑝2 = · · · = 𝑝𝑡 = 0.

We also note that, as the proof of Theorem 1 shows, the bound

is tight in an empty graph (with no edges). It is also not hard to

establish the upper bound in such a graph. The power of Theorem 1,

then, lies in showing that the engagement-diversity tradeoff is no

worse when generalizing an empty graph to an arbitrary social

network with elaborate retweet dynamics.

4 THE ENGAGEMENT-DIVERSITY TRADEOFF

IN PRACTICE

In this section, we use Twitter datasets to find realistic graphs 𝐺

and retweet probabilities p. We then run our methods on these

inferred problem instances to gain an understanding of what the

engagement-diversity trade-off may look like on real social net-

works.

Data processing. We reconstruct the social network (𝐺) of users

and their retweet probabilities (p) with respect to different tweet

types from Twitter datasets, which have been analyzed and eval-

uated in previous studies [11–13]. They consists of tweets posted

within a week after certain political events. Here, we specifically

focus on two. First, tweets relating to gun control the week after

June 16, 2016, when there was a democratic filibuster for gun con-

trol reforms (we refer to this as the Gun Control dataset), and

second, tweets relating to abortion the week after June 30, 2016,

when the U.S. Supreme court struck down Texas restrictions (we

refer to this as the Abortion dataset). We refer the curious reader

to Garimella et al. [12] for in-depth details about the datasets.
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(a) Colored lines indicate different scaling factors of the original estimated retweet probabilities.
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(b) Colored lines indicate the expected number of incoming retweets for each agent.

Figure 1: Plots of 1− 𝑂𝑃𝑇𝛿

𝑂𝑃𝑇 𝑒𝑛𝑔 in various settings. All are based on the Abortion dataset; the analogous plots for the Gun Control

dataset can be found in Figure 3 in Appendix C. Mode probabilities were inferred by directly calculating the ratio between

retweeted and inferred. Beta samples were samples from a posterior distribution of retweet probabilities. The blue line in each

diagram indicates the theoretical lower bound from Section 3; it is equal to (𝑇 − 1)𝛿 where 𝑇 = 4 for the abortion dataset, and

𝑇 = 5 for the gun control one. Values of 1 − 𝑂𝑃𝑇𝛿

𝑂𝑃𝑇 𝑒𝑛𝑔 are computed for values of
𝑖

10·𝑇 for 𝑖 = 0, . . . , 10.

Briefly, the datasets contain a collection of tweets along with

information such as the tweet text, the ID of the Twitter user that

tweeted (or retweeted), and the hashtags mentioned. Additionally,

the datasets include each user’s social relations, i.e., which other

users they follow. This allows us to directly reconstruct the follower

graph 𝐺 . In total, the Gun Control dataset contains 3,975 users,

while the Abortion dataset contains 7,284 users. The former has a

total of 945,286 edges, and the latter has a total of 1,880,679 edges,

meaning an average user followed roughly 238 and 258 other users,

respectively. The distributions of the number of users each user

follows and is followed by can be found in Figure 2 located in

Appendix C.

We use hashtags to classify the tweets in the dataset into types, al-

lowing us to infer retweet probabilities. In particular, as the number

of distinct hashtags is extremely large (e.g., more than 695,000 in the

Abortion dataset), we restrict the analysis to the 2,000 most com-

mon hashtags. We then construct a network across these hashtags,

where a link between two hashtags indicates that these hashtags

appeared in the same tweet and are, therefore, related [1, 24]. We

then use this network to cluster hashtags into a more manageable

number of “types.” Specifically, we use the Louvain algorithm [6] on

the hashtag network to extract its community structure, where each

community of hashtags defines a specific type. This yields a classi-

fication of hashtags into five distinct types in the Gun Control

dataset, and four distinct types in the Abortion dataset. Further

details on the derived types can be found in Appendix B.

We then use hashtag occurrences as a proxy for tweet types. We

first compute the number of times a user retweets a type by counting

the times a corresponding hashtag appeared in their retweets. Note

that, generally, a single tweet may be considered part of multiple

types or increase the count of a particular topic by more than one, as

the tweet may contain multiple hashtags. To determine the number

of tweets of a particular type seen by a user, we count the number

of corresponding hashtag occurrences in their neighbors’ tweets,

both original and retweets.

Finally, we use two methods to infer retweet probabilities using

the counts. First, we simply take the proportion of retweets divided

by the number of tweets seen of a given type. We call these “mode

probabilities.” In the second method, we assume that the dataset

is just a single observation of a user’s retweet probabilities and

use Bayesian updating. Specifically, we assume an independent

Beta(1, 100) prior on users’ retweet probabilities, which is reason-

ably close to the observed distribution of retweet probabilities. We

then do Bayesian updating to obtain a posterior distribution on

retweet probabilities; this has the convenient property that if a user

retweets 𝑟 out of a total of 𝑠 seen, the posterior is Beta(1+𝑟, 100+𝑠).
We take two samples from the Beta distribution for each user. To-

gether with the mode probabilities, we end up with three instances
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for each dataset that share the same graph but have distinct retweet

probabilities.

Experiments. For each of the instances, we analyze the engagement-

diversity tradeoff given the estimated retweet probabilities. In addi-

tion, we also apply various modifications to the estimated probabil-

ities, in order to understand the impact. First, we study the effect of

scaling up the retweet probabilities uniformly, i.e., we multiply all

inferred𝐴𝑡𝑖 𝑗 probabilities by the same factor (we use factors 1, 3, 10,

and 30, with1, of course, being the original inferred probabilities).

After scaling, we always cap the maximum retweet probability to

.99. The capping ensures both that the probabilities are consistent

with their modeling definition and that the linear system converges.

Next, we consider scaling the𝐴𝑡𝑖 𝑗 s distinctly for each user 𝑖 (i.e., by

a distinct value𝐶𝑖 for each 𝑖) such that

∑
𝑡, 𝑗 𝐴𝑡𝑖 𝑗 is a fixed constant,

either 0.1, 0.3, or 0.9. This ensures that the expected number of

retweets seen by each user at any timestep is exactly this value.

For each instance, we compute the necessary values to run the

engagement-optimal and 𝛿-diverse linear programs, i.e., compute

the type matrices and find their limiting value. From this, we can

immediately solve the first LP to obtain 𝑂𝑃𝑇 𝑒𝑛𝑔 . Next, we solve

the LPs for 10 evenly spaced values of 𝛿 , 1

10𝑇
, 2

10𝑇
, . . . , 1

𝑇
which

gives us 𝑂𝑃𝑇𝛿 for these values. With these values, we can plot

cost
𝛿 (𝐺, p) = 1 − 𝑂𝑃𝑇𝛿

𝑂𝑃𝑇 𝑒𝑛𝑔 . In the plots, we also include the theo-

retical worst-case bound of (𝑇 − 1)𝛿 .
Due to the large size of the dataset, these experiments are compu-

tationally intensive. All linear programs were solved using Gurobi

on an Amazon Web Services (AWS) instance with 128 vCPUs of

a 3rd Gen AMD EPYC running at 3.6GHz equipped with 1TB of

RAM. Giving a Gurobi solver with three threads, it takes on the

order of 30 hours to compute the optimal values of the ten LPs with

𝛿 = 1

10𝑇
, . . . , 1

𝑇
. We ran all of our experiments in parallel, which

used approximately 500 GB of RAM during the computation.

Results. Results for the Abortion dataset are shown in Figure 1,

with the analogous plots for Gun Control relegated to Figure 3 in

Appendix C. The different colored lines correspond to the different

scaling factors (applied to the estimated retweet probabilities) along

with the theoretical lower bound derived in Section 3 of (𝑇 − 1)𝛿 .
To interpret the results, we consider the perspective of a policy-

maker analyzing the Abortion dataset with modal probabilities

(left-most plot from Figure 1a). If they were willing to sacrifice

5% of engagement in order to boost diversity, they would obtain

a diversity of 𝛿 ≈ 0.03 (orange line), and for scaled up retweet

probability estimates, they would even obtain diversity 𝛿 ≥ 0.06

(red and purple lines). These numbers are 𝛿 ≈ 0.025 and 𝛿 ≥ 0.045

for Gun Control.

We can understand these values of diversity as a proportion of

the amount injected. Recall that when there are𝑇 types, in the worst

case, we can guarantee a diversity of 𝛿 = 1/𝑇 by showing equal

amounts of each type to all users, which completely ignores users’

individual preferences and the engagement objective. A value of 𝛿 ≈
0.03 on the Abortion dataset means we are achieving a diversity

that is 0.03/0.25 = 12% of this benchmark. If the policy-maker is

willing to sacrifice 10% engagement, the achieved diversity increases

to 𝛿 ≈ 0.07, for low scaling factors of the retweet probabilities, and

𝛿 ≥ 0.10 for larger scaling factors, i.e., over 40% of the worst-case

guarantee (0.04, 0.07 and 35% for Gun Control).

Finally, another interesting observation is that both increasing

the scale and increasing the expected number of retweets very

reliably improves the tradeoff.

5 DISCUSSION

While our model may appear stylized, we believe that it is quite

robust. In essence, the main assumptions are a partition of tweets

into types and known retweet probabilities, both of which seem

quite reasonable.

Some issues that are ostensibly outside the scope of our model

can, in fact, be captured by it. One is that not all tweets that fall into

even a specific type, such as “climate change,” have the same retweet

probabilities. In theory, one could make the set of types arbitrarily

granular, but this would make diversity constraints impractical. A

better approach, which we believe to be plausible, is to set 𝑝𝑡𝑖 (the

probability of user 𝑖 retweeting type 𝑡 ) to be the average of the

retweet probabilities of user 𝑖 for different tweets that are included

in type 𝑡 .

Another seemingly restrictive modeling choice that can easily be

relaxed is the fact that a user’s engagement is defined with respect

to their retweet probability rather than a distinct “type engage-

ment” parameter (or “type affinity”). Differentiating these features

would allow the model to capture users that perhaps have high

engagement yet rarely retweet. We could have instead introduced

an additional parameter 𝑒𝑡𝑖 for each user and type to be used in the

definition of engagement, i.e., eng(x) = ∑
𝑡 ⟨e𝑡 , x𝑡 ⟩. At a technical

level, this hardly seems to affect the model nor the results; our

choice to exclude it was solely for presentation, as we did not be-

lieve the gain in generality was worth the loss in comprehensibility

in a paper already defining half the alphabet.

That said, we readily acknowledge that our model has limitations.

To name one, we view propagation dynamics in the social network

as resulting from retweets of content that is injected by the platform.

But users also create content; for example, a political reporter will

likely write new tweets about politics. This can be modeled as

another injection policy that is outside of our control, but it is

unclear what values one would choose for this policy.

Nevertheless, in our view, our model and analysis provide useful

insights into the engagement-diversity tradeoff. As discussed in

Section 1, however, the jury is still out on the diversity-polarization

connection, and it is a topic of intensive inquiry. With a better

(quantitative) understanding of this connection, our results could

be directly leveraged to analyze engagement-polarization tradeoffs,

potentially helping social media platforms curb negative societal

impacts.
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A TIME-INDEPENDENT VS. TIME-DEPENDENT STRATEGIES

In Section 2, we mentioned that our model is essentially equivalent to one that has a time horizon 𝐾 , engagagement is defined as the average

engagement over timesteps, diversity is satsified at every timestep, and strategies can be time dependent. Here we formalize and prove this

claim.

Theorem 2. Fix 𝛿 and let b∗ be a solution to the 𝛿-diversity program. Fix a time horizon 𝐾 and let x(0) , . . . , x(𝐾 )
be the states induced by

injecting b∗ at every timestep. Using the notation eng
𝑎𝑣

(
x(0) , . . . , x(𝐾 )

)
= 1

𝐾+1
∑𝐾
𝑘=0

eng(x(𝑘 ) ), we then have:

(1) The notions of engagement on b∗ converge: eng𝑎𝑣
(
x(0) , . . . , x(𝐾 )

)
= (1 −𝑂 (1/𝐾)) · eng(b∗),

(2) Diversity approaches 𝛿 exponentially fast: div(x(𝑘 ) ) ≥ 𝛿 − 1

exp(Ω (𝑘 ) ) ,

(3) The policy b∗ achieves approximately-optimal engagement. That is, if there is a strategy b(0) , . . . , b(𝐾 )
inducing a sequence y(0) , . . . , y(𝐾 )

such that div(y(𝑘 ) ) ≥ 𝛿 for all 𝑘 , then eng
𝑎𝑣

(
y(0) , . . . , y(𝐾 )

)
≤ (1 +𝑂 (1/𝐾)) · eng𝑎𝑣

(
x(0) , . . . , x(𝐾 )

)
.

The proof of Theorem 2 relies on the following simple lemma, a consequence of Gelfrand’s formula [27], the main argument of which was

proved by an anonymous user on Stackexchange,
6
although variations are clearly known in the literature. We nonetheless include the entire

argument for completeness.

Lemma 1. There are constants 𝜆 > 0 and 𝛾 ∈ (0, 1) depending only on 𝐺 and p such that for each type matrix A𝑡 , any injection policy b𝑡 , and
any power ℓ ≥ 0,

∑∞
ℓ=𝑘

∥Aℓ𝑡b𝑡 ∥1 ≤ 𝜆𝛾𝑘 .

Proof. Gelfand’s formula implies that for any type 𝑡 ,

lim

ℓ→∞
| |Aℓ𝑡 | |

1

ℓ

1
= 𝜌 (A𝑡 )

where 𝜌 (A𝑡 ) is the spectral radius of A𝑡 (see, e.g., Rudin [27], Theorem 10.35). As 𝜌 (A𝑡 ) < 1 for all types 𝑡 , we can choose 𝛾 ∈ (max𝑡 𝜌 (A𝑡 ), 1)
and doing so will imply limℓ→∞ | |Aℓ𝑡 | |

1

ℓ

1
< 𝛾 . means that for each type 𝑡 , for sufficiently large ℓ , it holds that ∥Aℓ𝑡 ∥1 < 𝛾 ℓ . Hence, we can

choose𝑀 > 0 large enough so that | |Aℓ𝑡 | |1 < 𝑀𝛾 ℓ for all ℓ and 𝑡 . Finally, observing that ∥b𝑡 ∥1 < 𝑛 since it is a valid injection strategy, we

have,

∞∑︁
ℓ=𝑘

| |Aℓ𝑡b𝑡 | |1 ≤
∞∑︁
ℓ=𝑘

| |Aℓ𝑡 | |1 · | |b𝑡 | |1 < 𝑛

∞∑︁
ℓ=𝑘

𝑀𝛾 ℓ =

(
𝑀𝑛(1 − 𝛾)−1

)
𝛾𝑘 .

Choosing 𝜆 =
(
𝑀𝑛(1 − 𝛾)−1

)
completes the proof. □

We now prove the theorem.

Proof of Theorem 2. Fix an instance 𝐺 = ( [𝑛], 𝐸), retweet probabilities p, and a value 𝛿 ≤ 1/𝑇 . Fix a solution b∗ to the 𝛿-diversity

program, a time horizon 𝐾 , and induced states x(0) , . . . , x(𝐾 )
. Fix the corresponding constants 𝜆 and 𝛾 from Lemma 1. Recall that x(𝑘 )𝑡 =∑𝑘

ℓ=0 A
ℓ
𝑡b

∗
.

We first consider part (1). Recall that x(b∗) = ∑∞
𝑘=0

Aℓb∗ and hence x(b∗) dominates x(𝑘 ) component-wise. Since eng(x) is monotonic in

the components of x, this means that eng(b∗) ≥ eng(x(𝑘 ) ) for all 𝑘 , so,

1

𝐾 + 1

𝐾∑︁
𝑘=0

eng(x(𝑘 ) ) ≤ 1

𝐾 + 1

𝐾∑︁
𝑘=0

eng(b∗) = eng(b∗).

In the degenerate case where eng(b∗) = 0, (1) immediately follows as both sides are equal to 0. Hence, we now consider the case where

eng(b∗) > 0. Notice that eng(b∗) does not depend on 𝐾 and is hence a constant in the𝑂 () formula, so, rearranging the statement, it suffices

to show that eng(b∗) − eng
𝑎𝑣

(
x(0) , . . . , x(𝐾 )

)
= 𝑂 (1/𝐾). For the rest of the proof, it will be useful to observe that x(𝑘 ) converges to x(b∗).

More formally, using Lemma 1, we have that for all types 𝑡 and times 𝑘 ,


x(b∗)𝑡 − x(𝑘 )𝑡





1

=






 ∞∑︁
ℓ=0

Aℓ𝑡b
∗
𝑡 −

𝑘∑︁
ℓ=0

Aℓ𝑡b
∗
𝑡







1

=






 ∞∑︁
ℓ=𝑘+1

Aℓ𝑡b
∗
𝑡







1

≤ 𝜆𝛾𝑘+1 . (4)

Additionally, we observe that ⟨p𝑡 , x𝑡 ⟩ ≤ ∥x𝑡 ∥1 for all x because each component of p𝑡 < 1. By combining these facts and expanding

definitions, it follows that:

eng(b∗) − eng
𝑎𝑣

(
x(0) , . . . , x(𝐾 )

)
=

∑︁
𝑡

⟨p𝑡 , x(b∗)𝑡 ⟩ −
1

𝐾 + 1

𝐾∑︁
𝑘=0

∑︁
𝑡

⟨p𝑡 , x(𝑘 )𝑡 ⟩ = 1

𝐾 + 1

𝐾∑︁
𝑘=0

∑︁
𝑡

⟨p𝑡 , x(b∗)𝑡 ⟩ −
1

𝐾 + 1

𝐾∑︁
𝑘=0

∑︁
𝑡

⟨p𝑡 , x(𝑘 )𝑡 ⟩

6
https://math.stackexchange.com/questions/2561701/bound-on-the-norm-of-a-matrix-power
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=
1

𝐾 + 1

𝐾∑︁
𝑘=0

∑︁
𝑡

⟨p𝑡 , x(b∗)𝑡 − x(𝑘 )𝑡 ⟩ ≤ 1

𝐾 + 1

𝐾∑︁
𝑘=0

∑︁
𝑡




x(b∗)𝑡 − x(𝑘 )𝑡





1

≤ 1

𝐾 + 1

𝐾∑︁
𝑘=0

∑︁
𝑡

𝜆𝛾𝑘+1

=
𝑡

𝐾 + 1

𝐾∑︁
𝑘=0

𝜆𝛾𝑘+1 ≤ 𝑡

𝐾 + 1

∞∑︁
𝑘=0

𝜆𝛾𝑘+1 =
𝑡𝜆𝛾

(1 − 𝛾) (𝐾 + 1) = 𝑂 (1/𝐾).

Next, we consider part (2), which follows more straightforwardly from Equation (4). Since div(x(𝑏∗)) ≥ 𝛿 by assumption, each component

of x(𝑏∗) ≥ 𝑡 . Since no component can differ by more than the 𝐿1 distance between vectors, each component of x(𝑘 )𝑡 is at least 𝛿 − 𝜆𝛾𝑘+1 by
Inequality (4). Since 𝛾 < 1, 𝜆𝛾𝑘+1 = 1

exp(Ω (𝑘 ) ) , as needed.

We now move on to part (3). Fix a 𝛿-diverse strategy b(0) , . . . , b(𝐾 )
. Consider b𝑎𝑣 = 1

𝐾+1
∑𝐾
𝑘=0

b(𝑘 ) , the average of the time-dependent

injections. First, observe that b𝑎𝑣 is, in fact, a valid injection policy (i.e., nonnegative with no user shown more than one unit) since it is the

linear combination of valid injection policies. We use b𝑎𝑣 to more directly compare the time-dependent strategy to b∗.
We begin by showing that x(b𝑎𝑏 ) component-wise dominates

1

𝐾+1
∑𝐾
𝑘=0

y(𝑘 ) , i.e., 𝑥 (b𝑎𝑏 )𝑡𝑖 ≥ 1

𝐾+1
∑𝐾
𝑘=0

𝑦
(𝑘 )
𝑡𝑖

for all 𝑡 and 𝑖 . To that end,

we unravel the recursive definition of y(𝑘 )𝑡 . We have y(𝑘 )𝑡 =
∑𝑘
ℓ=0 (A𝑡 )𝑘−ℓb

(ℓ )
𝑡 . Plugging that into the linear combination,

1

𝐾 + 1

𝐾∑︁
𝑘=0

y(𝑘 )𝑡 =
1

𝐾 + 1

𝐾∑︁
𝑘=0

𝑘∑︁
ℓ=0

(A𝑡 )𝑘−ℓb(ℓ )𝑡 .

Notice that a term A𝑎𝑡 b
(𝑏 )
𝑡 with a specific combination of 𝑎 and 𝑏 can only appear at most once, only when the outside sum has 𝑘 = 𝑎 + 𝑏.

Hence, since all the summands are nonnegative, we have

1

𝐾 + 1

𝐾∑︁
𝑘=0

𝑦
(𝑘 )
𝑡 ≤ 1

𝐾 + 1

𝐾∑︁
ℓ=0

𝐾∑︁
𝑘=0

(A𝑡 )ℓ𝑏 (𝑘 )𝑡 =

𝐾∑︁
ℓ=0

(A𝑡 )ℓ
(

1

𝐾 + 1

𝐾∑︁
𝑘=0

𝑏
(𝑘 )
𝑡

)
=

𝐾∑︁
ℓ=0

(A𝑡 )ℓ𝑏𝑎𝑣𝑡 ≤
∞∑︁
ℓ=0

(A𝑡 )ℓ𝑏𝑎𝑣𝑡 = 𝑥 (𝑏𝑎𝑣)𝑡

with ≤ defined component-wise. Using this, we have that eng(b𝑎𝑣) ≥ 1

𝐾+1
∑𝐾
𝑘=0

eng(y(𝑘 ) ) = eng
𝑎𝑣

(
y(0) , . . . , y(𝐾 )

)
. Further, notice that

since for each 𝑘 , div(y(𝑘 ) ) ≥ 𝛿 , it follows that div

(
1

𝐾+1
∑𝐾
𝑘=0

y(𝑘 )
)
≥ 𝛿, so again by the component-wise domination, div(x(𝑏𝑎𝑣)) ≥ 𝛿 .

This implies that b𝑎𝑣 is a feasible solution to the 𝛿-diversity program. Hence, by the optimality of b∗, eng(b𝑎𝑣) ≤ eng(b∗). Putting it all
together, we have

eng
𝑎𝑣

(
𝑦 (0) , . . . , 𝑦 (𝐾 )

)
≤ eng(𝑏𝑎𝑣) ≤ eng(𝑏∗) ≤ (1 +𝑂 (1/𝐾))eng𝑎𝑣

(
𝑥 (0) , . . . , 𝑥 (𝐾 )

)
where the last inequality follows from part (1). □

B DEFINITION OF TYPES

For each of the two datasets (abortion, gun control), we derive the types referred to in the main text in the following way. First, we

extract the hashtags for each tweet in the dataset. In the second step, we create a hashtag network from the 2,000 most frequent hashtags. In

this network, each node corresponds to a unique hashtag, and two nodes are connected (by an undirected link) if they occur together in a

tweet. Third, we use the Louvain algorithm [6] to obtain network communities, i.e. unique clusters of related nodes to identify hashtags that

are semantically related. These clusters (communities) define the types, i.e. two hashtags are of the same type if their related nodes are

assigned to the same cluster at the network level. To better illustrate what the types extracted from the datasets semantically refer to, we

show the five (5) most frequent hashtags of each type for the two analyzed datasets (abortion, gun control), see Table 1.

Previously, various techniques have been developed for the semantic clustering of short texts, such as posts on social media. Primarily,

word embeddings were used and then clustering algorithms, especially k-means clustering, were applied. A key challenge with these

techniques is the need to define the granularity of the semantic space, in particular the number of topics, categories or types. Here we take

advantage of the fact that hashtags often summarize the essence of a tweet’s content. Crucially, their co-occurrence with other hashtags

provides a robust semantic signal that emerges at the network level. Using this network representation, community detection algorithms,

such as the Louvain method, can be used to effectively categorize hashtags into different types or categories without specifying their number.

This approach is already well established, and several previous studies have successfully extracted semantic structures from co-occurrence

networks of words and/or hashtags on Twitter [10, 26, 30].
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Table 1: Five most common hashtags for each type

(a) Abortion dataset

Type Hashtags

1 tcot, prolife, abortion, catholic, prochoice

2 maga, trump, ccot, blacklivesmatter, america

3 usa, isis, cdnpoli, israel, islam

4 pjnet, gop, p2, obama, hillary

(b) Gun Control dataset

Type Hashtags

1 gunsense, p2, nra, uniteblue, gop

2 trump, usa, breaking, isis, auspol

3 tcot, maga, america, nfl, veterans

4 2a, pjnet, ccot, rednationrising, tlot

5 hillary, obama, copolitics, imwithher, nevertrump
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Figure 2: Densities of the number of users each user follows and is followed by in each dataset. Densities were computed using

kernel density estimation.
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(a) Colored lines indicate different scaling factors of the original retweet probabilities.
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(b) Colored lines indicate the expected number of incoming retweets for each agent.

Figure 3: Analogous plots to Figure 1 for the Gun Control datset.
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