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Introduction: Auditory-motor interactions can support the preparation for

expected sensory input. We investigated the periodic modulation of beta

activity in the electroencephalogram to assess the role of active auditory-motor

synchronization. Pre-stimulus beta activity (13–30 Hz) has been interpreted as a

neural signature of the preparation for expected sensory input.

Methods: In the current study, participants silently counted frequency deviants in

sequences of pure tones either during a physically inactive control condition or

while pedaling on a cycling ergometer. Tones were presented either rhythmically

(at 1 Hz) or arrhythmically with variable intervals. In addition to the pedaling

conditions with rhythmic (auditory-motor synchronization, AMS) or arrhythmic

stimulation, a self-generated stimulus condition was used in which tones were

presented in sync with the participants’ spontaneous pedaling. This condition

served to explore whether sensory predictions are driven primarily by the auditory

or by the motor system.

Results: Pre-stimulus beta power increased for rhythmic compared to arrhythmic

stimulus presentation in both sitting and pedaling conditions but was strongest in

the AMS condition. Furthermore, beta power in the AMS condition correlated with

motor performance, i.e., the better participants synchronized with the rhythmic

stimulus sequence, the higher was pre-stimulus beta power. Additionally, beta

power was increased for the self-generated stimulus condition compared with

arrhythmic pedaling, but there was no difference between the self-generated and

the AMS condition.

Discussion: The current data pattern indicates that pre-stimulus beta power

is not limited to neuronal entrainment (i.e., periodic stimulus presentation) but

represents a more general correlate of temporal anticipation. Its association with

the precision of AMS supports the role of active behavior for auditory predictions.

KEYWORDS

anticipation, simultaneous motor activity, predictive timing, self-generated stimulation,
temporal expectation, pedaling
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Introduction

Behavioral evidence has shown that temporal processing
of auditory sequences was facilitated when participants
moved in tune with the presented rhythm (Su and Pöppel,
2012). The view that the motor system is involved in sensory
processing was further supported by findings that the
synchronization of rhythmic movements with target sounds
improved attentional selection (Morillon and Baillet, 2017).
Furthermore, the motor system appears to be involved in a
feedforward/feedback loop, i.e., in preparing motor action based
on auditory input regardless of whether or not movements
are to be executed (Stephan et al., 2018). Beat perception and
predictive timing thus might be controlled by sensorimotor
loops.

In this context, beta band activity (approximately 13–
30 Hz) plays a crucial role in sensory prediction. Rhythmic
tone presentation resulted in a periodic pattern of beta activity
in auditory and motor-related cortical regions even in the
absence of a motor task (Fujioka et al., 2009, 2012). Beta
modulation consisted of two parts: while beta desynchronization
denotes a beta amplitude reduction following the presentation
of an anticipated stimulus, beta resynchronization represents an
increase of beta amplitude prior to an anticipated stimulus. As
beta resynchronization also occurs prior to the omission of an
anticipated stimulus (Fujioka et al., 2009, 2012), it seems to
reflect an endogenous process and a preparatory mechanism
for the auditory and motor systems. Beta resynchronization was
more pronounced when participants correctly predicted temporal
deviations of the anticipated stimulus, confirming its role in
prediction accuracy (Arnal et al., 2015). These findings suggest that
beta resynchronization is critically involved in top-down temporal
predictions that serve to enhance perceptual processing (Doelling
and Poeppel, 2015).

In previous studies, we have shown that auditory-motor
synchronization (AMS) affects stimulus encoding (Schmidt-
Kassow et al., 2013; Conradi et al., 2016), as reflected by
a larger post-stimulus P300 component of the event-related
potential in response to rhythmic tones while participants were
pedaling compared to sitting still on a stationary bike. This
has been interpreted as an indicator of improved encoding
and more efficient attention allocation via AMS. The current
study investigated whether AMS increases beta resynchronization,
putatively indicating improved stimulus prediction. We expected
to observe such an association for two reasons: first, simultaneous
motor activity has been shown to improve temporal prediction
(Su and Pöppel, 2012; Morillon and Baillet, 2017). Second, beta-
band activity has been associated both with motor functions (Baker,
2007) and top-down control of the sensorimotor system (Engel and
Fries, 2010). To take a more specific look at the interaction between
motor activity and predictive timing, we compared three types of
simultaneous auditory and motor processes by applying a 2-tone
oddball paradigm in the following experimental conditions: (1)
rhythmic stimulus presentation while participants were pedaling
(RP or AMS condition), (2) arrhythmic stimulus presentation
while subjects were pedaling (AP), and (3) self-generated stimulus
presentation (SP), i.e., participants pedaled at their own pace

and stimuli were presented whenever the pedal crossed a light
barrier.

Adding an additional self-generated stimulus condition
enabled us to compare whether active synchronization with
a given stimulus or self-generated stimuli would lead to
increased beta synchronization compared to arrhythmic
stimulation. If auditory predictions result from outputs from
motor regions, one would expect that self-generated stimuli
result in better predictions. Higher beta resynchronization
preceding self-generated stimulus presentation would indicate
that anticipation is primarily driven by the motor system. As
participants generated their own (internal) rhythm by actively
engaging their motor system, the output from motor regions
should help to predict upcoming stimuli. In contrast, higher
beta power during the AMS condition would suggest that
prediction is primarily driven by the auditory system. Auditory
rhythms result in motor synchronization and this in turn
facilitates auditory predictions in a circular manner. The better
participants synchronize with an auditory signal, the more does
the motor system confirm the external rhythm, thereby improving
temporal prediction.

We also included two physically inactive control conditions
with (4) rhythmic stimulus presentation (RS) or (5) arrhythmic
stimulus presentation (AS) while subjects sat still. We did so
to replicate the previously reported pre-stimulus beta effect for
rhythmic stimuli (Fujioka et al., 2012; Arnal et al., 2015; Doelling
and Poeppel, 2015) and to compare the timing effect (rhythmic
versus arrhythmic) for the sitting conditions with the pedaling
conditions.

Our hypotheses were as follows:

1.) In line with previous work, we expected a timing effect in
both settings and across settings, i.e., higher pre-stimulus
beta activity for rhythmically versus arrhythmically
presented tones. Specifically, this means that we expect
positive clusters for the following contrasts: (a) pedaling:
rhythmic pedaling versus arrhythmic pedaling (RP > AP),
self-generated pedaling versus arrhythmic pedaling
(SP > AP) and (b) sitting: Rhythmic sitting versus
arrhythmic sitting (RS > AS).

2.) If AMS results in increased predictive timing, we expect
higher beta for the rhythmic pedaling versus rhythmic
sitting condition (RP > RS), but not for the arrhythmic
pedaling versus arrhythmic sitting condition (AP-AS) and
a positive correlation between motor performance and
pre-stimulus beta power.

3.) If self-generated stimulus presentation results in increased
predictive timing, we expect higher beta for the self-
initiated pedaling condition compared to the rhythmic
sitting condition (SP > RS).

4.) We had no clear hypotheses for the direction of the effect
for the contrast self-generated pedaling versus rhythmic
pedaling (SP < > RP). As derived above a superiority of
the self-generated condition would indicate that auditory
predictions result from outputs of motor regions while
superiority of the rhythmic pedaling condition would
indicate an origin in auditory regions.
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Materials and methods

The experimental design was identical to our previous
experiment (Conradi et al., 2016), where we reported post-stimulus
event-related potential (P300) data.

Participants

All thirty participants were undergraduates, Master’s or Ph.D.
students at the University of Frankfurt. Four participants had
to be excluded because their electroencephalographic (EEG) data
was too noisy (see section “Electroencephalographic recording and
analysis” below). The remaining 26 participants (15 females, mean
age: 21 years, SD = 3.15) did not report any known neurological
dysfunction or hearing deficit. Participants received a remuneration
of €10,00 per hour.

All methods were carried out according to the guidelines
of the Declaration of Helsinki, and the study was approved by
the Ethics Committee of the University of Frankfurt Medical
Faculty. Participants gave written informed consent to participate
in our experiment.

Experimental design and statistical
analyses

The stimulus material consisted of sinusoidal tones of 50 ms
duration (sound pressure level 75 dB) generated using MATLAB
(The Mathworks, Natick, MA, USA). Standard tones were
presented at a frequency of 600 Hz and with a probability of
0.75. Deviant tones, on the other hand, sounded at 660 Hz
and were presented with a probability of 0.25. While being
presented with the respective tone sequences, the participants
were exposed to five different experimental conditions with
varying degrees of physical activity. In the rhythmic condition,
tones were presented at a constant stimulus onset asynchrony
(SOA) of 1,000 ms. In the arrhythmic condition, the SOAs
varied randomly between 600 and 1,400 ms (SOAs were evenly
distributed around an average of 1,000 ms). To evaluate the
effect of simultaneous motor activity on temporal predictability,
participants were exposed to both rhythmic and arrhythmic timing
conditions, while pedaling on a stationary bike (Conditronic 100
PV/ZR-NS, Dynavit, Kaiserslautern, Germany) at very low intensity
(about 50 W), or while sitting still on the bike. Before initiating
the rhythmic pedaling condition, participants were informed that
they could attempt to synchronize their pedaling rate with the
rhythm of tone presentation. Additionally, we also set up a pedaling
condition that involved self-generated stimulus presentation. In
this condition, participants were initially instructed to pedal at a
1 Hz rate, but then they taught to choose their preferred cycling
rate. Consequently, whenever the pedal crossed a light barrier,
which was built into the stationary bike (see below), it would
trigger the presentation of a new tone. As a result, acoustic
stimulation was adapted to the participants’ current pedaling speed.
In sum, there were five experimental conditions, i.e., rhythmic
stimulation while being inactive (RS), arrhythmic stimulation while
being inactive (AS), rhythmic stimulation while pedaling (RP),
arrhythmic stimulation while pedaling (AP), and self-generated

stimulation while pedaling (SP). Conditions were presented in
blocks, i.e., two blocks per condition. Each block contained 148–
152 tones and lasted for about 3 min. As a result, each participant
finished a total of 10 blocks, whose order was counterbalanced
across participants. Oddball sequences were presented by MATLAB
(The Mathworks, Natick, MA, USA) running on a Windows PC.
Pseudo-randomization ensured that no more than two deviant
tones appeared in a row. The tone sequences were presented
to the participants using headphones (AKG K271, HARMAN
International Industries, Stamford, CT, USA, and Sennheiser MX
365, Sennheiser, Germany). Participants were instructed to silently
count the deviant tones while attempting to minimize upper limb
movements as much as possible in order to reduce possible EEG
artifacts. After each block, participants were asked to report the
number of deviant tones they had counted.

All experimental sessions took place in an air-conditioned,
windowless, and quiet room. During the stimulation phase,
participants faced a white wall to avoid sensory distraction
during the experiment.

Light barrier

For the pedaling conditions, each full rotation was recorded
using a customized microcontroller ( R©Arduino),1 which featured a
light barrier built into the stationary bike. The microcontroller was
triggered each time the pedal would cross the light barrier. This
experimental setup allowed us to record cycling data during the
rhythmic pedaling condition and, during self-generated stimulus
presentation, present auditory stimuli at the participants’ favored
and individual cadence (Conradi et al., 2016).

Electroencephalographic recording and
analysis

Electroencephalographic activity was recorded using 45 Ag/
AgCl electrodes on an elastic electrode cap with 128 equidistant
electrodes (Falk Minow Services, Munich, Germany) and Fz as a
ground electrode. In order to record vertical electrooculography
(vEOG), two electrodes were placed over and under the right
eye. Electrodes were referenced on-line to an average reference.
Electrode impedances were kept below 20 k�. The data
were digitized (sampling rate: 1,000 Hz) using a QuickAmp
amplifier (Brain Products, Munich, Germany) with an anti-aliasing
filter of 250 Hz.

EEG data analysis was performed using MATLAB (The
Mathworks, Natick, MA, USA), using the FieldTrip toolbox for
EEG/MEG analysis (Oostenveld et al., 2011).

Only epochs of standard tones were considered in the current
analysis. In a first step, we segmented the EEG data into epochs of
2,000 ms, which stretched from 1,000 ms prior to stimulus onset
to 1,000 ms after stimulus onset. In addition, we applied a band-
pass filter (0.1 to150 Hz). Afterward, we performed a three-step
procedure in order to automatically remove artifacts: (1) Muscle
artifacts were identified using the automatic algorithm, which is

1 www.arduino.cc
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integrated into the FieldTrip toolbox. In this context, the data were
band-pass filtered (110–140 Hz) and z-transformed. Epochs with
a z-score exceeding the threshold value of 20 were discarded. (2)
To remove eye artifacts, we performed an independent component
analysis (ICA) on the data, using the FastICA algorithm, which
is also provided by the FieldTrip toolbox. Components showing
correlations with vEOG and exceeding the threshold value of
0.3 were removed from the EEG data using back-projecting all
but these components. (3) Epochs showing amplitude differences
between two adjacent time points exceeding 20 µV (so-called jump
artifacts) were marked as bad trials. If the number of bad trials
on a channel exceeded 60%, the channel’s signal was interpolated
by the mean of the neighboring channels. Following channel
interpolation, subjects with fewer than 100 trials per condition were
not included for further analysis (N = 4).

After pre-processing and prior to the time-frequency (TF)
analysis, the data were resampled to 500 Hz. We followed the
protocol for TF analysis by Meijer et al. (2016). Therefore, time-
frequency representations (TFRs) for standard tones at each
electrode and in each condition were computed using Hanning
tapers, using window lengths of 4 cycles per frequency, with 0.25 Hz
steps for frequencies between 6 and 36 Hz. We used mirror padding
to estimate power values at the beginning and end of each epoch.
Single-trial TFRs were baseline-normalized by expressing them as
a relative change (in percentage) to the mean of the respective
trial [per frequency band (Grandchamp and Delorme, 2011)]. For
each experimental condition, we averaged the trials separately,
resulting in five TFRs per participant. Grand-average TFRs for each
condition were computed by calculating the mean TFR across all
subjects.

Beta power differences between relevant conditions were tested
using a data-driven, non-parametric and cluster-based permutation
procedure (Maris and Oostenveld, 2007) between the following
conditions: RS vs. AS and RP vs. AP to assess the timing effect
in sitting and pedaling conditions, as well as RP vs. RS, AP vs.
AS to assess increased temporal prediction in the AMS pedaling
condition. Lastly, we computed contrasts between SP vs. AP/RP
and SP vs. RS condition to assess the effect of self-generated
stimulation on temporal prediction.

In detail, a dependent-sample t-test was conducted to assess
beta resynchronization (12 to 30 Hz) differences in a pre-stimulus
interval (−600 to 0 ms). To account for multiple comparisons
across different time points and electrodes, we performed non-
parametric, cluster-based correction method using within-subject
permutation (Maris and Oostenveld, 2007). Clusters were defined
as adjacent time points and electrodes with uncorrected p-values
below 0.05. The cluster statistic was calculated as the sum of t-values
across each cluster. Cluster significance was assessed with a critical
alpha level of 0.05 based on the probability distribution of 5,000
permuted data sets.

Light barrier analysis

In order to examine the participants’ motor performance,
the data was analyzed for speed (cadence in Hz) and variability
(coefficient of variation) differences between motor conditions (RP,
AP, SP) and in particular for AMS performance in the RP condition.
AMS performance, that is the ability to adjust one’s pedaling rate to

the rhythm of stimulus presentation, was evaluated using inter-beat
interval (IBI) deviation (IBD) and calculated for each trial (Leow
et al., 2015).

IBI deviation =

mean
(
| inter− pedal interval MINUS inter− beat interval |

)
mean

(
inter− beat interval

)
Inter-beat deviation was calculated by taking the absolute

difference between each inter-pedal interval and its corresponding
inter-beat interval (always 1 s) and averaging the resulting absolute
differences. The average difference is usually divided by the average
IBI to normalize to the inter-beat interval and thus control for
differences in cue tempo. However, in our paradigm, the IBI
was constantly 1s.

We were interested in the relationship between beta power
in the pre-stimulus interval and the IBD in the RP condition.
Therefore, we correlated the pre-stimulus beta power with the
IBD values at electrode sites with highest beta power in the
RP-AP condition. The data-driven non-parametric, cluster-based
permutation procedure, i.e., randomly permuting the values of
the independent variable across subjects, was used to account for
multiple comparisons across time points, and electrodes (Maris and
Oostenveld, 2007). Clusters were defined as adjacent time points
and electrodes with uncorrected p-values below 0.05 and cluster
statistic was calculated as the sum of t-values across each cluster.
Cluster significance was assessed with a critical alpha level of 0.05,
based on the probability distribution of 5,000 permuted data sets.

For pedaling speed and variability, we computed two repeated-
measures ANOVA with the Factor condition (RP, AP, SP) on the
dependent variables cadence in Hz and coefficient of variability.

Code accessibility

All analyses were conducted in MATLAB (MathWorks, Natick,
MA, USA). MATLAB scripts for all EEG and motor behavior
processing and analysis steps.2 These codes were designed for
using the open-source toolbox Fieldtrip, version 20190413 and
MATLAB 2012b. Data can be made available upon request to the
corresponding author (MSK).

Results

Behavioral performance

On average, participants made less than one error per condition
(SP: 0.68 errors, SD = 0.95; RP: 0.74 errors, SD = 0.93; AP: 1.32
errors, SD = 1.60; RS: 0.79 errors, SD = 0.86; AS: 0.47 errors,
SD = 0.51) indicating that they paid attention to the tone sequences.
The omnibus ANOVA revealed neither a significant main effect of
timing or setting nor an interaction between timing and setting (all
p-values > 0.09).

2 https://github.com/mschmidt-kassow/prestimbeta

3 https://www.fieldtriptoolbox.org/
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FIGURE 1

Single experimental conditions: Pre-stimulus beta power grand average across significant electrodes plotted separately for each experimental
condition. Beta power is plotted as relative change from the mean in percent. Arrows and lines indicate the hypotheses-guided computed contrasts.
Significant effects are plotted in black, non-significant effects are plotted in gray. RP, rhythmic pedaling; AP, arrythmic pedaling; RS, rhythmic sitting;
AS, arrhythmic sitting; SP, self-generated pedaling.

Beta power

First, we tested for pre-tone beta power differences between
rhythmic and arrhythmic tone presentation in a pre-stimulus time
window ranging from −650 to 0 ms. In all comparisons, we
found a stronger pre-stimulus beta power increase in response
to temporally predictable tones as compared to arrhythmic
stimulation (see Figures 1, 2).

For the comparison of rhythmic versus arrhythmic tones in the
sitting condition (RS vs. AS, see Figure 2), we found a positive
cluster in a pre-stimulus time window from −374 to −302 ms
(p = 0.046). For the pedaling condition (RP vs. AP, see Figure 2), we
also found a positive cluster in a pre-stimulus time window ranging
from −528 ms to −390 ms (p = 0.0005). Similarly, the comparison
between self-generated pedaling and arrhythmic pedaling (SP vs.
AP) resulted in a positive cluster in a time window from −508 to
−434 ms (p = 0.035).

Most importantly we found a positive cluster for the contrast
rhythmic pedaling versus rhythmic sitting (RP vs. RS, −528 to
−484 ms, p = 0.037) but no cluster for the arrhythmic pedaling
versus arrhythmic sitting (AP vs. AS) nor for self-generated

pedaling versus rhythmic sitting (SP vs. RS). Furthermore, we
found no cluster for the contrast rhythmic pedaling vs. self-
generated pedaling. Cluster significance was corrected using the
Hochberg procedure (Hochberg, 1988).

Motor performance

On average, subjects cycled at a cadence of 1.05 Hz (0.046) in
the self-generated, 1.02 Hz (0.04) in the rhythmic, and 1.027 Hz
(0.068) in the arrhythmic condition. The repeated-measures
ANOVA revealed no significant effect of condition (p > 0.06).

Concerning motor variability, as measured by the coefficient
of variation, participants were descriptively less variable in their
motor execution in the rhythmic pedaling (cv = 0.029) and self-
generated pedaling (cv = 0.029) condition when compared to the
arrhythmic pedaling condition (0.032). However, these differences
did not reach significance (p > 0.2).

However, the IBI deviation (IBD) in the rhythmic pedaling
condition [Mean = 0.046 (0.02)] was negatively correlated with pre-
stimulus beta frequency power, as revealed by a negative cluster in
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FIGURE 2

Differences between experimental conditions: Panel (A)
pre-stimulus beta power grand average across significant
electrodes. White rectangles indicate significant time windows. Beta
power is plotted as relative change from the mean in percent. Panel
(B) Topographical distributions of the t-values of the pre-stimulus
beta power effects. White circles indicate electrode sites that belong
to the significant cluster. Upper row: RS-AS condition; second row:
RP-AP condition; third row: SP-AP condition; bottom row: RP-RS
condition; RP, rhythmic pedaling; AP, arrythmic pedaling; RS,
rhythmic sitting; AS, arrhythmic sitting; SP, self-generated pedaling.

a time window from −400 to −378 ms (r = −0.433; p = 0.035,
see Figure 3). This means that participants, who deviated more
from the presented auditory stimulus rhythm, showed a smaller
beta power resynchronization.

Discussion

The present study investigated whether pre-stimulus beta
power varies as a function of auditory-motor synchronization and
temporal predictability. Our results show that rhythmic as opposed
to random tone presentation leads to an increase of pre-stimulus
beta power, both for the sitting and the pedaling conditions. Most

importantly this increase is stronger for the AMS compared to
the sitting condition and AMS performance is correlated with
pre-stimulus beta power, i.e., the better participants synchronize
their motor execution, the higher is pre-stimulus beta power in
the pedaling condition. This finding indicates that engaging in
synchronized motor activity promotes predictive timing processes.
A novel aspect of this study was the incorporation of self-generated
(SP) tone presentation into a predictive timing paradigm. Although
there is a huge body of evidence showing that self-generated
stimuli elicit smaller post-stimulus brain responses compared to
externally generated sounds (“sensory attenuation,” e.g., Abbasi
and Gross, 2020), here we focused on pre-stimulus brain activity
and compared three different motor conditions: SP, RP/AMS, and
a temporally unrelated motor condition (AP). We provide the
novel finding that self-generated tone presentation resulted in
a larger enhancement of pre-stimulus beta power compared to
arrhythmic tone presentation during physical activity but there was
no significant difference between rhythmic motor conditions (SP
and RP).

At first glance, our beta effects seem unusually early (300
to 500 ms prior to the onset of the next tone), given that
most previous studies have reported predictive beta power
peaking immediately preceding the next (expected) tone (Fujioka
et al., 2009, 2012). However, this discrepancy might be due to
the different experimental setups. Fujioka et al. (2009) asked
participants to watch a silent movie while they listened to auditory
stimuli, resulting in a pre-attentive experimental condition. In
our experiment, participants were shielded from visual distraction
and asked to actively direct their attention toward the stimuli by
performing a counting task. Furthermore, we used 1,000 ms SOAs,
whereas Fujioka et al. (2009, 2012) used much shorter SOAs (390
to 780 ms). In a more recent study, (Fujioka and Ross, 2017)
used longer SOAs (400, 800, and 1,200 ms). In the 1,200-ms SOA
condition, they found beta power peaks at approximately 400 ms
prior to the next beat, which points in a similar direction as our
findings. Therefore, the earlier beta peaks in our study may also be
attributed to the longer SOA.

In the current study, we have also carefully controlled that
our pre-tone beta effect was not simply driven by better aligned
periodic movements in the AMS condition (RP) compared to the
random pedaling condition (AP) since pre-motor beta modulation
might have overridden the auditory-induced beta modulation. We
therefore also computed TFRs locked to the motor onset for
the rhythmic pedaling and the random pedaling condition and
compared both conditions in a pre-motor time window (RPmot vs.
APmot, please see Supplementary Figure 1). If our reported pre-
stimulus beta effect was motor-driven, we would have expected a
comparable beta activity for all motor conditions when time-locked
to the motor onset, since neither cadence nor motor variability
varied significantly across conditions. However, this was not the
case. While, in line with motor performance, RPmot did not differ
significantly from APmot when locked to motor onset, the SP
condition led to a significantly higher beta peak than RPmot (please
see Supplementarymaterial). Here it has to be kept in mind that in
the SP condition, motor and tone onset coincided. This means that
the beta effect in the SP condition was not only driven by motor
activity, but by auditory-driven predictive timing processes. Hence,
we argue that the stronger pre-tone beta increases both in the SP
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FIGURE 3

Sensory-motor interaction: Panel (A) correlation between pre-stimulus beta power change in percent in the rhythmic pedaling condition and
synchronization performance as measured by the IBI deviation. Panel (B) topographical distribution of the rho-values of the negative cluster for the
respective correlation in the significant time window from –406 to –382 ms. White circles indicate electrode sites that belong to the significant
cluster.

and RP conditions compared to the AP condition were driven by a
stronger temporal anticipation of the next incoming tone.

Besides the question of whether simultaneous activity enhances
temporal predictability, we were particularly interested in
disentangling two possibilities of how motor activity may interact
with auditory processing: If auditory predictions resulted from
outputs from motor regions, we would have expected higher beta
power for self-generated stimuli. In contrast, higher beta power
for the AMS condition would have suggested that predictions are
primarily driven by the auditory system, i.e., auditory rhythms
result in motor synchronization and this in turn facilitates auditory
predictions in a circular manner.

Our results indicate that both mechanisms result in better
predictions compared to random stimulus presentation since we
found positive clusters for the contrasts RP vs. AP as well as SP
vs. AP. However, interestingly only the AMS condition resulted in a
superiority effect compared to the rhythmic sitting condition. Thus,
the current results from the RP/AMS condition indicate that active
motor synchronization with a given auditory rhythm increases
temporal predictions in a circular manner. This finding matches
the predictions of the Action Simulation for Auditory Prediction
Hypothesis (ASAP, Patel and Iversen, 2014), which assumes that
rhythm perception depends on internal predictive models, which
help the brain to simulate body movements to entrain neuronal
activity in the motor planning system to the beat, as, e.g., in
dancing or finger tapping. The main neuronal pathways associated
with beat-based timing should involve the dorsal auditory stream,
which represents a communication interface between the auditory
and motor planning regions. Conversely, information obtained
from simulating body movements serves as a predictive signal,
which is passed from the motor planning regions to the auditory
regions. The ASAP hypothesis serves as a good explanation for
our findings regarding the RP condition, as AMS performance
was positively associated with beta power, i.e., the better AMS
performance, the higher pre-stimulus beta power. In line with the
ASAP approach, AMS involves the participant’s active engagement

with the environment, which provides bottom-up feedback to
the auditory-motor system about the accuracy of the previously
generated intrinsic predictions regarding the anticipated auditory
input.

Second, we also provided evidence that self-generated tone
presentation enhances predictive timing processes compared to
random tone presentation while pedaling but not compared to
rhythmic tone presentation while sitting. This result complements
data from our previous study (Conradi et al., 2016), where we
focused on post-stimulus EEG activity, i.e., the P300. In this
previous study, we failed to find a beneficial effect of self-generated
stimulus presentation compared to random tone presentation while
pedaling. This indicates that motor outputs generate auditory
predictions (as shown by increased beta) but were not involved
in stimulus encoding (as indicated by a missing P300 response).
A plausible explanation for this discrepancy was provided by
Morillon et al. (2016) who found that temporal predictions as such,
and neuronal entrainment to rhythmic stimuli represent separable
processes: the enhancement of sensory sensitivity does not depend
exclusively on the rhythmic entrainment, but seems to depend
more on the participants’ ability to predict when the stimulus
will occur (as seen in both SP and RP/AMS conditions). The
authors compared three different timing conditions: (a) “periodic
predictable,” comparable to our rhythmic condition (RS), and (b)
“aperiodic predictable,” where stimuli were presented in streams of
decreasing and increasing SOA, i.e., they were not rhythmic, but
still predictable. Finally, there was (c) an “aperiodic unpredictable”
condition, which corresponds to our arrhythmic condition (AS).
They found decreased reaction times to periodic predictable
stimuli only, but increased sensory sensitivity for both periodic
and aperiodic predictable stimuli (conditions a and b). However,
the “aperiodic predictable” condition (b) was also arrhythmic,
whereas, in the current study, we compared a rhythmic periodic
(or isochronous) with a rhythmic aperiodic (or self-generated, i.e.,
not isochronous) condition. Our beta power results indicate that
temporal predictability in general (i.e., RP/AMS and SP) leads
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to better preparedness for the incoming stimuli as shown by
increased beta power, which is also in line with previous studies
(Morillon et al., 2016; Ede et al., 2020; Heynckes et al., 2020),
while only rhythmic periodic stimulation is beneficial for the
actual evaluation and categorization of the perceived stimulus, as
reflected by the previously reported P300 component. However,
only AMS leads to a superior timing effect compared with the
physically inactive rhythmic condition which is dependent on the
participants’ AMS performance. These findings imply that neither
motor activity per se (as in the arrhythmic pedaling condition)
nor the planning of stimulus generation via motor activity (as in
the self-generated condition) enhances the predictive timing in
comparison to rhythmic stimulus presentation. It is the process
of actively synchronizing one’s motor response with a rhythmic
stimulus presentation that leads to participants’ better preparedness
to evaluate the incoming stimulus.

Our pattern of results corroborate the notion that beta
oscillations reflect a neuronal network serving as a cortical
communication interface between auditory and motor regions
(Fujioka et al., 2009; Fujioka and Ross, 2017) and that they play
an important role in predictive timing. The degree of pre-stimulus
beta power, and hence the accuracy of predictive timing, seems to
be correlated positively with the integration of externally generated
rhythms into the motor system. As a result, these sensorimotor
loops complement each other in order to both facilitate and
improve predictive timing and accuracy (Arnal et al., 2015). The
importance of these neuronal circuits becomes apparent when
brain regions associated with rhythm perception, and/or motor
functions are affected by disorders such as Parkinson’s disease (Levy
et al., 2002; Hammond et al., 2007; Lei et al., 2019) or stuttering
(Falk et al., 2015). In the future, we recommend using different
experimental setups with variable types of motor activity (finger
tapping, walking, pedaling) and to investigate the functional role of
one or the other prediction process and their development across
the life span. It would be interesting to know more about which of
the two processes (self-generated stimuli or AMS) leads to better
temporal predictions in childhood or during aging.
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