


Triangles in the brain:

The role of hierarchical structure in language use



Funding body
This research was funded by the Max Planck Society for the Advancement of
Science (www.mpg.de/en) in the form of an IMPRS for Language Sciences PhD
Fellowship (2018-2022) awarded to Cas Coopmans.

International Max Planck Research School (IMPRS) for Language Sciences
The educational component of the doctoral training was provided by the In-
ternational Max Planck Research School (IMPRS) for Language Sciences. The
graduate school is a joint initiative between the Max Planck Institute for Psy-
cholinguistics and two partner institutes at Radboud University – the Centre for
Language Studies, and the Donders Institute for Brain, Cognition and Behaviour.
The IMPRS curriculum, which is funded by the Max Planck Society for the Ad-
vancement of Science, ensures that each member receives interdisciplinary train-
ing in the language sciences and develops a well-rounded skill set in preparation
for fulfilling careers in academia and beyond. More information can be found at
www.mpi.nl/imprs

The MPI series in Psycholinguistics
Initiated in 1997, the MPI series in Psycholinguistics contains doctoral theses
produced at the Max Planck Institute for Psycholinguistics. Since 2013, it in-
cludes theses produced by members of the IMPRS for Language Sciences. The
current listing is available at www.mpi.nl/mpi-series

© 2023, Cas Coopmans
ISBN: 978-94-92910-46-2
Cover design by Shuang Bi
Printed and bound by Ipskamp Drukkers, Enschede

All rights reserved. No part of this book may be reproduced, distributed, stored
in a retrieval system, or transmitted in any form or by any means, without prior
written permission of the author. The research reported in this thesis was con-
ducted at the Max Planck Institute for Psycholinguistics, in Nijmegen, the Nether-
lands

https://www.mpg.de/en
https://www.mpi.nl/imprs
https://www.mpi.nl/mpi-series


Triangles in the brain:

The role of hierarchical structure in language use

Proefschrift ter verkrijging van de graad van doctor

aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,

volgens besluit van het college voor promoties

in het openbaar te verdedigen op

woensdag 29 maart 2023

om 12.30 uur precies

door

Casimir Willem Coopmans

geboren op 8 juni 1994

te Apeldoorn



Promotoren:

Prof. dr. Peter Hagoort

Prof. dr. Helen de Hoop

Copromotor:

Dr. Andrea E. Martin

Manuscriptcommissie:

Prof. dr. Herbert J. Schriefers

Prof. dr. David Poeppel (New York University, Verenigde Staten)

Dr. Nina Kazanina (University of Bristol, Verenigd Koninkrijk)







Contents

1 General introduction 13
1.1 Linguistics and psychology: Structure vs. use? . . . . . . . . . . . . 14

1.2 A brief review of the empirical evidence . . . . . . . . . . . . . . . . 17

1.2.1 Hierarchy in language . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.2 Hierarchy in behavior . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.3 Hierarchy in the brain . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Hierarchy in language interpretation: Evidence from behav-
ioral experiments and computational modeling 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Behavioral evidence for hierarchical structure . . . . . . . . 29

2.1.2 Computational modeling of hierarchical structure . . . . . 31

2.1.3 Background of the present study . . . . . . . . . . . . . . . . 32

2.2 Methods and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.3 Computational modeling . . . . . . . . . . . . . . . . . . . . . 40

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Linear models of hierarchical structure . . . . . . . . . . . . 54

2.3.2 Structure, statistics, or both? . . . . . . . . . . . . . . . . . . 57

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Constraining cognitive computational models of language 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Possible structures, not probable strings . . . . . . . . . . . . . . . . 60

3.2.1 Evidence from co-reference and binding . . . . . . . . . . . 61

3.2.2 Implications for computational modeling . . . . . . . . . . . 64

3.3 The limits of variation: Impossible languages . . . . . . . . . . . . . 65

3.3.1 Evidence from artificial language learning . . . . . . . . . . 66

3.3.2 Implications for computational modeling . . . . . . . . . . . 68

3.4 Constraining cognitive computational models . . . . . . . . . . . . . 70



8 Contents

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Effects of structure and meaning on cortical tracking of lin-
guistic units in naturalistic speech 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.1 Cortical tracking of linguistic structure . . . . . . . . . . . . 75

4.1.2 Background of the present study . . . . . . . . . . . . . . . . 77

4.1.3 The present study . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.3 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.4 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.5 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.6 Idiom knowledge test . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.7 Speech preprocessing . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.8 EEG recording and preprocessing . . . . . . . . . . . . . . . . 86

4.2.9 Mutual information analysis . . . . . . . . . . . . . . . . . . . 88

4.2.10 Statistical analysis of MI values . . . . . . . . . . . . . . . . . 88

4.2.11 ERP preprocessing and analysis . . . . . . . . . . . . . . . . . 89

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Speech tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.2 Syntax tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.3 ERPs to sentence-final verb . . . . . . . . . . . . . . . . . . . . 95

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 Effects of composition in processing idioms and syntactic

prose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.2 Sentence vs. word lists: Structure and acoustics . . . . . . 99

4.4.3 Cortical tracking of lexicalized structure . . . . . . . . . . . 100

4.4.4 Effects of composition on word-level speech tracking . . . 102

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

S4 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . 104

S4.1 Analysis of modulation spectra . . . . . . . . . . . . . . . . . 104

S4.2 EEG electrode layout . . . . . . . . . . . . . . . . . . . . . . . 105

S4.3 Spectral power analysis . . . . . . . . . . . . . . . . . . . . . . 105



Contents 9

5 Neural source dynamics of hierarchical structure building dur-
ing natural story listening 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.1 Neuro-computational models of sentence comprehension . 108

5.1.2 The present study . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.2 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.3 Syntactic annotations . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.4 Procedure and data acquisition . . . . . . . . . . . . . . . . . 117

5.2.5 MEG preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.6 Source reconstruction . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.7 Predictor variables . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.8 Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.9 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.10 Evaluation of the response functions . . . . . . . . . . . . . . 122

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.1 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.2 Evaluation of the response functions . . . . . . . . . . . . . . 124

5.3.3 Region of interest analysis . . . . . . . . . . . . . . . . . . . . 125

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.1 Predictive structure building in the brain . . . . . . . . . . . 128

5.4.2 Is node count the right linking hypothesis? . . . . . . . . . . 132

5.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

S5 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . 135

S5.1 Auditory stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . 135

S5.2 Comparisons against the base model . . . . . . . . . . . . . . 135

6 Hierarchical structure in language and action: A formal com-
parison 143
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2 Hierarchical structure in language . . . . . . . . . . . . . . . . . . . . 145

6.2.1 Properties of syntactic structure . . . . . . . . . . . . . . . . . 147

6.2.2 Formalizing linguistic structure . . . . . . . . . . . . . . . . . 150

6.3 Hierarchical structure in actions . . . . . . . . . . . . . . . . . . . . . 160

6.3.1 Formalizing action structure (1) . . . . . . . . . . . . . . . . 161

6.3.2 Formalizing action structure (2) . . . . . . . . . . . . . . . . 163



6.4 Language vs. action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.4.1 A formal comparison . . . . . . . . . . . . . . . . . . . . . . . 168

6.4.2 The nature of structure . . . . . . . . . . . . . . . . . . . . . . 169

6.4.3 Levels of abstraction . . . . . . . . . . . . . . . . . . . . . . . . 173

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7 General discussion 177
7.1 A discussion of the main findings . . . . . . . . . . . . . . . . . . . . 177

7.2 Are there triangles in the brain? . . . . . . . . . . . . . . . . . . . . . 182

7.3 Hierarchy beyond language . . . . . . . . . . . . . . . . . . . . . . . . 186

7.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

References 191

Nederlandse samenvatting 233

Research data management 239

Acknowledgements 241

Curriculum Vitae 245

Publications 247







1 | General introduction

Why aren’t we puzzled when we read a sentence like “the boy who forgot his

books ran home”? And why don’t we get confused if someone says “the books

that excite the student are heavy”? Both sentences contain sequences of words

that are deviant in some way. When presented in isolation, the underlined part

in “the boy who forgot his books ran home” is semantically incoherent, and the

underlined part in “the books that excite the student are heavy” is clearly un-

grammatical. As isolated sentences, both sequences would raise eyebrows, but

when embedded in the larger sequences, their deviance goes completely unno-

ticed.

The reason that these locally incoherent or ungrammatical substrings are not

perceived as being deviant is that phrases and sentences are more than just

strings of words; their structure is organized hierarchically. While we produce

language one word after another, as if the words are beads on a string, our inter-

pretation follows from the way these words are grouped into hierarchically or-

ganized constituents. These hierarchical constituents can be denoted visually by

means of geometrical structures, as shown in Figure 1.1. These representations

are often called tree structures because of the way in which their increasingly

diverging nodes and leaves resemble a branching tree upside down.

This hierarchical organization cannot be perceived directly – it is inaudible

and invisible, hidden behind the linear surface order of the words – but it is

there nonetheless. To illustrate its psychological relevance, consider again the

example sentences from the first paragraph, whose tree structures are presented

in Figure 1.1. What can be seen in the figures is that the sequences “his books

ran home” (Figure 1.1A) and “the student are heavy” (Figure 1.1B) are never

grouped together below one triangle, which is to say that they never form a

constituent in these structures. Structurally speaking, “his books” belongs to

“who forgot” rather than to “ran home”, and “the student” is connected to “that

excite” rather than to “are heavy”. The fact that we do not even consider the

alternative linear connections (e.g., “his books ran home”) supports a conclusion

that might at first thought seem paradoxical: when it comes to phrases and

sentences, what reaches our eyes and ears is linear order, but what our minds
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perceive is hierarchical structure (Moro, 2015). Or, to state it differently, the fact

that we aren’t necessarily puzzled by subsequences like “his books ran home”

supports the existence of triangles in the brain.

A ...

VP

ran home

NP

NP

CP

who forgot his books

boy

the

B ...

VP

are heavy

NP

NP

CP

that excite the student

books

the

A ...

VP

PP

in the garage

VP

NP

hcarhthe

kept

John

B ...

VP

NP

PP

in the garage

NP

hcarhthe

kept

John3

Figure 1.1: Two geometrical structures representing the hierarchical structure of
sentences. The colored triangles represent syntactic constituents.

1.1 Linguistics and psychology: Structure vs. use?

Facts of this sort are discussed primarily in the field of linguistics, which is con-

cerned with the study of language structure. However, within the psychology of

language, which experimentally studies how language is used in real time, these

facts remain controversial. Despite the empirical evidence from linguistics sup-

porting the relevance of structure, psycholinguists have questioned whether hi-

erarchical syntactic structures are always computed during actual language use.

This is quite remarkable, because both linguists and psychologists of language

are ultimately studying the same cognitive system. Why would the principles

that explain language structure be ignored during language use?

When asked about the relationship is between linguistics and psychology,

Noam Chomsky once remarked:

“In my opinion one should not speak of a ‘relationship’ between linguistics

and psychology, because linguistics is part of psychology ... In general, the

following distinction is often made: linguistics is the study of language,

and psychology the study of the acquisition or utilization of language. This

distinction does not seem to me to make much sense. No discipline can

concern itself in a productive way with the acquisition or utilization of a

form of knowledge, without being concerned with the nature of that system

of knowledge.”

Chomsky (1979, p. 43)
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This quote expresses two views that are at the basis of the work presented in

this thesis. The first is that one cannot seriously study the utilization of a form

of knowledge, like language, without being concerned with the nature of that

system of knowledge. Language use presupposes knowledge of language, so in

order to study how our brains represent and process language, it is important to

be explicit about what has to be represented and processed (Chomsky, 1965).

Indeed, evidence from processing can be interpreted most directly if the repre-

sentational and computational challenges faced by the parser are well under-

stood (e.g., what are the properties of the structure that must be built?). In this

sense, linguistic theory provides the basis for investigations into the psychology

and neurobiology of language.

The second view is that “linguistics is part of psychology”. A reformulation of

this view, more focused on the specific topic of this thesis, is that grammar and

processing describe a single cognitive system (Lewis & Phillips, 2015; Phillips

& Lewis, 2013). This one-system view holds that there is only one grammati-

cal system, used for both ‘offline’ acceptability judgements and ‘online’ language

processing. Offline and online data thus represent different snapshots of the

processes within this one system, and theories of grammar and processing are

theories of (the outputs of) these processes, stated at different levels of descrip-

tion (Lewis & Phillips, 2015). A key prediction of the one-system view is that

if theoretical work on the structural properties of language uncovers linguistic

principles, whether invariant or language-specific, these principles should some-

how be represented in the human brain, and therefore be measurable with brain

recordings and in behavioral experiments. In contrast, an alternative view holds

that the cognitive systems for grammar and language processing are separate

and have different properties (Ferreira & Patson, 2007; Frank et al., 2012; Fra-

zier, 2015; Townsend & Bever, 2001). Proponents of this two-system view argue

that there are two systems, one containing a static body of knowledge (the gram-

mar), which we rely upon when making acceptability judgments, the other a set

of heuristic procedures that yield less detailed representations and that are used

during everyday comprehension and production. If the two-system view is cor-

rect, this will have important implications for the possible interaction between

linguists and psycholinguists. It means that grammatical theories do not need

to account for psycholinguistic data and that psycholinguistic data will have no

bearing on grammatical theories, because these data reflect the workings of a

language processing system that does not directly recruit the grammar.
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The main challenge for the two-system view is to provide an explanation for

why the output of language processing is often so similar to the representations

licensed by the grammar (Lewis & Phillips, 2015). If the two systems rely on dif-

ferent mechanisms, consistent alignment between them is unexpected, unless

there is a specific account of how they interact. Conversely, the main challenge

for the one-system view is explaining cases of misalignment between what is

predicted by grammatical theories and what is found in measures of language

processing. If there is only one grammatical system, arbitrary divergence be-

tween offline and online data is problematic. Yet, these misalignments do occur

(see Section 1.2.2), and they are frequently cited in support of the representa-

tional infidelity of language processing mechanisms.

Cases of misalignment have also stirred controversy about the role of hierar-

chical structure in language use. In particular, it is often reported that linear

properties of phrases and sentences, including sequential statistics, affect their

comprehension (Arnon & Snider, 2010; Christianson et al., 2001; Ferreira & Pat-

son, 2007; Frank & Bod, 2011; Tabor et al., 2004; Townsend & Bever, 2001).

These findings are taken to show that hierarchy is somehow less fundamental,

because a non-hierarchical system is simpler and therefore more parsimonious

(Frank et al., 2012; Frank & Christiansen, 2018). This argument is problem-

atic, however, for two main reasons. First, effects of linearity are not surprising

because externalized language, whether spoken or signed, has serial properties

due to the fundamental constraint that time is one-dimensional.1 Even in the

extreme case that the syntactic system does not care about linearity at all, lin-

ear effects are expected because the hierarchical structure has to be constructed

from or flattened to a one-dimensional sequence for comprehension and produc-

tion. If anything, sequential effects arising in this linearity-to/from-hierarchy

transduction process are informative about how parsers select among possible

representations, not about what those representations are (Phillips, 2013). Sec-

ond, arguments from simplicity or parsimony should be invoked only when two

competing systems are equivalent in empirical coverage. Yet, no linguistic sys-

tems exist that are both descriptively adequate and eschew hierarchy altogether.

Besides, it is not at all clear that for a biological system like the human brain

linearity is ‘simpler’ than hierarchy. Hierarchical structure allows for effective or-

ganization and control of information (Dawkins, 1976) and can be compressed

1Whether the visual modality in sign language affords more hierarchical cues in the exter-
nalized signal via the parallel use of the face and both hands is still an open question. Even
in signs, however, the amount of hierarchical information will be limited by exactly the same
temporal constraints.
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efficiently in the form of generative mental programs (Dehaene et al., 2022; Res-

tle, 1970; Simon, 1972), possibly explaining why humans encode information

in a hierarchical manner whenever they can (Fitch, 2014). I will come back to

this point in the general discussion.

1.2 A brief review of the empirical evidence

What is the evidence that the human mind computes hierarchical structure? I

will briefly review relevant observations of three different types: observations

about language, observations of people’s behavior in psycholinguistic experi-

ments, and observations of people’s brain activity in neuroimaging studies. As

each of the separate chapters in this thesis will discuss evidence from similar

sources, this review will only highlight a few critical observations.

1.2.1 Hierarchy in language

A clear illustration of the existence of hierarchy in language is the fact that one

sequence of words can be associated with multiple interpretations, even if none

of the words is ambiguous. Consider the following example (from Lightfoot,

1982):

(1) John kept the car in the garage.

On one interpretation, “in the garage” refers to the place where John keeps his

car – he kept it in the garage, not in the driveway. On a different reading, “in the

garage” says something about “the car”, so the sequence “the car in the garage”

is interpreted as a unit, referring to a specific car that John kept (i.e., he did not

sell it). The existence of structural ambiguity has a deep implication for the way

language is mentally represented: “if some string of words can correspond to

two meanings in the mind, meanings in the mind cannot be strings of words”

(Pinker, 1997, p. 70). Instead, meanings in the mind hinge on hierarchical

structure, as is illustrated by the two representations in Figure 1.2, which again

use triangles to represent constituents.
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A ...

VP

ran home

NP

NP

CP

who forgot his books

boy

the

B ...

VP

are heavy

NP

NP

CP

that excite the student

books

the

A ...

VP

PP

in the garage

VP

NP

hcarhthe

kept

John

B ...

VP

NP

PP

in the garage

NP

hcarhthe

kept

John3

Figure 1.2: Two hierarchical representations underlying the sentence “John kept
the car in the garage”. The ‘he-kept-it-in-the-garage’ interpretation
is derived from (A), the ‘he-did-not-sell-it’ interpretation corresponds
to (B).

Here, the constituent “in the garage” modifies either the verb phrase (VP)

“kept the car” or the noun phrase (NP) “the car”, in line with the ‘he-kept-it-in-

the-garage’ meaning and ‘he-did-not-sell-it’ meaning, respectively. This property

of language, in which the meaning of a complex expression is built up from the

meanings of its parts and the way in which they are structurally combined, is

called compositionality (Partee, 1995).

Beyond affecting meaning, the hierarchical structure underlying phrases and

sentences also affects their behavior in response to syntactic operations. To see

how, consider the following passive sentence (again from Lightfoot, 1982):

(2) The car was kept in the garage.

In contrast to (1), sentence (2) is not ambiguous; it relates to just the ‘he-kept-

it-in-the-garage’ interpretation. In short, displacement of “the car” is sensitive to

the structural configuration of the sentence (Figure 1.2). The ‘he-did-not-sell-it’

reading could only be derived from (2) via a structural configuration that would

violate a locality restriction on long-distance dependencies, so it is unavailable.

Because syntactic relations and operations, including the ones underlying pas-

sivization, apply to constituents rather than to the individual words these con-

stituents are made up of, they are said to be structure-dependent (Chomsky,

1957, 1965; Everaert et al., 2015).

Note that the observation that (1) is ambiguous but (2) is not would be puz-

zling if all language did was concatenate words into sequences. These examples

thus make clear that in order to deal with the syntactic regularities we find in

natural language, we have to be able to handle hierarchical constituent struc-

ture.
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1.2.2 Hierarchy in behavior

The previous section relied on judgements about meaning and acceptability,

which are commonly called offline responses because they are elicited without

time restrictions. As mentioned in Section 1.1, it is debated whether the princi-

ples that explain these offline data should also account for time-sensitive online

responses, which reflect the real-time processes of the language system. On the

one hand, supporting the one-system view, behavioral experiments have shown

that hierarchical models predict reading times in naturalistic settings (Baumann,

2014; Fossum & Levy, 2012; van Schijndel & Schuler, 2015). Moreover, people

are highly sensitive to structure-dependent principles when processing syntactic

constructions that include a variety of complex configurations, such as reflex-

ives (Cunnings & Sturt, 2014; Dillon et al., 2013), anaphoric pronouns (Chow

et al., 2014; Kush et al., 2015), proper names (Kazanina et al., 2007), filler-gap

dependencies (Phillips, 2006; Traxler & Pickering, 1996), and ellipsis (Martin

& McElree, 2008; Yoshida et al., 2013). On the other hand, for many of these

constructions it has been shown that non-structural factors affect their compre-

hension, which could be evidence for misalignment, consistent with the two-

system view. Yet, the strongest evidence for misalignment would be the finding

that the representations considered by the parser are wholly inconsistent with

those of the grammar, such as when people derive an interpretation or analy-

sis from a sentence that is not licensed by its grammatical structure (‘illusions

of grammaticality’; see Phillips et al., 2011 for a review). One such example

is a phenomenon known as agreement attraction (Bock & Miller, 1991), as in

(3), whose ungrammaticality often goes unnoticed in both comprehension and

production.

(3) *The key to the cabinets are on the table.

Here, the verb incorrectly agrees in number with the noun to which it is linearly

closest (the noun “cabinets”, which is the ‘attractor’), rather than the subject

noun (phrase) to which it is hierarchically related (“key”). This finding receives

an initially plausible explanation in terms of ‘proximity concord’, wherein prox-

imity is defined in terms linear rather than hierarchical distance. If that explana-

tion is correct, agreement attraction would show that language users construct

grammatical hypotheses that are incompatible with the representations licensed

by their grammar, thus motivating the two-system view.

Lewis and Phillips (2015) discuss three reasons for questioning this explana-

tion, all based on empirical observations of attraction effects that go in a direc-
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tion opposite to what is predicted by a linearity-based account. First, production

studies with complex noun phrases (e.g., “the helicopter for the flight(s) over the

canyon(s) were. . . ”) show weaker attraction effects for nouns that are linearly

closer to the verb (“canyons”) than for nouns that are linearly closer subject noun

(“flights”; Franck et al., 2002). Second, agreement attraction is induced even by

nouns to the left of the subject noun (e.g., “the drivers who the runner wave

to. . . ”), which do not linearly intervene between the subject noun and the verb

(Bock & Miller, 1991; Wagers et al., 2009). And third, intervening agreement

attractors only rarely have the effect that grammatical sentences are perceived as

ungrammatical (Wagers et al., 2009). None of these findings is expected on an

account that is based on linear proximity, suggesting that agreement attraction

is not a case of true (representational) misalignment.

Instead, the pattern of results is compatible with the architectural properties

of working memory (Badecker & Kuminiak, 2007; Franck & Wagers, 2020; Wa-

gers et al., 2009). Information in working memory is accessed in a content-

addressable way, which makes it prone to interference from attractors that par-

tially match with the agreement controller in terms of content. Within this sys-

tem, content is defined in terms of retrieval cues such as [+ plural], [+ nomina-

tive], and [+ subject], which are the same features as those postulated for the

grammatical system, so this account of processing behavior is fully consistent

with grammar-based accounts of agreement (Lewis & Phillips, 2015). Errors

arise during ‘online’ processing because the grammatical system is implemented

within a noisy memory architecture. In the case of ‘offline’ judgements, the

parser has more time and can thus initiate multiple attempts to retrieve the right

representation using the same retrieval features, thereby reducing the chance of

retrieving the wrong element.

What the foregoing discussion makes clear is that, even though the one-system

view predicts alignment between the outcomes of grammar and parsing, mis-

alignment is not necessarily problematic if it can be attributed to other factors

that receive independent empirical motivation (Lewis & Phillips, 2015; Phillips,

2013). Needless to say, this does not mean that it must always be possible to

account for misalignments while retaining the one-system architecture. Each

individual case of misalignment presents a challenge to the one-system view

and is therefore potentially very important. Careful examination is necessary

to determine whether it indeed supports the two-system view or can instead be

explained within a one-system architecture. Importantly, this is not an ad hoc

endeavor; if the one-system view is correct, it should be possible both to explain
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cases of misalignment using independently motivated properties of our cognitive

system, as well as to predict under which exact circumstances misalignment is

likely to occur.

1.2.3 Hierarchy in the brain

The cognitive neuroscience of syntactic structure building is commonly investi-

gated by comparing brain responses to stimuli in two conditions that differ in

their hierarchical structure. To make sure that non-hierarchical accounts can-

not explain the results, it is important that the two conditions do not differ in

terms of their linear properties. Two experimental paradigms approach this chal-

lenge in a particularly clever way. The first paradigm was used in a seminal fMRI

study by Pallier et al. (2011), who used a parametric manipulation of constituent

structure. Participants read sequences that all had a fixed length of twelve words

but that differed in the size of the constituents that could be constructed from

these words. In six successive conditions, constituent size was parametrically

increased from one (a list of twelve words) to twelve words (one twelve-word

sentence). In line with the hypothesis that the neural assembly that encodes con-

stituent structure grows with the size of the constituents, Pallier and colleagues

found a set of regions in the left-hemispheric language network that showed a

systematic increase in activation as constituents grew larger. This constituent-

size effect has now been replicated across several modalities, including spoken

(Brennan et al., 2012, 2016), written (Giglio, Ostarek, Weber, & Hagoort, 2022;

Matchin et al., 2017; Zaccarella et al., 2017), and sign language (Matchin et

al., 2022; Moreno et al., 2018). While these different studies report effects of

constituent size in slightly different brain regions, the consistency of the effect in

general shows that this paradigm effectively targets hierarchical structure build-

ing while controlling for sequential properties of the stimuli. The study reported

in Chapter 5 of this thesis therefore adopts a similar parametric design, but it

manipulates constituent structure in a naturalistic way rather than relying on

slightly artificial stimuli presented in isolation.

The second paradigm was pioneered in a study by Ding et al. (2016). It relies

on a phenomenon known as cortical speech tracking, which refers to the brain

response to slow regularities in speech. Participants listened to connected speech

sequences of monosyllabic words. Within these sequences, two adjacent words

could repeatedly be grouped into phrases, and two adjacent phrases could re-

peatedly be grouped into sentences, such as in [S [NP new plans] [VP gave hope]].
Because the sequences were isochronously presented without prosody, only the
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words were clearly defined by acoustic boundaries. That is, words were physi-

cally present in the speech signal, but phrases and sentences were not – they had

to be internally constructed by the brain using knowledge of grammar. Intrigu-

ingly, electrophysiological brain activity tracked not only the presentation rate

of words, but also the rates of phrases and sentences, showing a clear disconnect

between what is objectively present in the input signal and what is represented

in the brain signal. Moreover, when the sequences contained words that could

be grouped into two-word phrases at most, the brain recordings revealed a track-

ing effect at the phrase rate only, not at the sentence rate. These findings have

been replicated in subsequent studies (Blanco-Elorrieta et al., 2020; Burroughs

et al., 2021; Ding, Melloni, et al., 2017; Getz et al., 2018; Makov et al., 2017;

Sheng et al., 2019), showing that this method can be used to investigate how

the brain infers hierarchical structure from a temporal speech stream (though

see Kazanina & Tavano, 2022 for a critical perspective). The study reported in

Chapter 4 of this thesis therefore relies on cortical speech tracking as well, but

it makes use of naturally spoken sentences rather than isochronously presented

speech.

Before concluding, it is good to emphasize how surprising it really is that syn-

tactic generalizations are structure-dependent and that the effects of structure

dependence are consistently found in both behavioral and neural measures of

language processing. As Andrea Moro remarked a few years ago, the existence

of structure dependence is a remarkable fact “not just because it is inaccessible

to our immediate introspection, but also because it is based on the only phe-

nomenon inaccessible to our senses – namely hierarchy – whereas linear order

is completely irrelevant” (Moro, 2016, p. 40). This nontrivial observation shines

a very different light on Aristotle’s famous dictum that “there is nothing in the

mind that was not first in the senses”. The dictum must be incorrect, because hi-

erarchy is not part of the physical signal that reaches our eyes and ears. Empirical

findings such as the ones discussed here therefore illustrate how language com-

prehension is a form of perceptual inference (Martin, 2016, 2020), combining

external (perceptual) information about speech or sign with internal (linguis-

tic) information about the properties of language in order to derive an analysis

and interpretation of the incoming signal. The observation that our minds per-

ceive hierarchical structure despite its absence in the input forms the basis of

this thesis.
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1.3 Thesis outline

In this thesis, I investigate the role of hierarchy in language use. Five chapters

approach this topic from different angles, each asking a different question and

using a different methodology. The methods are experimental, computational,

and theoretical, and can be classified into one of the three strands of evidence

discussed in Section 1.2.

In Chapter 2, I empirically address a recently expressed view in (computa-

tional) psycholinguistics which questions the importance of hierarchical struc-

ture in language. In contrast to well-known arguments from linguistics, this

view holds that language use is fundamentally sequential. In response to this

claim, we tested with a very simple behavioral paradigm whether people inter-

pret ambiguous three-word phrases such as second blue ball in terms of their

hierarchical structure or their linear surface order. Using an experimental setup

in which the hierarchical and the linear interpretation of second blue ball do not

pick out the same referent, we could determine whether people rely on hierar-

chical or linear structure for language interpretation. We subsequently trained

and tested an artificial neural network (ANN) on a computational version of

the same experimental task. We looked at a particular type of recurrent neu-

ral network architecture, the so-called long short-term memory (LSTM) neural

network, about which it has been argued that it can acquire critical properties

of natural language syntax. If these arguments are right, we should expect the

model to behave similarly to the participants in the behavioral experiment. In

several simulations, we asked whether the LSTM could reproduce the behavior

of the human participants, and evaluated whether its performance varied as a

function of the data on which it was trained.

In Chapter 3, I follow up on the computational results from Chapter 2 with a

critical discussion about the role of ANN models in the language sciences. Due

the impressive performance of ANNs on a range of language tasks, ranging from

machine translation to text generation, it is often argued that these models ac-

quire many of the structural properties of human language. Yet, as any type of

behavior is multiply realizable, the success of an ANN model on a given language

task does not justify the behaviorist inference that the model succeeded in the

way humans would. In this chapter, we argue that the results of these model-

ing endeavors will be most impactful in the scientific study of language if it can

be shown that the model’s performance comes about in a way that resembles

the way in which cognition underlies our behavior. This cautionary perspective

on the use of computer systems in cognitive science is by no means novel, as is
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clear from the following quote, written in 1960 by three scientists who (unsur-

prisingly) were the foundation of the cognitive revolution:

“It becomes obvious that there are two very different attitudes one can take

toward the job [of machine translation]. In one attitude, the programmer

says, ‘I want to make it work any way I can, but the simpler it is, the bet-

ter.’ In the other attitude, he says, ‘I want to make the computer do it the

same way people do it, even though it may not look like the most efficient

method.’ As citizens we should applaud the former attitude, but as psy-

chologists, linguists, neurologists – as students of the human being – we

are bound to be more interested in the latter.”

Miller, Galanter, and Pribram (1960, p. 54)

As the author of this thesis, I consider myself a “student of the human being”,

and am therefore bound to be more interested in computer systems that acquire

and use language in “the same way people do it”. In Chapter 3, we argue that

these systems currently do not exist, and describe two reasons for the misalign-

ment between cognitive and computational approaches to language. In order to

address this scientific gap, we suggest two changes to computational modeling

of syntax. With these changes in mind, computational models of language can

move closer towards integrating valuable insights from across the language and

cognitive sciences.

In Chapter 4, I present data from an electroencephalography (EEG) experi-

ment which aimed to investigate the neural processes involved in inferring the

hierarchical structure of sentences from naturally produced speech. This chapter

was inspired by a range of studies that show that the brain ‘tracks’ the presen-

tation rate of phrases in natural speech, a phenomenon known as cortical track-

ing of syntax (see Section 1.2.3). This finding is remarkable because syntactic

phrases are abstract units of information which are not visible in the acoustic

signal in the way lower-level linguistic information is. Here, we set out to test

why syntactic phrases are tracked more strongly when they are embedded in

regular, meaningful sentences than when the stimulus in which they are embed-

ded is less meaningful. One possibility is that phrases are tracked more strongly

in sentences because words in sentences can be composed into meaningful con-

stituents (reflecting the output of structure building). Alternatively, they are

tracked more strongly in sentences because the lexical-syntactic information car-

ried by content words allows words in sentences to be easily composed in the

first place (reflecting the input to structure building). To determine whether it is

the input to or the output of structure building that modulates cortical tracking
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of syntax, we relied on a parametric modulation of linguistic information, com-

paring regular, meaningful sentences to carefully controlled stimuli in four con-

ditions. These four conditions contained idioms, syntactic prose, jabberwocky

sentences, and word lists, which differ from sentences in the extent to which a

combination of their structure and lexical components determines their mean-

ing. We computed cortical tracking via a measure called mutual information,

which quantifies the amount of shared information between two signals, in our

case the speech input and the corresponding EEG response. Because both signals

were filtered in the narrow frequency range corresponding to the rate at which

phrases naturally occurred in the stimuli, the shared information between these

signals gives an indication of how closely the brain tracks phrases in natural

speech.

In Chapter 5, I further investigated the processes involved in hierarchical

structure building, but this time the sentences were presented as part of a coher-

ent narrative. We specifically asked which strategy language comprehenders use

to build structure. Even if we assume that parsing is incremental, starting with

the first word and ending with the last, there are several ways in which hierar-

chical tree structures such as those in Figure 1.1 can be built. In this chapter, we

compare different parsing strategies, which build structure either in a predictive

or in an integratory manner. Predictive strategies build nodes in the structure

before there is complete evidence for their existence, whereas integratory strate-

gies instead take a wait-and-see approach; they build nodes only after it is certain

that they are necessary. To examine which of these strategies best accounts for

the comprehension of Dutch sentences, we let participants listen to audiobook

stories while we recorded their brain activity using magnetoencephalography

(MEG). Each word in the audiobook was assigned a so-called complexity met-

ric, which quantifies the structural complexity of that word given each of the

different parsing strategies. In effect, this means that for a predictive parser,

words at the onsets of phrases are complex, because they can be used to build

structure predictively. For an integratory parser, in contrast, words at the offsets

of phrases are complex, because they can be integrated with the constituents

to which they belong. To see how these complexity metrics relate to language-

relevant brain activity, we make use of a type of forward model called temporal

response function. This approach allows us to compare different parsing strate-

gies in their ability to predict brain activity of Dutch people listening to natural

stories. The predictive accuracy of these different strategies will give us insight
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into the extent to which people build hierarchical structure in a predictive or in

an integratory manner.

In Chapter 6, I compare hierarchies across domains, specifically looking at

the structure of actions and action plans. Like sentences, actions are thought to

be hierarchically organized. Based on this putative structural analogy, it is often

suggested that language and action rely on cognitive and neural resources that

are (at least partially) shared. However, while the claim that syntax is hierarchi-

cally structured is supported by empirical evidence and accompanied by formal

characterizations of its properties, both of these are lacking in the study of ac-

tions. Before drawing conclusions about cross-domain convergence, it should

first be shown that the structures of language and actions have the same formal

properties. Unfortunately, this comparison is complicated by the fact that for-

mal treatments of syntactic structure often rely on domain-specific constructs,

defined in jargonistic terms. In this chapter, we therefore formally compare lan-

guage and action using the domain-neutral vocabulary of set theory. Starting

with a model that relies on the minimal assumption that the combinatorial op-

erator for generating syntactic structure is formally equivalent to binary set for-

mation, we aim to capture the core properties of syntax. By subsequently apply-

ing this model to the domain of actions, we can see whether the core properties

of linguistic structure are also found in action structures. The conclusions of

this chapter have implications for both cognitive neuroscience and comparative

cognitive science.

In Chapter 7, I summarize the results of the different chapters, discuss the

representation of hierarchical structure in the brain, and end with a broader

discussion about the role of hierarchical structure in human cognition.



2 | Hierarchy in language interpretation:

Evidence from behavioral experiments and

computational modeling1

Abstract

It has long been recognized that phrases and sentences are organized hierarchi-
cally, but many computational models of language treat them as sequences of
words without computing constituent structure. Against this background, we
conducted two experiments which show that participants interpret ambiguous
noun phrases, such as second blue ball, in terms of their abstract hierarchical
structure rather than their linear surface order. When a neural network model
was tested on this task, it could simulate such ‘hierarchical’ behavior. However,
when we changed the training data such that they were not entirely unambigu-
ous anymore, the model stopped generalizing in a human-like way. It did not
systematically generalize to novel items, and when it was trained on ambiguous
trials, it strongly favored the linear interpretation. We argue that these models
should be endowed with a bias to make generalizations over hierarchical struc-
ture in order to be cognitively adequate models of human language.

1Adapted from Coopmans, C. W., de Hoop, H., Kaushik, K., Hagoort, P., & Martin, A. E.
(2022). Hierarchy in language interpretation: evidence from behavioural experiments and com-
putational modelling. Language, Cognition and Neuroscience, 37(4), 420-439.
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2.1 Introduction

The ability to use language is a hallmark of the human mind. The formal struc-

tures of human language reveal the wealth of representational infrastructure

that our brains deploy to guide our linguistic behavior. As such, even in a short

phrase like these two blue balls lies a hidden signal about how the mind structures

information. For this simple four-word phrase, there are 24 logically possible

word orders, yet only 14 of these are attested in the world’s languages (Cinque,

2005). Strikingly, the word order in English and its mirror variant (balls blue two

these) are by far the most frequent (Cinque, 2005; Greenberg, 1963), reflecting

the selection of word orders that transparently map to the hierarchical structure

of the noun phrase (Culbertson & Adger, 2014; Martin et al., 2020). The word

‘hierarchical’ here refers to the representational format of constituent structure:

words are embedded into constituents, which are in turn recursively embedded

into larger constituents, creating hierarchically organized syntactic structures

which are often visually denoted by means of tree structures (see Figure 2.1A).

It has long been argued that the semantic interpretation of phrases and sentences

is linked to this hierarchical constituent structure (Chomsky, 1957; Everaert et

al., 2015; Heim & Kratzer, 1998; Jackendoff, 1972; Partee, 1975; Pinker, 1999).

That is, syntactic operations are defined over hierarchical structure rather than

linear order (i.e., they are structure-dependent; Chomsky, 1957), and semantic

dependencies (like scope, the fact that two applies to blue balls rather than balls

alone2) follow from such hierarchically organized constituent structure.
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Figure 2.1: Hierarchical (A) and linear (B) representations for the phrase second
blue ball.

Despite these arguments in theoretical linguistics, however, an alternative

view holds that language use can be accounted for in terms of sequential rather

than hierarchical structure (Bybee, 2002; Christiansen & Chater, 2015; Frank

et al., 2012). A core aspect of this view, which has been championed by sev-

2Semantic scope refers to the domain in which an operator can affect the interpretation of
other elements. Scope domains can sometimes be directly read off hierarchical relations between
syntactic elements, that is, by virtue of the c-command relation (Reinhart, 1983).
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eral authors in different proposals, is that constituency is not a basic structure

but rather an epiphenomenon, emerging from frequently occurring sequential

patterns in language, which are ‘chunked’ into sequences without much internal

structure (Bybee, 2002; Christiansen & Chater, 2015; Frank et al., 2012). In

other words, while this ‘linearity view’ does not entail that hierarchical struc-

ture does not exist, it holds that hierarchy is not fundamental in language use.

This view is strengthened by the recent successes of mainstream models in natu-

ral language processing (NLP), which treat sentences as linear strings of words.

These models achieve remarkably good performance, arriving at around 93%

accuracy on several diagnostics (e.g., Devlin et al., 2019), and are often used to

account for behavioral data in psycholinguistic experiments (e.g., Christiansen

& MacDonald, 2009; Frank & Bod, 2011; Gulordava et al., 2018; Linzen et al.,

2016).

Against this background, we use the interpretation of ambiguous noun phrases

such as second blue ball as a test of the idea that constituency is not fundamental

in language use. We first show in two behavioral experiments that the inter-

pretation of these phrases is based on their hierarchical rather than their linear

structure, indicating that language interpretation can in fact be biased towards

hierarchical constituency. We then train and test a recurrent neural network

model on our task in order to see whether it is able to reproduce such ‘hierarchi-

cal’ behavior. In several simulations, we evaluate whether the model generalizes

in a human-like way. We show that it can simulate hierarchical behavior, but

only if the training data are unambiguously hierarchical. When it is trained on

ambiguous data which are equally consistent with the linear and the hierarchi-

cal interpretation of second blue ball, it strongly favors the linear interpretation.

Moreover, the model does not systematically generalize to items that were not

observed during training. Overall, this leads us to conclude that without a pre-

disposition for hierarchical structure, the model is not a cognitively adequate

model of human language (Dehaene et al., 2015; Fitch, 2014).

2.1.1 Behavioral evidence for hierarchical structure

Broadly speaking, two kinds of linguistic evidence support the claim that words,

phrases and clauses have internal hierarchical structure. First, syntactic oper-

ations, such as movement, deletion and substitution target constituents rather

than individual words. These operations are said to be structure-dependent, and

behavioral experiments have shown that children obey structure dependence as

soon as they can be tested (Crain & Nakayama, 1987). Second, structure pro-



30 2 Hierarchy in language interpretation

vides the unit of semantic interpretation, as can be seen in the structural am-

biguity of words (e.g., uninstallable), phrases (e.g., deep blue sea) and clauses

(e.g., she saw the man with binoculars), as well as the structure-dependent in-

terpretation of anaphora, disjunction, negative polarity items, and other scope

phenomena (Reinhart, 1983; see Crain et al., 2017 for a recent overview of the

empirical data from acquisition). These facts about language structure show

that constituents behave as units, both to syntactic operations and to semantic

interpretation.

Furthermore, a large body of experimental evidence converges in showing

how hierarchical structure explains language behavior. Of particular relevance

to the current study are three behavioral paradigms which investigate noun

phrase interpretation. First, Lidz and colleagues used a preferential looking

paradigm to show that 18-month-old infants interpret the pronominal one in

Look! A yellow bottle. Do you see another one? as anaphoric with the constituent

yellow bottle rather than with the bare noun bottle, consistent with the inter-

pretation of anaphoric one in adult language (Lidz et al., 2003). Second, a

cross-domain structural priming study by Scheepers and Sturt (2014) showed

that people find adjective-noun-noun compounds more acceptable when their

structure is congruent with a mathematical equation that they have solved just

before. In their study, left-branching phrases, such as organic coffee dealer (i.e.,

[[organic coffee] dealer]), received higher ratings after left-branching equations

(e.g., 25 × 4 – 3) than after right-branching equations (e.g., 25 – 4 × 3). Third,

Culbertson and Adger (2014) exposed English learners of an artificial language

to different noun phrases with only one postnominal modifier (i.e., N-Dem, N-

Num, N-Adj), based on which they had to infer the relative ordering of the mod-

ifiers in a complex noun phrase (see also Martin et al., 2020). The training data

were equally consistent with two possible grammars, one of which was similar to

English in terms of the linear ordering of the modifiers (i.e., balls these two blue),

while the other was similar to English in terms of the abstract structure of the

noun phrase (i.e., [[[[balls] blue] two] these]). The learners consistently favored

the order that was structurally similar to English, despite its dissimilarity to En-

glish in terms of surface statistics. In line with this finding, a recent study on ar-

tificial rule learning showed that people from different age groups and different

cultural and educational backgrounds spontaneously infer and generalize ab-

stract hierarchical structure after exposure to sequences whose structure is fully

consistent with both hierarchical rules (based on recursive center-embedding)

and linear rules (based on ordinal position; Ferrigno et al., 2020). Combined,
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these studies demonstrate that people represent noun phrases as hierarchical

structures rather than as linear sequences. Moreover, the studies by Lidz et al.

(2003) and by Culbertson and Adger (2014) indicate that this hierarchical bias

does not come from the environment but rather reflects an inherent property of

the linguistic system, which might also be present in other domains of cognition

(Dehaene et al., 2015; Ferrigno et al., 2020; Fitch, 2014).

Evidence from the spontaneous creation of languages in language-deprived

populations supports this latter point. Deaf children who are born to speaking

parents and are not exposed to sign language in infancy spontaneously develop a

gestural system for communication (Goldin-Meadow, 2003). This system, called

homesign, has many of the properties of natural language, including hierarchi-

cally organized levels of recursive constituent structure and structure-dependent

operations, such as substitution (Goldin-Meadow, 2003; Hunsicker & Goldin-

Meadow, 2012). For example, in homesign, multi-gesture combinations that

refer to a single nominal entity (e.g., a demonstrative gesture and a noun ges-

ture: “that bird”) function both syntactically and semantically like single-gesture

nominals. They can substitute for a single noun (“bird”) and can be embedded

in a hierarchically structured clause, to yield a signed clause with the hierarchi-

cal structure [[that bird] pedals] rather than the flat structure [that bird ped-

als] (Hunsicker & Goldin-Meadow, 2012). Because the multi-gesture nominals

produced by homesigners are effectively absent in the gestures of their hearing

family members, they reveal that the homesigners themselves are the source of

these structural properties in their linguistic system (Flaherty et al., 2021).

2.1.2 Computational modeling of hierarchical structure

While the behavioral evidence strongly supports the hierarchical view, the lin-

earity view is strengthened by recent results from computational studies of lan-

guage acquisition. Most contemporary language models are not endowed with a

cognitive architecture that supports the acquisition and knowledge of linguistic

information (e.g., hierarchical representations, structure dependence, or compo-

sitionality), yet they perform quite well on a range of language tasks. In partic-

ular, recent computational research with recurrent neural network (RNN) mod-

els has shown that these models often perform quite accurately on tasks which

are thought to require knowledge of hierarchical structure, such as subject-verb

agreement and question formation. For example, RNNs can learn to generate

the correct agreement in long-distance dependencies (e.g., The boy who likes

the girls has . . . ) and to move the right verb in constructing complex yes-no
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questions (e.g., Has the boy who likes the girls . . . ?), seemingly without invok-

ing hierarchical structure (Gulordava et al., 2018; Linzen et al., 2016; McCoy

et al., 2018, 2020; Tran et al., 2018). Moreover, RNNs are able to generalize

very well to novel grammatical constructions when these feature a mixture of

examples that were observed in the training set, but they fail to systematically

generalize across items in the training set to compose novel items (Baroni, 2020;

Lake & Baroni, 2018; Loula et al., 2018). These findings show that RNN models

show impressive generalization ability, apparently without relying on systematic

compositionality.

It is often the case that the data on which these models are trained are both

qualitatively and quantitatively very different from the linguistic input children

receive (Linzen, 2020; Linzen & Baroni, 2021). Recent studies have sought to

address this issue by exposing the model during training only to ambiguous data,

from which multiple generalizations are possible (e.g., McCoy et al., 2018, 2020;

Mulligan et al., 2021). During the test phase, the model is then evaluated on

items for which these generalizations make different predictions. The idea be-

hind this train-test regime is that the model’s performance on test trials reveals its

specific inductive biases. Comparing this performance to human behavior in the

experimental paradigms discussed above (Culbertson & Adger, 2014; Ferrigno

et al., 2020; Martin et al., 2020), we can evaluate whether these models gener-

alize in a human-like way. Initial results from these studies show that some RNN

architectures can make human-like syntactic generalizations, in particular when

the training data contain cues to hierarchical structure (McCoy et al., 2018).

In short, while most computational language models do not explicitly incorpo-

rate structure dependence, they appear extremely proficient in a range of com-

plex language tasks if they are trained on quantitatively and qualitatively rich

data. This reveals a possible gap between the validity of these models as models

of human cognition and their ability to achieve human-like behavior in certain

circumstances. We approach this issue by comparing the performance of a long

short-term memory (LSTM) neural network to the behavior of human partici-

pants on a task that requires hierarchically structured knowledge. The following

sections first describe the task and results from the behavioral experiments.

2.1.3 Background of the present study

In two experiments, we tested whether people interpret ambiguous noun phrases

such as second blue ball as a hierarchical structure or as a linear string. On the

hierarchical interpretation, which is derived from the right-branching structure
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depicted in Figure 2.1A, the structure encodes semantic scope. The ordinal sec-

ond takes scope over the constituent blue ball, and the whole refers to the second

among blue balls. On the linear interpretation, instead, second and blue are in-

terpreted conjunctively, and they independently modify the noun ball (i.e., the

ball that is blue and second). Here, the conjunctive (linear) interpretation is

associated with the flat representation depicted in Figure 2.1B. However, we

note that this is not the only possible way in which that interpretation can be

represented. It could also be derived from a hierarchical structure, for instance

by means of a conjunction phrase which first combines second and blue, and is

then combined with ball. In contrast, the scopal (hierarchical) interpretation of

second blue ball can only be derived from a nested constituent structure (i.e.,

Figure 2.1A). Because the hierarchical interpretation cannot be derived without

hierarchical structure (as in the linear representation in Figure 2.1B), consis-

tently hierarchical responses should be taken as evidence against the view that

hierarchical structure is unnecessary to account for language interpretation.

To show how the semantics corresponding to these phrases relates to their

structure (Partee, 2007; Spenader & Blutner, 2007), we provide the lambda

expressions for the noun ball (which is of type <e,t>), the intersective adjec-

tive blue and the adjective second (which are both predicate modifiers of type

<<e,t>,<e,t>>) below:

1. ball: λx[ball(x)]
2. blue: λPλx[P(x) & blue(x)]
3. second: λPλx[P(x) & ∃!y[P(y) & y < x]]
where < indicates a type of ordering relationship (i.e., y precedes x on some

dimension, such as space or time).

In these expressions, P refers to a one-place predicate, i.e., a set of individuals

that is the denotation of a noun such as ball. Hence, we get the following lambda

expressions that correspond to the noun phrases blue ball and second ball, which

are both of type <e,t>:

4. blue ball: λx[ball(x) & blue(x)]
5. second ball: λx[ball(x) & ∃!y[ball(y) & y < x]]
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Combining these expressions yields the hierarchical right-branching interpre-

tation of the complex noun phrase second blue ball (corresponding to Figure

2.1A), as expressed in (6):

6. Hierarchical interpretation: λx[ball(x) & blue(x) & ∃!y[ball(y) & blue(y)

& y < x]]

This means that second blue ball on the hierarchical interpretation refers to

the set of elements x that are a member of the intersection of the set of balls

and the set of blue things, such that there is exactly one other element in this

intersection, which is the set of blue balls, preceding x (in one way or another).

Clearly, on this interpretation, second applies to the set of blue balls, which means

that blue and ball are combined to form a constituent that serves as the argument

of second.

On the linear interpretation of second blue ball this would not be the case.

Here, second blue ball would denote the set of elements x that are a member of

the intersection of the set of balls and the set of blue things, such that there is

exactly one other element in the set of balls preceding x. On this interpretation,

the phrase refers to the second ball, which is blue (i.e., a green ball is in the first

position). The lambda expression for the linear interpretation of second blue ball

(corresponding to Figure 2.1B) is given in (7):

7. Linear interpretation: λx[ball(x) & blue(x) & ∃!y[ball(y) & y < x]]

While these two interpretations could yield the same referent (Figure 2.2A),

this need not be the case: based on the context in which second blue ball is

presented, the linear and hierarchical interpretations can diverge (Figure 2.2B).

This divergence forms the basis of the current study.

The idea was based on a set of acquisition experiments conducted in the 1980s,

in which it was investigated how children acquire and interpret prenominal mod-

ifier sequences (Hamburger & Crain, 1984; Matthei, 1982). Matthei (1982)

asked five-year old children to point to the second blue ball in an array of colored

balls in which the linear and hierarchical interpretations yielded a different an-

swer (Figure 2.2B). The children interpreted the phrase intersectively, pointing

to the ball that was blue and in the second position, rather than to the sec-

ond among blue balls. This was taken to indicate that the children had built

an unembedded, linear representation. In a reply to this study, Hamburger and
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Crain (1984) noted that Matthei (1982)’s results reflected the children’s inability

to deal with the cognitive complexity of the task, which might have concealed

their hierarchical grammatical knowledge. They attempted to reduce the na-

ture of the planning component underlying these linguistic expressions by let-

ting children first point to the first blue ball, and then point to the second one.

The children’s interpretations of one in this scenario indicate whether they re-

lied on a linear representation of first blue ball, in which case one can only refer

to ball, or on a hierarchical representation, in which one can also refer to blue

ball. Similar to the infants in the Lidz et al. (2003) study, four-year-old children

took one as anaphoric with the constituent blue ball, indicating that they relied

on a hierarchical representation of first blue ball. We adopted a similar experi-

mental paradigm, but chose to use full noun phrases rather than anaphoric pro-

forms, given the debate about whether one substitutes for syntactic constituents

(Goldberg & Michaelis, 2017; Payne et al., 2013).

2.2 Methods and results

2.2.1 Experiment 1

The first experiment is a replication of the original study by Matthei (1982), but

with only adults. 20 native speakers of Dutch (14 female, mean age= 21.9 years,

age range = 19–27 years) participated in the experiment, none of whom were

color-blind. Based on the results of Hamburger and Crain (1984), we expected

there to be a strong hierarchical bias. In order to show such an effect empirically

and to be able to test it statistically (rather than only relying on our intuition),

we used a sample size of 20. All participants gave written informed consent to

take part in the experiment, which was approved by the Ethics Committee of

the Faculty of Social Sciences at Radboud University Nijmegen. The experiment

was conducted in Dutch, but for ease of exposition, the stimuli are translated

here into English, which in these sentences has the same surface word order as

Dutch. Participants had to click on a target denoted by a noun phrase containing

an ordinal, a color adjective and a noun referring to the shape of the target, such

as second blue ball. Two example arrays, corresponding to the two conditions,

are presented in Figure 2.2.

In the convergent condition, the hierarchical (non-intersective) and linear (in-

tersective) interpretation converge on the same item. For example, the second

blue ball in Figure 2.2A is both the second among blue balls (hierarchical) and
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A B

Figure 2.2: Example arrays for the target second blue ball, corresponding to a
convergent (A) and a divergent (B) trial.

also the ball that is blue and in second position (linear). In the divergent con-

dition, the linear and hierarchical interpretation yield a different answer. While

the second ball in the array in Figure 2.2B is blue (linear), it is not the second

among blue balls, which is in fourth position (hierarchical).

The convergent condition was not present in the original studies (Hamburger

& Crain, 1984; Matthei, 1982). The responses in this condition do not dissociate

between hierarchical and linear interpretations, and serve as fillers to reduce the

potential influence of pragmatic factors. That is, one could argue that partici-

pants only give hierarchical answers in response to second blue ball on divergent

trials because they take the mere presence of blue to indicate that they should not

interpret the phrase as referring to the second ball. Had that been the intended

target (e.g., in the picture of Figure 2.2B), then it could have been referred to

as second ball, thus making the addition of blue redundant and therefore prag-

matically odd.3 By making sure that half of the trials contain a redundant color

adjective, we intended to make participants less sensitive to the effect of re-

dundancy on interpretation, thereby making it less likely that their behavior on

divergent trials would be driven by pragmatic factors.

Each trial consisted of the written sentence “Click on the [target]” and an array

of eight blue or green balls, visually presented at the same time on a computer

screen. The target was always described using an ordinal, a color adjective, and

the noun ball. The ordinals first, second, third, fourth, fifth, and sixth were used.

There were 192 trials, half of which were divergent, the other half were conver-

gent. In both conditions, all ordinals were used 16 times in the target phrase,

and they were equally often combined with green as with blue. Convergent tri-

als were created as follows: all items to the left of the target were the same as

the target, and all items to the right were randomized. For the divergent trials,

there were two possible targets: a linear one and a hierarchical one.4 For every

3Note that even if it is the case that such pragmatic factors drive people to interpret second
blue ball non-intersectively (i.e., not referring to the ball that is blue and in second position),
they would still have to use constituent structure to interpret the phrase ‘hierarchically’.

4This applies to all ordinals except the ordinal first, for which divergent trials do not exist.
That is, if the first among blue balls is not the first ball, then the linear interpretation is not
present and only the hierarchical option is available. Divergent trials with ordinal first were
actually non-convergent trials with only a hierarchical option, and were therefore not analyzed.
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ordinal, the position of the hierarchical target was randomly chosen among the

positions to the right of the linear target. The positions to the left of the hierar-

chical target were then filled with the right number of items that were the same

as the target. For instance, for the target sixth green ball, the hierarchical target

could be in the positions 7 or 8. To the left of this position five green balls were

placed, and one of these green balls was in sixth position (linear target). The

other positions are filled with blue balls. Correct answers on convergent trials

were coded as hierarchical/linear, while all other items were coded as error. On

divergent trials, answers were coded as hierarchical, linear, or error.

Results

The results of experiment 1 are presented in Figure 2.3. The graph on the right

contains the results for divergent trials, which show that of all correctly answered

trials, participants gave a hierarchical answer 99.8% of the time. Only three

answers were according to a linear interpretation. To test this effect, we applied

a logistic regression model in R (R Core Team, 2020) with only an intercept to the

binary output variable (hierarchical vs. linear), which showed that participants

gave more hierarchical than linear answers, β = -6.27, SE = 0.58, Wald z =
-10.84, p < .001.
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Figure 2.3: Responses in the convergent and divergent conditions of experiment
1.

While these results strongly suggest that the participants used hierarchical

syntax, there is one alternative interpretation that does not need to rely on con-

stituent structure. In this interpretation, second applies to the set of blue things
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first, hence forming a complex adjective second blue, which is then applied to

the noun ball (e.g., a ball that is second among blue items). This is similar to

phrases in which second modifies an adjective, e.g., second biggest ball (which

is the ball that is the second biggest, but not necessarily the second ball), and

phrases in which blue is modified by an adverb, e.g., very blue ball (which is

very blue, not very ball). Because the arrays of items contained only balls, this

approach always yields the same target as the hierarchical interpretation.

Importantly, while this alternative interpretation can be represented in a con-

stituent structure (as in the left-branching structure in Figure 2.4B), it does not,

strictly speaking, need hierarchy. In the right-branching hierarchical structure

in Figure 2.4A, a relationship is established between the element second and a

constituent (i.e., a constituent is modified). Such a constituency-based relation-

ship is not needed to represent the meaning of the left-branching structure in

Figure 2.4B, which would be expressed as follows:

8. Left-branching interpretation: λx[ball(x) & blue(x) & ∃!y[blue(y) & y< x]]

On this interpretation, participants would choose the second blue thing in a

sequence, which happens to be a ball (e.g., when the first position contains a

blue triangle). While right-branching interpretations must rely on constituency,

left-branching interpretations can, but need not do so. A second experiment

was undertaken to adjudicate between the right-branching and left-branching

interpretation.
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Figure 2.4: Right-branching (A) and left-branching (B) representations for the
phrase second blue ball.

2.2.2 Experiment 2

As in experiment 1, 20 native speakers of Dutch (15 female, mean age = 23.0

years, age range = 18–28 years) took part in experiment 2 after their written in-

formed consent was obtained. None of the participants were color-blind or had
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participated in experiment 1. The experiment was almost identical to experi-

ment 1, except that the set of items in the array also contained blue and green

triangles. As there were now two shapes, the noun provided crucial information

for the identification of the target. Each trial contained two potential targets.

For the target second blue ball, the ‘right-branching’ interpretation, correspond-

ing to the right-branching structure in Figure 2.4A, again refers to the second

among blue balls (fifth item in Figure 2.5). The other interpretation, which could

be represented in a left-branching structure (Figure 2.4B), refers to the second

blue item, which is a ball (third item in Figure 2.5). The right-branching and

left-branching interpretations were both always available, but never converged

on the same item.

Figure 2.5: Example array for the target second blue ball. The left-branching tar-
get is in third position, while the right-branching target is in fifth
position.

There were again 192 trials. All ordinals were used 32 times in the target

phrase. For each ordinal, the target was equally often a blue ball, a blue triangle,

a green ball, and a green triangle. We made sure that the left-branching and

right-branching interpretations never converged on the same item by placing

one item with the same color but a different shape as the target at a random

position to the left of the left-branching target. In Figure 2.5, this is the blue

triangle on the left, which makes the leftmost blue ball the second blue item

(the left-branching target). The presence of the blue triangle does not affect the

position of the right-branching target, which is the second among blue balls.5

Results

The results of experiment 2 are presented in Figure 2.6. Of all correctly an-

swered trials, participants gave a right-branching answer 99.8% of the time.

Only five answers were coded as left-branching answer. A logistic regression

analysis of output type (right-branching vs. left-branching) confirmed that par-

ticipants gave more right-branching than left-branching answers, β = -6.45, SE

= 0.45, Wald z = -14.42, p < .001. These findings can only be captured using

5Again, the interpretations of targets with the ordinal first always converged. The responses
to these targets could not distinguish between the two interpretations and were therefore not
analyzed.
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Figure 2.6: Responses in experiment 2.

constituent structure, and therefore provide strong experimental evidence for

the importance of hierarchical structure for semantic interpretation.

2.2.3 Computational modeling

Methods

In order to test whether a computational model would show the same bias to-

wards the hierarchical interpretation as the participants did, we trained and

tested a state-of-the-art RNN model with a long short-term memory (LSTM)

architecture (Hochreiter & Schmidhuber, 1997) on the task of experiment 1.

The LSTM model, which was implemented with Keras (Chollet, 2015), had a

many-to-one architecture, which is visually represented in Figure 2.7. The input

to the model consisted of four one-hot vectors, sequentially presented in four

timesteps. Recurrence is indicated by the fact that the model’s current state is

a function of its previous state (i.e., a<t−1>) in combination with the input at

the current timestep (i.e., x<t>). The input vectors represent respectively the

ordinal, color, and shape of the target, as well as the picture. Each input vector

had a length of 57, where the first 9 elements were reserved for the words in the

phrase (elements 1–6 represented the ordinals second through seventh, 7 and 8

represented the colors blue and green, and 9 represented the shape ball6) and

6Trials with the ordinal first would always be convergent and were therefore not part of the
datasets. We replaced first by seventh in these datasets to make sure that the number of ordinals
on which the human participants and the model were tested was the same.
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the last 48 elements were reserved for the eight-element picture, wherein each

element had one of two colors and the shape ball (i.e., we need three bits to rep-

resent each feature). As a result, the picture vector would have 16 ones, so we

normalized it to make sure that its net content is 1, in line with the other one-hot

vectors. To give an example of an input vector, the word “blue” was represented

as a 57-element vector which has a one in position 7 and zeros everywhere else.

[0,0,0,1,0,0,0,0,0]

[0,1,0...0,0,0] [0,0,0...0,0,0] [0,0,0...0,0,0] [0,0,0...0,0,0.25]
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Figure 2.7: Visual representation of a trial for the LSTM, where x<t> represents
the input at timestep t and a<t−1> the activation state of the model
after the previous timestep.

The hidden layer consisted of 100 units, whose activation function at the last

timestep was forwarded to a softmax layer, which provided the output of the

network. The output was a nine-element one-hot vector which had a one at the

position of the target (positions 2–8) on target-present trials or a one at position

9 to indicate that the target was absent from the picture. In short, the task of

the model was to take the words and picture sequentially as input, and provide

as output the position of the target.

The LSTM was trained in a supervised manner on datasets of different sizes

(100-1000 trials, depending on the training set), in 50 epochs (100 steps per

epoch) using the optimizer ‘Adam’ (optimization using stochastic gradient de-

scent with a learning rate of 0.001) and the categorical-crossentropy loss func-
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tion. For each dataset, the model was evaluated on 100 test trials, and this

train-test evaluation was simulated 100 times.

Training and test datasets. We trained the LSTM on four different, artificially

created datasets. In half of the trials in all datasets the target was present, in the

other half the target was absent.7 While target-absent trials were not included in

the behavioral experiments, we did include them in the datasets for the network

because this ensures that the network cannot succeed by only paying attention to

the ordinal. In all datasets, the training and test trials were mutually exclusive,

never containing identical trials. Figure 2.8 presents a visual overview of the

different training/test trials.

In the ‘linear’ training and test set, the linear interpretation was present on

target-present trials, and absent on target-absent trials. Moreover, on both

target-present and target-absent trials, the hierarchical interpretation was also

present, but the output showed that the training data were unambiguously about

the linear interpretation, because the trials were always divergent (cf. Figure

2.2B). To give an example, if the target was second blue ball, then the second

ball in target-present pictures was blue, but it was not the second among the

blue balls (i.e., the first ball was green; see Figure 2.8). Here it becomes clear

why we included target-absent trials. If the target were always present, there

would be a perfect statistical relationship between the ordinal and the output

(i.e., second blue ball would always lead to target position 2). This could serve

as a context-independent statistical heuristic for the model, as it would not need

to incorporate information about the color or shape of the target, or about the

elements in the picture. By including target-absent trials, we made sure that

the model could not succeed by relying only on the information provided by the

ordinal.

The ‘hierarchical’ training and test set consisted of target-present trials in

which the hierarchical interpretation was present and target-absent trials in

which it was absent. All target-present trials were divergent (cf. Figure 2.2B),

so the linear interpretation of the phrase would also be present, but the output

was only in line with the hierarchical interpretation. On target-absent trials,

the hierarchical interpretation was absent but the linear interpretation was still

present. For example, if the target phrase was second blue ball, then the second
7This was done to make sure that the number of target-present and target-absent responses

for each ordinal are roughly equal. However, it also means that output vectors with a one in
position 9 (‘target absent’) are overrepresented in the output. We accounted for this imbalance
by updating the loss function with a weighting parameter that reflected the class distribution in
the training data (Chollet, 2015).
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Condition Target presence Figure

Linear

Target present

Target absent

Target present

Target absent

Target present

(training)

Target absent

Target present

(test)

Hierarchical

Ambiguous

Target present

(training)

Mixed

Target present 

(test)

Target present

(training)

Target absent

Figure 2.8: Examples of the different training/test trials in the computational
simulations, ordered by condition and target presence. The target
phrase for these trials is second blue ball. The squares in target-
present trials indicate the targets for those trials.

ball was blue on both target-present and target-absent trials, but it would not

be the second among blue balls (in fact, on target-absent trials the second ball

would be the only blue ball; see Figure 2.8).

The ‘ambiguous’ training set was fully ambiguous between the hierarchical

and linear interpretations of the target phrase, both on target-present and target-

absent trials. While target-present training trials were always convergent (cf.
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Figure 2.2A), target-present test trials were always divergent (cf. Figure 2.2B).

The model’s answers on these test trials are thus informative about what the

model has induced from ambiguous training data. On target-absent training

and test trials, neither the linear nor the hierarchical interpretation was present.

The ambiguous training set had only 100 trials. This has to do with the fact that

target-present training trials are always convergent and thus limited in number,

and that the number of unique trials varies per ordinal (e.g., for seventh blue ball,

there are only two different target-present pictures (one in which the eighth ball

is also blue, and one in which it is green), but for second blue ball there are 64

different target-present pictures). To make sure that the training and test sets

contain roughly the same number of all ordinals, they were both fixed at a size

of 100 trials.

The ‘mixed’ training set contained both ambiguous and unambiguously hier-

archical training trials. While the only possible generalization from these data is

the hierarchical interpretation, the linear interpretation is compatible with some

of the trials. By varying the percentage of ambiguous trials (and thus the ratio

between ambiguous and hierarchical trials), we examined how much unambigu-

ously hierarchical data the model needs in order to give hierarchical responses

on test trials. The test trials were the same as those used after ambiguous train-

ing (i.e., divergent trials).

Generalization to novel items. To further investigate what the model has

learned after the hierarchical training regime, we tested its ability to general-

ize to items that were not seen during training. Specifically, we looked at the

model’s response to phrases that included the word “red” when the training data

did not contain red at all (extrapolation), or only in combination with specific

ordinals (interpolation). First, we trained the model on all items (green and

blue balls), and then tested it on the phrase “third red ball” and pictures which

included red balls. This type of generalization is an instance of extrapolation,

because the input contains features (i.e., the word “red”, as well as red balls)

that were not observed during training and therefore lie outside the training

space (Marcus, 1998). Second, we tested the model’s ability to interpolate, i.e.,

to generalize to an item that is composed of known features, and therefore lies

within the training space (e.g., Baroni, 2020; Lake & Baroni, 2018). The model

was trained on all combinations of features, including the color “red”, except the

item “third red ball” (e.g., “second blue/green/red ball”, “third blue/green ball”,

and pictures which included red balls). It was then tested on “third red ball”.
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Here, the training set contains the distributional evidence that “red” and both

“blue” and “green” pattern identically, and it contains information about how

“third x” should be interpreted. Given that “third”, “red” and “ball” have all been

presented during training, the training data span a distribution that captures

“third red ball”, even though the combination of these items is new. Given that

the new item lies within the parameter space, interpolation can be approached

through linear regression. We therefore hypothesize that the model is able to

interpolate from known data points to “third red ball”. In order to see how well

the model extrapolates and interpolates, we simulated each generalization test

100 times. Because the hierarchical model in the main experiment reached over

90% accuracy after 500 training trials (discussed in the results section, Figure

2.10B), we trained the model in each simulation on 500 trials. As in the main

experiment, it was evaluated on 100 test trials.

As reported in the results, the model was not able to systematically generalize

its ‘hierarchical’ knowledge to novel items, such as “third red ball”. While the

training data for the interpolation test contain the information that “red” func-

tions the same as both “blue” and “green”, it is possible that this distributional

information is not sufficient to indicate the relatedness between these words.

That is, there is no intrinsic relationship between the one-hot vectors [0,1. . . 0,0]
and [0,0. . . 1,0], although they should be dependent if they are to represent the

related words “red” and “blue”. In an attempt to test the model’s generalization

ability when it receives input vectors that are closely related, we used pre-trained

word embeddings from Google’s word2vec (Mikolov et al., 2013), which have

been shown to capture the similarity between related words. The similarity be-

tween two multidimensional word embedding vectors can be expressed in terms

of the cosine of the angle between them. The closer this cosine similarity value

is to 1, the smaller the angle between the vectors and thus the more similar the

vectors (see the similarity matrix in Figure 2.9A).

As these word embeddings are 300-dimensional vectors, however, they might

lead to overfitting given the limited size and scale of the training data. The model

might overcapitalize on redundant aspects of these big vectors, disabling them

from dealing with novel input. We therefore used a dimensionality reduction

technique based on Principal Component Analysis to reduce the size of the word

embeddings to 10 (Shlens, 2014), in line with the size of our vocabulary.8 This

reduces the size of the vectors by maximizing the variance between them, while

8Because we have ten words, we would need maximally ten dimensions to capture their
differences. In reality, this number can be lower, because some of the words are related.



46 2 Hierarchy in language interpretation

Figure 2.9: Heatmap of the cosine similarity between all 300-dimensional word
embeddings (A) and between all 10-dimensional word embeddings
(B). Note that in both cases the word embeddings capture the simi-
larity between “blue”, “green”, and “red”, as indicated by a large and
positive cosine similarity.

retaining the essence of the original vectors. For our purpose it is important that

the similarity between the color words, which is the property over which general-

ization is evaluated, is retained after dimensionality reduction (Figure 2.9B). We

repeated the two generalization tests described above (including separate train-

and-test evaluations) with both the full 300-dimensional word embeddings as

well as the reduced 10-dimensional embedding vectors.

Results

We evaluate each model’s performance by comparing its predicted output on the

test input to the correct test output. Each unit in the output layer of the model

contains an activation value which can be interpreted as the likelihood that that

unit corresponds to the position of the target, given the input (activations sum to

one). We took the index of the output unit with the maximum activation value to

be the model’s predicted output. This value can be seen as the specificity of the

model’s prediction. For instance, if a model has learned to interpret the phrase

second blue ball hierarchically, then given the picture in Figure 2.2B it outputs a

vector with a high activation value for the fourth element (i.e., the target posi-

tion, which has a one in the one-hot output vector used during training) and low

activation values for all the other elements. We show the specificity of the pre-

dicted output (bottom graphs in Figure 2.10 each show these predictions for the

test trials of one simulation), and evaluate the accuracy of these predictions by

comparing them to the correct output (i.e., top graphs in Figure 2.10 show the



2 Hierarchy in language interpretation 47

Error Linear Hierarchical Absence correct

200 400 600 8001000

20

40

60

80

100

0

200 400 600 8001000

Hierarchical training

P
e

rc
e

n
ta

g
e

 (
%

)

Target present Target absent

Training size

B

Error Absence 

correct

Error LinearHierarchical

20

40

60

80

100

0

Ambiguous training
C

P
e

rc
e

n
ta

g
e

 (
%

)

Target present Target absent

Answer

200 400 600 8001000

20

40

60

80

100

0

200 400 600 8001000

Linear training

P
e

rc
e

n
ta

g
e

 (
%

)
Target present Target absent

Training size

A

Training size

200 400 600 8001000

0.2

0.4

0.6

0.8

1.00

0

200 400 600 8001000

P
re

d
ic

ti
o

n

Target present Target absent

Answer

Error Absence 

correct

Error LinearHierarchical

0.2

0.4

0.6

0.8

1.00

0

P
re

d
ic

ti
o

n

Target present Target absent

Training size

200 400 600 8001000

0.2

0.4

0.6

0.8

1.00

0

200 400 600 8001000

P
re

d
ic

ti
o

n

Target present Target absent

Figure 2.10: Model performance after linear training (A), hierarchical training
(B), and ambiguous training (C). Results are divided into average
accuracy over 100 simulations (top; error bars represent standard
deviation) and specificity of predicted output (activation of output
unit with largest value) on the test trials of one simulation (bottom).

average percentage correct, which is the frequency with which the predictions

match their labels).

When the model was trained on linear data, it quickly reached very good per-

formance. After 400 training trials, the model scored perfectly, reaching an av-

erage accuracy of 100% (Figure 2.10A). After training sizes of 100 and 200, the

model makes on average 19 and 3 errors, respectively. These all have to do with

the presence of the target: the model either gives a target-absent response on

a target-present trial (i.e., ‘miss’), or it gives an incorrect linear response on a

target-absent trial.

After 100 hierarchical training trials, the model reaches an average accuracy

of 65%. The majority of its errors are wrong (but not linear) answers on target-

present trials. The model’s performance steadily increases with increasing train-

ing size up to 700 trials, after which it stabilizes around 97–100% correct on

target-present trials (Figure 2.10B). The hierarchical model needs more training

data to reach high accuracy than the linear model, which probably has to do

with the statistical variance in the hierarchical output data: whereas second blue

ball on linear target-present trials always maps to position 2, the same target

on hierarchical target-present trials can be in positions 3–8. More generally, the
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effect of hierarchy on interpretation in terms of statistics (i.e., in the form of

an input-output mapping in our experiment) is inconsistent because it reflects

information that is not directly encoded in the linear properties of the (input or

output) signal.

In order to evaluate whether the model gives more linear or more hierarchical

answers after being trained on ambiguous data, we simulated this evaluation

100 times. The model was trained on 100 different datasets of 100 ambiguous

(convergent) trials, and at each simulation evaluated on 100 unambiguous (di-

vergent) test trials. The model gets absence correct on most target-absent trials

(M = 96.5, SD = 3.47), see Figure 2.10C. Importantly, on target-present trials

it gives mainly linear answers (M = 76.2, SD = 6.43), and never gives a hier-

archical answer (see the empty column for ‘hierarchical’ in Figure 2.10C). On

average, the model makes 14 errors, which are of the same type as those made

by the ‘linear’ model (i.e., misses, or incorrect linear answers on target-absent

trials).

To evaluate how much unambiguously hierarchical information the model

needs to start generalizing hierarchically, we trained it on a mixed dataset with

different ratios between ambiguous and unambiguously hierarchical trials. This

ratio ranged from 10:0 (fully ambiguous) to 0:10 (fully hierarchical). Note that

these mixed training data are always fully compatible with the hierarchical in-

terpretation. What varies is the number of trials that is also compatible with the

linear interpretation. Each mixed training set contained 100 trials, and we simu-

lated each train-test evaluation 100 times. Figure 2.11 presents the responses for

each of the different ratios. What is clear from the figure is that the more unam-

biguous evidence for the hierarchical interpretation in the training set, the more

the model converges on the hierarchical interpretation in the test set. What is

notable is that this increase is gradual: there is never a point at which the model

‘realizes’ that the hierarchical interpretation is the only correct generalization

(i.e., the model does not induce a rule). Instead, it always gives a substantial

proportion of linear answers, even when 90% of the training data are unambigu-

ously hierarchical and only 10% are ambiguous. Moreover, the number of errors

on target-present trials increases as there is more unambiguous evidence for the

hierarchical interpretation. This matches the patterns seen after linear and hi-

erarchical training. The model initially only considers the linear interpretation,

on which it does not make many errors (cf. Figure 2.10A), but the increasing

evidence for the hierarchical interpretation is also taken as increasing evidence

against the linear interpretation, so the model will give less linear responses.
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However, it still does not always get the hierarchical answer right, which is why

its error rate increases (cf. Figure 2.10B). In all, these results again show that

the model can learn to answer ‘hierarchically’, but that it needs (a considerable

percentage of) unambiguous trials to overcome its non-hierarchical bias.
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Figure 2.11: Model performance on hierarchical test trials after mixed training
data. The training sets are composed of different ratios between am-
biguous and unambiguously hierarchical trials, ranging from fully
ambiguous data (10:0) to fully hierarchical data (0:10).

Extrapolation and interpolation. We then probed the hierarchical model’s

ability to extrapolate and interpolate to novel items that were not seen during

training. Figure 2.12 presents the model’s accuracy, defined as the percentage

of correct hierarchical answers, on both generalization tests as a function of the

input vectors that represented the words in the phrases. On the extrapolation

test, the model did not generalize very well, regardless of whether it was trained

on one-hot vector representations (Mean accuracy = 12.6, SD = 9.20), reduced

word embeddings (M = 12.7, SD = 5.44) or full word embeddings (M = 10.7,

SD = 5.89). In order to see whether these accuracies differ from chance level,

we ran 100 simulations in which the training data consisted of pseudorandom

mappings between input (phrase, picture) and output (target position). These

contained the same information as the other simulations, and included one-hot

vectors as the input layer. The model was tested on “third red ball”. Given that

there are 6 attested outputs in the hierarchical training regime for the ordinal
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“third” (i.e., positions 4 through 9), and that there is no consistent statistical

relationship between the target and the output (i.e., there is nothing to learn,

beyond the fact that “third” cannot be in the positions 1-3), this model scores

around chance level of 16.7% accuracy. Comparison of the four groups (one-hot,

reduced embeddings, full embeddings, random) through a one-way ANOVA in R

(R Core Team, 2020) reveals that the accuracies between groups were different,

F(3,396) = 16.7, p < .001, but a post-hoc Tukey test showed that none of the

conditions scored above chance. In fact, they all scored slightly below chance:

one-hot vs. random: ∆ = -4.63, 95% CI [-7.12, -2.15], p < .001; reduced word

embedding vs. random: ∆ = -4.53, 95% CI [-7.01, -2.05], p < .001; full word

embedding vs. random: ∆ = -6.53, 95% CI [-9.01, -4.05], p < .001.
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Figure 2.12: Percentage of correct hierarchical responses on both generalization
tests after training and testing on different input vectors. Each drop
reflects the average hierarchical accuracy on one simulation run
(100 simulations per evaluation). The dashed horizontal line re-
flects the mean accuracy of the model after pseudorandom training,
thus representing chance level. *p < .05, ***p < .001.

On the interpolation test, the model reached higher accuracy for each type

of input vector: one-hot vectors (M = 13.9, SD = 13.1), reduced word em-

beddings (M = 22.2, SD = 12.4) and full word embeddings (M = 23.8, SD =
22.2). We again consider chance level to be around 16.7%, because the input

“third red ball” during training could only be followed by a one-hot output vec-

tor with a one in either of the six positions 4–9. To evaluate each model against

this chance level, we computed the model’s performance after it was trained on
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pseudorandomly generated data, as described above. Comparison of the four

groups (one-hot, reduced embeddings, full embeddings, random) again reveals

that the accuracies between groups were different, F(3,396) = 15.5, p < .001.

A post-hoc Tukey test showed that the accuracy for the full and reduced word

embeddings was higher than expected by chance (full word embedding vs. ran-

dom: ∆ = 6.32, 95% CI [2.15, 10.5], p < .001; reduced word embedding vs.

random: ∆ = 4.66, 95% CI [0.49, 8.84], p = .02). Interpolation accuracy for

one-hot vectors was not different from chance. Despite this slight increase in

accuracy for the model when trained on word embeddings, overall these find-

ings show that the model was not able use the information it had induced from

hierarchical training to systematically generalize to unseen items.

2.3 Discussion

In two behavioral experiments, we show a strong preference for hierarchy in

human language interpretation: people’s interpretation of ambiguous noun

phrases categorically follows from their hierarchically organized syntactic struc-

ture. In line with a long tradition of research, our findings support the idea

that humans represent noun phrase structures in terms of hierarchical relations

rather than linear order (Alexiadou et al., 2007; Cinque, 2005; Culbertson &

Adger, 2014; Hamburger & Crain, 1984; Jackendoff, 1972; Martin et al., 2020;

Pinker, 1999). In addition, we trained and tested an LSTM model on a computa-

tional version of the experimental task, and showed that the model can learn to

give hierarchical answers if it is trained on unambiguously hierarchical datasets.

However, when the training data contain both unambiguously hierarchical as

well as ambiguous trials, the model strongly favors the linear interpretation,

even though the hierarchical interpretation is a better fit to the data. Moreover,

the ‘hierarchical’ model does not systematically generalize to novel items that

are not seen during training. These findings show that the model behaves un-

like humans when the training data are ambiguous, and suggest that it needs

different inductive biases in order to achieve human-like generalization.

A comparison between the performance of the model and the behavior of the

human participants reveals a number of critical differences. First of all, while the

model learned to give hierarchical answers, it only did so when it was explicitly

fed unambiguously hierarchical information during supervised training. When

the training data were ambiguous with respect to the correct representation un-

derlying the noun phrases, the model had a strongly linear bias, never giving a
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hierarchical answer during the test phase. When the training data were mixed

to contain both ambiguous and unambiguously hierarchical trials, such that the

hierarchical interpretation was the only generalization fully compatible with the

data (i.e., the linear interpretation was only compatible with ambiguous trials),

the model still had a strongly linear bias. This suggests that the model can learn

to answer hierarchically, but that it needs a substantial percentage of unambigu-

ous trials to overcome its non-hierarchical bias (cf. McCoy et al., 2018).

The point about the apparent need for unambiguously hierarchical informa-

tion during supervised training is relevant because children are not taught to

interpret language hierarchically, but come to do so naturally, despite strongly

deficient and ambiguous input data (e.g., Berwick, Pietroski, et al., 2011; Crain,

1991; Gleitman & Newport, 1995; Kam & Fodor, 2012; Legate & Yang, 2002;

Lidz et al., 2003). While we do not believe that adult language users have not

been exposed to unambiguous data, it does seem to be the case that humans

have a bias to interpret language in accordance with its underlying hierarchical

structure (Crain & Nakayama, 1987; Crain et al., 2017; Ferrigno et al., 2020;

Flaherty et al., 2021; Hunsicker & Goldin-Meadow, 2012; Kam & Fodor, 2012;

Martin et al., 2020; Yang et al., 2017). The effect of such biases is particularly

clear when people consistently generalize over hierarchical structure rather than

linear order, despite the fact that these generalizations are underdetermined by

the training data (Culbertson & Adger, 2014; Ferrigno et al., 2020; Martin et

al., 2020; Morgan & Ferreira, 2021). This learnability scenario also applies to

the interpretation of phrases such as second blue ball, even when the input does

contain unambiguous data. There might indeed be positive evidence in the lin-

guistic input to suggest that such a phrase should be interpreted as a hierarchical

structure, but this does not yet rule out the interpretation derived from a linear

structure. As is the case in most linguistic examples of ambiguity, evidence for

interpretation A is not necessarily evidence against interpretation B. In our be-

havioral experiments, however, participants categorically interpreted second blue

ball hierarchically, completely ignoring the linear interpretation, even though

that linear option was always present. The strong preference to interpret these

phrases hierarchically is suggestive of an inductive bias for hierarchy. Compu-

tational models without such a hierarchical inductive bias will often interpret

ambiguous linguistic input in line with the linear generalization, because that is

the simpler statistical mapping between input and output sequence (Frank et al.,

2013; McCoy et al., 2018, 2020). Indeed, it has been shown that RNNs have an
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architectural bias for dependencies over shorter (linear) distance (Christiansen

& Chater, 1999).

In addition, the hierarchical model was not capable of systematic generaliza-

tion to novel items. We showed this by evaluating its ability to extrapolate (i.e.,

generalize to “third red ball” when the training data does not contain “red”)

and interpolate (generalize to “third red ball” when the training data contains

“third”, “red” and “ball”, but not in combination) as a function of different types

of input vectors (i.e., one-hot vectors and word embeddings). On the extrapo-

lation test, the model did not perform above chance level, even if it was trained

and tested on word embeddings from word2vec (Mikolov et al., 2013). This is

in line with previous studies which show that RNNs are not able to generalize to

items that are not observed during training (Hupkes et al., 2020; Lake & Baroni,

2018; Loula et al., 2018), a consequence of the training algorithm also called

input independence (Marcus, 1998, 2001). Note that the model’s responses to

items with the word “red”, while labelled as errors, are technically not incorrect.

Because the training data never contained “red” as possible input, every induc-

tion for a new item containing “red” is statistically legitimate (Marcus, 1998,

2001). Importantly, however, they differ sharply from what humans do. That is,

modification in natural language is systematic, in that it applies in the same way

to all variables of the right type. If someone knows how to interpret “second

blue ball” and “second green ball”, they interpret “second red ball” in a similar

way, even if they have never seen “red” as a possible attribute. A well-known

example of the productive and systematic nature of linguistic knowledge is chil-

dren’s behavior on the Wug Test: young children know that the plural form of

a pseudoword such as wug would be wugs, even though they have never heard

this word before (Berko, 1958).

On the interpolation test, we found that if the model was trained on one-hot

vectors, it performed at chance level. When it was trained on word embeddings,

however, it scored somewhat higher than chance level, suggesting that it was

able to take advantage of the inherent similarity between the word embeddings

that represent related words, such as “blue” and “red”. In addition, it is possible

that the model picks up the statistical information that “red” and both “green”

and “blue” occur in the same distributional environments, which would allow it

to interpret “third red ball” correctly. However, we again believe that the rea-

son behind this performance differs in a fundamental way from the reason why

human cognition can support interpolation (and extrapolation). Human knowl-

edge of linguistic modification relies on a symbolic representation of the way in
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which ordinals modify their arguments (i.e., ordinal(x); see the lambda expres-

sions in (1)-(8)), which is why this relation obeys consistency and systematicity.

The answers of the participants in our behavioral experiments were categorical:

they consistently interpreted the phrases in the same way. The model’s per-

formance, instead, is stochastic: it gets the answer to “third red ball” right on

about one-fourth of the trials, while making an error on all the other trials. The

fact that the model was not able to consistently draw the right generalizations

(i.e., the highest average accuracy was 23.8% for the full word embeddings, but

even this model sometimes reached 0% accuracy, see Figure 2.12) shows that

the model was not capable of systematic generalization. Rather, in line with

previous work, it appears that the model is to some extent capable of generaliz-

ing in an item-based manner, correctly interpreting novel items when they are

composed of known features (Baroni, 2020; Lake & Baroni, 2018; Loula et al.,

2018).

The model’s inability to systematically generalize to unseen items shows that

it achieved its performance on hierarchical test trials without resorting to hier-

archical constituent structure (Fodor & Pylyshyn, 1988; Marcus, 2001; Pinker,

1999; Pinker & Prince, 1988). To be clear, this is not to say that hierarchical

structure per se is necessary for a system to be able to generalize. A compu-

tational system that relies only on linearly structured representations might be

able to generalize, certainly if these representations contain symbolic variables

to which specific instances can be bound. Our point is that the inability to sys-

tematically generalize to novel items suggests that the model does not rely on

the type of symbolic constituent structure we believe underlies the responses of

the human participants (Martin, 2020; Martin & Doumas, 2017, 2019; Puebla

et al., 2021).

To sum up, we showed that an LSTM learns to provide output that is in line

with hierarchical representations. However, the way in which the model general-

izes is quite different from linguistic generalization by humans: when given am-

biguous training data, it never provided hierarchical answers, and when tested

on novel items, it did not systematically generalize. These two limitations show

that the model’s inductive biases and its ostensibly hierarchical knowledge are

fundamentally different from human knowledge of language.

2.3.1 Linear models of hierarchical structure

While many contemporary language models achieve impressive performance on

a range of language tasks (e.g., machine translation, question answering), they
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often break down when evaluated on targeted syntactic tests. The reason is

that they are fundamentally sequence-based models: they map one sequence

onto another sequence (hence the term seq2seq models; Sutskever et al., 2014),

and thus learn sequentially organized statistical patterns that cannot capture the

full complexity of hierarchical syntax. While statistical signatures of hierarchi-

cal constituent structure can be found in the sequential structure of a sentence

(Thompson & Newport, 2007), and while sequential statistics affect language

processing (Townsend & Bever, 2001), that is not to say that sequence statistics

is a sufficient basis for language (Chomsky, 1957). Because these models are

inherently linear, they do not have a natural way to capture structural ambigui-

ties (e.g., that she saw the man with binoculars has two meanings) and structural

generalizations between different constructions (e.g., how what did she see the

man with? relates to only one of these two meanings), which follow from the

structured nature of linguistic representations and the structure dependence of

linguistic operations.

In addition, the strongly linear bias of these computational models does not

readily explain why structure dependence is so pervasive (Berwick, Pietroski, et

al., 2011; Crain & Pietroski, 2001; Fodor & Crowther, 2002; Heinz & Idsardi,

2011). If statistical information about sequential properties, such as linear or-

der, were available as the basis for grammatical acquisition, one would expect

speakers to adopt linear procedures, and therefore languages with linear depen-

dencies to emerge, because that type of information is abundantly available. For

instance, in the large majority of subject-verb agreement dependencies, the sub-

ject noun and the verb are adjacent. A language model which is trained and

tested on these data can thus predict the correct verb inflection in most cases

without accessing syntactic structure (Linzen et al., 2016). When the model is

tested on structurally more complex examples, which are less likely to be found

in the training data and which require hierarchical structure, its accuracy drops

dramatically (Marvin & Linzen, 2018). Yet, for humans this never happens: chil-

dren universally adopt structure-dependent rules in the face of overwhelming

evidence that is in line with linear alternatives (e.g., Crain & Nakayama, 1987;

Crain et al., 2017; Gleitman & Newport, 1995; Lidz et al., 2003; Yang et al.,

2017).

We noted in the previous sections that under the experimental circumstances

in which the model was tested, it appears that statistical analysis of sequentially

presented data is not sufficient to model human language behavior. This di-

vergence between model performance and human behavior could be attributed
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to roughly two independent factors: differences in cognitive architecture and

differences in input data. Regarding input data, we acknowledge that the train-

ing data for computational models usually consists of raw texts, which lack rich

sources of information that contribute to disambiguating the intended meanings

of utterances (see Bender & Koller, 2020 for discussion). While this limits the

generalizability of our findings in the same way as it limits most NLP work, we

do recognize that other NLP models are trained on much more and more diverse

data than what we used in our simulations. It is certainly possible that the LSTM

would have performed differently had it been trained on more naturalistic data.

Assuming that naturalistic language data contain more evidence in favor of hi-

erarchical structure, we predict that the model’s performance on divergent test

trials will reveal a stronger preference for the hierarchical interpretation, in line

with what we show in our mixed train-test regime (see Figure 2.11).

That being said, even within the limited scope of our training simulation we

showed that the model learned to behave ‘hierarchically’. It was only after fur-

ther investigation (in particular, extrapolation and interpolation) that we con-

cluded that this behavior did not arise in the same way as the linguistic behavior

of our participants. The difference in quality and quantity of the training data,

therefore, does not undermine our argument that hierarchical performance is

not directly indicative of human-like hierarchical representations. We believe

that progress towards human-like linguistic generalization will benefit from a

significant adjustment to the cognitive architecture of these models, such that

they are biased to encode constituent structure (for related proposals, see Guest

& Martin, 2021a; Linzen, 2020; Linzen & Baroni, 2021). This might eventually

turn out to be unnecessary in the sense that a preference for constituency could

be learned from the environment, so it need not be innate (e.g., Perfors et al.,

2011). Our current results do not speak to the question of innateness. However,

what is crucial is not whether these biases are innate or learned, but whether

they precede the acquisition of specific grammatical properties. Given the evi-

dence for structure-dependent generalizations in both child and adult linguistic

behavior (Crain & Nakayama, 1987; Crain et al., 2017; Flaherty et al., 2021;

Gleitman & Newport, 1995; Hunsicker & Goldin-Meadow, 2012; Kam & Fodor,

2012; Lidz et al., 2003; Martin et al., 2020; Yang et al., 2017), we believe that

the incorporation of a notion of hierarchy into computational language models

is the logical next step in order to build plausible models of human cognition.

In support of the value of this idea, recent results show that endowing neural

networks with (syntactic) inductive biases for hierarchy improves their perfor-



2 Hierarchy in language interpretation 57

mance on complex syntactic tasks (e.g., Chen et al., 2017; Hale et al., 2018;

Kuncoro et al., 2018; McCoy et al., 2020; Shen et al., 2019; Wilcox et al., 2019).

These biases can be implemented in several ways, by means of both implicit and

explicit representations of hierarchy. As an example of the former, the Ordered

Neurons LSTM has an architecture in which its memory cells are structurally

ordered in such a way that when a higher ordered neuron is updated, lower

ordered neurons are forced to be updated as well. Different neurons therefore

vary in update frequency, due to which they also vary in the timescale of the in-

formation they encode, with higher ordered neurons encoding longer timescales

(Shen et al., 2019). As higher nodes in a tree structure represent information

spanning over longer timescales, higher ordered neurons learn to encode higher

nodes. This network thus comes to represent the hierarchical structure of sen-

tences by discovering an implicit connection between timescale and node height.

In contrast to this fully data-driven approach, the Tree-LSTM model is built to

represent the hierarchical structure of sentences explicitly (Chen et al., 2017).

This model is given the correct syntactic tree structure for every input sentence

(which it has to translate), such that its internal representations are biased to en-

code constituent structure. In contrast to the implicit link between node height

and timescale in the Ordered Neurons LSTM (Shen et al., 2019), the Tree-LSTM

incorporates syntactic trees explicitly (Chen et al., 2017). An important similar-

ity between the two approaches, however, is that they both rely on the modeler’s

assumptions about the type of structure that must be represented.

2.3.2 Structure, statistics, or both?

A commonly articulated reason to favor linearity is that hierarchical structure is

complex. Therefore, if language use can be equally well captured by a purely lin-

ear system, the linear system should be favored on grounds of parsimony (e.g.,

Frank et al., 2012; Frank & Christiansen, 2018). However, while the hierarchical

structure of natural language syntax is indeed more complex than can be mod-

eled by linear grammars (Chomsky, 1956), equivalent metrics of parsing com-

plexity have not been defined for ‘linear’ vs. ‘hierarchical’ language use. Thus,

without an implementation of syntactic structure building, or at least the iden-

tification of the core computations at stake, the simplicity statement is ill-posed.

Furthermore, the psycholinguistic evidence that hierarchical structure building

is costly comes from the comparison of putatively ‘more complex’ structure with

‘less complex’, but still hierarchical, structure (e.g., King & Just, 1991; Waters &

Caplan, 2004). And last, appeals to simplicity can only be made when competing
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theories have equivalent empirical coverage, which is not the case here because

the linearity view cannot account for our behavioral results. To deal with these

situations, hierarchical structure might only be used in very specific situations,

such as when sentence meaning depends on precise hierarchical structure (sec-

ond blue ball vs. big blue ball; e.g., Frank et al., 2012). However, this requires

the postulation of both a linear and a hierarchical grammar processor, resulting

in a two-system cognitive architecture that is more complex than a one-system

architecture that only uses hierarchical syntax (Lewis & Phillips, 2015).

While the debate about hierarchical and linear systems is often couched in

terms of hierarchy versus statistics, these two are not mutually exclusive (see

Martin, 2016, 2020; Yang, 2004). We believe that probabilistic processes do

play an important role in language, as has been shown extensively (e.g., Marcus,

2001; Pinker, 1999; Townsend & Bever, 2001), but that they operate within the

boundaries imposed by hierarchical structure, during both language process-

ing (Martin, 2016, 2020) and acquisition (Lidz & Gagliardi, 2015; Yang, 2002,

2004). Finding out where the boundaries lie, i.e., what is the representational

level over which probabilities are computed, is an important avenue for future

research.

2.4 Conclusion

In conclusion, we have shown that hierarchical structure is a key component of

human language interpretation, and that an LSTM only reproduces such hierar-

chical behavior under highly specific training circumstances. We conclude that

without a predisposition to generalize hierarchically, the model is not a cogni-

tively adequate model of human language (Fitch, 2014; Martin, 2020; Martin

& Doumas, 2017, 2019, 2020). Beyond language, hierarchical structure might

form the basis of other domains of cognition and information processing (e.g.,

Dehaene et al., 2015; Doumas et al., 2008; Ferrigno et al., 2020; Fitch, 2014;

Hummel & Holyoak, 1997; Martin & Doumas, 2019, 2020; Tenenbaum et al.,

2011). Figuring out how the brain builds hierarchically structured representa-

tions from linear input therefore remains a central question in the science of the

human mind.
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Abstract

Over the past several years, it has been shown that artificial neural network
(ANN) models can learn to generate many complex syntactic constructions,
seemingly without relying on the type of symbolic structured knowledge con-
ventionally used by language scientists. Despite these positive results, we show
that these models do not meet the key scientific demand of cognitive fidelity:
they are both too weak and too strong with respect to critical properties of
human language. ANNs are too weak because they fail to learn central prop-
erties of syntax, such as structure-dependent restrictions on interpretation. At
the same time, ANNs are too strong because they successfully learn regularities
that are not possible in human language. For example, they can make structure-
independent generalizations that humans never appear to make, generalizations
that empirically fall beyond the boundaries of possible human languages. To
address these scientific problems, we propose two broad changes to cognitive
computational modeling of syntax. The first is a change to the learning objectives
used, which should be focused on structure interpretation rather than sequence
generation. The second is a change to their cognitive architecture, admitting
constraints on possible human languages. We believe that with these changes in
mind, ANNs for language can move closer towards integrating valuable insights
from across the language and cognitive sciences.
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3.1 Introduction

When cognitive and computational approaches to language are compared, it is

striking that they are often not aligned in terms of their goals, scientific methods,

and evaluation criteria.1 For instance, while many cognitive approaches empha-

size the importance of structure in explaining linguistic phenomena, language

learning, and language behavior, computational models are mostly evaluated

on their ability to recognize or generate sequences. Here, we provide sugges-

tions for narrowing this gap. Specifically, we argue for a conceptual shift in ANN

syntactic modeling, which we believe should be focused more on the interpreta-

tion of syntactic structures, and less on the probability of sequences. The chapter

is structured as follows: In Section 3.2, we demonstrate the importance of struc-

ture dependence in language by presenting evidence from co-reference and bind-

ing. These linguistic phenomena illustrate that the relationship between form

and meaning in natural language is mediated by hierarchical structure. Current

ANNs struggle to capture this mapping, and one core reason for this is that they

are trained and tested on a learning objective that is orthogonal to the goal of lan-

guage comprehension. In Section 3.3, we discuss impossible languages, which

are formal languages that are logically possible but that are never realized in nat-

ural language. Current language models remain cognitively inadequate because

they can easily learn these impossible languages. To address these limitations,

we suggest several constraints on and changes to scientific practice in cognitive

computational modeling of language. We believe that computational research

incorporating these constraints and changes will benefit from integrating what is

already known about the structure of natural language systems, and will provide

a stronger contribution to the scientific study of language.

3.2 Possible structures, not probable strings

A large body of both theoretical and empirical evidence shows that syntactic

generalizations are structure-dependent: they are stated in terms of relations

defined over the hierarchical structure of phrases and sentences, rather than the

sequential order of their words (Chomsky, 1957, 1965; Coopmans, de Hoop,

1We use the term computational models in a particular way, referring to commonly used
neural network architectures (e.g., recurrent neural networks, long short-term memory (LSTM)
networks, Transformers) that are evaluated in terms of their syntactic abilities. These sequence
models are initially domain-general and become language models once they are trained on huge
text corpora. Our usage thus excludes tree-bank parsers, Bayesian models, and formal models
of language learning, among others.
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Kaushik, et al., 2022; Everaert et al., 2015). The semantic interpretation of

phrases and sentences is also structure-dependent: their meaning is derived

from hierarchically organized constituent structure (Heim & Kratzer, 1998). As

a result, the pairing of form and meaning in natural language (mediated by syn-

tax) need not be one-to-one: some forms do have one meaning, but others have

multiple meanings (i.e., structurally ambiguous sentences), and still others have

zero meanings that are grammatically licensed (i.e., ungrammatical sentences;

Pietroski & Hornstein, 2020). An overarching goal of syntax research is explain-

ing this relation, that is, how people are able to identify both what a sentence

can mean (i.e., its possible interpretations, represented as <form, meaning>
mappings) as well as what it cannot mean (i.e., <form, *meaning> mappings).

In the context of this objective, explaining why certain forms are ungrammatical

is only a subgoal, because ungrammaticality is a special case of a sentence hav-

ing zero meanings (Berwick, Pietroski, et al., 2011; Pietroski, 2015; Pietroski &

Hornstein, 2020).

Despite the subordinate theoretical importance of ungrammaticality in cogni-

tive approaches to language, this is exactly what computational language mod-

els are commonly evaluated on (for a recent review of these models, see Linzen

& Baroni, 2021). These studies investigate whether a statistical model that is

trained on a large corpus of (mostly grammatical) sentences can learn to assign

higher probabilities to grammatical sentences than to ungrammatical ones. Be-

cause of the narrow focus of this objective, any generalization the model comes

up with might be tailored to recognizing ungrammaticality and might therefore

not generalize to other <form, meaning> mappings. Indeed, it is very well pos-

sible that this sequence-based evaluation metric inhibits the model from captur-

ing structure-dependent generalizations, as much of the training data will be in

line with structure-independent alternatives. This is problematic because a se-

quential analysis of sentence structure will often lead the model astray, making

inaccurate predictions about the interpretation of novel sentences. The follow-

ing section provides an example.

3.2.1 Evidence from co-reference and binding

The sentences below reveal an interesting asymmetry in the possibility of co-

reference between “he” and “the boy”. Note first that sentences (1) through (4)

all have an interpretation in which “he” and “the boy” do not pick out the same

individual. Notably, (1), (2) and (3) are ambiguous; they also have a reading

in which “he” and “the boy” do pick out the same referent. The co-referential
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interpretation is blocked in (4), in which “he” and “the boy” must have disjoint

reference.

(1) When the boy finished his essay, he was happy.

(2) When he finished his essay, the boy was happy.

(3) The boy was happy when he finished his essay.

(4) He was happy when the boy finished his essay.

Clearly, no generalization based on linear order alone is able to capture these

facts. Instead, this asymmetry is captured by a generalization conventionally

called Binding Principle C, a structure-dependent constraint that makes use

of c-command (Chomsky, 1981; Lasnik, 1976; Reinhart, 1983). Principle C

states that the interpretation of referring expressions such as “the boy” cannot

be made referentially dependent on another element that c-commands them.

C-command is a structural relation, formally defined as follows: a node α c-

commands another node β if β is (contained in) the sister node of α. As can

be seen in Figure 3.1B, which shows the structure corresponding to sentence

(4), “the boy” is c-commanded by “he”, so a dependency relation between these

two elements is ruled out by Principle C. This is not the case in example (2),

because the pronoun “he” is embedded in an adverbial clause and “the boy” is

not c-commanded by it (see the structure in Figure 3.1A).
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the boy
was happy

B ...
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was happy
when

the boy
finished his essay
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who
who

said
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say

who
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who
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he

finished his essay
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say

who
finished his essay

5

Figure 3.1: Two hierarchical structures in which “he” does (B) or does not (A)
c-command “the boy”.

Principle C also explains the interpretation of the so-called cross-over con-

struction in (6) (Chomsky, 1986; Freidin & Lasnik, 1981). First consider (5),

which is ambiguous; a relation between “who” and “he” can, but need not, be

established. In (6), however, no such dependency relation between “who” and

“he” can be established.
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(5) Who said he finished his essay?

(6) Who did he say finished his essay?

Again, linear order alone cannot explain this asymmetry. The difference between

these examples is that “who” in (5) is the subject of “said”, which is higher in

the tree than “he” (see who in Figure 3.2A), while “who” in (6) is the subject of

“finished”, which occupies a position lower than “he” (see who in Figure 3.2B).

The reason that a dependency relation between “who” and “he” in (6) is ruled

out is that “he” c-commands the original position of “who” (see Figure 3.2B), a

violation of Principle C. This is not the case in (5), as “who” is never in a position

where it is c-commanded by “he” (see Figure 3.2A).
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say
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5

Figure 3.2: Two hierarchical structures in which “he” does (B) or does not (A)
c-command the original position of “who” (represented as who).

These examples establish that syntactic generalizations are made over struc-

tures (i.e., the possibility of a referential dependency is based on a particular

structural relationship between the two elements), rather than linear order. If

language relied on structure-independent principles referring to linear order,

the asymmetries would be unexpected, because the examples in (1) and (2) are

identical to (3) and (4), respectively, in terms of the linear order of “he” and

“the boy”. The same goes for (5) and (6), which are sequentially similar (i.e.,

“who” precedes “he”), but structurally very different. Generalizations based on

the sequential structure of sentences alone would therefore make incorrect pre-

dictions regarding the interpretation of these sentences. Because (1) licenses

the same interpretations as (2), it is not unreasonable to suppose that the inter-

pretations of (3) and (4) are similarly linked, which they are not. Likewise, if

(6) is treated as analogous to (5), then (6) should also be ambiguous, contrary

to fact. Without considering their underlying hierarchical structure, the unam-

biguity of both (4) and (6) is mysterious. Before we discuss the implications of

these facts for computational modeling of language, we should note that this is

but one example of recovering meaning, not specific to co-referential dependen-



64 3 Constraining cognitive computational models of language

cies. Scope-taking is a fundamental part of human language that delimits the

meanings that can be expressed in a structure-dependent way.

3.2.2 Implications for computational modeling

The reason that these examples are discussed in so much detail is that they

present both an analytic problem and an acquisition problem (Lidz, 2018). The

analytic problem was discussed in the previous section, namely that there is an

asymmetry in the possibility of co-reference: the fact that sentences (1)-(3) are

ambiguous while (4) is not requires an explanation. The acquisition problem

is that it is unclear how this generalization can be acquired, in particular if the

learner only has access to surface forms, which is the case for ANN models of

language.2

Computational language models are trained on huge text corpora, often with

the task of predicting the next word. After training, their knowledge of syntax

can be tested via their response to minimal pairs of grammatical and ungram-

matical sentences (e.g., Goldberg, 2019; Gulordava et al., 2018; Linzen et al.,

2016; Marvin & Linzen, 2018; Warstadt et al., 2020; Wilcox et al., 2019; Xi-

ang et al., 2021). If the model consistently assigns a higher probability to the

grammatical sentence in the minimal pair, it is assumed that it has learned the

(principles underlying the) relevant grammatical construction. This evaluation

metric is clearly unsuitable for the Principle C constructions discussed above,

as they are all grammatical. The relevant difference between (3) and (4) is

the availability of a co-referential interpretation in (3), which is unavailable in

sentence (4). But the absence of the co-referential interpretation in (4) does

not result in ungrammaticality, so this sentence will still be part of the training

corpus. It thus seems that a computational model that pays attention only to

the frequency of forms, rather than to the relationship between forms and their

meanings, will be unable to capture facts of this sort.

Apart from the much-discussed difficulty of linking the non-occurrence of a

construction with its ungrammaticality (Chomsky, 1957; Yang, 2015), the addi-

tional problem here is that the relevant non-occurrence has to do with meaning.

The critical data point for the learner is the non-occurrence of an interpretation,

which is not visible in the thing that language models count, namely surface

forms (Chierchia, 2004; Crain et al., 2017). On any associative or distributional
2Note that the acquisition problem arises irrespective of the correctness of Principle C as

generalization. Even if it can be derived from a more primitive syntactic principle (Hornstein,
2009) or instead reflects a pragmatic principle (Ambridge et al., 2014), the question remains
how a distributional analysis of surface forms yields the right generalization.
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account, what has to be counted are <form, meaning> mappings, not surface

forms; it is insufficient to only keep track of which sentences occur (Crain, 1991;

Crain & McKee, 1985; Crain & Thornton, 1991). And more specifically, what has

to be counted are the interpretations that do not occur. From the non-existence

of certain interpretations, the learner then has to induce the constraints on how

sentence structures map onto sentence meanings.

In other words, the subtle differences between the examples above are differ-

ences in meaning rather than form. As meaning is not a part of the sequence,

these differences cannot be captured in n-gram statistics and will therefore be

difficult to learn for surface-based computational models. Indeed, the one study

that tested an ANN’s ability to learn co-referential restrictions on referring ex-

pressions showed that it was insensitive to Principle C (Mitchell et al., 2019). In

stark contrast, children of around three years of age have been found to adhere to

Principle C in the interpretation of referring expressions, accepting co-reference

in (1)-(3) but not in (4) (Crain & McKee, 1985; Eisele & Lust, 1996; Kazanina

& Phillips, 2001; Lidz et al., 2021; Lukyanenko et al., 2014). At the same age,

they also know how to interpret cross-over constructions, correctly rejecting the

bound interpretation in (6) but not in (5) (Crain, 1991; McDaniel & McKee,

1992), suggesting that the Principle C analysis that unifies the two phenomena

is on the right track as an organizational descriptor of the language system.

It has been argued recently that one cannot arrive at meaning from access to

forms (Bender & Koller, 2020; Lake & Murphy, 2021). The discussion above

aims to show that one also cannot get syntax, or knowledge of a structure-

dependent system, from access to forms alone. It follows that focusing exclu-

sively on the acceptability of strings, rather than on the meanings associated

with structures, is unlikely to produce a system matching the properties of hu-

man language. Changing the learning objective from generating sentences to in-

terpreting structures therefore seems like a principle scaffold in building ANNs’

capacity to learn the structure-dependent nature of linguistic principles.

3.3 The limits of variation: Impossible languages

It was long thought that there are no bounds to the variety of human languages.

The linguist Martin Joos famously argued that languages could “differ from each

other without limit and in unpredictable ways” (Joos, 1957, p. 96). Current

views instead hold that typological variation is constrained: not all imaginable

combinations of grammatical properties are permissible (Baker, 2001; Cinque,
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2013; Newmeyer, 2005; Rizzi, 2009). The fact that certain logically possible

languages are never realized, and that languages consistently display the same

properties and adhere to the same formal principles, suggests that there are

impossible languages (Chomsky, 1991; Moro, 2015, 2016; Newmeyer, 2005).

One such property that does not seem to be adopted in the syntactic rules

of natural languages is structure independence: syntactic rules or operations

do not refer to the linear order of words in a sentence (Everaert et al., 2015;

Rizzi, 2013). A particular view holds that the pervasiveness of structure depen-

dence relates to the fact that structure-independent languages fall outside the

boundaries of possible human languages (Baker, 2001; Chomsky, 1991; Moro,

2015, 2016). On this account, structure dependence restricts the class of pos-

sible languages, rendering structure-independent languages naturally impossi-

ble. We should stress the word naturally here, because ‘impossible languages’

are neither formally nor logically impossible (i.e., one can think of languages

that possess these properties, such as formal languages). Nor are they liter-

ally unattainable (i.e., they could be learned in principle), but they appear to

be naturally or biologically impossible in the sense that they are not acquired by

the mechanisms that support natural language acquisition (Hauser, 2009; Light-

foot, 1982; Newmeyer, 2005; Wexler, 1990). This idea receives support from

the results of artificial language learning experiments, which suggest that people

naturally treat possible and impossible languages as different in kind.

3.3.1 Evidence from artificial language learning

The results of different types of artificial language learning experiments demon-

strate that people acquire ‘possible’ artificial languages differently than ‘impos-

sible’ artificial languages. In an early study by Read and Schreiber (1982), 7-

year-old children were trained to repeat word sequences that were part of a

sentence produced by one of two experimenters. They had to learn implicitly

which sequences to repeat by looking at what the other experimenter repeated

back. In one of the conditions, the to-be-repeated sequence was a syntactic con-

stituent (i.e., subject noun phrase), which in the training data varied in length

and semantic content. Most children successfully mastered the task, consistently

repeating back the right constituent. When the to-be-repeated sequences were

non-constituents, defined in terms of their sequential properties (e.g., the first

four words of the sequence), none of the children was successful. These results

indicate that children readily infer structural notions like constituent, while be-
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ing unable to generalize structure-independent rules that refer to properties of

the linear sequence.

Converging evidence comes from a series of neuropsychological studies with

a cognitively-impaired subject who has a remarkable talent for learning natu-

ral languages (Smith & Tsimpli, 1995). In one of the studies, the subject had

to learn an artificial language that had both ‘possible’ grammatical rules, which

were structure-dependent, as well as ‘impossible’ grammatical rules, which re-

ferred to the linear order of words in a sentence (e.g., create the emphatic form

of a sentence by adding a suffix to the third word in that sentence; Smith et

al., 1993). While being able to learn the structure-dependent rules, the sub-

ject failed to learn the structure-independent ones. Interestingly, neurotypical

control participants also failed to learn these impossible rules in the linguistic

context of the experiment. Yet, when the task was presented to them as a non-

linguistic puzzle, they could work out the problem with ease. The latter shows

that the rules were not too difficult; when the neurotypical controls could rely

on “central strategies of general intelligence”, they were able to solve the prob-

lems (Smith & Tsimpli, 1995, p. 154). The difference in behavior between the

subject and the neurotypical controls suggests that people can learn impossible

rules in principle, but only when they do not rely on the mechanisms that support

natural language learning.

These findings are corroborated by the results of fMRI experiments by Musso

and colleagues, who taught their participants languages with possible and im-

possible grammatical rules (Musso et al., 2003). Similar to the study by Smith

et al. (1993), possible languages contained rules that were structure-dependent.

Impossible languages were selectively manipulated versions of real languages,

whose rules referred to the linear properties of words in a sentence (e.g., create

the interrogative form of a declarative by inverting the linear sequence of the

words). After several training sessions, participants could learn both rule types,

but they appeared to use different brain systems for them. As performance ac-

curacy increased, activity in the left inferior frontal gyrus (LIFG) increased as

well, but only for the learning of possible languages (see Tettamanti et al., 2002

for similar results). When participants were learning impossible languages, LIFG

activity decreased as a function of increasing performance accuracy. Subsequent

studies with artificial grammars reported similar results, showing that LIFG (in

particular, BA44) responds more strongly to hierarchical long-distance depen-

dencies following from a ‘possible’ phrase-structure grammar than to linear local

dependencies determined by an ‘impossible’ finite-state grammar (Bahlmann et
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al., 2008; Chen et al., 2021; Friederici et al., 2006). The observation that the

processing of possible and impossible languages involve different brain systems

indicates that the brain makes a functional distinction between the two types of

languages, and that that distinction is based on whether the languages follow

structure dependence or not.

3.3.2 Implications for computational modeling

It thus appears that people naturally generalize structure-dependent rules but

have difficulty with languages that exhibit structure-independent regularities.

Most ANNs, instead, have been shown to have a preference to generalize linearly

rather than hierarchically (Christiansen & Chater, 1999; Coopmans, de Hoop,

Kaushik, et al., 2022; Frank et al., 2013; McCoy et al., 2020; Petty & Frank,

2021), which shows that they are able to acquire dependencies that make refer-

ence to linear order. Indeed, the few studies that have looked at whether neural

network models can learn structure-independent regularities show that the mod-

els have no difficulty doing so (Fong & Berwick, 2008; Fong et al., 2013; Mitchell

& Bowers, 2020). Fong et al. (2013), for instance, tested whether statistically-

trained parsers assign the right parse tree to linearly inverted questions. The

training corpus contained declarative sentences with their corresponding parse

trees, and contained either natural questions or artificially modified versions of

these questions in which the sequence of words was inverted. If the parser was

trained on fully natural data, it was not able to assign the right parse tree to

reversed questions. Instead, if these unnatural constructions were also part of

the training data, the parser performed quite well on reversed questions. This

latter finding reveals a non-human capacity to learn, because the training cor-

pus contained (impossible) grammatical idiosyncrasies in which the parse tree

for declarative sentences followed completely different rules from that for ques-

tions.

More recently, Mitchell and Bowers (2020) trained and tested an LSTM on its

ability to handle number agreement in several impossible structures, including

constructions in which the linear sequence of words following a special marker

was reversed (e.g., “the man whose dog barks ate the apples” becomes “the man

whose dog <marker> apples the ate barks”). Here, the correct generalization is

structure-independent in terms of both the domain of application (i.e., sequence

reversal) and the conditions of application (i.e., it depends on whether the to-

be-reversed elements linearly precede or follow the special marker). Mitchell

and Bowers (2020) showed that the LSTM’s performance was not affected by
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the structure-independent modifications; it handled number agreement in these

impossible structures as effectively as in natural language constructions.3 These

findings show that ANNs that are not equipped with constraints on possible lan-

guages have no trouble learning impossible languages, which makes them too

strong as cognitive models of human language (Adger, 2018; Fong & Berwick,

2008; Pinker & Prince, 1988; Smith & Tsimpli, 1997). It thus seems that com-

putational models of language which aim for cognitive adequacy should be en-

dowed with constraints on possible languages.

Building models that are unable to acquire impossible languages requires be-

ing explicit about what is computed by the neural network (Dunbar, 2019; Guest

& Martin, 2021a; Rawski & Heinz, 2019). One promising approach towards this

goal involves probing the network’s units or internal states to see how they relate

to its behavior in response to a particular syntactic construction (e.g., Giulianelli

et al., 2018; Lakretz et al., 2021). These states might be used as latent proxies

for the network’s representation of linguistic knowledge and can thus provide

information about the way the model infers structure from the input.

Yet, beyond this engineering problem, there is a more fundamental problem, at

least for those computational models that are treated as linguistic theories (e.g.,

Baroni, 2022; Cichy & Kaiser, 2019; Ma & Peters, 2020). Linguistic theories

aim to explain why certain logically possible languages are never spontaneously

acquired even though they are compatible with much of the data in the linguis-

tic environment. This fundamental question about why human language is the

way it is is not being addressed by current language modeling approaches. In

fact, if the sequentially-oriented statistical learning mechanisms of ANNs alone

were the basis for grammatical acquisition, one would expect human languages

to look quite differently (Adger, 2019; Coopmans, de Hoop, Kaushik, et al.,

2022; Crain & Pietroski, 2001; Heinz & Idsardi, 2011; Jackendoff, 1988). For in-

stance, ANN-generated languages might contain linear agreement dependencies

(Adger, 2018) or probabilistic variation (Hudson Kam & Newport, 2005), nei-

ther of which are characteristically found as grammatical properties of human

languages. From a scientific perspective, the current computational approach

thus misses an important point, which is not that models can learn structure-

dependent rules by computing statistics over sequences (which is an engineer-

3Another interesting finding was that the LSTM weights that handled agreement in possible
and impossible structures overlapped substantially, suggesting that the model does not make a
fundamental distinction between the two types of structures. This contrasts with humans, who
seem to employ different neurocognitive resources for possible and impossible languages (Musso
et al., 2003; Tettamanti et al., 2002).
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ing problem), but that languages with sequential dependencies are ultimately

never spontaneously acquired by language learners (Berwick, Pietroski, et al.,

2011). Explaining why structure-dependent rules are universally attested re-

mains a fundamental challenge for cognitively-oriented computational work on

language.

3.4 Constraining cognitive computational models

Broadly speaking, a cognitively faithful computational language model must

meet two requirements. On the one hand, it should learn (or at least approx-

imate) what humans learn by making the inductions humans (could) make.

Thus, it must succeed in learning possible languages – ideally, following the

learning trajectory children follow. This is a prominent topic of current research,

which focuses on the question whether neural network models can produce the

linguistic behaviors humans produce (Coopmans, de Hoop, Kaushik, et al., 2022;

Goldberg, 2019; Gulordava et al., 2018; Linzen et al., 2016; Lakretz et al., 2021;

Martin & Doumas, 2017, 2019; Marvin & Linzen, 2018; Warstadt et al., 2020;

Wilcox et al., 2019; Xiang et al., 2021). However, a positive finding on this

benchmark is not necessarily evidence for a human-like cognitive architecture,

because the model’s learning mechanisms might work equally well for proper-

ties that are never found in human languages (for a general perspective, see

Guest & Martin, 2021b). On the other hand, the model must not make induc-

tions humans do not make, and therefore not learn what humans do not learn. In

other words, an adequate model must not be able to learn impossible languages.

While this aspect has been a central topic in linguistics, it is often overlooked in

the computational modeling of language. The few studies that have been done

on this topic suggest that current models are not constrained enough to be pre-

vented from learning impossible languages (Coopmans, de Hoop, Kaushik, et

al., 2022; Fong et al., 2013; Mitchell & Bowers, 2020).

To address these challenges, we propose two changes to the practice in com-

putational language research: one to the modeling objective and one to the

model’s architecture (see also Berent & Marcus, 2019; Guest & Martin, 2021a;

Marcus, 2001; Martin, 2016, 2020; Rawski & Heinz, 2019). The first change

involves shifting the focus from the (un)grammaticality of forms to the meaning

associated with these forms. The second involves endowing the models with

constraints on possible <form, meaning> mappings, such that these mappings

are structure-dependent. One approach towards integrating a constraint like
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structure dependence in ANNs would be to split the model’s task up into two

parts. The first part is independent of the experimental objective and consists of

assigning constituent structure to sequential input. In the second part, the model

will perform its specific language task (e.g., next-word prediction, natural lan-

guage inference) using that constituent structure rather than the (sequence of

the) individual words. As a consequence, the model will treat constituents as

the relevant unit for the language task and might therefore be able to use the

structural relations that can be derived from them (e.g., c-command). The spe-

cific implementation of this proposal will have to be spelled out in more detail,

but we do think that an approach along these lines is necessary for ANNs to be

useful as cognitive computational models of language.

In particular, we suspect that incorporating our suggestions will yield progress

on the two scientific requirements identified above. As constraints delimit the

space of possible hypotheses within which the statistical learning mechanisms of

ANNs can discover patterns, they reduce the number of possible generalizations

and therefore ought to facilitate learning. One clear benefit of this approach is

that it will allow for more targeted testing of the learnability of domain-specific

syntactic principles, such as Principle C. If models are prevented from (or at least

biased against) forming linear generalizations, they might be able to learn such

principles using training data that are quantitatively and qualitatively similar to

the primary linguistic data children are exposed to (Futrell et al., 2019; Wilcox

et al., 2019).

The incorporation of constraints will also prevent shortcut learning. Neural

network models often rely on heuristics to master the task at hand (Geirhos et

al., 2020; Malhotra et al., 2020). This can be seen most clearly in their un-

predictable behavior in response to adversarial examples, which are those cases

where a functionally marginal change in the input, often invisible to the human

eye (e.g., in perceptual classification tasks), drastically worsens model perfor-

mance (Dujmović et al., 2020; Szegedy et al., 2014). One of the reasons that

many neural network models are vulnerable to adversarial attacks is that they

treat all information as equally relevant and therefore fail to make a distinc-

tion between those features of the input that are merely contingent associations

(statistics) and those that are inherent properties of the to-be-represented do-

main (Heaven, 2019; Marcus, 2018). While ANNs are sensitive to any type of

statistical regularity in linguistic input, there are statistical regularities that hu-

mans do not appear to be sensitive to. In fact, many statistically prominent fea-

tures in the input are simply ignored, and this strongly facilitates language learn-
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ing (Hudson Kam & Newport, 2005; Gagliardi & Lidz, 2014; Pinker & Prince,

1988; Yang, 2013). By using adversarial examples as a test objective, it is possi-

ble to determine whether a model uses those features that are inherent proper-

ties (e.g., in subject-verb agreement, the structural relation between subject and

verb) or instead relies on superficial information that only happens to be cor-

related with these inherent properties (e.g., the linear adjacency between noun

and verb). Extrapolating this idea from the perceptual to the cognitive domain,

one could use the learnability of impossible languages as an adversarial exam-

ple to expose shortcut learning in computational modeling of language (Fong &

Berwick, 2008). If, after being trained on artificial data, the model succeeds in

acquiring properties that are never found in human language, it is reasonable to

suppose that it relied on information humans do not use. The apparent success

of such a model is therefore less informative about human cognition, and it must

be augmented by structure-dependent constraints on form-meaning mappings in

order to be regarded as a cognitively faithful model of human language.

3.5 Conclusion

By focusing on probable sequences rather than on possible mappings between

structure and meaning, ANNs can approach, though not fully capture the hierar-

chical nature of language. We argue that current language models are both too

strong and too weak as cognitive models of language, and propose two changes

to these models to make them meet the demand of cognitive fidelity. The first in-

volves changing the learning objective from the generation of sequences to the

interpretation of structures. The second involves incorporating constraints on

possible structures. We believe that if both suggestions are taken seriously, com-

putational language modeling research will have greater impact in the scientific

study of language.



4 | Effects of structure and meaning on cortical

tracking of linguistic units in naturalistic

speech1

Abstract

Recent research has established that cortical activity ‘tracks’ the presentation rate
of syntactic phrases in continuous speech, even though phrases are abstract units
that do not have direct correlates in the acoustic signal. We investigated whether
cortical tracking of phrase structures is modulated by the extent to which these
structures compositionally determine meaning. To this end, we recorded elec-
troencephalography (EEG) of 38 native speakers who listened to naturally spo-
ken Dutch stimuli in different conditions, which parametrically modulated the
degree to which syntactic structure and lexical semantics determine sentence
meaning. Tracking was quantified through mutual information between the
EEG data and either the speech envelopes or abstract annotations of syntax,
all of which were filtered in the frequency band corresponding to the presenta-
tion rate of phrases (1.1–2.1 Hz). Overall, these mutual information analyses
showed stronger tracking of phrases in regular sentences than in stimuli whose
lexical-syntactic content is reduced, but no consistent differences in tracking be-
tween sentences and stimuli that contain a combination of syntactic structure
and lexical content. While there were no effects of compositional meaning on the
degree of phrase-structure tracking, analyses of event-related potentials elicited
by sentence-final words did reveal meaning-induced differences between con-
ditions. Our findings suggest that cortical tracking of structure in sentences in-
dexes the internal generation of this structure, a process that is modulated by the
properties of its input, but not by the compositional interpretation of its output.

1Adapted from Coopmans, C. W., de Hoop, H., Hagoort, P., & Martin, A. E. (2022). Effects of
structure and meaning on cortical tracking of linguistic units in naturalistic speech. Neurobiology
of Language, 3(3), 386-412.
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4.1 Introduction

How the brain parses a continuous speech stream into discrete, hierarchically

organized units of linguistic representation remains an important question in the

neurobiology of language (Giraud & Poeppel, 2012; Martin, 2016, 2020; Meyer

et al., 2020). A possible mechanism that the brain might use to extract linguistic

information relies on phase alignment between neural activity and quasi-regular

properties of the speech signal. This process, called cortical tracking, results from

the tendency of neural systems to adjust to the timing of (quasi-)regular aspects

of external stimuli, and has been argued to facilitate segmentation and parsing

of continuous speech (for reviews, see Ding & Simon, 2014; Giraud & Poeppel,

2012; Kösem & van Wassenhove, 2017; Obleser & Kayser, 2019; Peelle & Davis,

2012; Rimmele et al., 2018; Schroeder & Lakatos, 2009; Zoefel & VanRullen,

2015).

Cortical tracking is well established for low-level aspects of the linguistic sig-

nal, which have clear correlates in the physical instantiation of speech (e.g., the

speech envelope). Strikingly, recent work has shown that words and phrases,

which are not clearly discernable in the speech signal and have to be inter-

nally constructed, are also cortically tracked (Ding et al., 2016; Ding, Melloni, et

al., 2017). Moreover, these high-level linguistic properties influence lower-level

speech processing, as shown by the fact that cortical tracking of the speech en-

velope is modulated by the listener’s knowledge of the language (Broderick et

al., 2019; Di Liberto et al., 2018; Kaufeld et al., 2020).

These studies indicate that the inferred content of a signal affects the extent to

which the brain tracks that signal (see also Keitel et al., 2018; Martin, 2020; ten

Oever & Martin, 2021). What it is still elusive, however, is which aspects of con-

tent determine cortical speech tracking. In a recent paper, Kaufeld et al. (2020)

showed that the neural signal aligns more strongly with periodically occurring

linguistic units, such as syntactic phrases, when these contain meaningful infor-

mation and are therefore relevant for linguistic processing. Specifically, cortical

tracking of phrase structure was stronger for regular sentences than for control

stimuli that were matched in terms of either lexical semantics (word lists) or

both prosody and syntactic structure (jabberwocky sentences), suggesting that

this neural response is driven by the compositional meaning of sentence struc-

tures. However, the difference between sentences and these control conditions

can be described not only in terms of the output of compositional processing

(i.e., the fact that sentence structures have a meaningful compositional interpre-

tation), but also in terms of the factors that go into structural composition. To
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investigate which of these aspects of content affect cortical tracking of linguistic

structure, the current electroencephalography (EEG) study investigates cortical

tracking of linguistic units (phrases, words, syllables) when these are embed-

ded in stimuli that are parametrically varied in terms of the amount of linguis-

tic information. These stimuli ranged from regular, compositional sentences to

structure-meaning divergent forms (idioms, syntactic prose), structures with re-

duced lexical-syntactic content (jabberwocky) and unstructured word lists. We

thus test how the relationship between structure and meaning in spoken lan-

guage affects cortical tracking of linguistic information.

4.1.1 Cortical tracking of linguistic structure

Low-frequency cortical activity closely tracks the amplitude envelope of the

speech signal (Ahissar et al., 2001; Doelling et al., 2014; Gross et al., 2013;

Kayser et al., 2015; Keitel et al., 2017, 2018; Luo & Poeppel, 2007). Because

the low-frequency periodicity of the speech envelope correlates with the syllable

rate (i.e., in the theta band), it has been argued that cortical activity in this

frequency range tracks syllable-sized linguistic units (Giraud & Poeppel, 2012;

Luo & Poeppel, 2007; Peelle & Davis, 2012; Poeppel & Assaneo, 2020). How-

ever, speech contains temporal regularities at multiple timescales; high-level

linguistic units, such as syntactic phrases, also exhibit quasi-regular temporal

structure, yet only a small number of studies have investigated cortical tracking

of phrase structure.

A main method to study tracking of abstract structure has relied on careful

control of the presentation rate of linguistic information, whereby this informa-

tion is ‘frequency tagged’. The idea behind this approach is that when infor-

mation is presented repeatedly at a specific frequency, the neural response to

that type of information synchronizes with its presentation rate. In a series of

M/EEG studies, Ding and colleagues have shown that neural activity becomes

phase-locked to the presentation rate of phrases and sentences, even though

these abstract units are not physically discernable in the auditory signal itself

(Blanco-Elorrieta et al., 2020; Ding et al., 2016; Ding, Melloni, et al., 2017;

Getz et al., 2018; Makov et al., 2017; Sheng et al., 2019). Such phase-locked

responses are found only if the input can be grouped into phrases, showing that

they are based on linguistic knowledge, not acoustic information (Ding et al.,

2016; Martin & Doumas, 2017). And while it has been disputed that what is

tracked is really abstract structure rather than lexical semantics (Frank & Yang,
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2018), recent studies have shown that lexical accounts cannot fully explain the

data (Burroughs et al., 2021; Jin et al., 2020).

These frequency-tagging studies are very artificial because they rely on syn-

thesized speech that is isochronously presented, but similar effects are reported

in studies with more naturalistic materials. In one such study by Keitel et al.

(2018), participants listened to naturally spoken sentences that were embedded

in noise, after which they had to perform a comprehension task. All sentences

were annotated for the occurrence of phrases, words, and syllables, yielding lin-

guistically relevant frequency bands that were specific for their stimulus materi-

als. Within each frequency band, speech tracking was quantified through mutual

information between the speech envelope and neural activity. At the timescale

of words and phrases, tracking was stronger for correctly comprehended than

for incorrectly comprehended sentences, showing that speech tracking in these

frequency bands is related to successful language comprehension.

Using a similar approach, Kaufeld et al. (2020) presented participants with

naturally spoken stimuli in three conditions: regular sentences, jabberwocky

sentences (i.e., same prosody and structure, but different lexical content), and

word lists (i.e., same lexical content, but different structure and prosody). Back-

ward versions of all stimuli were used to control for acoustic differences. At

the phrasal timescale, speech tracking was stronger for regular sentences than

for both jabberwocky sentences and word lists, while these differences were ab-

sent in the acoustic control conditions. These findings thus show that the brain

is more attuned to phrases when they contain meaningful information and are

therefore relevant for language comprehension (Kaufeld et al., 2020). In partic-

ular, the fact that phrase-level speech tracking is stronger for sentences than for

jabberwocky suggests that this response is modulated by the semantic content

of phrases (see also Brennan & Martin, 2020; Martin, 2020; Martin & Doumas,

2017).

It is still an open question, however, whether semantic content should be in-

terpreted as lexical-semantic content – the fact that sentences are structured se-

quences composed of real words – or rather, compositional-semantic content –

the fact that these real words in sentences compose into meaningful constituents.

The most prominent difference between regular and jabberwocky sentences is

that the former contain real content words, which are replaced by pseudowords

in jabberwocky sentences. Real words and pseudowords differ in both semantic

and lexical-syntactic content, with the latter strongly affecting linguistic struc-

ture building (Hagoort, 2005, 2017; Matchin & Hickok, 2020). It is thus possible
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to interpret the difference in phrase-level speech tracking between sentences and

jabberwocky in two ways: either it reflects the fact that words in sentences can

be composed into meaningful constituents (i.e., reflecting the outcome of struc-

ture building; Kaufeld et al., 2020), or it reflects the fact that the lexical-syntactic

information carried by content words allows words in sentences to be easily com-

posed in the first place (i.e., reflecting the input to structure building). In the

latter case, these findings reflect the brain’s attempt to build a structural rep-

resentation of the linguistic input, regardless of its interpretation. The present

study aims to tease apart these two possibilities.

4.1.2 Background of the present study

We contrast regular sentences, whose meaning is compositionally derived from

their structure and lexical components, with stimuli in which the mapping be-

tween structure and meaning is less transparent. If it is indeed the case that

phrase-level speech tracking is driven by the structure-meaning correspondence

of sentences, the tracking response should be stronger for sentences than for

controls that are divergent in their structure-meaning relationship. As examples

of the latter, we used one naturally occurring stimulus (idioms) and one artifi-

cial stimulus (syntactic prose), both of which contain the same structural and

lexical-semantic information as regular, compositional sentences, but are puta-

tively less compositional in the sense that their meaning does not derive fully

from a combination of their structure and lexical components. Parametrically

reducing the amount of linguistic information, we also included jabberwocky

sentences and unstructured word lists.

We note that compositional processing is not an all-or-none phenomenon

(Baggio, 2021; Titone & Connine, 1999), and idioms and syntactic prose are not

processed entirely noncompositionally. However, a compositional analysis of

the sentences in these conditions either does not yield a sensible interpretation

(syntactic prose) or does not yield the intended interpretation (idioms). We

therefore assume that compositional processes will be overall less engaged in

the comprehension of idioms and syntactic prose than in the comprehension of

regular sentences.

Idioms are conventionalized co-occurrence restrictions whose figurative

meaning must be learned (Cacciari, 2014; Cacciari & Glucksberg, 1991; Jack-

endoff, 1995, 2017). They adhere to basic grammatical rules but are semanti-

cally idiosyncratic: the figurative meaning of idioms is not fully derived from a

semantic composition of their component parts (Cacciari & Glucksberg, 1991;
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Jackendoff, 1995, 2017; Sprenger et al., 2006). As an example, consider the

Dutch idiom een vinger aan de pols houden (literally: “to keep a finger on the

pulse”), whose figurative meaning is “to check whether everything goes right”.

Clearly, this figurative meaning is noncompositional and conventionalized, but

in terms of structure the idiom is not an unanalyzed whole. The idiom is a verb

phrase whose verb inflects in the past tense in the same way it does in regular

sentences (i.e., as in English, houden “to keep” is irregular, inflecting to hield

“kept” in the past tense), and it has the regular argument structure of the verb

houden “to keep”, which is used ditransitively and can be modified by adverbs

in the usual way.

The idea that idioms contain regular syntactic structure is supported by evi-

dence from language processing, which shows that the structure of idioms is ac-

cessed in both comprehension and production (Cutting & Bock, 1997; Konopka

& Bock, 2009; Peterson et al., 2001; Sprenger et al., 2006). This structure is

linked to the idiom’s meaning in a highly idiosyncratic way, but language users

who process the idiom in real time cannot know this beforehand and will there-

fore initially attempt to derive its interpretation compositionally. Behavioral ex-

periments show that while effects of compositionality can be found in the early

stages of idiom comprehension, literal processing can to some extent be termi-

nated after the phrase or sentence is recognized as being an idiom, at which

point its idiomatic meaning is retrieved from semantic memory (Cacciari, 2014;

Cacciari & Corradini, 2015; Cacciari & Tabossi, 1988; Holsinger & Kaiser, 2013;

Libben & Titone, 2008; Peterson et al., 2001; though see Smolka et al., 2007).

Evidence from electrophysiological brain recordings also suggests that compo-

sitional processes can be interrupted in the comprehension of idioms (Canal et

al., 2017; Rommers et al., 2013; Vespignani et al., 2010). We therefore consider

idioms suited to serve as experimental sentences whose meaning is not fully de-

rived from their component parts. These effects of compositionality might not

be apparent immediately (i.e., before the idiom recognition point), but we sus-

pect that compositional processes will be overall less engaged for idioms than

for regular sentences.

In syntactic prose, real words are used to construct syntactically correct but

nonsensical sentences (e.g., Bastiaansen & Hagoort, 2015; Kaan & Swaab, 2002;

Marslen-Wilson & Tyler, 1980; Mazoyer et al., 1993). As an example, consider

the Dutch sentence een prestatie zal het concept naar de mouwen leiden, which

translates as “an achievement will lead the concept to the sleeves”. This sen-

tence adheres to the rules of Dutch syntax, including constraints on word or-
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der and argument structure, but a compositional analysis of the sentence does

not yield an interpretation that makes sense. Not many studies have investi-

gated the brain processes involved in comprehending syntactic prose, but one

relevant study found increased EEG gamma-band power for regular sentences

compared to syntactic prose (Bastiaansen & Hagoort, 2015). Notably, two other

EEG studies reported similar effects in the gamma band when comparing regu-

lar sentences and idioms (Canal et al., 2017; Rommers et al., 2013), tentatively

suggesting that the contrasts between sentences and both idioms and syntactic

prose affect similar neurocognitive processes.

In addition to these two conditions, we also used jabberwocky sentences and

word lists (see also Kaufeld et al., 2020). With these five conditions in total (see

examples in Table 4.1), our design parametrically varies the amount of linguistic

information present in the stimuli. All conditions except jabberwocky sentences

contained real content words, and all conditions except word lists had the same

syntactic structure. Moreover, for all syntactically structured conditions, a com-

positional interpretation can be derived. However, a compositional combination

of the words in idioms does not yield their figurative meaning, a compositional

combination of the words in syntactic prose does not yield a coherent semantic

interpretation, and a compositional combination of the (pseudo)words in jabber-

wocky sentences is underspecified. In other words, regular sentences differ from

the other syntactically structured conditions not in whether they allow compo-

sitional processing in principle, but in whether a compositional combination of

the structure and lexical components yields a straightforward meaningful inter-

pretation.

4.1.3 The present study

Participants listened to spoken stimuli in these conditions while their EEG was

recorded. We quantified cortical tracking between the speech envelopes and

the EEG data by means of mutual information (MI), which is an information-

theoretic measure that quantifies the statistical dependence between two ran-

dom variables (Cogan & Poeppel, 2011; Gross et al., 2013; Ince et al., 2017;

Kayser et al., 2015; Keitel et al., 2017). MI was computed in three frequency

bands, corresponding to the occurrence of phrases (1.1–2.1 Hz), words (2.3–4.7

Hz), and syllables (3.4–4.9 Hz) in our stimuli (Kaufeld et al., 2020; Keitel et

al., 2018). Following previous research, we controlled for spectral differences

between sentences and word lists by including backward versions of both stim-

uli. These backward versions preserve many of the spectral properties of their



80 4 Cortical tracking of linguistic units

Table 4.1: Dutch example stimuli of all five conditions.

Condition Stimulus Lexical Syntactic Meaningful
semantics structure compositional

interpretation

Sentence De jongen gaat zijn zusje met haar huiswerk helpen. X X X
the boy will his sister with her homework help
“The boy will help his sister with her homework.”

Idiom De directie zal een vinger aan de pols houden. X X
the directorate will a finger on the pulse keep
Literal: “The directorate will keep a finger on the pulse.”
Figurative: “The directorate will check whether
everything goes right.”

Syntactic Een prestatie zal het concept naar de mouwen leiden. X X
prose an achievement will the concept to the sleeves lead

“An achievement will lead the concept to the sleeves.”

Jabber- De jormen gaat zijn lumse met haar luisberk malpen. X
wocky the jormen will his lumse with her luisberk malp

“The jormen will malp his lumse with her luisberk.”

Word list De gaat jongen zusje huiswerk zijn haar helpen met X
the will boy sister homework his her help with

Note. English translations are provided below. Only the underlined words in the idiom stimulus
are part of the conventionalized idiom.

forward version (especially rhythmic components) but are unintelligible (Gross

et al., 2013; Kaufeld et al., 2020; Keitel et al., 2017; Park et al., 2015).

We were particularly interested in the coherence between speech and EEG in

the phrase frequency band. For this measure of phrase-level speech tracking

we consider two possibilities. If it is affected by the extent to which a compo-

sitional analysis of the input yields a meaningful structural representation, we

expect higher MI for regular sentences than for all other conditions. Instead, if

phrase-level speech tracking reflects the construction of a structural represen-

tation regardless of its compositional interpretation, we do not expect MI for

regular sentences to differ from MI for idioms and syntactic prose. Yet, we do

predict MI to be higher for regular sentences than for jabberwocky and word

lists, because the latter two contain less information based on which a structural

representation can be constructed (i.e., cues from argument structure, word or-

der).
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4.2 Methods

4.2.1 Participants

We recruited 40 participants (30 female, mean age = 24.6 years, age range =
19–31 years) from the participant pool of the Max Planck Institute for Psycholin-

guistics. All participants were right-handed native speakers of Dutch, who re-

ported normal hearing and did not have a history of language impairment. Af-

ter receiving information about the experimental procedures, participants gave

written informed consent to take part in the experiment, which was approved by

the Ethics Committee of the Faculty of Social Sciences at Radboud University Ni-

jmegen. They were reimbursed for their participation. After preprocessing, we

excluded two participants due to low numbers of artifact-free trials. The analy-

ses reported are based on a sample of 38 participants. As there are no previous

studies that are comparable to our experiment in terms of method, analyses and

design, this sample size was based on EEG studies from our lab that either used

similar analyses (but had a lower number of conditions; Kaufeld et al., 2020;

n = 29) or had a similar design (but used different analyses; Nieuwland et al.,

2019; n = 40).

4.2.2 Materials

Experimental items

An example of one stimulus item for each condition is given in Table 4.1. The

Sentence condition contained sentences with a compositional meaning, which is

derived from a combination of the word meanings and their structural combina-

tion. To give an example of a translated stimulus item, the meaning of “The boy

will help his sister with her homework” is a function of the meaning of the indi-

vidual words and the syntactic structure of the sentence. The structure was the

same for all syntactically structured conditions (i.e., Sentence, Idiom, Syntactic

prose, and Jabberwocky), which start with a noun phrase (NP) and an auxiliary

verb (e.g., “The boy will . . . ”), followed by a verb phrase consisting of an NP, a

prepositional phrase (PP), and a non-finite lexical verb (V), which is phrase-final

in Dutch (e.g., “. . . help his sister with her homework”).

For the Idiom condition we selected a set of commonly used and well-known

Dutch idioms that had the same NP–PP–V structure. The majority of these idioms

were selected from stimulus lists shared by Hubers et al. (2018) and Rommers

et al. (2013). The idioms were embedded in carrier sentences by the addition
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of a sentence-initial NP and an auxiliary verb, which are not part of the con-

ventionalized structure. We only analyzed those idioms that were known to the

participants. Idiom knowledge was established for each participant by means of

a post-experiment questionnaire (see Section 4.2.6).

Syntactic prose sentences are grammatically well-formed and contain real

words, but these are difficult to compose into a coherent semantic represen-

tation. The stimulus sets in both the sentence condition and the syntactic prose

condition were matched with the idioms on the total number of syllables and

on the lexical frequency of the content words (frequencies extracted from the

SUBTLEX-NL database of Dutch word frequencies; Keuleers et al., 2010).

Jabberwocky sentences were generated with the Wuggy pseudoword genera-

tor (Keuleers & Brysbaert, 2010), which generates pseudowords that obey the

phonotactic constraints of Dutch. We created jabberwocky versions of all items

in the sentence condition by substituting each content word with a pseudoword

that was matched in number of syllables, subsyllabic structure, and syllable tran-

sition frequency. The function words (auxiliaries, determiners, prepositions, pro-

nouns) were kept the same, allowing for the construction of the same syntactic

structure with a compositional interpretation.

Items in the Word list condition contained the same words as those in the

corresponding sentence item, but were scrambled in such a way that no syntactic

combinations could be formed.

We created 85 stimuli for all conditions, of which the first five served as prac-

tice trials, which were not analyzed. Only the idiom condition had 90 items,

which allowed us to preserve roughly the same number of trials as in the other

conditions after excluding unknown idioms.

Audio recordings

The stimuli were recorded in a sound-attenuated booth by a female native

speaker of Dutch (sampling rate = 44.1 kHz (mono), bit depth = 16). After

recording, the intensity of all stimuli was scaled to 70 dB in Praat (Version

6.1.02; Boersma & Weenink, 2019). Backward stimuli for the sentence and

word list conditions were created by reversing each stimulus recording in Praat.

Figure 4.1 shows the modulation spectra of all forward conditions as well as

the backward version of sentences and word lists. These figures indicate that

the forward conditions are prosodically very similar (Figure 4.1A), except for

the word list condition (Figure 4.1B), which deviates from the sentence condi-

tion at several frequencies (see Supplementary Information S4.1). While not
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ideal, we believe that this prosodic difference between stimuli with regular syn-

tactic structure and those without structure is inherent in the contrast between

these conditions. Because our main interest is the comparison between the syn-

tactically structured conditions (Sentence vs. Idiom, Syntactic prose, and Jab-

berwocky), it is important that these conditions do not systematically differ in

acoustic properties.
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Figure 4.1: Modulation spectra of the forward versions of all conditions, com-
puted following the procedure described in Ding, Patel, et al. (2017).
Backward versions of sentences and word lists were included because
of the differences between the forward versions of these two condi-
tions.

4.2.3 Annotations

We manually annotated the forward recordings in Praat (Boersma & Weenink,

2019) with respect to the presence of phrases, words, and syllables. Specifically,

for each stimulus we annotated the position in the recording where a linguistic

unit ends (Figure 4.2A). For both words and syllables, this corresponds to the

boundary between successive units. For phrases this corresponds to the position

of closing phrase boundaries. For example, in [de jongen] [gaat [zijn zusje] [met

haar huiswerk] helpen], the closing bracket denotes the offset of a phrase whose

onset is denoted by the corresponding opening bracket. As word lists by defini-

tion do not contain phrases, we marked ‘phrases’ in these stimuli by annotating

the offsets of the words that are at positions of closing phrase boundaries in the

corresponding sentence item. In the example sentence above, phrases are closed

after the second, fifth, eighth, and ninth word, leading to the following phrase

annotation for the corresponding word list: [de gaat] [jongen [zusje huiswerk]
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phrases

de jong en   gaat    zijn   zus    je    met  haar     huis     werk        hel         pen

words

syllables

[[de jongen][ gaat [[ zijn     zusje   ][met[haar      huiswerk ]]          helpen       ]]]

[de jongen][ gaat  [ zijn     zusje   ][met  haar      huiswerk  ]          helpen       ]

0

3

0
1

A

B

C

1
2

1.1-2.1 Hz

2.3-4.7 Hz

3.4-4.9 Hz

Figure 4.2: Three different annotations of linguistic structure for the Dutch trans-
lation of the sentence “the boy will help his sister with her home-
work”. (A) Schematic illustration of the three different timescales
of the linguistic units of information (phrases, words, and syllables)
contained in the sentence. From the annotation of these timescales,
we derived frequency bands for each linguistic unit. (B) Phrase-level
annotation, where words that integrate a phrase are coded as 1 for
their entire duration, while all other words are coded as 0 (bracket
presence). (C) Phrase-level annotation, where the value assigned to
each word corresponds to the number of phrases that the word inte-
grates (bracket count).

[zijn haar helpen]met]. Converting the onsets and offsets of these annotations to

frequencies resulted in the following frequency bands: 1.1–2.1 Hz for phrases,

2.3–4.7 Hz for words, and 3.4–4.9 Hz for syllables.

To provide additional evidence that our results index cortical tracking of ab-

stract (syntactic) information, rather than mere acoustic differences between the

conditions, we performed an additional MI analysis in which the speech stimuli

were replaced by abstract versions of these stimuli in which we only encoded

phrase-structure information (Brodbeck et al., 2018; Kaufeld et al., 2020). For

each forward stimulus, we marked all time points corresponding to phrase-final

words with a 1 and marked all other time points with a 0 (‘bracket presence’;

Figure 4.2B). Phrase-final words are those words at which syntactic and/or se-

mantic composition can take place. For example, the time points corresponding

to the underlined words in the sentence [de jongen] [gaat [zijn zusje] [met haar

huiswerk] helpen] (i.e., boy, sister, homework, help) were marked by a 1, because

they close syntactic phrases, while all other time points were marked by a 0.
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Again, annotating phrase-final words in word lists is impossible, so we marked

phrases in the same way as described above, marking time points corresponding

to words with a 1 if these words are in a position that indexes a phrase-final

word in the corresponding sentence.

These abstract annotations of bracket presence are actually insufficient to rep-

resent phrase structure, because sentences are hierarchically embedded struc-

tures rather than linearly concatenated phrases. To represent this property, we

incorporated ‘bracket count’ as yet another type of abstract annotation (Brennan

& Martin, 2020; Brennan et al., 2012, 2016; Nelson et al., 2017), which is cor-

related with bracket presence but contains more detailed syntactic information.

This variable counts the number of phrases that are completed at a particu-

lar word (derived from bottom-up tree traversal), corresponding to the num-

ber of closing brackets in [[de jongen] [gaat [[zijn zusje] [met [haar huiswerk]]
helpen]]]. The value assigned to each word for its entire duration corresponds

to the number of phrases that the word integrates (Figure 4.2C).

4.2.4 Experimental design

Participants listened to all stimuli in all seven conditions, which were presented

in a block design. The order in which the seven blocks were presented was

pseudorandomized, with the following constraints: the two backward conditions

were never presented in adjacent blocks, and the block with word lists and the

block with idioms always preceded the block with sentences. Regarding the word

lists, this presentation order was used to reduce the possibility that participants

would project (their memory of ) the phrase structure of the sentences onto the

word lists. Regarding the idioms, this order was used to reduce the possibility

that participants would try to derive their meaning compositionally. Within each

block, the order of the items was randomized.

4.2.5 Procedure

Participants were individually tested in a soundproof booth. They were in-

structed to attentively listen to the audio, which was presented over loudspeak-

ers, while looking at a fixation cross displayed at the center of the screen. After

each trial, participants had to advance to the next trial by pressing a button.

They were allowed to take short breaks between blocks. The EEG experiment

lasted approximately 60–70 minutes and was followed by an idiom knowledge

test.
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4.2.6 Idiom knowledge test

The EEG experiment was followed by a digital questionnaire in which partici-

pants were asked to indicate whether they knew the figurative meaning of the

idioms that were presented in the experiment. For each idiom, they had to in-

dicate this on a keyboard. If they answered “yes”, they had to type the meaning

using the keyboard. If they answered “no”, they were asked to indicate what

they thought the meaning could be. Idioms were coded as ‘known’ when the

participant answered “yes” and gave a correct description of the meaning of the

idiom. For each participant, we included only idioms coded as known into sub-

sequent analyses. On average, participants knew 78 of the 90 idioms (86.7%,

range = 64–90).

4.2.7 Speech preprocessing

The speech envelope is the acoustic power of the speech signal at a given time

in a given frequency range. Here, we estimated the broadband speech en-

velope by averaging across all ranges, following the procedure described in

Chandrasekaran et al. (2009) and adopted by subsequent studies (Gross et al.,

2013; Kaufeld et al., 2020; Kayser et al., 2015; Keitel et al., 2017). Using the

Chimera toolbox (Smith et al., 2002), we band-pass filtered the auditory signal

into 8 frequency bands between 100–8000 Hz (third-order Butterworth filter,

forward and reverse), such that the bands spanned equal widths on the cochlear

frequency map (1.i in Figure 4.3). The cutoff frequencies of the bands (in Hz)

were: 100, 228, 429, 743, 1233, 2000, 3198, 5071, and 8000. We computed

the Hilbert transform of the signal in each of these frequency bands and took the

absolute value as an estimate of the narrowband envelope (1.ii in Figure 4.3).

We downsampled each narrowband speech envelope to 150 Hz, and averaged

across all 8 bands to derive the broadband speech envelope (1.iii in Figure 4.3).

4.2.8 EEG recording and preprocessing

The EEG was recorded using an MPI custom actiCAP 64-electrode montage

(Brain Products, Munich, Germany), of which 59 electrodes were mounted in

the electrode cap (see Supplementary Information S4.2 for electrode layout).

Eye blinks were registered by one electrode below the left eye, and eye move-

ments were registered by two electrodes, placed on the outer canthi of both

eyes. One electrode was placed on the right mastoid, the reference electrode

was placed on the left mastoid and the ground was placed on the forehead.
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Figure 4.3: Visual representation of the analysis pipeline.

The EEG signal was amplified through BrainAmp DC amplifiers and referenced

online to the left mastoid. The data were acquired at a sampling rate of 500 Hz,

using a band-pass filter of 0.016–249 Hz.

Preprocessing was performed using the Fieldtrip toolbox (Oostenveld et al.,

2011) in MATLAB (Version 2016a). If channels were broken or showed heavy

drifts, they were replaced by a weighted average of their neighbors. The data

were then low-pass filtered at 50 Hz (36 db/oct), re-referenced to the average

of all electrodes and segmented into epochs ranging from the onset to the offset

of the audio recording. We manually rejected trials that contained (movement)

artifacts and trials in which an unknown idiom was presented (on a by-idiom,

by-participant basis; based on the post-experiment questionnaire). We used in-

dependent component analysis (ICA; using ICA weights from a version of the

data which was downsampled to 300 Hz and high-pass filtered at 1 Hz) to fil-

ter artifacts resulting from eye movements and steady muscle activity. Last, we

automatically rejected epochs in which the difference between the maximum

and minimum voltage exceeded 150 µV. In total, we excluded 9.2% of the data

(range of averages across conditions = 6.4%–12.1%). Each EEG segment was

downsampled to 150 Hz to match the sampling rate of the speech envelopes.

The preprocessed data were then subjected to mutual information analysis.



88 4 Cortical tracking of linguistic units

4.2.9 Mutual information analysis

To quantify cortical speech tracking in each frequency band, we computed MI

between the band-limited Hilbert representations of the broadband speech en-

velope and the EEG signal (see Figure 4.3). In our experiment, MI measures the

average reduction in uncertainty about the EEG signal given that the speech en-

velope (or annotation of syntax) is known, and can thus be used as a measure of

the relatedness of the two signals (Ince et al., 2017). We followed the procedure

described in Kaufeld et al. (2020), which involved the following steps for speech

signals and EEG trials separately: first, each signal was band-pass filtered in the

frequency bands of interest (2.i in Figure 4.3), using third-order Butterworth

filters (forward and reverse). We then extracted the complex components from

each filtered signal using a Hilbert transform (2.ii in Figure 4.3), whose real

and imaginary parts were normalized separately using the copula normalization

method developed by Ince et al. (2017). We derived instantaneous phase and

power and concatenated the resulting signals from all trials (2.iii in Figure 4.3).

MI was computed for each electrode, participant, and condition separately, in

the following way:

MI(EEG;Speech) = H(EEG) + H(Speech) – H(EEG,Speech)

Here, H(EEG) is the entropy of the (Hilbert representation of the) EEG signal,

H(Speech) the entropy of the (Hilbert representation of the) broadband speech

envelope, and H(EEG,Speech) their joint entropy. To accommodate speech-brain

lag, we computed MI at five different lags, ranging from 60 to 140 ms, in steps

of 20 ms. Statistical analysis was done on the average MI across all five lags.

The same steps were taken for the abstract stimuli, except that the band-pass

filter was applied in the phrase frequency band only. MI was computed between

the Hilbert representations of the abstract stimuli and the EEG signals corre-

sponding to all forward conditions. For clarification, we use the term speech

tracking to refer to MI computed between EEG and the speech envelopes, and

syntax tracking to refer to MI computed between EEG and the abstract annota-

tions of syntax.

4.2.10 Statistical analysis of MI values

We fitted linear mixed-effects models (Baayen et al., 2008) to the log-trans-

formed, trimmed (2.5% at both tails of the distribution of each condition) MI
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values in each frequency band and in a centroparietal cluster of electrodes (elec-

trodes 1, 3, 4, 5, 8, 9, 10, 11, 28, 29, 30, 33, 35, 36, 37, 40, 41, 42, 43, based on

Kaufeld et al., 2020; see Supplementary Information S4.2 for electrode layout)

using lme4 (Bates et al., 2015) in R (R Core Team, 2021). In each frequency

band we ran two separate models for the MI analysis between EEG and speech.

The first model compared MI for Sentences to MI for Idioms, Syntactic prose,

and Jabberwocky. This model contained the four-level factor Construction as

fixed effect, which was treatment-coded with Sentence as the reference level.

Participant was added as a random effect, which had a random intercept and

Construction as random slope. Because we had backward versions of Sentences

and Word lists, we compared Sentences to Word lists in a two-by-two analysis.

This involved a second model with Structure (Sentence vs. Word list), Direc-

tion (Forward vs. Backward), and their interaction as fixed effects. Structure

and Direction were deviation coded (-0.5, 0.5), and participant was added as

random effect, with a random intercept and the interaction between Structure

and Direction as random slope. This second model evaluates whether the MI

difference between Sentences and Word lists in the forward version is different

from the same difference in the backward version.

For the MI analyses in which the speech envelopes were replaced by abstract

annotations, we ran a model with the five-level factor Construction (Sentence,

Idiom, Syntactic prose, Jabberwocky, and Word list) as fixed effect. This model

compared MI for Sentences to MI for Idioms, Syntactic prose, Jabberwocky, and

Word lists. Construction was again treatment-coded with Sentence as the refer-

ence level. Participant was added as a random effect, which had a random in-

tercept and Construction as random slope. In all analyses we evaluated whether

adding a fixed effect increased predictive accuracy by comparing a model with

that fixed effect to a model without that fixed effect using R’s anova() function.

4.2.11 ERP preprocessing and analysis

To evaluate whether the different forward conditions were processed as in-

tended, we compared the event-related potentials (ERPs) elicited by the sentence-

final lexical verb in all syntactically structured conditions (Sentence, Idiom, Syn-

tactic prose, and Jabberwocky). Word lists were not included because the lexical

verbs in word lists were not sentence-final (see Table 4.1), due to which the ERP

windows segmented around these verbs also contained activity evoked by the

subsequent word. We were specifically interested in the N400, a negative-going

ERP component that peaks between 300 and 500 ms after the onset of each
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content word and is sensitive to predictability and semantic congruency (Baggio

& Hagoort, 2011; Kutas & Federmeier, 2011).

Because the segments corresponding to the N400 for these sentence-final verbs

lasted beyond the offset of the audio recordings, they were not captured in the

segments we used for MI analysis. We therefore used a separate preprocessing

pipeline for the ERP analysis, in which the data were low-pass filtered at 40

Hz (36 db/oct), re-referenced to the average of the left and right mastoid, and

segmented into epochs ranging from –250 to 1500 ms relative to the onset of

the sentence-final verb in each audio recording. All other preprocessing steps

were identical to those reported in Section 4.2.8. In total, we excluded 4.8% of

the data (range of averages across conditions = 4.1%–5.3%). Before statistical

analysis, the EEG data were baseline-corrected using a 250 ms baseline window

preceding the sentence-final verb.

For the N400 region of interest, we calculated the voltage in the centroposte-

rior electrodes 3, 8, 9, 15, 27, 28, 35, 40, 41, 47 in a 300–500 ms time window

after the onset of the sentence-final word, for each trial and each participant

(based on Coopmans & Nieuwland, 2020; see Supplementary Information S4.2

for electrode layout). These voltage values were compared via a linear mixed-

effects analysis in R. The mixed-effects model contained Construction as fixed

effect, which was treatment-coded with Sentence as the reference level to which

the conditions Idiom, Syntactic prose, and Jabberwocky were individually com-

pared. We included participant as random effect, which had a random intercept

and Construction as random slope. The models with and without Construction

were compared with R’s anova() function.

4.3 Results

4.3.1 Speech tracking

In the phrase frequency band, we ran two separate mixed-effects models. The

first model evaluates whether MI is modulated by the type of Construction that

was presented, comparing Sentences to the other syntactically structured con-

ditions (Idioms, Syntactic prose, and Jabberwocky). Model comparison showed

that Construction predicted MI (χ2 = 15.30, p = .002; see left panel of Fig-

ure 4.4). Specifically, MI was higher for Sentences than for both Jabberwocky

and Syntactic prose, but not different from MI for Idioms (see Table 4.2 for the

estimates of the fixed effects). The second model evaluated the interaction be-
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tween Structure (Sentence vs. Word list) and Direction (Forward vs. Backward).

Model comparison revealed that Sentences elicited higher MI than Word lists (χ2

= 4.19, p = .041; see left panel of Figure 4.5), and that Forward stimuli elicited

higher MI than Backward stimuli (χ2 = 14.37, p < .001). The interaction was

not significant (χ2 = 0.72, p = .40), which means that the difference between

Sentences and Word lists was not solely driven by the linguistic differences be-

tween their forward versions and thus (at least partially) also reflects differences

in acoustics. The estimates of the fixed effects of this second model are presented

in Table 4.3.

Figure 4.4: Mutual information between EEG and the speech envelopes of all
syntactically structured conditions in the phrase, word, and syllable
frequency bands. Drops reflect average per participant. The dashed
horizontal line reflects the average of the Sentence condition. *p <
.05, **p < .01, ***p < .001.

In the word frequency band, the first model showed that Construction pre-

dicted MI (χ2 = 11.71, p = .008; see middle panel of Figure 4.4), but this effect

was not driven by the same contrasts as the effect in the phrase frequency band.

That is, MI was lower for Sentences than for both Idioms and Syntactic prose, but

not different from MI for Jabberwocky (Table 4.2). The second model showed a

marginal difference between Sentences and Word lists (χ2 = 3.70, p = .054; see

middle panel of Figure 4.5), and no difference between Forward and Backward

stimuli (χ2 = 0.33, p = .56). The interaction between Structure and Direction

was not significant (χ2 = 2.95, p = .086; Table 4.3).

In the syllable frequency band, the first model again showed that Construction

predicted MI (χ2 = 22.15, p < .001; see right panel of Figure 4.4). MI was

lower for Sentences than for Idioms, but not different from MI for Syntactic

prose and Jabberwocky (Table 4.2). The second model showed no difference
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Table 4.2: Fixed effects of the models that compare speech tracking (i.e., speech-
brain MI) for Sentences to speech tracking for Idioms, Syntactic prose,
and Jabberwocky.

Estimate SE df t-value p-value

Phrase frequency band
Intercept -4.77 0.07 37.5 -70.68 <.001
Sentence-Idiom -0.05 0.10 38.0 -0.52 .61
Sentence-Syntactic prose -0.30 0.10 38.0 -2.88 .007
Sentence-Jabberwocky -0.38 0.11 38.0 -3.36 .002

Word frequency band
Intercept -5.82 0.09 37.6 -65.05 <.001
Sentence-Idiom 0.31 0.10 37.9 3.08 .004
Sentence-Syntactic prose 0.26 0.10 38.0 2.61 .013
Sentence-Jabberwocky 0.02 0.13 38.0 0.15 .88

Syllable frequency band
Intercept -5.44 0.08 37.5 -69.83 <.001
Sentence-Idiom 0.40 0.09 38.3 4.58 <.001
Sentence-Syntactic prose 0.12 0.10 38.0 1.15 .26
Sentence-Jabberwocky -0.11 0.08 38.0 -1.39 .17

Note. The estimates are from three different models, corresponding to the phrase, word, and
syllable frequency bands. SE = standard error; df = degrees of freedom.

between Sentences and Word lists (χ2 = 0.98, p = .32; see right panel of Figure

4.5), nor between Forward and Backward stimuli (χ2 = 0.10, p = .76). The

interaction between Structure and Direction was also not significant (χ2 = 2.33,

p = .13; Table 4.3).

4.3.2 Syntax tracking

We then evaluated whether Construction (i.e., Sentence, Idiom, Syntactic prose,

Jabberwocky, and Word list) predicted MI between the EEG signal and the

abstract annotations of syntactic structure. When these annotations reflected

bracket presence, Construction indeed predicted MI (χ2 = 35.98, p < .001;

Figure 4.6A). MI was higher for Sentences than for both Jabberwocky and Word

lists, but not different from MI for Idioms or Syntactic prose (see Table 4.4).

The same pattern of results was found for the analysis of MI between the EEG

signal and the annotations of bracket count, which differed across Construc-

tions (χ2 = 34.12, p < .001; Figure 4.6B). MI was higher for Sentences than for

Jabberwocky as well as for Word lists, but not different from MI for Idioms or

Syntactic prose (Table 4.4).
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Figure 4.5: Mutual information between EEG and the speech envelopes of both
forward and backward versions of Sentences and Word lists in the
phrase, word, and syllable frequency bands. Drops reflect average
per participant.

Table 4.3: Fixed effects of the interaction models, which evaluate the effects of Struc-
ture (Sentence vs. Word list) and Direction (Forward vs. Backward) on
speech tracking (i.e., speech-brain MI).

Estimate SE df t-value p-value

Phrase frequency band
Intercept -5.00 0.04 37.8 -123.55 <.001
Structure -0.15 0.07 38.1 -2.07 .046
Direction -0.28 0.07 38.0 -4.10 <.001
Structure*Direction -0.12 0.14 38.2 -0.85 .40

Word frequency band
Intercept -5.77 0.04 37.6 -161.66 <.001
Structure -0.11 0.06 38.2 -1.82 .077
Direction 0.09 0.08 37.9 1.08 .29
Structure*Direction 0.25 0.14 38.2 1.75 .088

Syllable frequency band
Intercept -5.43 0.04 38.0 -135.37 <.001
Structure -0.13 0.09 37.8 -1.50 .14
Direction 0.03 0.08 37.6 0.45 .66
Structure*Direction 0.23 0.15 38.1 1.55 .13

Note. The estimates are from three different models, corresponding to the phrase, word, and
syllable frequency bands. SE = standard error; df = degrees of freedom.

Overall, both analyses show that, at the frequency band corresponding to ab-

stract phrase structure, the brain tracks the structure of sentences more strongly

than the structure of both jabberwocky and word lists. It is interesting to note

that the pattern of results is very similar for bracket presence and bracket count,
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Figure 4.6: Mutual information between EEG and abstract annotations (bracket
presence (A) and bracket count (B)) in the phrase frequency band.
Drops reflect average per participant. The dashed horizontal line
reflects the average of the Sentence condition. **p < .01, ***p <
.001.

Table 4.4: Fixed effects of the models that compare syntax tracking (i.e.,
annotation-brain MI) for Sentences to syntax tracking for Idioms, Syn-
tactic prose, Jabberwocky, and Word lists.

Estimate SE df t-value p-value

Bracket presence
Intercept -4.62 0.10 37.6 -47.17 <.001
Sentence-Idiom -0.19 0.13 37.5 -1.51 .14
Sentence-Syntactic prose -0.12 0.10 38.3 -1.23 .23
Sentence-Jabberwocky -0.74 0.13 37.8 -5.68 <.001
Sentence-Word list -0.35 0.12 37.9 -3.02 .005

Bracket count
Intercept -4.64 0.10 37.6 -46.85 <.001
Sentence-Idiom -0.24 0.13 37.6 -1.83 .076
Sentence-Syntactic prose -0.13 0.11 38.1 -1.23 .23
Sentence-Jabberwocky -0.71 0.13 37.8 -5.30 <.001
Sentence-Word list -0.48 0.11 38.1 -4.25 <.001

Note. The estimates are from two different models, corresponding to annotations reflecting
bracket presence and bracket count, respectively. SE = standard error; df = degrees of freedom.

suggesting that the more detailed syntactic information contained in the bracket

count annotations does not add predictive accuracy with respect to phrase track-

ing (contrary to previous work, e.g., Brennan et al., 2016).
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An anonymous reviewer rightly noted that the sentences in our conditions dif-

fer in co-occurrence frequency, with syntactic prose and jabberwocky sentences

having lower transitional probabilities than regular sentences and idioms. How-

ever, we do not think this difference can account for our phrase-level effects, be-

cause it would predict a pattern of results that is different from what we found.

First, it would predict no differences between syntactic prose and jabberwocky

sentences, because they have similarly low transitional probabilities. Yet, these

two conditions do elicit differences in cortical tracking of phrase structure. To

show this, we repeated our linear mixed-effects analysis in the phrase frequency

band, but with Syntactic prose as the reference level for the four-level factor

Construction. When MI is computed between EEG and the abstract syntactic

annotations, it is higher for Syntactic prose than for Jabberwocky, both when

the annotations reflect bracket presence (β = -0.57, SE = 0.09, t = -6.32, p <
.001; Figure 4.6A) and when they reflect bracket count (β = -0.62, SE = 0.09,

t = -6.55, p < .001; Figure 4.6B). There were no differences between Syntac-

tic prose and Jabberwocky in terms of speech tracking (β = -0.08, SE = 0.13,

t = -0.59, p = .56). Second, it would predict differences between idioms and

regular sentences, because the words in idioms are part of a fixed expression

and therefore have high transitional probabilities. However, no such differences

between sentences and idioms were found at the phrase level in either speech

tracking (see Section 4.3.1) or syntax tracking.

4.3.3 ERPs to sentence-final verb

The MI analyses showed no consistent differences in phrase tracking between

Sentences and Idioms, whereas the difference between Sentences and Syntactic

prose was inconclusive (i.e., a difference in speech tracking but no difference in

syntax tracking). This absence of expected differences might indicate either that

the brain does not track the syntactic structure of these stimuli differently (i.e.,

the conditions are perceived as being different, but this does not affect phrase

tracking), or that the conditions were not processed as being very different. To

evaluate the latter possibility, we compared the ERPs elicited by the sentence-

final lexical verb in all syntactically structured conditions. The results show that

the stimuli in the different conditions were processed as expected.

As indicated by the sentence-final ERPs in Figure 4.7A, the variable Construc-

tion was associated with modulations of activity in the N400 region of interest

(χ2 = 45.9, p < .001). The ERP elicited by sentence-final verbs in Sentences

was less negative than the ERP elicited by sentence-final verbs in both Syntactic
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prose (β = -1.56, SE = 0.25, t = -6.37, p < .001) and Jabberwocky (β = -0.89,

SE = 0.25, t = -3.51, p < .001), but more negative than the ERP elicited by

sentence-final verbs in Idioms (β = 0.60, SE = 0.27, t = 2.26, p = .029). Note

that the effects seem to start quite early, in particular for Syntactic prose (Figure

4.7A). This might have to do with the fact that the words preceding the verb

in those stimuli are semantically odd (and thus elicit a strong N400), and with

differences between conditions in the pre-verb parts in general. Figure 4.7B con-

tains the topographical plots of the voltage differences in the 300–500 ms time

window of interest.
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Figure 4.7: (A) Grand-average ERPs at the centroposterior cluster of electrodes,
time-locked to the onset of the sentence-final verb in the four syntac-
tically structured conditions. Negative voltage is plotted upwards,
and color-shaded areas show the within-subjects standard error of
the mean per time sample. (B) Topographical plots of the voltage
differences between conditions in the 300–500 ms time window of
interest.

4.4 Discussion

In this EEG study with naturally spoken stimuli, we investigated whether cortical

tracking of phrase structure is modulated by the degree to which this structure

is meaningful. Participants were presented with stimuli that contained differ-

ent degrees of structural meaning. We measured tracking by computing mu-

tual information between the EEG data and either the speech envelopes (speech
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tracking) or abstract annotations of syntax (syntax tracking). Both signals were

filtered in the frequency band corresponding to the occurrence of phrases. These

analyses showed overall stronger tracking of phrases in regular sentences than

in stimuli with reduced lexical-syntactic content (jabberwocky) or without syn-

tactic structure (word lists), but no consistent differences in phrase-level track-

ing between sentences and divergent stimuli that contained a combination of

both structure and lexical meaning (idioms, syntactic prose). As analyses of

sentence-final ERPs showed clear differences between the conditions in terms

of their sentence-level meaning, we take these findings to suggest that cortical

tracking of linguistic structure reflects the internal generation of that structure,

whether it transparently maps onto semantic meaning or not.

4.4.1 Effects of composition in processing idioms and

syntactic prose

We contrasted regular sentences to two semi-compositional conditions: idioms

and syntactic prose. We reasoned that compositional processes would be less

engaged during the comprehension of idioms and syntactic prose (Canal et al.,

2017; Peterson et al., 2001; Rommers et al., 2013; Vespignani et al., 2010),

though there are several factors that likely influence the extent to which par-

ticipants will try to derive a compositional interpretation from these sentences.

Theories of idiom comprehension assume that before the idiom is recognized

as being an idiomatic construction, standard literal processing is engaged (see

Cacciari & Tabossi, 1988; Libben & Titone, 2008; Sprenger et al., 2006; Titone

& Connine, 1999). As the idioms in our experiment were embedded in neu-

tral carrier sentences, they could not be predicted from context, so the idiom

recognition point might occur late. Sentence-final ERPs indicated that this was

not too late to affect online comprehension: the N400 for sentence-final verbs

was reduced in idioms compared to regular sentences, suggesting that the idiom

was recognized and retrieved before sentence offset. Nevertheless, any effects

of compositionality are likely restricted to late time points, reducing the overall

effect of compositionality on cortical tracking on phrase structure.

In addition, there are several differences within the group of idioms that might

affect compositional processing. Many of the idiomatic constructions have vari-

able slots that can be filled by compositional information (Jackendoff, 2017).

The initial NP of the idiom NP door de vingers zien (“to condone” NP), for in-

stance, must be interpreted literally and will likely receive a compositional anal-
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ysis. Relatedly, even in idioms that do not take variables, the literal meanings

of the words are sometimes part of the idiom’s figurative meaning. For exam-

ple, the idiom de regels aan je laars lappen, which literally means “to patch the

rules to your boot” (figuratively: “to ignore the rules”) is actually about rules

(though not about boots), so the NP de regels “the rules” will be processed lit-

erally. A question for future research is whether this variation within the class

of idioms affects cortical tracking. We could not investigate this possibility, as

it requires individual-item analyses that were impossible given the way MI was

computed. Yet, it would be interesting to see whether cortical tracking of lin-

guistic units is affected by idiomatic variation, such as the transparency, decom-

posability, and syntactic flexibility of the idiom (see Cacciari, 2014; Cacciari &

Glucksberg, 1991; Gibbs et al., 1989; Libben & Titone, 2008).

At the phrase timescale, we did not find a consistent difference between regu-

lar sentences and syntactic prose. While speech tracking was stronger for regular

sentences than for syntactic prose (left panel of Figure 4.4), this difference was

absent in measures of syntax tracking (Figure 4.6). Before we give our inter-

pretation of these results, it is important to emphasize that the computation of

speech tracking involves the speech envelope. While we filtered the signals in

narrow frequency bands that were based on manual annotations of linguistic

information in our stimuli (see Section 4.2.3), and while we checked for acous-

tic differences via analysis of the modulation spectra (Figures 4.1 and S4.1),

we cannot rule out the possibility that any difference between the conditions in

terms of speech tracking is driven by acoustic differences between the speech

recordings. This possibility is in line with the fact that sentences and syntactic

prose did not show differences in terms of syntax tracking, which is based on

abstract annotations of syntax without any acoustic differences.

A possible reason for the lack of a consistent effect is that the difference be-

tween regular sentences and syntactic prose in terms of compositional processing

is not the same at the phrase and sentence levels. At the sentence level, these

conditions were clearly differentiable, as indicated by the ERP results. The N400

for sentence-final verbs was larger in syntactic prose than in regular sentences,

showing that participants noticed the sentence-level semantic incongruency of

syntactic prose. At the phrase-level, however, these conditions might impose

similar demands on compositional processing, in particular if the type of com-

position is mostly syntactic. In contrast to previous research (Brodbeck et al.,

2018; Kaufeld et al., 2020), much of the phrase-level compositional processing

in our stimuli can be conceived of as syntactic (i.e., containing a combination
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of a determiner and a noun) rather than semantic or conceptual. This applies

even more strongly to our measure of syntax tracking, which is based on abstract

annotations of phrase structure. These annotations do not distinguish between

combinations like the boat and red boat, even though the latter phrase involves

more semantic and conceptual composition. It is not unlikely that the presence

of semantically impoverished combinations reduces the overall degree of phrase-

level tracking (i.e., making syntax tracking a less sensitive measure), especially

in light of the finding that manipulations of lexical-semantic and conceptual com-

position affect measures of brain activity on top of the neural response to syn-

tactic aspects of composition (e.g., Fedorenko et al., 2016; Kaufeld et al., 2020;

Schell et al., 2017; Westerlund & Pylkkänen, 2014; Zhang & Pylkkänen, 2015).

4.4.2 Sentence vs. word lists: Structure and acoustics

We observed stronger phrase-level speech tracking for sentences than for word

lists, and stronger tracking for forward stimuli than for backward stimuli (left

panel of Figure 4.5). The difference between forward and backward speech has

been reported before and is often related to differences in their intelligibility

(Gross et al., 2013; Kaufeld et al., 2020; Park et al., 2015). However, other

studies have failed to find such a relationship (Howard & Poeppel, 2010; Peña &

Melloni, 2012; Zoefel & VanRullen, 2016), and it has been suggested that pos-

itive correlations between speech tracking and intelligibility are actually driven

by the spectro-temporal properties of the unintelligible control condition (for

discussion, see Kösem & van Wassenhove, 2017; Zou et al., 2019).

Contrasting with the results reported by Kaufeld et al. (2020), the MI differ-

ence between sentences and word lists did not differ across forward and back-

ward versions of these conditions. We therefore cannot exclude the possibility

that the difference between (forward) sentences and (forward) word lists re-

flects acoustic differences. Indeed, analysis of the modulation spectra shows

that sentences were reliably different from word lists in terms of spectral prop-

erties (Figure 4.1B and Supplementary Information S4.1). However, the pres-

ence of acoustic differences does not necessarily negate the effect of syntactic

differences. When the speech envelopes were replaced by abstract annotations

of syntactic structure (bracket presence or bracket count), we found stronger MI

for sentences than for word lists, presumably because these annotations do not

reflect any syntactic information in word lists. This leaves open the possibility

that syntactic structure did have an effect, but that it could not be detected in

measures of speech tracking due to the masking effect of acoustic variance.



100 4 Cortical tracking of linguistic units

In order to find evidence for cortical tracking of phrase structure, we should

find not only a difference in the forward condition (as a function of syntax), but

also no difference in the backward condition. The latter might be quite difficult

to obtain with our measures, because naturally produced sentences and word

lists are acoustically quite different, and acoustic properties of the input can ac-

count for much of the variance in the neural response to speech (e.g., Brodbeck

et al., 2018; Doelling et al., 2014). Moreover, the fact that syntactic information

and suprasegmental modulations (e.g., prosodic phrases, intonation phrases)

fluctuate at similar frequencies and both affect delta-band activity (Bourguignon

et al., 2013; Ghitza, 2017; Meyer et al., 2017; Rimmele et al., 2021) makes it

plausible that any structure-driven differences between sentences and word lists

were partially masked by their acoustic differences. Supporting this possibility,

analysis of spectral power in the phrase frequency band showed a bilateral dis-

tribution for all conditions (see Supplementary Information S4.3; see also e.g.,

Keitel et al., 2017; Molinaro & Lizarazu, 2018). This suggests that the neural

signal in this frequency band is also affected by low-frequency modulations in

suprasegmental information, which are present in both forward and backward

recordings.

4.4.3 Cortical tracking of lexicalized structure

At the timescale of phrases, speech tracking was stronger for sentences than for

jabberwocky and syntactic prose, but not different from idioms (left panel of Fig-

ure 4.4). In partial agreement with these results, syntax tracking was stronger

for sentences than for jabberwocky and word lists, but not different from track-

ing for idioms and syntactic prose (Figure 4.6). Overall, cortical tracking of

phrase structure seems to be enhanced for regular sentences compared to stim-

uli whose lexical-syntactic content is reduced (jabberwocky, word lists), but it

is not consistently different from stimuli that contain both lexical content and

syntactic structure (idioms, syntactic prose). This pattern of results is in line

with the view that cortical tracking of syntactic structure reflects the generation

of structure (Martin, 2020; Martin & Doumas, 2017, 2019; Meyer et al., 2020),

whether this structure transparently maps onto a semantic interpretation or not.

Most current neurobiological models of language processing assume structure

building to be a lexicalized process (Baggio, 2021; Hagoort, 2005, 2017; Martin,

2020; Matchin & Hickok, 2020). Words are associated with structures that are

stored in the mental lexicon in the form of treelets. During language compre-

hension, these structures are combined to create the hierarchical structures of
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phrases and sentences. In this lexical-syntactic conception of structure building,

the syntax determines which words can be combined, but the words themselves

are the units of combination. As such, this process is affected by its input, in

terms of both structure and lexical content. Input-wise, both jabberwocky and

word lists are markedly different from sentences. Word lists contain content and

function words but lack (cues to) syntactic structure, which means that adjacent

words cannot be combined into phrasal units. Jabberwocky sentences are struc-

tured sequences that contain both function words and inflectional morphology,

but they lack content words and therefore miss the information carried by their

argument structure (e.g., the different relations in “saw the book on the table”

and “put the book on the table”). The lexical-syntactic difference between reg-

ular and jabberwocky sentences thus explains why they elicit different degrees

of phrase-level speech tracking: structure-building processes are more weakly

activated by lexically impoverished input. This idea is supported by evidence

showing that lexical information affects neurocognitive measures of structure

building (Burroughs et al., 2021; Fedorenko et al., 2016, 2020; Kaufeld et al.,

2020; Matchin et al., 2019; Mollica et al., 2020).

Idioms and syntactic prose are similar to sentences in terms of lexical-syntactic

structure, but they differ either in the extent to which their interpretation is com-

positionally derived from this structure (idioms) or in the extent to which a com-

positional interpretation of this structure makes sense (syntactic prose). Given

the absence of consistent differences between these conditions, the interpreta-

tion most strongly supported by our data is that phrase-level tracking reflects

the lexically-driven computation of syntactic structures in the service of seman-

tic composition (Kaufeld et al., 2020; Martin, 2020; Martin & Doumas, 2017,

2019; Meyer et al., 2020). The computations involved in building hierarchical

structure are most strongly activated by syntactically structured sequences of

real words. Given the right input, these computations generate a compositional

structure, whether the input can easily compose semantically or not.

A similar idea has been proposed for the segmentation of complex word forms

into stems and grammatical affixes (Marslen-Wilson, 2007). Behavioral and neu-

roimaging evidence show that this morphophonological process is triggered by

both real words and pseudowords, as long as they contain the diagnostic prop-

erties of inflectional affixes in English (Post et al., 2008; Tyler et al., 2005). To

explain the lexical insensitivity of this process, Marslen-Wilson (2007, p. 180)

argued that “without a decompositional analysis, the system cannot rule out the

possibility that the pseudo-regular trade is actually the morpheme tray in the
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past tense, or that snade is the past tense of the potential real stem snay.” Anal-

ogously, without a decompositional analysis at the level of phrase structure, the

system cannot rule out the possibility that “colorless green ideas sleep furiously”

(Chomsky, 1957) actually involves sleeping ideas or that “to kick the bucket”

involves buckets being kicked. The conclusion that the compositional meaning

of these forms is either semantically incoherent (syntactic prose) or not iden-

tical to their intended figurative meaning (idioms) can only be drawn after a

compositional analysis has taken place. In a sense, then, the structure-building

processes know how to build structure (i.e., adhering to syntactic rules, subcate-

gorization restrictions), but not what is being built (i.e., whether a compositional

analysis yields an interpretation that makes sense). Supporting this functional

distinction between generation and interpretation, both behavioral and neuro-

biological evidence show a difference between sentences and both idioms and

syntactic prose in terms of compositional meaning, but not in terms of syntactic

structure building (Bastiaansen & Hagoort, 2015; Canal et al., 2017; Konopka

& Bock, 2009; Peterson et al., 2001; Rommers et al., 2013; Vespignani et al.,

2010).

4.4.4 Effects of composition on word-level speech tracking

At the timescale of words, speech tracking was stronger for both idioms and syn-

tactic prose than for sentences (middle panel of Figure 4.4). These word-level

effects might be related to the differential predictability of words in these condi-

tions. It has been shown that speech tracking is enhanced for unpredictable tar-

get words that are presented in low-constraining sentence contexts (Donhauser

& Baillet, 2020; Molinaro et al., 2021). In these contexts, target words can-

not be predicted by top-down mechanisms, so the brain relies more strongly on

the bottom-up input to ensure successful comprehension (Donhauser & Baillet,

2020; Molinaro et al., 2021). Words in syntactic prose are semantically odd and

thus very unpredictable. On this account, the brain attunes more strongly to

unexpected words (in syntactic prose), whose content can only be derived from

a bottom-up analysis, than to expected words (in sentences), whose content can

be predicted by top-down mechanisms, explaining the difference between syn-

tactic prose and regular sentences in terms of word-level speech tracking.

ERP analysis showed that sentence-final verbs elicited a reduced N400 in id-

ioms compared to regular sentences, indexing facilitated activation or integra-

tion of the verb in idioms (e.g., Moreno et al., 2002; Rommers et al., 2013).

This indicates that sentence-final verbs were more predictable in idioms than in



4 Cortical tracking of linguistic units 103

sentences, in line with the behavioral literature (Cacciari et al., 2007; Cacciari

& Tabossi, 1988). This predictability-related ERP difference is opposite to the

difference between sentences and syntactic prose, which suggests that the dif-

ference between idioms and sentences in terms of word-level speech tracking

(middle panel of Figure 4.4) does not have the same origin as the difference be-

tween syntactic prose and sentences. It is unclear why words would be tracked

more closely in idioms, but one possibility is that participants were relatively

more attuned to words in idioms because words are the linguistic unit on which

they have to rely to activate and retrieve the full idiom from memory (for dis-

cussion of the activation of properties of the individual words in idioms, see

Cacciari, 2014; Cacciari & Tabossi, 1988; Hubers et al., 2021; Sprenger et al.,

2006).

4.5 Conclusion

Despite a constantly growing literature on cortical speech tracking, it is still un-

clear which aspects of high-level linguistic content drive neural activity into

alignment with the speech signal. In this EEG study with naturally spoken

stimuli, we used an experimental design with a parametric modulation of lin-

guistic information, comparing compositional sentences to stimuli that diverged

in terms of their relationship between structure and meaning (idioms, syntac-

tic prose, jabberwocky, word lists). We found that the brain tracks syntactic

phrases more closely in regular sentences than in stimuli whose lexical-syntactic

content is reduced, but we found no consistent differences in phrase tracking

between sentences and stimuli that contained a combination of both syntactic

structure and lexical content. These findings refine a recent account of cortical

speech tracking, which holds that it indexes the generation of linguistic structure

(Martin & Doumas, 2017, 2019; Meyer et al., 2020). Specifically, they suggest

that phrase-level speech tracking is modulated by the lexical-syntactic properties

of the input to structure building, not by the compositional interpretation of its

output. This is in line with neurobiological models of language processing in

which structure building is a lexicalized process.
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S4 Supplementary Information

S4.1 Analysis of modulation spectra

Figure S4.1A shows the modulation spectra of all forward conditions, computed

following the procedure described in Ding, Patel, et al. (2017). For each con-

dition we concatenated all recordings, cut the long sound recording into seg-

ments of four seconds long, and then calculated the modulation spectrum of

each segment separately. Figure S4.1A shows the modulation spectra after av-

eraging over segments. The Word list condition visibly deviates from the other

forward conditions, which are otherwise very similar. To quantify the difference

between the modulation spectra of Sentences and the modulation spectra of the

other conditions, we computed the area under the curve (AUC) of the modula-

tion spectrum of each segment of each condition and compared the AUCs across

conditions.

Figure S4.1: (A) Modulation spectra of the forward versions of all conditions.
The Word list condition is visibly different from the Sentence con-
dition. (B) Probability density plot representing the distribution of
the areas under the curve (AUCs) of the modulation spectra of all
forward recordings, which again show the difference between the
Word list and the Sentence condition.

The distribution of the resulting AUCs are presented in the probability density

plot in Figure S4.1B. Comparison of the five groups (Sentence, Idiom, Syntactic

prose, Jabberwocky, Word list) through a one-way ANOVA in R (R Core Team,

2021) indeed reveals that the AUCs of the groups are different, F(3,267)= 17.2,

p < .001. A post-hoc Tukey test shows that the AUCs for Sentences only differ

from the AUCs for Word lists, ∆ = -2.72, 95% CI [-3.94, -1.49], p < .001. They
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do not differ from the AUCs for Idioms (∆ = -0.44, 95% CI [-1.71, 0.92], p =
.87), Syntactic prose (∆ = 0.49, 95% CI [-0.79, 1.78], p = .83), or Jabberwocky

(∆ = 0.067, 95% CI [-1.20 1.34], p = 1.00). Given the difference between the

recordings of Sentences and Word lists, we included two conditions to control for

these acoustic differences. One control condition contained backward versions

of the Sentence recordings (i.e., each recording time-reversed), and the other

contained backward versions of the Word list recordings.

S4.2 EEG electrode layout
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Figure S4.2: Schematic representation of the 59-electrode array layout.

S4.3 Spectral power analysis

We did not find differences in speech tracking between Sentences and Word lists,

which might be related to the acoustic differences between their audio record-

ings (see Figure S4.1). As an exploratory analysis, we examined whether any

differences between these conditions could be found in spectral power in the

frequency band corresponding to phrases (see e.g., Bonhage et al., 2017; Ding

et al., 2016). In contrast to the analysis of speech tracking, this analysis is not

based on a comparison of the brain signal and the actual audio signal and might

therefore be less affected by acoustic differences between these audio signals.
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The topographies in Figure S4.3 reflect the grand average spectral power in the

phrase frequency band (1-2 Hz), derived by a fast Fourier transform (Hanning

window) of each EEG epoch (all zero-padded to four seconds). Delta power in

all conditions, including the two backward conditions, has a bilateral distribu-

tion. We compared these effects using cluster-based random permutation tests

(Maris & Oostenveld, 2007) in Fieldtrip (Oostenveld et al., 2011). These anal-

yses showed effects of direction for both structures. That is, Forward Sentences

elicited stronger delta power than Backward Sentences (one positive cluster, p

= .004) and Forward Word lists elicited stronger delta power than Backward

Word lists (one positive cluster, p = .002), but these effects of direction were

not different across structures (i.e., no interaction).

Sentence Idiom Syntactic prose Jabberwocky WordlistSentence

Backward

Wordlist

Backward

1-2 Hz delta power

2

1

0.5

Figure S4.3: Topographical plots of 1-2 Hz delta power in each condition.
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listening

Abstract

Neuro-computational language models have gained popularity as linguistically
interpretable tools for studying language comprehension in naturalistic contexts.
Here, we use this method to investigate to what extent three commonly used
parsing strategies can account for neural activity related to Dutch language com-
prehension. In particular, we test how well the brain activity of people listen-
ing to Dutch audiobook stories is predicted by an integratory bottom-up parser,
a predictive top-down parser, and a mildly-predictive left-corner parser. Each
word in the audiobook was assigned a complexity metric corresponding to the
number of nodes that would be visited by the three parsers when incremen-
tally integrating the word into the hierarchical structure of the sentence. Using
temporal response functions to map these metrics onto delta-band source activ-
ity acquired with magnetoencephalography, we found that the brain data most
strongly reflect node counts derived by the top-down method, which consistently
engages activity in left frontal and temporal regions. This finding suggests that
predictive structure building is an important component of Dutch sentence com-
prehension. The absence of strong effects of the left-corner model further sug-
gests that its mildly-predictive strategy does not represent Dutch language com-
prehension well, in contrast to what has been found for English. These findings
underscore the need for more work on typologically diverse languages, whose
structural properties are different from those of English and therefore invite dif-
ferent parsing strategies within the fronto-temporal language network.
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5.1 Introduction

Integrating linguistic theory with cognitive neuroscience requires not only de-

tailed knowledge of both linguistics and neural data, but also a linking hypoth-

esis that specifies how linguistic information is to be connected with the observ-

able neural signal (Embick & Poeppel, 2015; Poeppel, 2012). When it comes

to studying syntactic structure building in the human brain, it is therefore im-

portant to be explicit about the structure of the syntactic representations, the

algorithmic procedures for computing these representations in real time, and

the linking theory that maps the output of these algorithms onto neural signals

(Brennan, 2016; Demberg & Keller, 2019; Martin, 2016; Sprouse & Hornstein,

2016). One promising approach relies on neuro-computational language mod-

els, which are cognitive models of language processing that are computationally

precise and have broad coverage (Brennan, 2016; Hale et al., 2022). Because

of their broad coverage, they can be used to define a measure of linguistic pro-

cessing difficulty for every word in a large dataset that reflects everyday lan-

guage use. By determining whether this measure reliably predicts brain activity

elicited by the words in that dataset, we can establish whether there is evidence

for the hypothesized linguistic computations in the neural signal. Using neuro-

computational language models is an important step towards integrating linguis-

tics and cognitive neuroscience, because it allows for a characterization of neural

activity in terms of computationally precise incremental parse states (Brennan

et al., 2016; Stanojević et al., 2021).

In the current study, we compare different neuro-computational models in

terms of their ability to predict brain activity of people listening to Dutch au-

diobook stories. We quantify the cognitive states implied by different parsing

models that build syntactic structure either in a predictive or in a non-predictive

(integratory) manner, and use magnetoencephalography (MEG) to localize re-

sponses reflecting syntactic structure building with high temporal precision.

5.1.1 Neuro-computational models of sentence

comprehension

Brennan (2016) defines neuro-computational models as consisting of a parser

PG,A,O that contains a grammar G with rules to construct representations, an

algorithm A for incrementally applying the grammar word by word, and an

oracle O that resolves indeterminacies. When applied to a sequence of words

w1, w2, ...wn, PG,A,O yields a sequence of mental states m1, m2, ...mn, which corre-
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spond to (partial) syntactic structures. These mental states can be quantified via

an auxiliary hypothesis or linking rule, often referred to as complexity metric in

psycholinguistics because of the way in which it quantifies language processing

complexity (Hale et al., 2018). The complexity metric C thus represents the neu-

ral state in quantifiable cognitive terms; it stands for estimated brain states. The

estimated brain states are linked to the observable neural signal via a response

function R.

This neuro-computational method has the potential to evaluate the cognitive

and neural relevance of linguistic constructs to the extent that there are appro-

priate linking hypotheses about how these constructs are manifested in neural

activity. One assumption underlying this approach is that a model that captures

linguistic competence should give rise to measures that are more predictive of

experimental data (performance). It is promising that the results of recent neu-

roimaging studies point in this direction. For instance, grammars that compute

hierarchical structure account for variance in brain activity above and beyond the

variance accounted for by sequence-based models (Brennan et al., 2012, 2020;

Brennan & Hale, 2019; Lopopolo et al., 2021; Martin & Doumas, 2017; Shain

et al., 2020), and hierarchical grammars that naturally represent long-distance

dependencies, which are ubiquitous in natural languages, uniquely predict ac-

tivity in brain areas commonly linked to syntactic structure building (Brennan et

al., 2016; Li & Hale, 2019; Nelson et al., 2017; Stanojević et al., 2021). These

findings reinforce the view that grammars that are well-equipped to account for

natural language structures (competence) are also required to adequately model

the activity of the brain when it incrementally computes these structures (per-

formance). In the following sections, we will discuss how neuro-computational

language models are utilized in the current work. In particular, we discuss how

varying the parsing algorithm used to build syntactic structure allows us to ad-

dress a question about the universality of language processing strategies.

Three approaches to syntactic structure building

Parsing models specify how syntactic parse states unfold incrementally during

language comprehension. In the current work, these parse states correspond to

partial syntactic structures, which are generated via the rules of X-bar theory

(the grammar G; Carnie, 2021; Jackendoff, 1977). We chose to construct X-bar

tree structures because they are appropriately expressive to deal with natural

language structures (e.g., long-distance dependencies, movement) and because

recent work using neuro-computational models has shown that complexity met-
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rics derived from X-bar structures predict brain activity above and beyond ac-

tivity accounted for by both sequential models and models that are hierarchical

but less expressive (Brennan et al., 2016; Li & Hale, 2019; Nelson et al., 2017).

We further assume a perfect oracle O, which resolves temporary ambiguities in

the right way (Bhattasali et al., 2019; Brennan et al., 2012, 2016; Brennan &

Pylkkänen, 2017). This means that the parser builds the correct structure at any

point in the parse, even when faced with locally ambiguous input.

Any given syntactic structure may be built in different ways, depending on

the parsing algorithm A that is adopted. We will be concerned with three al-

gorithms for building structure: a top-down algorithm, a bottom-up algorithm

and a left-corner algorithm (see Hale, 2014).1 The top-down parsing method

works via expansion of rewrite rules. Before each word, all rules necessary to

attach the upcoming word to the structure are expanded (e.g., in VP→ V NP, the

VP is expanded as V and NP). As these rules are applied based on the left-hand

side of the rule and in advance of each word, this method builds constituent

structure entirely predictively. The bottom-up parsing method, instead, builds

constituent structure in a non-predictive manner, as it postulates a constituent

node only after all of its daughter nodes are available. This process is referred

to as reduction: when all information on the right-hand side of a rewrite rule is

available, the input is reduced to the constituent node (e.g., in VP → V NP, the

input V and NP is reduced to VP). In between these two parsing methods is a

mildly-predictive left-corner strategy, which works via projection. A constituent

node is projected after the very first symbol on the right-hand side of the rewrite

rule (its left corner) is seen (e.g., the VP node is projected when V is available).

This strategy is only mildly predictive because, while it requires input to build

structure (in contrast to the top-down strategy), the input can be incomplete (in

contrast the bottom-up strategy).

To illustrate the difference between these strategies, consider the simplified

structure corresponding to the sentence “the boy sleeps” in Table 5.1. The to-

tal number of operations (expand, reduce, project) for the three parsing meth-

ods is the same, but the timepoints at which they are applied differ. On the

predictive top-down parsing strategy, three operations are applied before “the”,

corresponding to expansion of the S, NP, and D nodes. Only one operation is

1Note that the notions top and bottom in this context refer to the geometry of the syntactic
tree structure. Top-down thus says something about the (vertical) direction of phrase structure
building, and with ‘top-down effects’ we refer to the effects of node count derived by a top-down
parser. In the predictive processing literature, the term ‘top-down effects’ is commonly used to
describe how low-level processes are affected by high-level sources of information, but this is
not our intended interpretation.
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applied at “the” on the bottom-up method, because there is complete evidence

for the determiner node D only. The next word “boy” is the second word of the

noun phrase, so two operations are applied bottom-up, but only one is applied

top-down. What this simple structure illustrates is that these parsing methods

differ in the dynamics of structure building. They make different predictions as

to when in the sentence processing complexity is high, and these differences will

only be magnified when the sentences become longer and more complex.

Table 5.1: Parser actions for top-down, bottom-up and left-corner parsers for the
sentence “the boy sleeps”.

S

VP

V

sleepsi

NP

N

iboy

D

ithei

2

Top-down Bottom-up Left-corner

expand by S→ VP NP shift the shift the
expand by NP→ D N reduce by D→ the project D→ the
expand by D→ the shift boy project NP→ D N
scan the reduce by N→ boy shift boy
expand by N→ boy reduce by NP→ D N project N→ boy

Node count scan boy shift sleeps project S→ NP VP
TD 3 1 2 expand by VP→ V reduce by V→ sleeps shift sleeps
BU 1 2 3 expand by V→ sleeps reduce by VP→ V project V→ sleeps
LC 2 2 2 scan sleeps reduce by S→ NP VP project VP→ V

Note. The number of parser actions required at each word yields an incremental measure of
processing complexity, here termed node count. The scan/shift action corresponds to pro-
cessing or moving to the next word in the sentence and is not a structural operation. The other
parser actions are explained in the text.

Here, we represent the number of parser actions at each word in the form

of incremental node count, which corresponds to the number of new nodes in

a partial syntactic structure that are visited by the parser when incrementally

integrating a word into the structure (complexity metric C; Brennan et al., 2012;

Frazier, 1985; Miller & Chomsky, 1963). Depending on the parsing algorithm

that is used, node count reflects the number of expand (top-down), reduce

(bottom-up) or project (left-corner) actions between successive words (Table

5.1), all of which can be taken as roughly corresponding to the syntactic load or

complexity of those words. Previous neuroimaging work has shown that node

count effectively quantifies syntactic complexity in cognitive terms (Bhattasali et

al., 2019; Brennan & Pylkkänen, 2017; Brennan et al., 2012, 2016; Coopmans,

de Hoop, Hagoort, & Martin, 2022; Giglio, Ostarek, Sharoh, & Hagoort, 2022;

Li & Hale, 2019; Lopopolo et al., 2021).

The left-corner parsing strategy is thought to be cognitively plausible as a

model of human language processing. It correctly predicts processing difficulty

for center-embedded constructions (Abney & Johnson, 1991; Johnson-Laird,
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1983; Resnik, 1992), is compatible with a range of findings from the sentence

processing literature (Hale, 2014), and accounts for brain activity during lan-

guage processing (Brennan & Pylkkänen, 2017; Nelson et al., 2017). However,

much of the relevant psycholinguistic work has been done in English. A possible

reason for the observation that left-corner parsing works well for English is that

English phrases are strictly head-initial. The left corner of a phrase will therefore

most often be its head, whose argument structure allows phrase structure to be

built predictively (Arai & Keller, 2013; Boland & Blodgett, 2006; Schütze &

Gibson, 1999). Dutch, in contrast, exhibits mixed headedness, with the verbal

projections VP and IP being head-final. The left corner of a Dutch head-final VP

will often be a multi-word constituent, such as in sentence (1) below:

(1) De
the

student
student

heeft
has

een
an

essay
essay

over
on

syntaxis
syntax

geschreven.
written

“The student has written an essay on syntax.”

Notice the difference in word order between the Dutch example and its English

translation. In English, the non-finite verb precedes its complement (“written –

an essay on syntax”), thus yielding the head-initial order that is characteristic

of English phrases. The reverse order is found in Dutch, where the non-finite

verb follows its complement (een essay over syntax – geschreven, “an essay on

syntax – written”), giving the head-final order. The left-corner method predicts

that the VP constituent in Dutch will be projected only after the entire prever-

bal NP complement has been processed. This might be unrealistically late, in

particular if speakers of head-final languages adopt predictive parsing strate-

gies (Coopmans & Schoenmakers, 2020; Vasishth et al., 2010). It might thus

very well be that left-corner parsing is not the best strategy for Dutch structures,

and that brain activity linked to parsing by English listeners will differ from that

found for speakers of Dutch.

From cognitive to brain states via temporal response functions

The syntactic complexity metrics derived from different parsing models can be

mapped onto electrophysiological brain activity through temporal response func-

tions (TRFs). TRFs are linear kernels that describe how the brain responds to

a representation of a (linguistic) feature (Brodbeck et al., 2018, 2022). This

approach is similar to that of recent neuro-computational fMRI studies, which
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use the canonical hemodynamic response function to fit syntactic predictors onto

brain activity in a given region of interest (Bhattasali et al., 2019; Brennan et al.,

2012, 2016; Giglio, Ostarek, Sharoh, & Hagoort, 2022; Li & Hale, 2019). But

rather than assuming the shape of the response function, with the TRF method

a response function can be estimated for each predictor separately. This allows

us to determine not only whether a brain region is sensitive to the information

encoded in a predictor, but also when that information is processed by the brain.

Moreover, by using TRFs, we can explicitly model acoustic properties of the au-

ditory stimulus. This is important because high-level linguistic features can be

correlated with low-level stimulus properties, such that neural effects attributed

to linguistic processing can also be explained as the brain’s response to non-

linguistic, acoustic information (Daube et al., 2019). And because the response

to acoustic properties is orders of magnitude larger than that to linguistic fea-

tures (Brodbeck et al., 2022; Gillis et al., 2021), acoustic variance could mask

the subtle effects of linguistic information that are hiding in the data (Coopmans,

de Hoop, Hagoort, & Martin, 2022). In sum, the benefit of the TRF method for

the current study is that it allows us to evaluate the brain’s sensitivity to syntactic

information in natural speech with high temporal precision, while appropriately

controlling for lower-level factors.

5.1.2 The present study

In the current study, we compare different neuro-computational models in terms

of their ability to predict MEG activity of people listening to Dutch audiobook sto-

ries. The three models we evaluate rely on the same grammatical assumptions

(X-bar theory), linking hypothesis (node count), and type of response function

(TRF), but they differ in the parsing algorithm by which they build syntactic

structure. Left-corner parsing has been argued to be suitable for English sen-

tence processing, but it is an open question whether the strategy adopted by

the left-corner method also accounts for people’s brain activity during the incre-

mental comprehension of Dutch. Dutch is typologically related to English, but

the head-finality of its verb phrases might invite different processing strategies

(Bornkessel-Schlesewsky & Schlesewsky, 2016; Vasishth et al., 2010). Based on

recent results linking syntactic processing to delta-band activity (Bai et al., 2022;

Brennan & Martin, 2020; Coopmans, de Hoop, Hagoort, & Martin, 2022; Ding et

al., 2016; Kaufeld et al., 2020; Martin, 2020), and in line with the idea that the

timescale of syntactic processing overlaps with the delta frequency range (Henke

& Meyer, 2021; Meyer et al., 2020), we focus on MEG activity in the delta band.
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Previous work has identified several brain areas in the left hemisphere that

are responsive to complexity metrics derived from incremental parse steps, in-

cluding the inferior frontal lobe (Bhattasali et al., 2019; Giglio, Ostarek, Sharoh,

& Hagoort, 2022; Nelson et al., 2017), the anterior temporal lobe (Bhattasali et

al., 2019; Brennan & Pylkkänen, 2017; Brennan et al., 2012, 2016; Nelson et

al., 2017; Stanojević et al., 2021), and posterior superior and middle tempo-

ral areas (Brennan et al., 2016; Giglio, Ostarek, Sharoh, & Hagoort, 2022; Li

& Hale, 2019; Nelson et al., 2017; Lopopolo et al., 2021). On the assumptions

that these effects reflect the operations involved in syntactic structure building

and that people employ similar parsing strategies when processing English and

Dutch sentences, we expect effects to show up in the same brain regions. Be-

cause the majority of this work has used fMRI, the timing of the expected effects

is less clear, though the results of a few electrophysiological studies suggest that

effects of structure building are reflected in brain activity within the first 500 ms

after word onset (Brennan & Pylkkänen, 2017; Hale et al., 2018). In sum, the

predictive accuracy of the different parsing models can give us insight into the

(potentially language-specific) processing strategies Dutch parsers use (i.e., how

they build structure), and the spatial-temporal properties of the effects provide

clues about when and where in the brain these processes are implemented.

5.2 Methods

5.2.1 Participants

24 right-handed native speakers of Dutch (18 female, mean age = 33.4 years,

age range = 20–58 years) were recruited via the SONA system of Radboud Uni-

versity Nijmegen. They all reported normal hearing, had normal or corrected-

to-normal vision, and did not have a history of language-related impairments.

Participants gave written informed consent to take part in the experiment, which

was approved by the Ethics Committee for human research Arnhem/Nijmegen

(project number CMO2014/288). This project is part of a larger data collection

project, for which the pre-registered sample size is 32 (d = 0.5, α = 0.05, β =
0.2). At the start of the analyses reported in this chapter, data collection was

finished for 24 participants. Previous analyses of the same dataset have shown

that this sample is large enough to reconstruct the neural response to linguistic

features using TRF analysis (Tezcan et al., 2022).
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5.2.2 Stimuli

The stimuli consisted of stories from three fairy tales in Dutch: one story by Hans

Christian Andersen and two by the Brothers Grimm. All stories contain a rich

variety of naturally occurring sentence structures, varying in syntactic complex-

ity. In total, there are 8551 words in 791 sentences, which are on average 10.8

words long (range = 1-35, SD = 5.95). They were auditorily presented in nine

separate segments, all of which were between 289 (4 min, 49 sec) and 400 sec-

onds long (6 min, 40 sec; see Supplementary Information S5.1), for a total of 49

minutes and 17 seconds. The loudness of each audio segment was normalized

using the FFmpeg software (EBU R128 standard). The transcripts of each story

were automatically aligned with their corresponding audio recording using the

WebMAUS segmentation software (Kisler et al., 2017).

5.2.3 Syntactic annotations

We manually created syntactic structures for all sentences in the audiobooks fol-

lowing an adapted version of X-bar theory (Carnie, 2021; Jackendoff, 1977). To

be specific, we consistently created an X-bar structure for NPs and VPs, whereas

intermediate projections for all other phrases were drawn only if they were

needed to attach adjacent words to the structure (e.g., APs were unbranched

unless they were modified by an adverb or prepositional phrase). The X-bar tem-

plate for NPs and VPs was strictly enforced in order to make a structural distinc-

tion between arguments and adjuncts; arguments were attached as sister of the

head, while adjuncts were attached to an intermediate projection (Jackendoff,

1977). All phrases except for VPs and IPs are head-initial. An example of a

hierarchical tree structure is given in Figure 5.1.

Node counts were computed for each word in every sentence in three differ-

ent ways. On the bottom-up strategy, a constituent node is posited when all

daughter nodes have been encountered. This amounts to counting the number

of closing brackets directly following a given word in a bracket notation.2 On

the top-down strategy, a node is posited right before it is needed to attach the

upcoming word to the structure. This amounts to counting the number of open-

ing brackets directly preceding a given word in a bracket notation. And on the

left-corner strategy, a node is posited when its left-most daughter node has been

encountered. Terminal nodes were not included in the node count calculation.

2Note that bottom-up node count reflects exactly the same as the bracket count measure
used in Chapter 4.
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Figure 5.1: Syntactic structure of an example sentence from one of the audio-
book stories. The t stands for trace and refers to the position at which
the word or phrase to which it is related is interpreted. It does not
have an acoustic correlate in the speech signal.

As can be seen in Figure 5.1, the X-bar structures contain traces of move-

ment. As these empty elements do not have an acoustic correlate in the speech

signal, we reassigned their node counts to another word in the same sentence.

Our reasoning was that the precise location of these elements could not be pre-

dicted with certainty, though it could be inferred after their putative position.

We therefore decided to add the node count of each empty element to the node

count of the word following it. By doing so, we aimed to capture the syntactic

processes associated with these elements (e.g., long-distance dependency res-

olution) around the times they occur. We will come back to this point in the

discussion.

The resulting node count values were time-aligned with the onsets of the

words in the audio recordings (see Figure 5.2 for an example). Each audio file

could thus be represented as a vector with a node count value at the onset of

each word and zeros everywhere else. The vectors for each of the three parsing

strategies were the predictors in the TRF analysis (see Section 5.2.7).
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Figure 5.2: Node counts for the structure presented in Figure 5.1, time-aligned
with the onsets of the words in the corresponding audio recording.

5.2.4 Procedure and data acquisition

Participants were individually tested in a magnetically shielded room. They were

instructed to attentively listen to the nine audiobook stories while sitting still

and looking at a fixation cross that was presented in the middle of the screen.

After each of the nine story blocks, five multiple-choice comprehension questions

(each with four options) were asked. On average, participants answered 88.1%

of the questions correctly (SD = 7.52%), showing that they paid attention to

and understood the content of the stories.

The MEG data were recorded with a 275-channel axial gradiometer CTF sys-

tem at a sampling rate of 1200 Hz. The audio recordings were presented using

Psychtoolbox in MATLAB (Brainard, 1997) via earphones inserted into the ear

canal. Participants’ eye movements and heartbeat were recorded with EOG and

ECG electrodes, respectively. Throughout the recording session, their head posi-

tion was monitored using three head localization coils, one placed in fitted ear-

molds in each ear and one placed at the nasion (Stolk et al., 2013). Each block

started with a 10-second period during which resting state data were recorded.

In the break between story blocks, participants were instructed to reposition

their head location in order to correct for head movements. After the MEG ses-

sion, each participant’s head shape was digitized using a Polhemus 3D tracking

device, and their T1-weighted anatomical MRI was acquired using a 3T Skyra

system (Siemens).
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5.2.5 MEG preprocessing

Preprocessing was done using MNE-Python (version 0.23.1). The MEG data

were first down-sampled to 600 Hz and band-pass filtered at 0.5-40 Hz using a

zero-phase FIR filter (MNE-Python default settings). We then interpolated chan-

nels that were considered bad using Maxwell filtering, and used Independent

Component Analysis to filter artifacts resulting from eye movements (EOG) and

heartbeats (ECG). We segmented the data into nine large epochs, whose onsets

and offsets corresponded to those of the audio recordings. Source reconstruction

was done for each epoch separately.

5.2.6 Source reconstruction

Individual head models were created for each participant with their structural

MRI images using FreeSurfer (Dale et al., 1999). The MRI data were then co-

registered to the MEG with MNE co-registration, using the head localization coils

and the digitized head shape. We set up a bilateral surface-based source space for

each individual participant using fourfold icosahedral subdivision, resulting in

2562 continuous source estimates in each hemisphere. The forward solution was

computed using a BEM model with single layer conductivity. We low-pass filtered

the signal at 4 Hz using a zero-phase FIR filter (corresponding to the 0.5-4 Hz

delta band) and estimated sources using the dSPM method (noise-normalized

minimum norm estimate), with source dipoles oriented perpendicularly to the

cortical surface. The noise covariance matrix was calculated based on the resting

state data that were recorded before each story (all concatenated). Before TRF

analysis, each source estimate was downsampled to 100 Hz to speed up further

computations.

5.2.7 Predictor variables

To control for brain responses to acoustic information, all models included two

acoustic predictors: an eight-band gammatone spectrogram (i.e., envelope of the

acoustic signal in different frequency bands) and an eight-band acoustic onset

spectrogram. Both spectrograms covered frequencies from 20 to 5000 Hz in

equivalent rectangular bandwidth space (Heeris, 2018), and were resampled to

100 Hz to match the sampling rate of the MEG data. The onset spectrogram

was derived from the gammatone spectrogram using an auditory edge detection

model (Brodbeck et al., 2020).
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All models also included four word-based predictors that are all strongly linked

to brain activity during naturalistic language processing (Brodbeck et al., 2018,

2022; Weissbart et al., 2020). These were word rate and the three statistical

predictors word frequency, surprisal, and entropy. All predictors were modeled

on the gammatone predictors in terms of length and sampling rate.

The word rate predictor is simply a one-dimensional array with the value 1 at

word onsets and the value 0 everywhere else.

The frequency of word w was computed by the taking negative logarithm

of the number of occurrences of w of per million words, extracted from the

SUBTLEX-NL database of Dutch word frequencies (Keuleers et al., 2010):

Word f requenc y(w) = −log2( f requenc y(w))

We chose to represent word frequency via the negative logarithm, because

in this way infrequent words will get high values and frequent words will get

low values, in line with the brain response to word frequency (i.e., a larger re-

sponse to infrequent words; Brennan et al., 2016; Brodbeck et al., 2018). For

some words we could not compute a frequency value because the word did not

appear in the database. Manually checking them revealed that these were un-

common (and thus likely infrequent) words, so we assigned to them the value

corresponding to the lowest frequency of all words present in the audiobook.

Surprisal is the conditional probability of a word given the preceding linguistic

context, quantified as the negative logarithm of this probability (Hale, 2001,

2014). Thus, the surprisal of word w at position t is calculated via:

I(wt) = −log2(P(wt |contex t))

Word surprisal was computed from conditional probabilities obtained with

GPT-2 for Dutch (de Vries & Nissim, 2021). GPT-2 used the preceding 30 words

as context, so context in the formula above refers to (wt−30. . . wt−1).

Entropy at word position t is the uncertainty before observing the next word

wt+1 given the preceding context. Context was again defined as the previous 30

words (including wt), and conditional probabilities were again obtained with

GPT-2 for Dutch (de Vries & Nissim, 2021). Entropy at word position t was then

calculated as the sum of the conditional probabilities of each next word (within

the set of possible upcoming words W ), weighted by the negative logarithm of

this probability:
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H(t) = −
∑

wt+1∈W

P(wt+1|contex t) log2(P(wt+1|contex t))

Our syntactic models included the syntactic predictors bottom-up node count,

top-down node count and left-corner node count. We constructed a total of four

models. Table 5.2 specifies which predictors are included in which model.

Table 5.2: Predictors included in each model.

Model name

Predictor(s) Spectro- Word Word Bottom- Top- Left-
gram/ onset frequency/ up down corner
Onsets Entropy/

Surprisal

Bottom-up + Top-down X X X X X
Bottom-up + Left-corner X X X X X
Top-down + Left-corner X X X X X
Full X X X X X X

5.2.8 Model estimation

TRFs were estimated for each subject and MEG source point separately using

Eelbrain (Version 0.37.3; Brodbeck et al., 2021). The MEG response at time t,

denoted as ŷ(t), was predicted jointly by convolving each TRF with a predictor

time series shifted by K time delays (Brodbeck et al., 2021, 2022):

ŷ(t) =
F
∑

f=1

K
∑

k=1

β f (τk)x f (t −τk)

Here, x f is the predictor time series and β f (τk) is the TRF of the corresponding

predictor at delay τk. The coefficient of the TRF at delay τ thus indicates how a

change in the predictor affects the predicted MEG response τ milliseconds later.

To generate each TRF, we used 50-ms wide Hamming windows and shifted the

predictor time series between -100 and 1000 ms at a sampling rate of 100 Hz,

thus yielding K = 110 different delays. The length of the TRF was chosen based

on the latency of syntactic effects in naturalistic paradigms (Brennan & Hale,

2019; Hale et al., 2018). Before estimating the TRF, all predictors were mean-

centered and then normalized by dividing by the mean absolute value.
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TRFs were estimated using a five-fold cross-validation procedure. We first

concatenated the data for each subject along the time axis, and then split them

up into five equally long segments. During each cross-validation run, three seg-

ments were used for training, one for validation, and one for testing. For each

test segment, there were four training runs with each of the remaining segments

serving as the validation segment once. Using a boosting algorithm (David et

al., 2007) to minimize the ℓ1 error, one TRF was estimated for each of the four

training runs (selective stopping based on ℓ1 error increase). The resulting four

TRFs were averaged to predict responses in the test segment. This analysis yields

an average TRF for each predictor in each model, as well as a measure of recon-

struction accuracy for the whole model. Reconstruction (or predictive) accuracy

refers to the fit between the predicted and the observed MEG signal at each

source point, quantified in terms of explained variance in R2. Reconstruction

accuracy can be seen as a measure of cortical tracking: the larger the reconstruc-

tion accuracy for a given model, the more closely the brain tracks the predictors

in that model.

5.2.9 Model comparison

We tested the unique contribution of each syntactic predictor by comparing the

reconstruction accuracy of the full model to the reconstruction accuracy of a null

model in which only one of the predictors was omitted. The three null models

we evaluated were Bottom-up + Top-down, Bottom-up + Left-corner, and Top-

down + Left-corner (see Table 5.2). Comparing their reconstruction accuracy

to the accuracy of the full model yields an accuracy difference measure for the

left-corner, top-down, and bottom-up predictors, respectively. This comparison

thus tests whether a predictor explains variance in the brain signal above and

beyond the variance explained by all other predictors.

To determine where in the brain the reconstruction accuracy of the full model

was different from that of the null model, we smoothed the source points of both

models separately (Gaussian window, SD= 14 mm) and tested for differences in

their source maps using non-parametric cluster-based permutation tests (Maris

& Oostenveld, 2007). For all contrasts between full and null model, we applied

two-tailed paired-samples t-tests at each source point, clustered adjacent source

points (minsource= 10) with an uncorrected p-value lower than 0.05, and eval-

uated clusters of activity by comparing their cluster-level test statistic (sum of

individual t-values) to a permutation distribution. The permutation distribution

was generated based on the maximum cluster-level t-value in each of 10,000
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random permutations of the same data, in which the condition labels were shuf-

fled within subjects. The significance of clusters was evaluated at an alpha value

that was Bonferroni-corrected for the number of tests (alpha = 0.05/ntests). As

an estimation of the effect size of the significant clusters, we report tav, which

corresponds to the average t-value within the significant cluster (the cluster-

level t-value divided by the number of significant source points). When multiple

clusters are significant, we report the test statistic of the cluster with the largest

number of significant source points.

The syntactic predictors were quite highly correlated (rBU−TD = 0.43, rLC−BU =
0.79, rTD−LC = 0.83; see Supplementary Information S5.2), potentially leading

to multicollinearity, which affects estimation of the TRF coefficients. To con-

trol for this possibility, we separately compared the Bottom-up, Top-down, and

Left-corner models to a base model, which included no syntactic predictors at

all (see Table S5.2 in the Supplementary Information S5.2). This analysis does

not suffer from multicollinearity issues because the correlated predictors never

appear in the same model. The results of this analysis are both qualitatively and

quantitively very similar to those reported in the main analyses (see Supplemen-

tary Information S5.2), supporting the conclusion that the different predictors

explain unique variance in the MEG data despite being positively correlated.

5.2.10 Evaluation of the response functions

In addition to analyzing the fit between the predicted and the observed signal,

we also evaluated the estimated response function, which provides information

about the temporal relationship between the predictor and the neural response.

This analysis involves the coefficients of the TRF at each time and source point

(sources smoothed by a Gaussian window, SD = 14 mm). If the coefficients

for a given predictor are significantly non-zero, this indicates that the brain re-

sponds to the information encoded in that predictor. In a spatiotemporal cluster-

based permutation analysis, we first applied two-tailed one-sample t-tests at each

source-time point to determine whether the TRF coefficients deviate from zero.

The t-values of adjacent source-time points (minsource = 10, mintime = 40

ms) with an uncorrected p-value lower than 0.05 were then summed, and their

cluster-level test statistic was compared to a permutation distribution based on

10,000 random permutations of the same data. The significance of clusters was

evaluated at an alpha value (of 0.05) that was Bonferroni-corrected for the num-

ber of tests.
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5.3 Results

5.3.1 Model comparison

Using cluster-based permutation tests in source space, we tested where in the

brain the reconstruction accuracies were modulated by each of the three syn-

tactic predictors. Clusters of activity were evaluated at alpha = 0.0083 (ntests

= 3 accuracy differences * 2 hemispheres). All predictors significantly improve

reconstruction accuracy, with clusters mostly in the left hemisphere (see Figure

5.3). The improvement is largest for the top-down predictor, which explains

variance in many regions of the left hemisphere (tav = 5.49, p = .0034), as

well as in an anterior part of the right temporal lobe (tav = 2.60, p = .0075).

The strongest left-hemispheric effects are found in superior and middle temporal

regions and in inferior and middle frontal regions. The bottom-up predictor sim-

ilarly engages inferior frontal and temporal regions, but only one cluster around

Heschl’s gyrus is significant at the adjusted alpha level (tav = 3.84, p = .0081).

Last, the left-corner predictor improves reconstruction accuracy in an area at the

border of the temporal and frontal lobe in both the left (tav = 5.72, p = .0057)

and the right hemisphere (tav = 3.35, p = .0081). It is noteworthy that even

though the three syntactic predictors are positively correlated with one another,

each of them explains unique variability in the MEG data that could not be at-

tributed to the other two syntactic predictors.

Figure 5.3: Sources of improved explained variance of the bottom-up (A), top-
down (B) and left-corner (C) predictors, determined by comparing
the reconstruction accuracy of the full model to the reconstruction
accuracy of a null model from which the relevant predictor was omit-
ted. All clusters that were significant at uncorrected alpha= 0.05 are
displayed. Notice that the scales of the color bars are different across
the plots.
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5.3.2 Evaluation of the response functions

Given that all of the predictors increase reconstruction accuracy, we can exam-

ine their response functions, which reveal a more detailed picture of the time

course of the neural response to syntactic information. Figure 5.4 shows the

TRFs averaged over the significant regions from the cluster-based source analy-

sis of reconstruction accuracies, in the left and the right hemisphere separately.

These plots show the absolute value of the TRF coefficients and thus yield an es-

timate of the magnitude of the brain response to the syntactic predictor at each

time point. All TRFs come from the full model, in which all predictors are com-

peting for explaining variance, so the increases in amplitude reflect components

of the neural response that are best explained by the respective predictor. In

line with the reconstruction accuracy results, Figure 5.4 shows clearly that the

neural response to the information encoded in top-down node counts is stronger

than the response to node counts derived from the bottom-up or the left-corner

method.

Figure 5.4: Temporal response functions for node count derived from bottom-
up, top-down, and left-corner parsers in the full model, averaged
over sources in the left and right hemisphere that showed a signifi-
cant improvement in reconstruction accuracy. The error bars reflect
the standard error of the mean per time sample. The plot on the
right does not have a TRF for bottom-up because none of the clusters
in the right hemisphere showed a significant improvement in recon-
struction accuracy after the addition of the bottom-up predictor.
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While these results are informative about the strength and timing of the re-

sponse, they provide limited information about the direction of the effects. In

order to analyze when the brain responds most strongly to the information en-

coded in a predictor, it is necessary to take the absolute value of the TRF co-

efficient at each time and source point, as this prevents TRF coefficients with

opposite signs from cancelling when they are averaged across different sources.

This is often justified because the sign of the TRF coefficient is not directly func-

tionally interpretable (in the same way that the negative polarity of an ERP is

not interpretable). Yet, despite this interpretability problem, differences in the

sign of the TRF coefficients for the three parsing models within the same brain

region indicate time-dependent differences in the functional involvement of that

region.

Figure 5.5 therefore shows the source t-values (based on two-tailed, one-

sample t-tests) of the TRFs for the three syntactic predictors, split up into four

time windows (corresponding to different delays in TRF estimation). Non-

parametric cluster-based permutation tests were used to determine when and

where the TRF coefficients of each syntactic predictor deviated from zero. Be-

cause this involves 6 comparisons (3 TRFs * 2 hemispheres), clusters were

evaluated at alpha = 0.0083. Focusing on left-hemispheric sources, this analysis

revealed a negative cluster for the top-down predictor, broadly distributed in

frontal and temporal regions (tav = -0.53, p < .001)3, and a positive cluster

around the parahippocampal gyrus and anterior temporal lobe (tav = 0.68, p

< .001). The strongest effect of the bottom-up TRF was in a region centered

around the left inferior frontal cortex (tav = 0.43, p < .001), and the TRF of the

left-corner predictor peaked in temporal (tav = -0.38, p = .0062) and frontal

regions (tav = 0.48, p < .001). In sum, these results show that the relationship

between the predictor and certain brain regions is time-dependent, suggesting

that these areas are differently involved across different delays.

5.3.3 Region of interest analysis

To further explore the spatiotemporal differences between the response func-

tions of the syntactic predictors, we analyzed the TRFs in three specific regions

of interest (ROIs) that have been linked to syntactic structure building in natural-

istic contexts. These ROIs are the inferior frontal gyrus (IFG), superior temporal
3These average cluster-level t-values are underestimated because they are corrected for the

total number of significant source points across the whole duration of the cluster. As not all of
these source points are significantly involved at all time points (and might at certain time points
even have a sign opposing the sign of the cluster), the correction is overly strict.
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Figure 5.5: Sources of the TRFs for node count derived from bottom-up, top-
down, and left-corner parsers, representing early to late responses.
The colors represent positive (red) or negative (blue) t-values in
sources that were significantly responsive (at corrected alpha =
0.0083) to the predictor in the indicated time windows.

gyrus (STG) and anterior temporal lobe (ATL) in the left hemisphere (Figure

5.6B), all of which also showed up in one or more of the contrasts in the accu-

racy analysis (Figure 5.3) and the TRF analysis (Figure 5.5). They were extracted

using the ‘aparc.a2009s’ FreeSurfer parcellation (Destrieux et al., 2010).

The reconstruction accuracy results in Figure 5.6A show for each ROI the im-

provement in reconstruction accuracy when the syntactic predictors are sepa-

rately added to the null model. Effects of the top-down predictor are strongest

in general, and in particular in the STG, where all subjects showed evidence

of responses associated with top-down node counts. In each of the three ROIs,

we used cluster-based permutation tests to determine when the TRFs of each

syntactic predictor deviated from zero. Because this involves 9 comparisons (3

TRFs * 3 ROIs), clusters were evaluated at alpha = 0.0056. As shown in Figure

5.6C, the top-down predictor showed effects in the IFG (from -80 to 470 ms,

tav = -3.84, p < .001), STG (from -80 to 110 ms, tav = 3.62, p = .0017), and

ATL (two peaks with opposite signs, from -80 to 240 ms, tav = -3.55, p = .0013;

from 360 to 860 ms, tav = 3.56, p < .001). Note that the TRF coefficients are

significantly non-zero before the onset of the top-down predictor, which is not

implausible because of the predictive nature of top-down node counts as well

as coarticulation in the speech signal (Brodbeck et al., 2022). The bottom-up

predictor showed a brief effect in the ATL (from 260 to 450 ms, tav = 2.88, p <
.001) and a longer one in the IFG (from 370 to 750 ms, tav = 3.06, p < .001),



5 Hierachical structure building during natural story listening 127

Figure 5.6: Region of interest analysis. (A) Difference in reconstruction accuracy
with the full model, plotted for left IFG, STG, and ATL. The labels
on the x-axis refer to the syntactic predictors that were taken out of
the full model, so the height of each bar indicates the reduction in
reconstruction accuracy compared to the full model when only that
predictor is omitted. The drops represent the accuracy difference
for individual participants, and the error bars represent the standard
error of the mean across subjects. (B) Spatial extensions of the three
regions of interest. (C) Temporal response functions for node count
derived from bottom-up, top-down, and left-corner parsers in the full
model. Error bars reflect the standard error of the mean per time
sample. The horizontal bars below the TRFs reflect the time points
at which the TRFs were significantly non-zero.

while the left-corner predictor showed a shorter effect in the IFG (from 620 to

800 ms, tav = 2.88, p= .0021) and a longer one in the ATL (from 270 to 640 ms,

tav = 3.69, p < .001). It is noteworthy that the TRFs within the same region are

not consistent across different predictors. While their sign is not directly inter-
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pretable, the differences in Figure 5.6C (e.g., the consistently positive TRF for

bottom-up vs. the negative TRF for top-down in the IFG) indicate that the pro-

cesses these regions are involved in are not the same for the different syntactic

predictors.

5.4 Discussion

In this study, we aimed to investigate how people build syntactic structure dur-

ing naturalistic comprehension of Dutch. Using a forward modeling approach

to map syntactic complexity metrics onto delta-band source activity, we com-

pared three parsing models that differ in the dynamics of structure building. A

key finding of these analyses is that neural source dynamics most strongly reflect

complexity metrics derived from a top-down parsing model, suggesting that pre-

dictive structure building plays an important role in Dutch sentence comprehen-

sion. However, the additional (weaker) effects of the bottom-up and left-corner

predictors indicate that other parsing strategies also play a role, and suggest that

people’s parsing strategy might be flexibly adapted to the specific properties of

the linguistic input.

5.4.1 Predictive structure building in the brain

Node counts derived from all three parsing models explained unique variance in

delta-band MEG activity, consistent with recent studies showing a relationship

between delta-band activity and syntactic processing (Bai et al., 2022; Brennan

& Martin, 2020; Coopmans, de Hoop, Hagoort, & Martin, 2022; Ding et al.,

2016; Kaufeld et al., 2020). Of all syntactic predictors, node counts derived

from a top-down parsing method were the strongest syntactic predictor of brain

activity in language-relevant areas. These effects peaked twice within the first

500 ms after word onset and encompassed mostly inferior and middle frontal,

and superior and middle temporal areas in the left hemisphere. The predictive-

ness of top-down node counts is at odds with previous studies that have looked

at different parsing models in naturalistic comprehension, which either find that

top-down methods are less predictive of brain activity (Giglio, Ostarek, Sharoh,

& Hagoort, 2022; Nelson et al., 2017) or that they do not differ from other pars-

ing methods (Brennan et al., 2016). What could account for the strong top-down

effects? One explanation is that top-down node count values capture the pre-

dictive nature of language processing well. There is substantial evidence from
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psycholinguistics that people generate structural predictions across a variety of

syntactic constructions (Arai & Keller, 2013; Ferreira & Qiu, 2021; Lau et al.,

2006; Staub & Clifton, 2006; Yoshida et al., 2013), and they do so in natural-

istic contexts as well (Brennan & Hale, 2019; Hale et al., 2018; Heilbron et al.,

2022). These predictive structure-building processes are mostly associated with

activity in the left posterior temporal lobe (PTL; Brennan et al., 2016; Matchin et

al., 2017, 2019; Matar et al., 2021; Nelson et al., 2017) and left inferior frontal

gyrus (IFG; Matchin et al., 2017), both of which were responsive to the top-

down predictor in the current study. Matchin et al. (2017) suggest that the PTL

is involved in predictive activation of sentence-level syntactic representations

and/or increased maintenance of the syntactic representations associated with

lexical items when they are presented in a sentential context (see also Matar et

al., 2021). On both interpretations, the PTL encodes structural representations

that can be activated in a predictive fashion and are later to be integrated with

the sentence-level syntactic representation in IFG (Hagoort, 2005; Hagoort & In-

defrey, 2014; Snijders et al., 2009). Importantly, this process does not proceed

in a purely feedforward manner, but rather relies on recurrent connections be-

tween temporal and frontal regions (Hultén et al., 2019). The fact that the TRF

for the top-down predictor is bimodal is consistent with this idea. The first peak

likely reflects predictive structure building, which can occur in the PTL within

the first 150 ms after word onset (Matchin et al., 2017). In terms of timing,

the second peak is largely consistent with syntactic surprisal effects in recent

naturalistic M/EEG studies (Brennan & Hale, 2019; Hale et al., 2018; Heilbron

et al., 2022), and might reflect responses related to the (dis)confirmation of

predicted structures based on incoming information. An additional observation

is that the effects of the top-down predictor, and to a lesser extent also those of

the left-corner predictor, are somewhat bilateral. A tentative explanation for this

finding is that the prediction of hierarchical structure, as quantified by top-down

and left-corner node counts, is demanding and therefore requires support from

right-hemispheric regions. These areas are not the locus of the syntactic repre-

sentations and computations themselves but might be activated when processing

demands are increased.

The bottom-up TRF was consistently modulated in the left inferior frontal cor-

tex (Figure 5.5), in line with previous studies that found this area to be respon-

sive to parametric manipulations of constituent structure (Giglio, Ostarek, We-

ber, & Hagoort, 2022; Matchin et al., 2019; Pallier et al., 2011; Zaccarella et al.,

2017). Compared to the top-down TRF, however, bottom-up effects were rela-
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tively weak in amplitude. One possibility is that the bottom-up and top-down ef-

fects are inversely related, such that strong top-down effects, which indicate pre-

dictive processing, are accompanied by weak bottom-up effects, and vice versa.

One of the advantages of prediction in language comprehension is that it can

reduce the burden on future integration processes (Kuperberg & Jaeger, 2016).

If a structural representation has already been pre-built or pre-activated, incom-

ing words only have to be inserted into the existing structure, so integration

costs for these words are low. Because integration costs are approximated via

bottom-up node count, any effects of bottom-up node count should be reduced

if people engage in predictive processing (indicated by top-down effects). This

account would thus predict that when top-down metrics modulate brain activ-

ity for a given sentence, bottom-up metrics will not provide a good fit for that

same sentence, and conversely, when top-down metrics do not provide a good

fit, bottom-up metrics should be highly predictive. While it should be investi-

gated in future work whether the effects of top-down and bottom-up metrics

indeed go hand in hand in this anti-correlated way, the results of a recent natu-

ralistic study are consistent with this possibility. In this fMRI study by Giglio and

colleagues, English participants had to listen other people’s verbal summaries

of a tv episode (Giglio, Ostarek, Sharoh, & Hagoort, 2022). Contrasting with

coherent audiobook narratives, these spontaneously produced summaries con-

tained dysfluencies and corrections, which might make participants less inclined

to rely on a predictive processing strategy. Giglio et al. (2022) found that in this

comprehension scenario, integratory bottom-up node counts but not predictive

top-down node counts modulated activity in language-relevant brain areas (in

particular, LIFG and LPTL). This result suggests that parsing strategies can be

flexibly adapted to the specific properties of the current linguistic input (e.g.,

grammatical properties, sentence complexity, reliability of predictive cues), such

that people are less likely to engage in predictive structure building if the input

contains ungrammatical sentences that make predicting ineffective (Brothers et

al., 2019; Kuperberg & Jaeger, 2016).

Effects of the left-corner parser were also relatively weak compared to effects

of the top-down parser, in terms of both reconstruction accuracy and TRF ampli-

tude. Region-of-interest analysis focused on the left ATL did show a modulation

of the left-corner TRF around 300-600 ms, in line with previous work (Brennan

& Pylkkänen, 2017), but this effect was not accompanied by a consistent in-

crease in ATL reconstruction accuracy, suggesting large variability across subjects

and/or trials. The comparatively weak effects of the mildly-predictive left-corner
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parser might indicate that the left-corner parser is insufficiently predictive to ac-

count for the comprehension of head-final constructions of Dutch. As noted in

the introduction, the left corner of head-initial structures is very informative,

which could explain why left-corner parsing metrics successfully predict brain

activity of participants listening to English (Brennan & Pylkkänen, 2017; Nelson

et al., 2017). These effects might be weaker in languages with head-final con-

structions, in particular if speakers of these languages adopt predictive parsing

strategies. For instance, while experiments on head-initial structures commonly

find that processing costs are increased when the distance between the head

and its dependents is increased (Gibson, 1998; Bartek et al., 2011), studies that

investigate head-final structures have reported the exact opposite. They find

a facilitation in processing of words integrating longer dependencies, an effect

that is typically attributed to an increase in the prediction for the upcoming head

(Konieczny, 2000; Husain et al., 2014; Nakatani & Gibson, 2008). In addition, it

is commonly mentioned that the left-corner strategy predicts processing break-

down for exactly those constructions that are difficult to process. Left-corner

parsers have the property that their memory demands increase in proportion

to the number of embeddings in center-embedded constructions, while they re-

main constant for both right- and left-branching structures (Abney & Johnson,

1991; Johnson-Laird, 1983; Resnik, 1992). Sentences with multiple levels of

center-embedding indeed quickly over-tax working memory resources (Miller &

Chomsky, 1963), supporting the cognitive plausibility of the left-corner method.

Intriguingly, however, processing difficulty for center-embedded constructions

is not consistent across languages. Vasishth et al. (2010) find that speakers of

German (a language with head-final VPs, like Dutch) are hindered less than

English speakers during the comprehension of multiply center-embedded sen-

tences, again suggesting that people’s ability to generate syntactic predictions

might be dependent on the specific grammatical properties of the language.

In all, the fact that a top-down parser best explains brain activity of people lis-

tening to Dutch audiobooks might have to do with certain grammatical proper-

ties of Dutch, including its head-final VPs, which make left-corner prediction in-

adequate. This conclusion underscores the need for more work on typologically

diverse languages, whose structural properties invite different parsing strate-

gies that might rely on different brain regions to varying degrees (Bornkessel-

Schlesewsky & Schlesewsky, 2016). Overall, the fronto-temporal language net-

work is remarkably consistent across speakers of different languages (Malik-

Moraleda et al., 2022), but structural differences within this network can be
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induced by experience with sentence structures that elicit different processing

behavior (Goucha et al., 2022).

5.4.2 Is node count the right linking hypothesis?

Two critical questions can be raised about our use of node count as the complex-

ity metric to represent syntax-related cognitive states. First, the X-bar structures

that we used to compute node counts contained empty elements, such as traces.

As traces do not have an acoustic correlate in the physical stimulus, we assigned

their node count values to the subsequent word. We reasoned that the existence

and location of an element, whether covert or overt, can usually be inferred

with absolute certainty only after it has been encountered, which would be at

the subsequent word. However, this wait-and-see (or wait-and-infer) approach

is somewhat inconsistent with the parsing strategy of both top-down and left-

corner parsers, which build structure predictively. On the top-down method,

for instance, a constituent node is postulated before there is any evidence for

its existence. Given that the structure corresponding to overt elements is built

predictively, it is inconsistent if the structure corresponding to covert elements

is built in an integratory manner, in particular given the evidence for prediction

of null forms (Lau et al., 2006; Yoshida et al., 2013).

In order to check whether the node counts for traces were reassigned correctly,

we should test the reconstruction accuracy of syntactic predictors in which node

counts for traces are assigned to the previous word. This will shift the structural

complexity of the sentence to a different point in time, and will do so differently

depending on both the location of the trace and the parsing method. For traces

at the left corner of a constituent (e.g., the trace in the SpecVP in Figure 5.1),

whose node counts are higher for top-down than for bottom-up parsers, the

preceding word will be assigned a higher node count on the top-down method.

The reverse is the case for traces at the right corner of a constituent (e.g., the

trace corresponding to the position of the non-finite V in Figure 5.1), because

their node counts are higher on the bottom-up method. This shows that the

method of reassigning node counts to the word preceding or following the trace

has important consequences.

It has been shown that the influence of the parsing algorithm on node count

depends on the grammar that is used. For instance, node counts for top-down

and bottom-up parsers are strongly correlated for minimalist grammars (Van Wa-

genen et al., 2014), supposedly showing that the influence of the parsing algo-

rithm is small when an expressive grammatical formalism is used. However, it



5 Hierachical structure building during natural story listening 133

appears that this is the case only when node counts for empty elements are ig-

nored. When their nodes are counted and subsequently reassigned to another

word, top-down and bottom-up parsers make different predictions about when

in the sentence processing complexity is high.

Another relevant question is whether node count is the right measure to

represent syntactic structure building. The node count metric we used is un-

lexicalized, which means that it does not take into account the label of the

node counted. During language comprehension, however, syntactic processing

is lexicalized (Coopmans, de Hoop, Hagoort, & Martin, 2022; Hagoort, 2005),

and lexical information guides predictive structure building (Arai & Keller,

2013; Boland & Blodgett, 2006; Schütze & Gibson, 1999). Such lexically driven

structural predictions are represented to some extent in other metrics, such as

part-of-speech surprisal values derived from probabilistic context-free grammars

(Brennan & Hale, 2019; Brennan et al., 2016; Shain et al., 2020) or recurrent

neural network grammars (Brennan et al., 2020; Hale et al., 2018). Both types

of grammars incrementally build hierarchical structure, which they use to con-

ditionalize the probability of an upcoming word’s part-of-speech. They can thus

quantify how likely a given structural analysis is given a preceding context that

includes lexical information.

There are at least two other metrics that are informative about syntactic pro-

cessing in a way that node count is not. First, the ‘distance’ metric counts the

total number of syntactic analyses that are considered by a parser at every indi-

vidual word (Brennan et al., 2020; Hale et al., 2018). The larger the number

of alternative analyses to be considered, the higher the effort in choosing the

correct parse. In this way, it models the ambiguity resolution process that is

much studied in psycholinguistics but that is not captured by node count. Sec-

ond, ‘incremental memory’ reflects the number of phrases to be held in memory

on a stack (Nelson et al., 2017; Van Wagenen et al., 2014) and is sometimes

quantified as the number of open nodes (Nelson et al., 2017; Giglio, Ostarek,

Sharoh, & Hagoort, 2022). Incremental memory is particularly relevant to eval-

uate left-corner parsing because one of the arguments in favor of the plausibility

of the left-corner method relies on a complexity metric that reflects the number

of unattached constituents to be held in working memory (Abney & Johnson,

1991). Node count instead quantifies syntactic complexity rather than memory

load, and it need not be the case that these make exactly the same predictions

with respect to comprehension difficulty.
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5.5 Final remarks

Hale et al. (2022) argue that in order for neuro-computational models to be use-

ful for the neurobiology of language, they must be linguistically interpretable,

which means that “the models connect with or implement theoretical constructs

from linguistics” (p. 439). In the current study, we linked brain activity to syntac-

tic complexity metrics that were derived from syntactic structures, which were

generated via an expressive grammar that is linguistically interpretable. In this

sense, our findings can go beyond recent naturalistic studies which show that

deep neural networks (DNNs) strongly predict people’s brain activity during nat-

ural story listening (Heilbron et al., 2022; Schrimpf et al., 2021). Despite being

very successful in predicting activity in the fronto-temporal language network,

these results are not easily interpretable in terms of the functional properties of

this network, because DNNs typically do not lend themselves to formal analysis.

Neuro-computational models as used in the current work are linguistically inter-

pretable, thus allowing us to conclude that inferior frontal and superior temporal

regions are involved in building hierarchical constituent structure in a predictive

manner. We do, however, have to remain agnostic with respect to the kinds of

functions these areas are computing. This has to do with the fact that we com-

puted node count based on derived tree structures rather than on the actual

derivation trees that reveal the parsing steps by which a structure is incremen-

tally constructed. In order to build neuro-computational parsing models that are

not only linguistically interpretable but also psycholinguistically accurate, it is

important that future work assumes a more transparent relation between gram-

mar and parser, for instance by using the derivation steps directly implemented

by the grammar (Brennan et al., 2020; Chesi, 2015; Hale et al., 2018; Stanojević

et al., 2021).
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S5 Supplementary Information

S5.1 Auditory stimuli

Table S5.1: Auditory stimuli.

Story part Duration

Andersen s1 p1 4 min 58 sec
Andersen s1 p2 5 min 17 sec
Andersen s1 p3 4 min 49 sec
Andersen s1 p4 5 min 50 sec
Grimm s20 p1 6 min 6 sec
Grimm s20 p2 6 min 40 sec
Grimm s23 p1 5 min 3 sec
Grimm s23 p2 5 min 32 sec
Grimm s23 p3 5 min 2 sec

S5.2 Comparisons against the base model

The syntactic predictors are positively correlated. This is mainly the case for the

left-corner predictor, whose Pearson correlation with the bottom-up and top-

down predictors is 0.79 and 0.83, respectively (Figure S5.1). A high correlation

between predictors in a regression analysis can lead to multicollinearity, which

can in turn result in increased variance of their TRF coefficients (Weissbart et al.,

2020). This issue typically emerges when the variance inflation factor (VIF) is

above 5, which indicates that the variance in one predictor can be explained by

a linear combination of the other predictors (Sheather, 2009). We computed the

VIF for each predictor in the full model by taking the diagonal of the inverse of

the correlation matrix shown in Figure S5.1. This showed that when all predic-

tors are included, the VIF for both top-down (VIFtop−down = 5.86) and left-corner

(VIFleft−corner = 12.64) is above 5, indicating that multicollinearity between the

predictors might hinder TRF coefficient estimation.

As a control, we therefore repeated our analyses with TRF models in which the

VIF is below 5 for all predictors. In this control analysis we evaluated whether

the addition of each of the three syntactic predictors to a base model (Table

S5.2) improves reconstruction accuracy. This analysis is conceptually similar to

the analysis reported in the main chapter, but it does not take into account co-

dependencies between the different syntactic predictors because these predictors
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Figure S5.1: Correlation matrix showing the Pearson correlation between all
word-based predictors.

never appear in the same model. So, while the analyses in the main chapter

provide a conservative measure of reconstruction accuracy, the current analyses

might overestimate the reconstruction accuracy of certain predictors that share

variability.

Table S5.2: Predictors included in each model.

Model name

Predictor(s) Spectro- Word Word Bottom- Top- Left-
gram/ onset frequency/ up down corner
Onsets Entropy/

Surprisal

Base X X X
Bottom-up X X X X
Top-down X X X X
Left-corner X X X X

Model comparison

Figure S5.2A shows the sources in which the reconstruction accuracy of the base

model was significantly non-zero. The spatial extent of these clusters is consis-

tent with the location of the auditory cortex, likely reflecting the contributions of

the two acoustic predictors in the base model. Figures S5.2B-D further show the

sources of improvements in reconstruction accuracy when each of the three syn-

tactic predictors are separately added to the base model. For comparison with
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the results reported in Section 5.3.1 of the main chapter, the scales of the color

bars in Figures S5.2B-D are identical to those in Figure 5.3. Spatial cluster-based

permutation tests (cluster-level alpha= 0.0083, Bonferroni-corrected for 6 tests)

revealed that the top-down predictor explains variance in frontal and temporal

regions of the left hemisphere (tav = 5.08, p = .0036) and to a lesser extent also

the right hemisphere (tav = 3.16, p < .001). The activation pattern for the left-

corner predictor is rather similar, with sources of significant explained variance

in the left superior temporal lobe (tav = 4.19, p = .0027) and a spatially more

extended area in the right frontal and temporal lobes (tav = 3.09, p< .001). The

bottom-up predictor engages a smaller region centered around Heschl’s gyrus,

but none of these clusters are significant at the adjusted alpha level (tav = 3.54,

p = .0093).

Figure S5.2: Sources of (improved) explained variance of the base model (A)
and the predictors reflecting node count from the bottom-up (B),
top-down (C) and left-corner (D) methods. All clusters that were
significant at uncorrected alpha = 0.05 are displayed. Notice that
the scales of the color bars are different across the plots.

Evaluation of the response functions

Figure S5.3 shows the TRFs averaged over the significant regions from the

cluster-based source analysis of reconstruction accuries, in the left and the right

hemisphere separately. The TRF for each syntactic predictor comes from a model

which includes all base predictors as well as one syntactic predictor (e.g., the

top-down TRF comes from the Top-down model; see Table S5.2). In line with
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the reconstruction accuracy results, Figure S5.3 shows clearly that the neural

response to the information encoded in top-down node counts is stronger than

the response to node counts derived from a bottom-up or a left-corner parser.

Figure S5.3: Temporal response functions for node count derived from bottom-
up, top-down, and left-corner parsers in their respective models,
averaged over sources in the left and right hemisphere that showed
an improvement in reconstruction accuracy at uncorrected alpha =
0.05. The error bars reflect the standard error of the mean per time
sample. The plot on the right does not have a TRF for bottom-up
because none of the clusters in the right hemisphere showed a sig-
nificant improvement in reconstruction accuracy after the addition
of the bottom-up predictor to the base model.

Figure S5.4 shows the source t-values (based on two-tailed, one-sample t-

tests) of the TRFs for the three syntactic predictors, split up into four time win-

dows (corresponding to different delays in TRF estimation). We used spatiotem-

poral cluster-based permutation tests (cluster-level alpha = 0.0083, Bonferroni-

corrected for 6 tests) to determine when and where the TRF coefficients of each

syntactic predictor deviated from zero. Focusing on left-hemispheric sources,

this analysis revealed a negative cluster for the top-down predictor in frontal

and temporal regions (tav = -0.45, p < .001), and a positive cluster in the mid-

dle frontal lobe (tav = 0.65, p< .001). The strongest effect of the bottom-up TRF

was again in a region centered around the inferior frontal cortex (tav = 0.44, p

< .001), and the TRF of the left-corner predictor peaked in temporal regions (tav

= -0.51, p = .0073).
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Figure S5.4: Sources of the TRFs for node count derived from bottom-up, top-
down, and left-corner parsers, representing early to late responses.
The colors represent positive (red) or negative (blue) t-values in
sources that were significantly responsive (at corrected alpha =
0.0083) to the predictor in the indicated time windows.

Region of interest analysis

The following three regions of interest (ROIs) in the left hemisphere were ex-

tracted using the ‘aparc.a2009s’ FreeSurfer parcellation (Destrieux et al., 2010):

the inferior frontal gyrus (IFG), superior temporal gyrus (STG) and anterior

temporal lobe (ATL; see Figure S5.5B). Figure S5.5A shows for each ROI the

improvement in reconstruction accuracy when the relevant predictor is added

to the base model. Like in the main results, the effects of the top-down pre-

dictor are strongest in general, and in particular in the STG, where all subjects

showed evidence of responses associated with top-down node counts. In each

of the three ROIs, we used cluster-based permutation tests to determine when

the TRFs of each syntactic predictor deviated from zero. This involves 9 com-

parisons (3 TRFs * 3 ROIs), so clusters were evaluated at alpha = 0.0056. As

shown in Figure S5.5C, the top-down predictor showed effects in the IFG (from

-80 to 460 ms, tav = -3.82, p < .001), STG (from -80 to 120 ms, tav = 3.60, p =
.0011), and ATL (two peaks with opposite signs, from -80 to 240 ms, tav = -3.35,

p = .0016; from 350 to 830 ms, tav = 3.63, p < .001). The bottom-up predictor

showed a brief effect in the ATL (from 270 to 450 ms, tav = 3.20, p < .001) and

a longer one in the IFG (from 370 to 760 ms, tav = 3.07, p < .001). Last, the

left-corner predictor showed an early peak in the IFG (from -80 to 240 ms, tav =
-2.68, p = .0024), an early peak in the STG (from -60 to 240 ms, tav = 3.18, p =
.0046), and a later peak in the ATL (from 310 to 650 ms, tav = 3.48, p < .001).
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Figure S5.5: Region of interest analysis. (A) Difference in reconstruction accu-
racy with the base model, plotted for left IFG, STG, and ATL. The
height of each bar indicates the improvement in reconstruction ac-
curacy when only the relevant syntactic predictor was added to the
base model. The drops represent the accuracy difference for indi-
vidual participants, and the error bars represent the standard error
of the mean across subjects. (B) Spatial extensions of the three re-
gions of interest. (C) Temporal response functions for node count
derived from bottom-up, top-down, and left-corner parsers in their
respective models. Error bars reflect the standard error of the mean
per time sample. The horizontal bars below the TRFs reflect the
time points at which the TRFs were significantly non-zero.

In all, these results are largely consistent with the results reported in the main

chapter, suggesting that multicollinearity between the predictors did not hinder

estimation of the TRF coefficients. However, one notable difference has to do

with the left-corner predictor, whose effects are weaker in the results reported

in the main chapter. Regarding the response functions, it is noteworthy that
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the TRFs for both bottom-up and top-down are stable and quite similar in the

full model (Figure 5.6C in the main chapter) and in the simpler models (Figure

S5.5C), which shows that they are unaffected by the presence of the other syn-

tactic predictors in the full model. The left-corner TRFs, however, are smaller

in size and less variable in the full model than in the simpler Left-corner model.

In the latter, the left-corner TRFs are similar to the top-down TRFs (from the

Top-down model; Figure S5.5C), suggesting that they are explaining the same

variance. In terms of reconstruction accuracy, the explained variance in the Left-

corner model attributed to the left-corner predictor (Figures S5.2 and S5.5A) is

visibly reduced when the left-corner predictor is added to a null model that al-

ready contains both bottom-up and top-down as predictors (Figures 5.3 and 5.6A

in the main chapter). The reverse does not happen, suggesting that some of the

variance assigned to left-corner in the simpler Left-corner model was assigned

incorrectly, ‘belonging’ to top-down rather than left-corner.





6 | Hierarchical structure in language and action:

A formal comparison1

Abstract

Since the cognitive revolution, language and action have been compared as cog-
nitive systems, with cross-domain convergent views recently gaining renewed
interest in biology, neuroscience, and cognitive science. Language and action
are both combinatorial systems whose mode of combination has been argued
to be hierarchical, combining elements into constituents of increasingly larger
size. This structural similarity has led to the suggestion that they rely on shared
cognitive and neural resources. In this chapter, we compare the conceptual and
formal properties of hierarchy in language and action using set theory. We show
that the strong compositionality of language requires a particular formalism, a
magma, to describe the algebraic structure corresponding to the set of hierarchi-
cal structures underlying sentences. When this formalism is applied to actions,
it appears to be both too strong and too weak. To overcome these limitations,
which are related to the weak compositionality and sequential nature of action
structures, we formalize the algebraic structure corresponding to the set of ac-
tions as a trace monoid. We aim to capture the different system properties of
language and action in terms of the distinction between hierarchical sets and
hierarchical sequences, and discuss the implications for the way both systems
could be represented in the brain.

1Adapted from Coopmans, C. W., Kaushik, K., & Martin, A. E. (2023). Hierarchical structure
in language and action: A formal comparison. Psychological Review.
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6.1 Introduction

It has long been recognized that both language and action are structurally or-

ganized in a way that is not immediately evident from their serial appearance.

In the 1950s, Lashley (1951) and Chomsky (1959) separately showed that then

dominant behaviorist ‘chaining’ theories based on contiguous stimulus-response

associations could not account for serial behavior, such as language production

and action execution. Instead, these behaviors appear to be controlled by inter-

nal, hierarchically organized plans, which allow human behavior to be creative,

productive and flexible. Since then, similarities between language and action

have often been noted (e.g., Greenfield, 1991; Holloway, 1969; Miller et al.,

1960), and more recent studies propose that the two systems are analogous in

their hierarchical organization (Fitch & Martins, 2014; Fujita, 2014; Jackendoff,

2007; Pulvermüller & Fadiga, 2010; Stout & Chaminade, 2009).

Such proposals about cross-domain convergence are desirable from an evolu-

tionary perspective, in which one seeks to find a set of primitives that account for

the distinguishing features of the human mind (Boeckx & Fujita, 2014; de Waal

& Ferrari, 2010; Hauser et al., 2002; Marcus, 2006). However, arguments in

favor of the analogy between language and action are formally underspecified.

It is possible to draw a hierarchical tree structure over any sequence, but what

is needed is independent empirical evidence that this structure describes or ex-

plains a phenomenon in the natural world (Berwick & Chomsky, 2017; Bloom,

1994; Fitch & Martins, 2014; Moro, 2014a). In other words, superficial resem-

blance is insufficient: “we cannot just observe that hierarchical structures are

found in motor control (e.g., tool construction), and thereby claim that these are

directly related to the hierarchical structures of language ... Rather, it is neces-

sary to develop a functional description of the cognitive structures in question,

parallel to that for language ... so we can look for finer-scale commonalities”

(Jackendoff, 2002, p. 80).

While formal linguistics has provided many accounts of the specific properties

of hierarchy in language, such a formal characterization in the domain of actions

and action plans is lacking (but see Steedman, 2002 for an exception). To this

end, the aim of this chapter is to characterize the similarities and differences be-

tween the hierarchical structures in language and action in both conceptual and

formal terms. The chapter is structured as follows: in Section 6.2, we discuss

the type of data that shows that the syntax of natural languages is organized hi-

erarchically, after which we list the core properties of such hierarchical syntactic

structure (Section 6.2.1). In Section 6.2.2, we formally describe these struc-
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tures in a domain-neutral way using the mathematical language of set theory.

We then show that this formalism is inadequate for describing the action system

(Section 6.3.1) and suggest an alternative formalism to characterize its proper-

ties (Section 6.3.2). In Section 6.4, we conclude that the properties of syntac-

tic hierarchy are not found in action structures (Section 6.4.2) and discuss this

conclusion in light of the idea that syntactic representations are fundamentally

hierarchical sets, while actions are better conceived of as hierarchical sequences

(Section 6.4.3). We end by discussing the implications for how language and

action might be represented in the brain.

6.2 Hierarchical structure in language

In linguistics, the term hierarchy refers to the format of linguistic representa-

tions. At all levels of organization (phrases, words and syllables), linguistic struc-

ture is organized hierarchically (see Everaert et al., 2015 for a recent overview).

In the domain of syntax specifically, it refers to the fact that words are embed-

ded into constituents, which are in turn recursively embedded into larger con-

stituents, creating the hierarchically organized syntactic structures that are often

visually denoted by means of tree structures. These tree structures are graphic

representations of relations which are essentially set-theoretic (Lasnik, 2000).

A main source of evidence for constituency is the observation that the interpre-

tation of phrases and sentences is often determined by structural relationships.

For example, the sentence “the woman saw the man with binoculars” has two

meanings. Either the woman has binoculars, which she uses to look at the man,

or the man has binoculars. The sentence is ambiguous because it corresponds

to two possible structures, which differ in terms of the attachment site of the

prepositional phrase (PP) “with binoculars” (see Figure 6.1). If it attaches to

“the man”, forming a complex noun phrase (NP) constituent (Figure 6.1A), the

man has the binoculars, but if it attaches to the verb phrase (VP) “saw the man”

(Figure 6.1B), the woman must be holding the binoculars. Here, it is the struc-

tural relationship between the PP and the other constituents that determines

how the sentence is interpreted.

The structure dependence of meaning shows that language is compositional.

To be able to compare combinatorial systems, such as language and action, we

make a distinction between strong and weak compositionality (Pagin & Wester-

ståhl, 2010). In a strongly compositional system, the meaning of a constructed

unit is a function of the meanings of its constituents and the way in which these
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are structurally combined (Partee et al., 1993; Partee, 1995). In a weakly com-

positional system, instead, the meaning of a constructed unit is a function of the

meaning of the elements and the total construction (i.e., the result of an oper-

ation applied over the total construction of ordered elements; Pagin & Wester-

ståhl, 2010). A weakly compositional system can thus distinguish the meanings

of “John likes Mary” and “Mary likes John”, because their total constructions

differ. However, weakly compositional systems cannot capture structural ambi-

guity. Because they do not take into account the structural relationships between

intermediate representations, such as between the different constituents in Fig-

ure 6.1, they are unable to distinguish the two interpretations of “the woman

saw the man with binoculars”.

A ...

VP

NP

PP

with binoculars

NP

imanithe

saw

x

B ...

VP

PP

with binoculars

VP

NP

imanithe

saw

x

C ...

VP

PP

with field glasses

VP
did so

x

1

Figure 6.1: Hierarchical structures corresponding to the sentences “(the woman)
saw the man with binoculars” (A and B) and “(the boy) did so with
field glasses” (C).

A second source of evidence for constituent structure is that syntactic opera-

tions, such as deletion and substitution, target constituents rather than words or

mere word sequences. For instance, the phrase did so can substitute for a verbal

word sequence, such as “saw the man”, if this sequence forms a constituent. Be-

cause the words “saw the man” form an isolated constituent only in the structure

of Figure 6.1B, the sentence “the woman saw the man with binoculars and the

boy did so with field glasses” (corresponding to Figure 6.1C) can only mean that

the boy is holding the field glasses (analogous to the interpretation of Figure

6.1B), not the man. In sum, both semantic interpretation and syntactic opera-

tions are structure-dependent: they refer to hierarchical constituent structures

rather than to linear sequences of words, with the result that word sequences

that do not form constituents are not available to semantic interpretation nor to

syntactic operations.
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6.2.1 Properties of syntactic structure

To generate such hierarchical structure, (any theory of) the language fac-

ulty must include, at a minimum, a computational procedure for combining

smaller elements into larger elements. The properties of this procedure are

debated, but all linguistic frameworks assume it in one form or another: Merge

in the Minimalist Program (Chomsky, 1995b), Unify in the Parallel Architecture

(Jackendoff, 2002), Forward/Backward Application in Combinatory Catego-

rial Grammar (Steedman, 2000), and Substitution in Tree-Adjoining Grammar

(Joshi & Schabes, 1997). For our purposes, we do not need to select among

these frameworks; all we assume is that the generation of syntactic structures

relies on a combinatorial operation, whose properties must be formally defined,

and which must be computationally general enough so that it could play a

role in cognitive domains beyond language. Merge is one of the operators that

meets these requirements, as it is formally defined as binary set formation:

Merge(α,β) takes two elements α and β and forms the unordered set {α,β}
(Chomsky, 2013; Collins, 2017). It can be applied recursively, such that it

takes its own output as input: further combining the already formed set {α,β}
with γ yields the set {{α,β},γ}. As should be clear, recursive application of

this combinatorial operation yields a structure that is hierarchical: the smaller

set is contained in the larger set. Because the generated set is unordered (i.e.,

{{α,β},γ} is identical to {γ, {β ,α}}), the elements in the set cannot be described

in terms of linear precedence. Rather, the relevant relationships are established

with respect to structure: the element γ is higher in the structure and has a

structurally more prominent position than the elements α and β .

In the remainder of this chapter, we will assume that the combinatorial proce-

dure for generating syntactic structure is binary set formation. On this assump-

tion, the hierarchical structure of syntax has the following properties:2

1. Unbounded. Human language use is creative: language users can pro-

duce and understand sentences that have never been produced before.

Specifying such an open-ended capacity using finite means requires re-

cursive procedures, such as the recursive combinatorial operation defined

above. While this operation both generates hierarchical structure and ap-

2More properties of language can be derived from the minimal assumption that the structure-
building procedure is binary set formation (see Hornstein, 2017 and Rizzi, 2013 for comprehen-
sive lists of properties). However, many of these properties, such as displacement, do not have
clear analogues in actions (Moro, 2015; Pulvermüller, 2014). Because our aim is to compare
the (formal) properties that language and actions might share, we focus on the properties of
hierarchy listed here.
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plies recursively, hierarchy and recursion are two independent properties.

Hierarchy is a property of the output generated by the combinatorial op-

eration (i.e., a property of its extension). Recursion, instead, is a property

of a function defined in intension. A recursive function is a function which

can apply indefinitely to its own output, leading to structurally ‘self-similar’

output in which a unit of a specific type is contained in another unit of the

same type (in linguistics, this is often called self-embedding: embedding

of one thing into another thing of the same kind). This results in a hier-

archical structure which displays similar properties across different levels

of embedding, clearly visible in the repetition of complement clauses like

“He said that she believes that he thought . . . ”, which is a sentence within

a sentence within a sentence. Note, however, that because a recursive

function is defined in intension rather than in extension, the recursivity of

a function should not be equated with its output. Absence of self-similar

output therefore does not warrant the conclusion that the function gen-

erating the output is not recursive (Watumull et al., 2014; Hauser et al.,

2014).

The independence of hierarchy and recursion is further illustrated by

the fact that they doubly dissociate: not all hierarchical objects are gen-

erated by recursion and not all recursive functions generate hierarchical

structure. For instance, artificial grammars that generate sequences of the

type (ab)n and anbn can be recursive, via respectively f : S→ abS and f : S

→ aSb, but only the latter generates hierarchical structure.3 Conversely,

the syllable structure in phonology is hierarchical but not recursive. A syl-

lable contains an onset and a rhyme, with the latter consisting of a nucleus

and a coda. This hierarchy is not recursive: a syllable cannot be embedded

in another syllable.

2. Endocentric. The categorial status of a constituent is determined by one

of its elements (the ‘head’): the set {α,β} can be of type α or β , but not of

type γ. Endocentric structures are contrasted with exocentric structures,

in which the label of a composed unit is not determined by one of its ele-

ments.4 Labels allow phrases to be called upon by interpretive and formal

3Note that the grammars that generate (ab)n and anbn sequences can be implemented re-
cursively, though they do not have to be. These sequences can also be generated with iterative
functions that are not recursive, i.e., do not call themselves (Fitch, 2010; Jackendoff, 2011). It-
erative functions can also realize unboundedness, but they do so by creating sequences without
internal structure.

4How it is determined which element defines the label of the phrase is still a much-debated
question and is outside the scope of this chapter (see e.g., Boeckx, 2009; Chomsky, 2013; Fukui,



6 Hierarchical structure in language and action 149

procedures, thereby determining their distributional behavior. To give an

example, the set {eat, cookies} is a verb phrase, which has ‘eat-like’ (inter-

pretive) semantic properties and ‘verb-like’ (formal) syntactic properties,

both inherited from the verb “eat”. That this is the case can be seen by the

fact that “eat cookies” can take the place of the verb “eat” in “He likes to

eat”, yielding “He likes to eat cookies”. It cannot, however, take the place

of the noun “cookies” in “He likes chocolate cookies”, as is clear from the

ill-formedness of “He likes chocolate eat cookies”. The label of a com-

posed unit thus places a constraint on further computation, restricting the

elements with which it can combine: given that {eat, cookies} is a verb

phrase and not a noun phrase, it can combine with adverbs but not with

adjectives.

Endocentricity is intricately linked to recursivity, because the combi-

natorial operation can only be said to apply recursively if its output is of

the same type as its input (Boeckx, 2009; Hornstein, 2009; Watumull et

al., 2014). Similar to recursivity, endocentricity is a distinctive property of

syntactic hierarchy, as not all linguistic structures are endocentric.

3. Unordered. Because the combinatorial operation is defined as binary set

formation, no order is imposed on the members of the combined set. While

the unordered structure has to be linearized for spoken language produc-

tion, differences in linear order do not feed differences in semantic inter-

pretation, and syntactic operations do not refer to linear order. Different

languages (and different modalities) can seem highly different in terms of

the linear ordering of their words (e.g., whether heads precede or follow

their dependents), which is a fundamental source of cross-linguistic varia-

tion (see Section 6.4). However, in terms of the compositional properties

of the hierarchical structure generated by Merge, these languages show

consistent similarities.

Note that the assumption about unorderedness is specific to the defi-

nition of Merge as binary set formation, and might not be shared in other

linguistic frameworks.5 What these frameworks do agree on, however, is

that syntactic operations are structure-dependent, not order-dependent.

2011) What is important here is not how phrases get their labels, but that they get them from one
of their elements. Moreover, by using the term labels we only refer to the fact that the combined
unit is of the same type as one of its elements. Whether these labels reflect phrasal projections
from the syntactic category of a lexical item (as in X-bar theory; Jackendoff, 1977) or rather the
lexical item itself (as in bare phrase structure; Chomsky, 1995a) is not critical for our purposes.

5See Saito and Fukui (1998) and Kayne (2011), who argue that Merge(α,β) forms the or-
dered pair 〈α,β〉. This makes immediate precedence part of syntax.
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This conception of structure building as binary set formation allows us to de-

rive both compositionality and structure dependence. First, the structure of the

input to the combinatorial operation is preserved in its output. Thus, if α and

β are constituents (or sets) in the input, they are constituents (or sets) in the

output as well: new elements can only be added on top of the already formed

set, not inside it. Because the structure of every combination is retained at each

level of the hierarchy, the hierarchical structure is strongly compositional. This

can be shown with a structurally ambiguous phrase: {deep, {blue, sea}} is not

the same as {{deep, blue}, sea}. Note that if the structure were not retained after

recursive combination, it would be possible to derive from {blue, sea} not only

{deep, {blue, sea}} but also {{deep, blue}, sea}. That would make it impossible

to account for the ambiguity of the phrase.

Moreover, recursively generated sets describe hierarchical relations but not

sequential relations. Therefore, syntactic operations that refer to these sets can

only refer to its structure, and hence be structure-dependent, but not to its se-

quential order. Rules referring a word’s linear (ordinal) position are also ruled

out by recursion: because it is always possible to recursively insert material be-

tween two items and thereby change the linear position of the words (e.g., “the

boy swims” → “the boy with muscular arms swims”), no operation can refer to

the linear position of elements in a sequence.

We should note that the properties we described above are properties of a cog-

nitive capacity, which can be expressed in varying degrees in natural languages

(e.g., exocentricity might be found in certain subject-predicate relations). More-

over, the faculty of language is capable of assigning strongly compositional in-

terpretations to most sentences, as is required to derive the multiple interpreta-

tions of structurally ambiguous sentences, but it can assign other interpretations

as well (e.g., to non-decomposable idioms; Baggio, 2021; Jackendoff, 2002). In

other words, we listed properties that a model of (the faculty of) language must

have, even though these need not be found in all constructions in all languages.

As we aim to illustrate how the action system differs from the language system,

we will focus on the capacity for strong compositionality as a fundamental dif-

ference between both systems.

6.2.2 Formalizing linguistic structure

In order to be able to evaluate the similarities and differences between the hier-

archical structure of language and action in a transparent way, we need a theory-

neutral conceptual vocabulary to describe these structures. Ideally, this descrip-
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tion should be accompanied by a formal analysis of the similarities and differ-

ences, as well as an evaluation of their implications (Guest & Martin, 2021a;

Martin, 2016, 2020; O’Donnell et al., 2005; Partee et al., 1993; van Rooij &

Blokpoel, 2020). To this end, the following paragraphs will present a formal

model in which we incorporate the properties of syntactic structure as defined

in Section 6.2.1.

Generating structures

Definition 1. (M ,⊕,∅) is a unital, commutative magma generated from W,

where:

1. W is the set of words that represent the lexicon of a language.

2. M is a set of elements that are generated from W, with W ⊂ M.

3. ⊕ is a binary set formation operation, such that for ∀a, b ∈ M, a ⊕ b =
{a, b}= b⊕ a ∈ M. Additionally, ⊕ is non-associative, so ∀a, b, c ∈ M , (a⊕
b)⊕ c ̸= a⊕ (b⊕ c).

4. ∅ is the identity element, such that ∀m ∈ M , m⊕∅= m=∅⊕m.

A unital, commutative magma (henceforth referred to as a magma for concise-

ness) is an algebraic structure (see Box 1), whose operation we define as binary

set formation following the formal definition of Merge described in Section 6.2.1.

This allows us to derive a number of important properties. First, as the magma

axiom states that for any two members a, b ∈ M , application of this operator to a

and b generates a member of M , thus yielding unbounded generation. Second,

⊕ does not introduce labels, so the label of each set is derived from one of its

elements (i.e., endocentricity; see Chomsky, 2013; Collins, 2017).6 Third, all el-

ements in M are unordered sets. And fourth, ⊕ is non-associative, which means

that the order in which it is applied affects the structure that is generated (Fukui

& Zushi, 2004). In other words, the structures that are generated are strongly

compositional: their meaning is a function of the meanings of their parts and

the way in which they are structurally combined.

6Labels are a convenient way to group together structures with identical formal properties.
In our formal setup, constituent labels are simply part labels whose union produces the set of all
grammatical structures. For example, with W = {dog, man, big}, the label N would be the part
{man, dog}, A is {big}, and N P is {{big, dog}, {big, man}}. Therefore, M = MN

⋃

MA

⋃

MN P .
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Box 1. Algebraic structures

An algebraic structure consists of a nonempty set X (called the carrier set),

a collection of finitary operations on X (typically binary operations), and

a finite set of axioms that these operations must satisfy. To illustrate the

relevant axioms for the current work, we consider X as the carrier set and

⊙ as a binary operation acting on the elements of X .

(1.) ∀x1, x2 ∈ X , x1 ⊙ x2 ∈ X closed

(2.) ∀x ∈ X ,∃!i ∈ X such that x ⊙ i = i ⊙ x = x unital

(3.) ∀x1, x2, x3 ∈ X , (x1 ⊙ x2)⊙ x3 = x1 ⊙ (x2 ⊙ x3) associative

(4.) ∀x1, x2 ∈ X , x1 ⊙ x2 = x2 ⊙ x1 commutative

Depending upon the axioms they satisfy, the algebraic structures form a

taxonomy. Presented below is a subset of this taxonomy, in which we

highlight both the algebraic structures that are relevant for the current

work as well as their corresponding axioms.

Magma magma
commutative

Unital

Monoid monoid
Commutative Trace

monoid
closed closed

unital
commutative

closed
unital

associative

closed
unital

associative
commutative

closed
unital

associative
partially

commutative

Without further constraints, a freely generated magma would contain ele-

ments that should not be constituents, such as {{eat}, {happy}}. To avoid this

without modifying the formal properties of ⊕, the lexical items themselves must

determine which combinations are licensed and which are not. That is, the ap-

plication of ⊕ is constrained by selectional restrictions on its input (i.e., which

categories can(not) combine with which other categories). For instance, {{eat},
{happy}} is excluded because verbs do not combine with adjectives. The same

restrictions apply when the output of⊕ is recursively used as its input. For exam-

ple, the set {V{eat}, {cookies}} cannot combine with the adjective “happy” be-

cause the former is labeled as a type of verb rather than as a type of noun. Such

illegitimate combinations are excluded by taking the grammatically licensed sub-

set of the freely generated magma.
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We make the relationship between these constituent structures explicit by

defining a binary relationship between the elements of the magma, turning it

into a partially ordered magma (see Box 2).

Definition 2. (M ,⊕,∅,≤) is a partially ordered magma, where ≤ is a contain-

ment relationship between the elements in M that is reflexive, transitive, and anti-

symmetric.

The relation ≤ on the set M reflects containment or set-inclusion, which cor-

responds to the dominance relation commonly used in linguistics. Thus, x1 ≤ x2

means that x2 contains (and thus dominates) x1. As a visualization of this par-

tially ordered magma, consider the Hasse diagram in Figure 6.2, which displays

the containment relationship for two structures that map onto the sequence

“woman saw man with binoculars”.

Box 2. Ordered sets

An ordered set X is a set ordered by a binary relation, denoted here with

infix notation ≤, such that ∀x , y, z ∈ X , the following axioms hold (de-

pending on the kind of order):

(1.) x ≤ x reflexive

(2.) if x ≤ y and y ≤ z, then x ≤ z transitive

(3.) if x ≤ y and y ≤ x , then x = y antisymmetric

(4.) x ≤ y or y ≤ x total

When the binary relation is transitive and antisymmetric, the set is called

partially ordered. A totally ordered set is an ordered set whose binary

relation holds between all elements of the set. When a relationship is only

total when restricted to X ′, which is a subset of X , we consider X ′ locally

total (Kayne, 1994). We therefore say that ∀x , y ∈ X ′ ⊂ X , x ≤ y or

y ≤ x .
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Besides containment, there is another relevant structural relation between

the elements in constituent structures. This relationship, called c-command

(Reinhart, 1983), describes the scope domain of a node in the tree structure.

Specifically, a node α is said to asymmetrically c-command a node β iff β is

contained in the sister node of α (e.g., in Figure 6.1A “saw” asymmetrically c-

commands every node contained in the higher NP).

Definition 3. For m1, m2 ∈ M, m1 c-commands m2 (denoted m1 ≫ m2) if m1 ≰
m2, and m2 ≰ m1, and ∃!m = {m1, x} ∈ M, and m2 ≤ x. An asymmetric c-

command relationship exists between m1 and m2 if m1 ≫ m2 and m2 ̸≫ m1.

Asymmetric c-command is irreflexive, transitive, antisymmetric, and locally total.

Given Definition 3, asymmetric c-command is a locally total relation on non-

terminal nodes in the tree structure.7 The Hasse diagram in Figure 6.3 visualizes

the asymmetric c-command relationship for the two structures that map onto the

sequence “woman saw man with binoculars”.

Sequences

Definition 4. (S,∗, ‘’) is a monoid generated from W, where:

1. W is the set of words that represent the lexicon of a language.

2. S is the set of sequences generated from W, with W ⊂ S.

3. ∗ is the concatenation operation, which is unital and associative.

4. The empty sequence ‘’ is the identity element.

Definition 5. We define a binary relation (≺) on the elements in s = (x1, x2, ...xn) ∈
S, which we call precedence, where x1 ≺ x2 ≺ ...xn. Precedence is irreflexive, tran-

sitive, antisymmetric, and locally total.

Given Definition 5, precedence is a locally total relation on the set of elements

in a sequence (i.e., corresponding to the terminal nodes in the tree structure).

The Hasse diagram in Figure 6.4 visualizes the precedence relationship for the

sequence “woman saw man with binoculars”.

7Strictly speaking, the relation is left-locally total (Kayne, 1994). A left-locally total relation
is total only on the elements to the left of the relation (e.g., for aRb, R is left-locally total for a).
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woman saw man with binoculars

Figure 6.4: Hasse diagram of an element of the set of sequences S, which dis-
plays the sequential structure of the sequence “woman saw man with
binoculars”. Arrows indicate precedence.

Mapping structures to sequences

Following Kayne (1994), we assume that there exists a rigid mapping between

hierarchical structure and linear order, such that only one linear sequence can

be derived from a given hierarchical structure. As noted above, asymmetric

c-command and precedence are locally total orders on the set of non-terminals

and the set of terminals, respectively. Kayne (1994) formalizes the mapping

between these two orders in the Linear Correspondence Axiom.

Linear Correspondence Axiom (LCA):

A lexical item α precedes a lexical item β iff

(i) α asymmetrically c-commands β or

(ii) an XP dominating α asymmetrically c-commands β

Definition 6. We adopt the LCA as a surjective function f : M → S, defining f for

a pair of lexical items α,β ∈ m ∈ M, which holds for all elements of the sequence

by induction:

if α≫ β and β ̸≫ α , or if

α≤ m̂ and m̂≫ β and β ̸≫ m̂ , then

α≺ β ∈ f (m)

α asymmetrically c-commands β

the mother of α asymmetrically c-commands β

α precedes β

In short, Definition 6 states that a word α precedes a word β if it asymmetri-

cally c-commands β or if a node dominating α asymmetrically c-commands β .

The result of this mapping is a full total ordering of the terminals of the hier-

archical structure in question. It is important to note that this mapping can be

defined as a proper function because, under the LCA, only one linear sequence

can be derived from any given hierarchical structure. Conversely, multiple hi-

erarchical structures can map onto the same linear sequence. For instance, the
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precedence relations that are derived from the asymmetric c-command relations

in the two structures in Figure 6.3 are the same, which illustrates the fact that

the corresponding sequence is structurally ambiguous.

Ordering sequences via structures

When the sets in M are mapped to sequences in S, these sequences are imbued

with grammatical properties. What these grammatical properties are can be

understood in terms of the ordering that is carried over from the containment

relation in M . Consider Figure 6.5, where the constituent structures in M (left

panel) are mapped to the sequences in S (middle panel) via the LCA. By virtue of

the containment relation by which the elements of M are ordered, this mapping

imposes structure on the set of sequences (right panel) that is not there if only

their sequential properties are considered.

If we only consider the sequential properties of the elements in S, a partial or-

dering already exists. This partial ordering is based on string containment. For

example, both “woman with” and “with binoculars” can be said to be contained

in the sequence “woman with binoculars”. Using the map f : M → S, we impose

a restriction on this ordering: for two elements m1, m2 ∈ M , f (m1) ≤ f (m2) iff

m1 ≤ m2. That is, two sequences in S are contained in one another only if their

constituent structures in M are contained in one another. This imposed order-

ing restricts the initial ordering by excluding both ungrammatical sequences as

well as containment relations that are not the result of a structural relationship.

For example, in the middle panel of Figure 6.5, the subsequences s8, s9, and

s10 do not appear in the imposed partial ordering. s10 is an ungrammatical se-

quence and therefore has no structural analog in M . s8 and s9 are subsequences

of a grammatical sequence, yet they do not correspond to constituents and are

therefore not retained in the ordering. Thus, only strings that correspond to con-

stituents are retained in the partial ordering, and this partial ordering is based

on constituent containment, as can be seen in the substructure in the right panel

of Figure 6.5.

To sum up, we used the binary set formation operator ⊕ to generate hierar-

chical constituent structure. From the resulting structure, whose containment

relationships are visualized in Figure 6.2, we derive all c-command relation-

ships (see Figure 6.3). From these c-command relationships we derive a linear

sequence with precedence relationships using the LCA. Using the containment

relationship in the partially ordered magma (see Figure 6.2), we impose an or-

dering relation on the resulting set of sequences (see Figure 6.5). The latter is



6 Hierarchical structure in language and action 159

IP
V
P

N
P

N
P

P
P

IP
V
P

V
P

N
P

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
1
0

f
:
M

→
S

s
1

s
2

s
3

s
4

s
5

s
6

s
7

-- s 1
:

w
om

an
sa

w
m

an
w

it
h

bi
no

cu
la

rs
s 6

:
m

an
s 2

:
w

om
an

s 7
:

w
it

h
bi

no
cu

la
rs

s 3
:

sa
w

m
an

w
it

h
bi

no
cu

la
rs

s 8
:

m
an

w
it

h
s 4

:
sa

w
m

an
s 9

:
sa

w
m

an
w

it
h

s 5
:

m
an

w
it

h
bi

no
cu

la
rs

s 1
0
:

m
an

m
an

w
it

h
w

it
h

Fi
gu

re
6.

5:
A

n
or

de
ri

ng
re

la
ti

on
sh

ip
is

im
po

se
d

on
S

vi
a

th
e

st
ru

ct
ur

e
in

M
.

Th
e

le
ft

m
os

tp
an

el
co

nt
ai

ns
a

su
bs

et
of

th
e

pa
rt

ia
lly

or
de

re
d

m
ag

m
a

M
,

w
it

h
th

e
el

em
en

ts
(d

en
ot

ed
by

th
ei

r
la

be
ls

)
or

de
re

d
by

co
nt

ai
nm

en
t.

Th
e

la
be

ls
IP

,
V

P,
N

P
an

d
PP

re
fe

r
to

th
e

la
be

ls
of

th
e

co
ns

ti
tu

en
ts

.
A

su
bs

et
of

S
is

sh
ow

n
in

th
e

m
id

dl
e

pa
ne

l,
w

it
h

ex
am

pl
e

se
qu

en
ce

s
pr

es
en

te
d

be
lo

w
th

e
fig

ur
e.

Th
e

LC
A

fu
nc

ti
on

f
:

M
→

S
m

ap
s

el
em

en
ts

in
M

to
el

em
en

ts
in

S,
th

us
im

po
si

ng
a

st
ru

ct
ur

al
or

de
ri

ng
re

la
ti

on
on

th
e

se
qu

en
ti

al
el

em
en

ts
in

S
(r

ig
ht

m
os

t
pa

ne
l)

.



160 6 Hierarchical structure in language and action

possible because we define the algebraic structure corresponding to the set of

structures as a magma, whose combinatorial operator is non-associative. This

allows us to generate strongly compositional structure, which is a necessary re-

quirement for any description of (the faculty of) language.

6.3 Hierarchical structure in actions

Having defined and formalized the properties of hierarchical structure in syn-

tax, we will now consider whether action hierarchies are analogous to syntactic

hierarchies. Similar to the hierarchical structure underlying sentences, action

sequences are thought to be governed by hierarchically organized action plans

(Botvinick, 2008; Cooper & Shallice, 2000, 2006; Holloway, 1969; Koechlin &

Jubault, 2006; Lashley, 1951; Miller et al., 1960; Rosenbaum et al., 2007).8

This structural analogy between linguistic syntax and actions has received con-

siderable attention from several corners of cognitive science (Boeckx & Fujita,

2014; Fadiga et al., 2009; Jackendoff, 2007, 2009; Moro, 2014a, 2014b; Stout &

Chaminade, 2009), in which the hierarchical structure of actions is thought to be

generated by an ‘action syntax’ (Fitch & Martins, 2014; Fujita, 2014; Maffongelli

et al., 2019; Pulvermüller, 2014).

The idea is often illustrated using the example of tea- or coffee-making as

a goal-directed behavioral routine (Cooper & Shallice, 2000; Fitch & Martins,

2014; Fischmeister et al., 2017; Humphreys & Forde, 1998; Jackendoff, 2007,

2009; Kuperberg, 2020). A multi-step action such as tea-making can be decom-

posed into discrete subsequences of actions, which in turn can be decomposed

in sub-subsequences, and so on. Figure 6.6 shows a visual representation of

the hierarchical part-whole structure of ‘making tea’. The highest level in the

hierarchy represents the complex, temporally extended and goal-directed ac-

tion, middle levels represent short-term, less complex subactions with their own

subgoals, and the lowest level (terminal nodes) contains atomic actions with

immediate subgoals. Decomposing complex actions into these embedded sub-

sequences is theoretically and empirically warranted because the subsequences

may be used in different tasks, because they are sometimes omitted, repeated,

or substituted as a whole, and because they all have their own subgoal, which

8Note that we are concerned with describing the structure of actions rather than with de-
scribing how action sequences come about in a processing system (Badre, 2008; Tettamanti &
Moro, 2012). The latter question belongs to the study of motor control, which is also hierarchi-
cally organized but which has different properties: motor control is based on causal relations
(‘processing’ hierarchy), while actions should be described in terms of part-whole relations (‘rep-
resentational’ hierarchy; see Uithol et al., 2012 for discussion).
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Figure 6.6: An example of a hierarchical decomposition of an action sequence,
such as making tea. The terminal nodes correspond to the atomic
actions in Figure 6.7.

must be fulfilled in order to achieve the overarching goal (Cooper & Shallice,

2000, 2006; Humphreys & Forde, 1998; Lashley, 1951; Norman, 1981; Reason,

1979; Rosenbaum et al., 2007; Schwartz, 2006).

6.3.1 Formalizing action structure (1)

The following sections describe the structure of actions using the same mathe-

matical formalism used to describe language in Section 6.2.2. We first show that

this formalism is inadequate for describing actions. Section 6.3.2 then proposes

an alternative way to describe the structure of action sequences.

Definition 7. (M ,⊕,∅) is a unital, commutative magma generated from A, where:

1. A is a set containing atomic actions, such as the examples presented in Figure

6.7.

2. M is a set of elements that are generated from A , with A⊂ M.

3. ⊕ is a binary set formation operation, which is commutative, non-associative

and closed.

4. ∅ is the identity element.

By defining the same binary relationship as used in Definition 2, we derive a

partially ordered magma in which the actions and action sets are partially or-

dered by containment. A subset of this partially ordered magma is visualized in



162 6 Hierarchical structure in language and action

a b c

d e f g

Figure 6.7: Atomic actions for tea-making. (a) fill kettle with water. (b) turn
on kettle. (c) put teabag in cup. (d) pour hot water into cup. (e)
open fridge. (f) grab milk. (g) pour milk into cup. In the context of
Definition 7, A= {a, b, c, d, e, f , g}.

the Hasse diagram in Figure 6.8, which displays the containment relationship

for two structures that map onto the same action sequence for making tea. Note

that the two topmost action structures are derived in a different way. This fig-

ure illustrates a crucial point about the (ir)relevance of hierarchical structure

in the interpretation of action sequences. That is, because the ⊕ operator is

non-associative, the order in which actions are combined using ⊕ affects the

structure that is generated. Therefore, if we were to interpret these structures in

a strongly compositional way, we would have to conclude that they correspond

to different actions. This is clearly an undesirable conclusion, because the two

structures correspond to one and the same action sequence. In other words,

adopting a non-associative combinatorial operator for generating action struc-

tures makes the model too strong: it will differentiate two action structures that

should not be distinguished because they map onto the same action sequence

and thus achieve the same goal in effectively the same way.

Compositionality in language and action

The fact that a strongly compositional formal model does not accurately describe

actions indicates that the action system is not strongly compositional. If the ac-

tion system is weakly compositional instead, it follows that one action sequence

cannot be associated with multiple hierarchical structures. This prediction is

borne out: structurally ambiguous actions, where one action sequence is associ-

ated with more than one structural representation and therefore more than one

goal, do not seem to exist. This does not mean that actions cannot be ambigu-

ous. Any given action may be characterized in terms of different goals, but these

different goals are not a function of a decomposition of the action sequence in

terms of hierarchically organized ‘action constituents’. Whether the action’s goal
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ø

Figure 6.8: Hasse diagram of a partially ordered magma, which displays two dif-
ferent structures that map onto the same action sequence for making
tea. The boxes around action combinations represent binary sets,
and the arrows indicate direct containment.

is achieved depends on the temporal order of its constituent actions, not on their

hierarchical organization.

6.3.2 Formalizing action structure (2)

In the previous section, we showed that when the language formalism is applied

to actions, it appears to be too strong: it makes a distinction which should not

be made. The model is also too weak: actions and action plans are structured

by temporal (precedence) relations, but the model does not take temporal order

into account. In the current section, we therefore propose an alternative way to

describe the structure of actions. The operator used to generate action structures

must meet at least two requirements. First, it must generate sequential structure,

because actions are temporally ordered. Second, it must not be non-associative,

because actions are not strongly compositional.
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A set of partitioned sequences

We have already defined the set of sequences as S (see Definition 4). The ele-

ments in each sequence are in a total, transitive, and antisymmetric ordering (see

Box 2). This set is partitioned according to the following criterion: sequences

are deemed equivalent if they bring about a particular change in the environ-

ment (i.e., they achieve the same ‘goal’). All equivalent sequences are part of

a single equivalence class, whose label corresponds to the goal achieved by the

sequences in it.

Definition 8. Given the set S, a partition of S contains a set G, and for each g ∈ G,

a non-empty subset Sg ⊆ S exists, such that:

S =
⋃

g∈G
Sg and if g ̸= h, Sg∩ Sh =∅

the set of sequences is the union of all parts

the parts do not overlap

Here, we take g ∈ G as the set of part labels (i.e., the labels given to each element

in the partition). Because all sequences in a given part are equivalent, we call every

element s ∈ Sg a representative sequence of that part Sg .

The partitioning of S yields a set of part labels that correspond to the set of

goals they accomplish. These goals can be interpreted as abstractions over action

sequences that have something in common, namely the change they bring about

in the environment (see e.g., Cooper & Shallice, 2000).

Generating structured sequences

Definition 9. We define action structure as (G,⊗,∗,∅), where:

1. The elements of G are part labels (see Definition 8) corresponding to action

sequences that achieve a particular goal.

2. ⊗ and ∗ are two sequence-building operators that generate the elements of G.

3. ∅ is the identity element.

Note that we include the set of atomic actions in G, because atomic actions

achieve a particular change in the environment and thus have their own subgoal.

Therefore, an atomic action is simply an equivalence class with only one element.
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A goal can often be achieved in several ways. For example, given the actions

in Figure 6.7, the goal ‘make black tea’ corresponds to the part Sb, where Sb =
{(a, b, c, d), (a, c, b, d), (c, a, b, d)}. Here, a (‘fill kettle with water’) must precede

b (‘turn on kettle’), which in turn must precede d (‘pour hot water into cup’),

so the relative temporal ordering of (a, b, d) is fixed. However, the position of

action c (‘put teabag in cup’) within this action sequence should be specified only

in relation to d; it can be placed at any position before d within (a, b, d), thus

yielding three action sequences. In other words, for a given goal to be achieved,

the temporal ordering of some actions must be specified, whereas it need not be

specified for other actions. We achieve this combination of the requirement of

strict temporal ordering with temporal flexibility via the use of two sequence-

building operators.

Definition 10. ∗ is a sequence-building operation ∗ : G×G→ G. Let a, b, c ∈ G be

three part labels, and let sa ∈ Sa, sb ∈ Sb, sc ∈ Sc be three representative sequences,

where sa = (a1, a2, ...an), sb = (b1, b2, ...bm).

sa ∗ sb = (a1, a2, ...an, b1, b2, ...bm) where

∀sa, sb, sc ∈ S, (sa ∗ sb) ∗ sc = sa ∗ (sb ∗ sc)

∗ concatenates two sequences

∗ is associative

Definition 11. ⊗ is a sequence-building operation ⊗ : G × G→ G. Take sa and sb

as defined in Definition 10. Then sa ⊗ sb = {(c1, c2, ...cm+n)}, such that

ci =















a j if i > 1 and a j−1 ∈ (c1...ci−1)

b j if i > 1 and b j−1 ∈ (c1...ci−1)

a1 or b1 otherwise

⊗ retains precedence relations in its input

The operator ∗ is simple concatenation. This operator is required because the

temporal ordering of some actions must be specified. For example, if h ∈ G rep-

resents the (sub)goal ‘obtain hot water’, then we must define Sh = a ∗ b due to

the requirement that the kettle should be filled with water (action a) before it is

turned on (action b). The temporal precedence relationship between these two
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actions requires an operator that yields strict sequential orders. Clearly, concate-

nation is not commutative: the sequence generated by sa ∗ sb is different from

the output of sb ∗ sa. Moreover, because ∗ generates sequences whose only rela-

tionship is precedence, it is associative: (sa ∗ sb)∗ sc = sa ∗ (sb ∗ sc). In sum, (G,∗)
forms a monoid, which is an algebraic structure consisting of a set equipped with

an operation that is closed, unital and associative (see Box 1).

The operator ⊗ generates sets of sequences whose orders vary, with the only

constraint that the relative ordering within its arguments is retained. For exam-

ple, for two sequences sa = (a, b, d), sb = (c), sa ⊗ sb = {(a, b, d, c), (a, b, c, d),
(a, c, b, d), (c, a, b, d)}. In each of the sequences generated by sa⊗ sb, a precedes

b, which precedes d. So while ⊗ allows for flexibility in terms of the order of the

actions in the sequences, the flexibility is constrained by the sequential proper-

ties of sa, whose precedence relations must be retained in the output of sa ⊗ sb.

Because ⊗ is a sequence-building operator that is constrained only by the se-

quential properties of its input (i.e., the ordering within its input arguments), ⊗
is associative. But as it does not specify the ordering among its input arguments,

⊗ is also commutative. (G,⊗) therefore forms a commutative monoid (see Box

1).

The two notions of precedence and flexibility are combined in (G,⊗,∗), which

is an algebraic structure called a trace monoid (also called partially commutative

monoid; see Box 1). A trace monoid is a monoid of traces, which are sets of

sequences that form equivalence classes (Mazurkiewicz, 1995). In (G,⊗,∗), the

traces contain equivalent sequences generated by ⊗ and ∗. In a trace monoid,

two sequences are equivalent if they only differ in the order of a pair of elements

for which an independency relation is defined.9 These independent elements

are allowed to commute in the sequences of the equivalence class.10 Consider

the independency I = {(b, c), (c, b)}, which holds that the actions b and c are

allowed to commute; no precedence relation between them is specified. Given

(b, c) ∈ I , we say that two action sequences are equivalent if they differ only in

the ordering of b and c. The trace monoid is then said to contain a trace where

acb ∼ abc.

9Independency relations are symmetric (i.e., if (a, b) is present, then so is (b, a)) and ir-
reflexive (i.e., there are no relations of type (a, a)), and can be extended to relations between
sequences (see Mazurkiewicz, 1995).

10Commutativity in the general sense is slightly different from the way it is used in the context
of traces. In the general sense (as used in Box 1), it refers to an operation which produces the
same output if the order of the operands is changed, such as in a⊗ b = b⊗ a. In the context of
a trace monoid, the notion of sameness is replaced by equivalence, where a⊗ b = {ab, ba}, and
ab ̸= ba but ab ∼ ba.
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To sum up, defining the trace monoid (G,⊗,∗) allows us to achieve simultane-

ously temporal precedence and temporal flexibility. The operator ∗ is required to

build sequences where temporal precedence is necessary (e.g., ‘grab milk’ must

precede ‘pour milk into cup’), and ⊗ is used to generate action sequences whose

temporal relationship is not specified (e.g., the action ‘grab milk’ can precede or

follow ‘put teabag in cup’). The combined use of ∗ and ⊗ leads to equivalence

classes of sequences that contain a mixing of intermediate goals that are tempo-

rally independent of other intermediate goals. The mixing procedure introduced

by⊗might destroy immediate precedence (or temporal adjacency) relationships

in the output of ∗, but this is unproblematic: while it makes sense to let ‘open

fridge’ be directly followed by ‘grab milk’, this is not necessary. One could open

the fridge, perform all other tea-making preparations, and then grab the milk.

Hierarchical relations between action sequences

While the output of the two associative operators are sets of sequences, these

sequences contain underlying structure if we take their derivational history into

account (cf. ‘configurational properties’ in Miller et al., 1960). For instance,

given the atomic actions in Figure 6.7, the sequence (a, b, c, d) corresponds to

the goal of making black tea. By itself, this sequence does not provide a lot

of information about the precedence relations that might hold for the complex

action; it could in principle have been generated via (((a ⊗ b)⊗ c)⊗ d). Such

information can be inferred only if additional action sequences are observed

that achieve the same goal (see Box 3). Knowing how the action sequence was

derived allows us to specify the temporal constraints to which it must adhere,

which in turn provides information about the causal structure of the action plan.

Thus, by deriving [(a, b, c, d)] ∈ (a ∗ b)⊗ (c ∗ d), we make temporal precedence

relations concrete: a must precede b, and c must precede d.

The derivational history of the sequence provides information about which

other sequences are also possible. From observing only (a, b, c, d), it would be

impossible to know whether (c, a, b, d) is also a fine sequence. However, that

knowledge can be deduced if we know how the sequence was derived, because

(a ∗ b) ⊗ (c ∗ d) also generates the sequence (c, a, b, d). The derivational his-

tory thus provides information that is not present in the temporal structure of

the sequence, including information about the relationship between the output

sequence and its subsequences. In (c, a, b, d), it is still the case that c precedes

d, even though they are not adjacent anymore. But by taking into account the

derivational steps leading to (c, a, b, d), we can specify a hierarchical relation-
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ship between (c, d) and (c, a, b, d), which states that (c, d) ∈ (c, a, b, d) because

(c, a, b, d) was generated via (a, b)⊗ (c, d). This relationship holds even though

(c, d) is not a subsequence of (c, a, b, d). Action sequences can be seen as hierar-

chical sequences, which are sequences with a derivational history that specifies

how they relate to the action sequences from which they are derived. This al-

lows us to go beyond the sequential structure of actions in a system that is still

weakly compositional.

Box 3. Inferring plans from action sequences

In order to achieve a given goal, the relative order of some related actions

must be specified, whereas that of some unrelated actions can be left un-

defined. Given a set of observed action sequences that successfully reach

the same goal, the abstract plan to reach that goal can be extracted via the

intersection of the sets of binary relations representing the sequences.

As a simple illustration, consider a sequence x = (a, b, c, d) consist-

ing of non-repeating atomic actions. The precedence relations for x are

a ≺ b ≺ c ≺ d. The sequence can be represented as a set of binary re-

lations. If we take these binary relations to represent precedence, x will

be represented as {(a, b), (b, c), (c, d), (a, d), (a, c), (b, d)}. By observing

only x , it is not immediately clear which of these elements are dependent

and which are not. However, observing the sequence y = (c, a, b, d) (rep-

resented as y = {(c, a), (a, b), (b, d), (c, d), (c, b), (a, d)}), which achieves

the same goal, provides more information. The plan to reach the goal is

represented by the intersection of the sets of binary relations:

x ∩ y = {(a, b), (c, d), (b, d)}

This intersection corresponds to the plan of making black tea (see Fig-

ure 6.7). Notice how this partial order is compatible with the previously

unseen sequence (a, c, b, d), which reaches the same goal successfully as

well.

6.4 Language vs. action

6.4.1 A formal comparison

In the previous sections we described the properties of hierarchical linguistic

structure (generated by ⊕) using a magma. When this formalism was applied to
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actions, it appeared to be too strong, deriving multiple ‘interpretations’ from un-

ambiguous action sequences, and too weak, as it does not generate temporally

ordered structures. To overcome these limitations, our alternative formalism

described action structures as a trace monoid (generated by non-commutative

∗ and commutative ⊗). A crucial difference between these algebraic structures

(see Box 1) is that the operation associated with magmas is non-associative,

whereas that associated with monoids is associative. As a consequence, the

structure generated by ⊕ and represented in the magma is strongly composi-

tional: the constituent structure of the input to ⊕ is retained in its output. This

is important because both syntactic operations and semantic interpretation are

structure-dependent. If the internal structure of each combination would be

lost, syntactic rules could not target constituents. Moreover, meaning could not

be derived from constituent structure, and sentences could not be structurally

ambiguous; the system would generate only one output for ((deep ⊕ blue) ⊕
sea) and (deep ⊕ (blue ⊕ sea)). In contrast, the action structure generated by

the associative operators ∗ and ⊗ and represented in the trace monoid is weakly

compositional. This weakly compositional, order-sensitive model can account

for the relevant properties of action structures.

6.4.2 The nature of structure

Our formal characterizations of language and action show that their structural

representations are different, in particular with respect to the relevance of con-

stituency (for a similar conclusion from the neuroimaging literature, see Papitto

et al., 2020 and Zaccarella et al., 2021). The same conclusion is reached when

we compare language and action in terms of the properties of syntactic structure

discussed in Section 6.2.1.

1. Unbounded. It has been argued that the combinatorial operation involved

in building syntactic structures evolved from pre-existing systems for tool

use, also called Action Merge (Fujita, 2014, 2017). This operation is

thought to apply recursively (Fujita, 2017; Pulvermüller, 2014; Stout &

Chaminade, 2009), even though Action Merge is bounded (Fujita, 2014).

A distinctive feature of recursively generated hierarchical output is self-

similarity across levels: recursively generated structures are characterized

by self-embedding of tokens of the same type (Martins, 2012). One ap-

proach towards determining whether actions are recursively generated is

therefore to examine whether their structures are self-similar. However,
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that requires knowing what the types are. Consider the structure in Figure

6.6. One could combine ‘open fridge’ and ‘grab milk’ into an action con-

stituent, which could be labeled ‘get milk’. Here, it is unclear whether ‘get

milk’ is of the same type as ‘grab milk’. Moreover, it seems plausible that

the action ‘pour hot water into cup’ is similar to ‘pour milk into cup’, but

that is because the tokens are similar (both involve pouring), not neces-

sarily because their types are. To determine whether action structures are

recursively generated, a theoretical specification of the types of actions is

needed.

Our primary goal is to evaluate the claim that the hierarchical struc-

tures found in language and action are analogous. The validity of this

claim rests on positive evidence that actions, like language, are recursively

generated. In the absence of such evidence (e.g., in the form of self-similar

hierarchy), it is premature to conclude that actions are structurally analo-

gous to language.

2. Endocentric. Some of the hierarchical representations of actions that are

proposed in the literature contain action constituents with one key ele-

ment, or ‘head’, which performs the core of the action and determines its

(end)goal (e.g., Jackendoff, 2007, 2009, 2011; Fischmeister et al., 2017).

While this makes the structures ‘headed’, it does not make them endocen-

tric. That is, it seems that this head merely serves to describe the main

action of the action sequence, rather than to provide a label for the con-

stituent it is dominated by. In Figure 6.6, for instance, the action con-

stituent formed by the combination of ‘open fridge’ and ‘grab milk’ is not

a type of either of these actions. In line with the idea that endocentricity

is unique to language (Boeckx, 2009; Hornstein, 2009), action hierarchies

seem to be exocentric.

A plausible reason for the difficulty in assigning labels to action con-

stituents is that actions do not have clear conceptual units, such as words

(Moro, 2014a; Berwick, Okanoya, et al., 2011), and that groups of ac-

tions do not obligatorily fall into a closed set of distinguishable categories,

such as NP or VP (Jackendoff & Pinker, 2005). Without these categories,

groupings of actions into constituents cannot be labeled or ‘syntactically’

named, which means that there are no grammatical constraints on how

the resulting constituents can be used in further combinations.

3. Unordered. Representations of actions are intimately tied to the physical

environment in which the actions are performed (Graves, 1994; Kuper-
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berg, 2020; Moro, 2014a; Zaccarella et al., 2021). As such, they are not

order-independent: some subactions must precede others in order for the

action to achieve its goal (Fitch & Martins, 2014), and indeed, the output

of Action Merge is inherently ordered (Fujita, 2014).11 Comparing this

to language, we see that the externalization of spoken language is also

sequential, but that sequential order does not play a role in the represen-

tation of syntactic relations, which are invariably structure-dependent.

It has been proposed that closely related actions, which can be sep-

arated by arbitrarily many ‘embedded’ actions (e.g., [open door [switch

on light [brush teeth] switch off light] close door]), are similar to long-

distance dependencies in language (Pulvermüller & Fadiga, 2010; Pulver-

müller, 2014). This analogy is incorrect, however, because long-distance

dependencies are related to the hierarchical organization of constituent

structure. These action dependencies, instead, have serial and temporal

properties: you cannot close a door before having opened it (Dominey et

al., 2003; Moro, 2015; Zaccarella et al., 2021). If they were truly hier-

archical, the embedded action would be expected to adhere to structural

restrictions on its distribution, which would be the case if the embedding

of [brush teeth] at a different position, like in [open door [brush teeth]
[switch on light switch off light] close door], were not allowed. Moreover,

if the dependency between ‘switch on light’ and ‘switch off light’ were hi-

erarchical, it should not be affected by linearly or temporally intervening

actions, so whatever happens during ‘brush teeth’ should not be able to

affect the action ‘switch off light’. As neither appears to be the case, it is

more appropriate to label the dependency between two actions temporal

(or causal) rather than hierarchical (Moro, 2014b, 2015). Indeed, actions

and events can be understood in terms of temporal (and causal) structure

(McRae et al., 2019; Zacks & Tversky, 2001), and oddly ordered complex

actions, which are thought of as ungrammatical actions (e.g., Maffongelli

et al., 2019), reflect the violation of ‘temporal rules’ rather than phrase-

structure rules (Zaccarella et al., 2021).

11Even under an analysis in which immediate precedence plays a role in syntax (as in Kayne,
2011), the crucial difference between language and actions remains: if two linguistic objects α
and β are not adjacent in their base-generated position (i.e., they do not form the ordered pair
〈α,β〉), their relationship is defined as a relationship that refers to the (hierarchical) constituents
they are contained in, not as a relationship that refers to their linear or temporal order. There is
no such constraint in actions, where some actions must precede (distant) others, regardless of
the relationship between the action constituents in which they are contained.
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A plausible reason for the observation that none of the properties of hierar-

chy in syntax are found in actions is that the analogy between language and

action is not to be found in syntactic structure, but rather in conceptual struc-

ture (Jackendoff, 2007; Zaccarella et al., 2021). An important difference is that

syntax is computationally autonomous, having its own principles and proper-

ties that cannot be reduced to other factors, such as meaning (Adger, 2018;

Berwick, 2018; Chomsky, 1957). The application of these principles is con-

strained by economy conditions (e.g., locality, minimality; see Collins, 2001),

but not by whether they generate interpretable output. Therefore, in language

there is an independent notion of grammaticality: sentences are ungrammatical

if their structures cannot be generated by the rules of syntax, or if they violate

conditions on these rules. One way to illustrate this is by means of interpretable

but nevertheless ungrammatical sentences. A sentence such as “which boy did

they meet the girl who insulted?” is ungrammatical but can be interpreted (i.e.,

corresponding to the logical statement “for which x, x a boy, did they meet the

girl who insulted x?”). Its deviance is due to the violation of a purely formal

(locality) principle constraining the grammar, which is unrelated to its semantic

interpretability. Conversely, the sentence “colorless green ideas sleep furiously”

is semantically odd, yet fully grammatical, showing that grammaticality does not

boil down to meaningfulness or interpretability.

In contrast, the validity of action sequences seems related to their coherence,

in terms of both logical consistency and environmental appropriateness. It has

been suggested that a complex action is ‘ungrammatical’ or ‘ill-formed’ if its sub-

parts are ordered in such a way that the action’s overall goal cannot be achieved

(Jackendoff, 2007; Maffongelli et al., 2019). The ‘grammaticality’ of an action

is thus intimately tied to the fulfillment of its goal, showing that the notion ‘un-

grammatical’ is very different for action sequences and sentences. On this in-

terpretation, an ‘ungrammatical’ action is similar to a sentence which does not

convey the intended meaning, either because it is logically incoherent or because

it is situationally inappropriate. The action equivalent of a logically incoherent

sentence could be an action sequence in which a coffee grinder is turned on be-

fore the coffee beans are added. This is logically incoherent because it violates

causality principles of the physical environment. An action like turning off the

light when walking into your office during nighttime, instead, does not violate

such constraints, but it would be situationally inappropriate because it would

preclude you from seeing anything.
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Because there is no autonomous action syntax, there is no independent notion

of grammaticality, devoid of goal-dependent meaning. As a result, it is unclear

how to evaluate whether a given structural decomposition of complex actions

into constituents is veridical unless we know the goal or general conceptual con-

tent of the action (Berwick & Chomsky, 2017; Jackendoff, 2007). It seems that

the decomposition of an action sequence into a hierarchical tree structure only

works to the extent that the subactions are meaningful or coherent (i.e., repre-

sent subgoals).

6.4.3 Levels of abstraction

The difference between language and actions in terms of their dependence on

hierarchical and sequential structure can be captured quite naturally under the

distinction between hierarchical sequences and hierarchical sets, a terminological

contrast adopted by Fitch and Martins (2014) to distinguish possible interpre-

tations of the term hierarchy.12 Fitch and Martins (2014) describe hierarchical

sets as structures that specify the superior/inferior relation between their ele-

ments (i.e., specifying containment), but whose elements are unordered at any

given level. Hierarchical sequences, instead, are hierarchical structures in which

sequential order matters: at least some elements at any given level represent a

sequence rather than a set.

We will argue that language needs to be described in terms of both hierarchical

sequences and hierarchical sets, but that actions can be described as hierarchical

sequences only (see Figure 6.9). Regarding language, the mapping between hi-

erarchically organized constituent structure and sequentially ordered sentences

represents the level of hierarchical sequences (i.e., the interface between hierar-

chical structure and linear order; see middle panel, top row in Figure 6.9). In this

hierarchically structured sequence, we can describe a speaker’s knowledge about

linearized properties of their language (e.g., word order, morphosyntax), such as

whether heads precede or follow their dependents (e.g., English vs. Japanese).

Hierarchical sets are abstractions from these hierarchical sequences, which are

not realized in the physical properties of the linguistic signal (left panel, top row

in Figure 6.9). This level is explanatorily relevant for syntactic theory because

it naturally captures the properties of syntax described in Section 6.2.1: hier-

archical sets generated by Merge are unbounded, endocentric, and unordered
12A similar distinction is emphasized by Tettamanti and Moro (2012), who discuss the differ-

ent meanings of hierarchical organization in terms of sequential vs. internal hierarchy, describing
the computation of sequential hierarchical information (externalized) and the computation of
non-linear hierarchical relations (mind-internal), respectively.
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(Lasnik, 2000). Therefore, at this level, we can account for both structural rela-

tions within languages and structural generalizations between languages (e.g.,

the head-dependent relations in English and Japanese are identical at the level

of hierarchical sets).

As we noted at the end of Section 6.3.2, actions might be seen as hierarchically

generated yet ordered sequences of events (middle panel, bottom row of Figure

6.9). However, the structural properties of action sequences cannot be described

in a way which is completely detached from the physical instantiation of the

action sequence, most clearly because (the representations of) action sequences

contain information about temporal order. Because the properties of syntactic

structure are not found in actions, it is not necessary to postulate hierarchical

sets as an explanatorily relevant level of abstraction for actions.

The distinction between hierarchical sets and sequences is useful in explaining

why it has been found that the brain areas involved in language processing (in

particular, BA44 in the left inferior frontal gyrus) are also activated in response to

tasks involving hierarchically organized actions (Higuchi et al., 2009; Koechlin

& Jubault, 2006). At first thought, these results support the idea that there is a

supramodal hierarchical processor in the brain, which processes the hierarchical

structures of cognitive systems such as language and action (Fadiga et al., 2009;

Fazio et al., 2009; Fiebach & Schubotz, 2006; Higuchi et al., 2009; Jeon, 2014;

Koechlin & Jubault, 2006; Tettamanti & Weniger, 2006). Crucially, however, in-

stead of describing complex actions in terms of non-linear relations defined over

hierarchical structures, these accounts refer to the processing of structured se-

quences that were hierarchically generated (for a related discussion, see Martins

et al., 2019 and Zaccarella et al., 2021). The overlapping activation patterns for

language and action might therefore point not to shared brain regions processing

hierarchical, non-linear relations (operating over hierarchical sets), but rather to

shared brain regions implicated in the linearization of hierarchically structured

information (i.e., hierarchical sequences; see also Boeckx et al., 2014; Matchin

& Hickok, 2020; Uddén & Bahlmann, 2012). We believe that a fruitful avenue

for further investigation into the relationship between language and action con-

cerns the externalization of hierarchically organized information into structured

sequences rather than the (generation of the) hierarchical structure itself. The

overlap between language and action then has to do with the fact that, exter-

nally, both are structured sequences, even though their internal structures are

quite different.
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6.5 Conclusions

In response to the claim that language and action are analogous because they are

both organized hierarchically, we argued in this chapter that the formal proper-

ties of structure in both domains are fundamentally different. Our main argu-

ment is that the language system can embody strong compositionality, as both

syntactic rules and semantic interpretation are structure-dependent. Structural

analyses in language are thus concerned with non-terminal nodes in the hier-

archical structure of syntax. Actions, instead, are weakly compositional: regu-

larities in action structures are dependent on the temporal order of the atomic

actions, not on their hierarchical organization into action goals. Analyses of ac-

tions are thus concerned with terminal nodes in the action hierarchy. Based on

this difference, we argue that the structure of syntax is best described as a system

of hierarchical sets, whereas action structures can be described as hierarchical

sequences.

In order to formally capture the strong compositionality of language, we de-

scribed the algebraic structure corresponding to the ordered set of hierarchical

structures in language as a magma, whose non-associative combinatorial opera-

tor was defined as binary set formation. This set-based formalism integrates the

three properties of syntactic structure (i.e., unboundedness, endocentricity, and

unorderedness) with the description of syntax as a system of hierarchical sets

and the fact that language exhibits strong compositionality. When this model

was applied to actions, it appeared to be both too strong (i.e., it makes structural

distinctions which should not be made) and too weak (i.e., it does not capture

the importance of temporal precedence). We therefore proposed an alternative

model for actions, which used two sequence-building operators that organize

actions by sequential relations. This yielded an ordered set of action structures

that could be described as a trace monoid. The associativity of the two operators

formalizes the idea that actions exhibit a weaker form of compositionality, and

aligns well with our argument that actions are best described in terms of hier-

archical sequences. In sum, the formal tools needed to describe language are

fundamentally different from those required to the describe the action system.

We believe that this result has important implications not only for comparative

cognitive science but also for cognitive neuroscience, as it points to differences

in the ways in which hierarchies are represented in the brain.
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This thesis started with the view that generalizations about structure and obser-

vations about use are different reflections of one and the same cognitive system.

Assuming a single cognitive system for language yields the prediction that the

type of structure postulated by linguists will be measurable in the type of data

acquired by neuro- and psycholinguists. As an empirical test of this prediction,

this thesis investigated the role of syntactic hierarchy in language, both in terms

of its structural properties as well as in the way it is reflected in the behavior and

brain activity of language users.

7.1 A discussion of the main findings

In five chapters, I aimed to shed light on different aspects of the role of hierarchy

in language, asking questions such as: are people biased to interpret language

hierarchically or linearly? Are artificial neural network models well-equipped to

learn to behave like humans? How does the brain infer hierarchical structure

during language comprehension? And is the hierarchical structure of language

found in other domains of cognition? The following paragraphs provide a brief

summary and discussion of each chapter.

In Chapter 2, I investigated whether people interpret ambiguous noun phrases

such as second blue ball as a hierarchical structure or as a linear string. The re-

sults of two behavioral experiments were very clear: participants invariably in-

terpreted second blue ball hierarchically. This finding directly falsifies the claim

that hierarchy is not fundamental in language use (Frank et al., 2012). If lan-

guage use were fundamentally sequential, we would expect people to consis-

tently prefer the linear over the hierarchical option when the input is compati-

ble with both. Note that all trials in the behavioral experiments were completely

ambiguous; both interpretations were always available. The finding that peo-

ple unanimously interpret second blue ball in line with its hierarchical structure

therefore shows not just that they interpret language hierarchically if that is

the only available option that yields a coherent interpretation, but that they are

biased to do so. The strength of this bias is nicely illustrated by participants’
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responses during the post-experiment debriefing, in which we asked them about

the goal of the experiment. They all expressed their surprise about the simplicity

of the task, and reported not even being aware of the ambiguity of second blue

ball.

We then tested whether an artificial neural network (ANN) model could re-

produce the behavior of the human participants if it was trained and tested on

a similar task. To test whether it represented the phrases in a human-like way,

we measured its performance in a range of train-test regimes. First, we estab-

lished that it could be trained to give both linear and hierarchical answers if

it was trained on unambiguously linear and hierarchical training data, respec-

tively. We then tested the model’s behavior after ambiguous training data, which

were consistent with two generalizations, one of them being the linear gener-

alization, the other one being the hierarchical generalization. As the test phase

consisted of trials for which these two generalizations make different predic-

tions (i.e., the divergent trials from the behavioral experiment), the model’s an-

swers on these trials reveal its inductive biases in this setup. This ambiguous

train-test regime indirectly models natural language acquisition, in which the

input is also compatible with multiple generalizations. The observation that hu-

mans consistently arrive at the same generalizations, despite the fact that these

are underdetermined by the input, reflects the poverty-of-the-stimulus problem

(Chomsky, 1980). In our simplified poverty-of-the-stimulus scenario, the model

only gave linear answers on divergent test trials, in stark contrast to the human

participants.

To be fair, the linguistic input humans receive is not ambiguous in the same

way. For one thing, it contains cues to hierarchical structure in the form of n-

gram statistics (Saffran, 2001; Takahashi & Lidz, 2007; Thompson & Newport,

2007). In a subsequent analysis we therefore added hierarchical information

to the data by presenting an unbalanced ratio between ambiguous and unam-

biguously hierarchical trials, while still making sure that the hierarchical inter-

pretation was the only generalization fully compatible with the data. Here, we

found that even when only 10% of the training data are ambiguous, and the re-

maining 90% indicate that the linear interpretation is incorrect, the model still

gives many linear responses on divergent test trials. The model’s behavior is thus

quite different from the way humans respond in similar scenarios (Culbertson

& Adger, 2014; Ferrigno et al., 2020; Martin et al., 2020; Morgan & Ferreira,

2021). This mismatch likely arises from a difference in their inductive biases,

which in humans favor structure-dependent generalizations. Without such a hi-
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erarchical inductive bias, the network interprets ambiguous input in a way that

is most in line with the simplest statistical mapping between input and output –

that is, the linear interpretation. The linear interpretation is ‘statistically simple’

because it is invariant. In the context of our experiment, this means that the

word second on target-present trials always maps to the same output. Hierarchy,

instead, is not directly encoded in the sequential properties of the signal, which

makes the hierarchical input-output mapping variable and difficult to learn for

a purely data-driven system.

In Chapter 3, I continued the discussion about the role of ANN models in

the scientific study of language. In particular, we discussed two cases of mis-

alignment between the learning capacities of ANNs and humans, which show

that ANNs do not meet the important demand of cognitive fidelity. On the one

hand, they are too weak because they fail to learn structure-dependent relation-

ships between form and meaning, as found in co-reference and binding. On

the other hand, they are too strong because they succeed in learning structure-

independent regularities that are not found in human language, i.e., impossible

languages. Determining the source of these misalignments requires being ex-

plicit about what ANNs compute, how they structure data, and how they in-

ternally organize their states. Interestingly, attempts to answer these questions

do exist. This work often relies on a probing technique, which experimentally

manipulates the activation of the model’s internal states to see how they relate

to its linguistic behavior. But what is curious about this approach is that, when

successful, it explains something about the model, not about language. That is,

it ultimately yields knowledge about how the ANN represents the (statistical)

properties of language, not about how those properties could be represented in

the human mind or brain.

In order to use ANN language models in a way that aligns more closely with

the scientific study of language, both in terms of goals and criteria for success,

we propose two changes to the scientific practice in ANN language modeling.

The first is a change to the modeling objective, which is currently narrowly fo-

cused on the generation of (probable) sequences. If the focus is shifted towards

the interpretation of (possible) structures, we believe that ANNs would be bet-

ter equipped to handle syntactic principles, whose effects on surface statistics

are often very indirect. The second is a change to their cognitive architecture,

which should incorporate constraints on possible structures. This will allow the

model to learn from more realistic amounts of data and therefore present a fairer

opportunity to test the learnability of syntactic principles. With these changes
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in mind, computational language modeling research can become more strongly

integrated in the scientific study of language.

Having established that hierarchy affects language use, I asked how the brain

infers this type of structure during the comprehension of naturally spoken sen-

tences. To this end, Chapter 4 reported the results of an electroencephalography

(EEG) experiment, which set out to test why syntactic phrases are tracked more

strongly when they are embedded in regular, meaningful sentences than when

the linguistic input in which they are embedded is less meaningful (Kaufeld et

al., 2020; Keitel et al., 2018). To test which level of linguistic content modulates

cortical tracking of syntax, we compared regular sentences to stimuli that differ

from sentences in terms of either their compositional content (idioms, syntactic

prose) or their lexical-syntactic content (word lists, jabberwocky). Tracking was

quantified via mutual information between the EEG signal and either the speech

envelopes or abstract annotations of phrase structure. To make sure that we

measured phrase-level tracking, all signals were filtered in the narrow frequency

band corresponding to the average presentation rate of phrases in the auditory

stimuli (1.1-2.1 Hz). These analyses revealed stronger tracking of phrases in

regular, meaningful sentences than in stimuli without either syntactic structure

or lexical content (word lists, jabberwocky). However, when both structure and

lexical content were preserved in the stimuli (idioms, syntactic prose), phrases

were tracked as strongly as in sentences. Critically, we did find a modulation

of the N400 component elicited by the sentence-final verb in the four syntacti-

cally structured conditions. Thus, while participants did notice differences be-

tween the stimuli in terms of their compositional meaning, this did not affect

phrase-level speech tracking. In all, these findings refine a recent account of

cortical tracking of linguistic structure, which holds that it reflects the internal

generation of that structure (Martin & Doumas, 2017; Meyer et al., 2020). Our

findings show that this structure-building process, as indexed by cortical track-

ing effects, is modulated by the lexical-syntactic properties of its input, and not

by the compositional interpretation of its output. Any change to the input that

results in a weakened activation of the structure-building process (e.g., struc-

turally or lexically impoverished input) will therefore yield reduced phrase-level

speech tracking, while modifying the compositional content of the output will

have no such effect.

In Chapter 5, I used magnetoencephalography (MEG) to study the spatiotem-

poral correlates of hierarchical structure building in a naturalistic context. We

compared three different neuro-computational language models in terms of their
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ability to predict brain activity of people listening to a Dutch audiobook story.

The models relied on different parsing strategies, which all build the same hi-

erarchical structure but differ in the dynamics of structure building: the top-

down parsing model is fully predictive, the left-corner model is mildly predic-

tive, and the bottom-up model is non-predictive (integratory). For each word

in the audiobook we calculated a syntactic complexity metric corresponding to

the number of nodes that would be visited by the parser when integrating that

word into the hierarchical structure of the sentence (‘node count’). Using tem-

poral response functions to map these metrics onto delta-band source activity,

we found that activity was most accurately reconstructed by node counts de-

rived from the top-down parsing method. These effects were particularly strong

in left-hemispheric language regions, including the inferior frontal and supe-

rior temporal lobe. Both the bottom-up and the left-corner predictor also in-

creased reconstruction accuracy, but their effects were relatively weak. While

the predictiveness of top-down node counts is at odds with the results of previ-

ous studies, which were all done in English, it receives a plausible explanation

in terms of the grammatical properties of Dutch. In contrast to English, which

is head-initial, Dutch exhibits mixed headedness. The presence of head-final

structures makes both left-corner and bottom-up parsing insufficiently predic-

tive. The top-down method, instead, captures the predictive nature of language

processing well. These findings thus underscore the need for neurobiological

studies into languages whose grammatical properties and constructions differ

from those of English (Bornkessel-Schlesewsky & Schlesewsky, 2016). These dif-

ferent constructions invite different parsing strategies, so typologically diverse

work could point to functional differences within the neurobiological language

network across speakers (or signers) of different languages.

In Chapter 6, I evaluated a commonly expressed view that the cognitive sys-

tems for language and action are related and rely on shared neural resources. We

were particularly skeptical about the premise of this view, which holds that lan-

guage and action are structurally analogous. This claim would require evidence

that actions, like language, embody both strong compositionality and structure

dependence (see Chapter 1, Section 1.2.1). Using a formalization based on set

theory, we show that this is not the case. This formal approach reveals that

the algebraic structure corresponding to the ordered set of hierarchical syntac-

tic structures can be described as a magma. Its combinatorial operator, which

we define as binary set formation, is non-associative, meaning that the order in

which it is applied affects the structure that is generated (i.e., (a * b) * c ̸= a
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* (b * c)). Non-associativity is necessary because sentences can be structurally

ambiguous, so the order and manner of combination should be represented in

the output of structure building. When we apply this formal model to the do-

main of actions, it appears to be both too strong and too weak. On the one hand,

it can derive in a strongly compositional way two structures from one and the

same action sequence. This result is undesirable, because structural ambiguity

in the domain of actions does not seem to exist. On the other hand, the model

relies on a set-based operator that does not take sequential order into account,

yet actions are structured by temporal (precedence) relations. To address these

limitations, we present an alternative model, which relies on two associative

sequence-building operators that are combined in an algebraic structure called

a trace monoid. In this way we account for the observations that actions are fun-

damentally sequential in nature and exhibit a weaker (structure-independent)

form of compositionality. This result indicates that language and action are not

structurally analogous, and that the explanation for the overlap in their neural

resources should not be sought in the generation of hierarchical structure. More

generally, the result of this endeavor underscores that claims about cross-domain

convergence are strongest when they are based on theoretically informed com-

parisons and are accompanied by a formal evaluation of the putative similarity.

7.2 Are there triangles in the brain?

The empirical data and theoretical arguments presented in the preceding chap-

ters show that hierarchy is an indispensable component of language use. If lan-

guage use relies on hierarchical structure, that structure should somehow be rep-

resented in the human brain. While the EEG and MEG results from Chapters 4

and 5 show that this is the case, they do not establish how exactly the structure is

represented. Indeed, the neural representation of hierarchical structure remains

a matter of debate. The idea that humans use symbolic tree structures as a form

of mental representation has been challenged, even by strong advocates of the

view that human cognition relies on the ability to represent symbols. Marcus

(2009, 2013), for instance, presents several reasons for doubting the idea that

our brains use tree structures for representing phrases and sentences. The first

reason relies on evidence from people’s behavior in psychological experiments,

which, as discussed in Chapter 1 (Section 1.2.2), presents possible cases of mis-

alignment between the putative capacity to represent tree structures and the

actual performance of doing so. Marcus notes that we have trouble remember-
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ing sentences verbatim (Lombardi & Potter, 1992), that we experience difficulty

in parsing multiply center-embedded sentences, such as “the rat that the cat

that the dog chased killed ate the cheese” (Miller & Chomsky, 1963), and that

we are prone to illusions of grammaticality. For instance, we sometimes derive

globally incoherent and structure-independent interpretations from sentences if

they contain subsequences that are locally coherent, as in “the coach smiled at

the player tossed a frisbee” (Tabor et al., 2004) and “when the man hunted the

deer ran into the woods” (Christianson et al., 2001). In these examples, the un-

derlined sequences are coherent when presented in isolation (as an active main

clause), but in the context of the overall sentence, their analysis is ruled out by

the grammar. All three findings have been widely discussed, but none of them

really challenge the view that hierarchical structure must be mentally repre-

sented. We indeed have difficulty remembering sentences verbatim, but failure

to remember does not indicate failure to represent. The fact that a sentence is

not remembered verbatim just means that its structure is not retained after its

meaning has been derived, not that it was not represented accurately in the first

place. And in fact, we have even more difficulty remembering sequences without

any syntactic structure (Baddeley et al., 2009; Bonhage et al., 2014), showing

that memories are also structure-sensitive. It is also true that we have difficulty

parsing center-embedded sentences, but the difficulty of these constructions is

likely caused by processing overload rather than the parser’s inability to repre-

sent multiple levels of (center-)embedding (Lewis & Phillips, 2015). Similarly

embedded sentences like “the reporter who everyone that I met trusts reported

the coup” yield no comparable processing difficulty (Townsend & Bever, 2001;

Warren & Gibson, 2002), suggesting that the explanation for the difficulty of

center-embedding should not be sought at the level of representational capacity.

And last, locally coherent but globally incoherent substrings sometimes yield

processing uncertainty, but only under highly specific circumstances. Such ef-

fects are restricted mostly to syntactically complex sentences with an unusual

analysis, such as when a relative clause is reduced and the form of the verb is

ambiguous (Tabor et al., 2004) or when a transitive verb is used intransitively

(Christianson et al., 2001), suggesting that these misalignments are the excep-

tion rather than the rule. Thus, rather than showing that people behave as if

they cannot represent full tree structures (Marcus, 2009), these findings instead

show that hierarchical structure is often accurately represented. This conclusion

is in line with people’s sensitivity to structural principles during processing (see

the references cited in Chapter 1, Section 1.2.2) as well as with the predictive
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accuracy of neuro-computational models that are based on expressive grammat-

ical formalisms (see the results from and references cited in Chapter 5).

Marcus (2009, 2013) argues that the representation of hierarchical tree struc-

tures is also inconsistent with the architecture of human memory. In computer

systems, trees are encoded within a location-addressable architecture, mean-

ing that each node in the structure is assigned a particular location in memory.

In human memory, instead, information is retrieved by content rather than lo-

cation, suggesting that it is incapable of supporting the representation of tree

structures (i.e., it does not yield tree-geometric traversability). This claim relies

on the assumption that hierarchical tree structures must be represented explic-

itly, in the form of directed, acyclic graphs. That is not per se necessary though;

the relevant properties of a structure can be read off the order in which its el-

ements are combined (their ‘derivational history’; see Chapter 6), so the tree

structures do not need to be represented explicitly. As I discussed in Chapter 6,

what is needed to capture the type of structure sensitivity found in language is

a structure-building operator that is non-associative, meaning that the order in

which it is applied affects the structure that is generated. With such an operator,

the two interpretations of a structurally ambiguous sentence can be derived from

their derivational history without the need to represent tree structures explicitly

in the form of graphs. While graph-theoretic representations are commonly used

to visualize hierarchical structure, this is done mostly for illustration purposes;

the representations themselves are set-theoretic (Lasnik, 2000). Set-based sys-

tems are compatible with content-addressable memory (e.g., the label of each

set or constituent provides the features used for retrieval), meaning that there

is no inconsistency between the properties of human memory and the ability to

represent the information encoded in hierarchical syntactic structures (Berwick

& Chomsky, 2016; Franck & Wagers, 2020; Kush et al., 2015).

If hierarchical structure does not need to be represented explicitly, it might

be represented indirectly in the form of instructions for applying parsing opera-

tions. When these operations are embedded in nested programs, they will yield

output that is consistent with hierarchical structure, even though the structure

itself is not explicitly represented in the neural code. The neurobiological results

presented in this thesis are compatible with such an implicit representation of

hierarchical structure. In Chapter 5, for instance, we quantified syntactic com-

plexity in the form of node count, which we defined as the number of nodes that

would be visited by a parser when integrating a word into the structure of the

sentence. While this might initially suggest that node count reflects actual nodes
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in the tree structure, that is not the case; the parser does not really ‘visit’ nodes

(as in tree traversal). Rather, node count values reflect the number of expand,

project, or reduce operations that are applied between successive words (i.e., the

number of times these functions are called). On the bottom-up method, then,

node count is a proxy for the number of times two words are combined. It thus

indirectly reflects a merge- or unification-like operation. Likewise, the phrase-

level tracking effects in Chapter 4 are interpreted as reflecting the algorithmic

processes that build structure incrementally, not as reflecting the (representa-

tions of those) structures themselves. The same holds for related findings in the

neurolinguistics literature (Ding et al., 2016; Martin & Doumas, 2017; Nelson

et al., 2017; Pallier et al., 2011).

Consistent with this idea, it has been shown in cognitive domains other than

language that the brain represents structured sequences in terms of the men-

tal programs that can generate these sequences. In a recent study by Amalric

et al. (2017), participants had to look at and memorize visuo-spatial sequences

that traced the vertices of a regular octagon in various orders. When the or-

der in which these points are traced is unstructured, participants are required

to remember all eight locations on the octagon. However, when the sequences

comprise geometrical patterns, such as zig-zags or squares, it suffices to remem-

ber just the instructions that generate those patterns (e.g., trace right, rotate,

repeat). Behavioral performance indeed shows that people represent spatial se-

quences in terms of these instructions rather than the independent locations.

When the sequences were unstructured, performance was bad (error rate around

50%), plausibly because the number of locations that had to be remembered

exceeded working memory capacity. However, when the patterns could be com-

pressed into mental programs comprised of concatenations and embeddings of

the instructions, memory performance substantially increased. In fact, perfor-

mance for a given sequence was accurately predicted by the complexity of the

shortest program that could reproduce that sequence, its minimum description

length. The longer its description length, the more difficulty participants have in

remembering the sequence (Amalric et al., 2017; Mathy & Feldman, 2012). This

inverse relationship between program complexity and behavioral performance

seems to be quite general, extending to people’s ability to anticipate upcoming

sequence locations with their eyes (Wang et al., 2019), to verbally describe ab-

stract visual stimuli in compact form (Sun & Firestone, 2021), and to detect oc-

casional outliers in visuo-spatial sequences (Al Roumi et al., 2021) and auditory

sequences (Planton et al., 2021).
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These findings show that abstract patterns can be represented in the form of

generative mental programs, thus supporting the possibility that the hierarchical

structure of sentences is similarly encoded via the program that generates that

structure. If so, this would make the title of this thesis – “triangles in the brain”

– doubly metaphorical. “Triangles” should not be interpreted literally; the trian-

gles are not real, they reflect hierarchical syntactic structure. But to be precise,

even the geometry of the tree structure is not real, it is represented in terms of

generative mental programs.

7.3 Hierarchy beyond language

It is well-known that humans are quite unique in their ability to infer struc-

ture from sequences. While all animals have some pattern extraction ability,

the types of structures humans readily infer from sequentially presented input

are much more complex (Berwick, Okanoya, et al., 2011; Dehaene et al., 2015;

Fitch & Hauser, 2004; ten Cate & Okanoya, 2012; Yang, 2013; Zhang et al.,

2022). The hierarchical structure of language is a prime example, but humans

recognize hierarchical structure in visuo-spatial patterns (Bahlmann et al., 2009;

Fischmeister et al., 2017), mathematical expressions (Makuuchi et al., 2012;

Schneider et al., 2012), music (Koelsch et al., 2013), and, as discussed in Chap-

ter 6, perhaps also in action sequences (Koechlin & Jubault, 2006). Fitch (2014)

coined the term dendrophilia to describe this seemingly human proclivity to at-

tribute hierarchical tree-like structures to sensory patterns (dendrophilia means

“tree-loving”, in Greek). A key prediction of the dendrophilia hypothesis is that

this proclivity biases learning in situations where the properties of the learned

domain conform to hierarchical structure. Consistent with this prediction, the

results of experimental paradigms that rely on a poverty-of-the-stimulus logic

similar to the ambiguous train-test regime used in Chapter 2 (see also the sum-

mary of that chapter in Section 7.1) indicate that humans have a propensity to

induce rules that build hierarchical structures (formally known as supra-regular

languages) rather than ‘simpler’ rules based on regular expressions (like linear

adjacency; Culbertson & Adger, 2014; Ferrigno et al., 2020; McCoy et al., 2021;

Morgan & Ferreira, 2021). I put the word simpler between inverted commas be-

cause while regular languages are seen as simpler and less powerful than supra-

regular languages in formal language theory, what might seem simpler formally

need not be easier for the human brain. In fact, hierarchical generalization might
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be the more natural generalization over ambiguous sequences, as was suggested

more than 50 years ago by George Miller in his Project Grammarama:

“Constituent-structure languages [i.e., supra-regular languages] are more

natural, easier to cope with, than regular languages . . . The hierarchical

structure of strings generated by constituent-structure grammars is char-

acteristic of much other behavior that is sequentially organized; it seems

plausible that it would be easier for people than would the left-to-right or-

ganization characteristic of strings generated by regular grammars.”

Miller (1967, p. 140)

That hierarchical generalization is a natural inference for humans is also sug-

gested by a large literature on the acquisition of syntactic constructions, which

shows that children converge on structure-dependent generalizations despite the

evidence in line with linear generalizations (Crain & Nakayama, 1987; Fodor &

Crowther, 2002; Kam & Fodor, 2012; Lidz et al., 2003; Legate & Yang, 2002;

Shi et al., 2020). Regardless of whether the learning mechanisms underlying

these generalizations are domain-general or language-specific (see Ambridge et

al., 2014 and Crain et al., 2017 for two different perspectives), the observation

that humans consistently generalize hierarchically speaks in favor of the idea

that, for the human brain, linear generalizations are less natural.

If the foregoing discussion about the implicit representation of hierarchy in

the form of generative mental programs (Section 7.2) is on the right track, then

Fitch (2014)’s dendrophilia hypothesis might be reformulated as a proclivity to

infer from sensory patterns the hierarchical mental programs that generate those

patterns. This idea was recently proposed in a hypothesis about human singular-

ity by Dehaene et al. (2022), who argue that humans possess multiple internal

languages of thought (e.g., languages of mathematics, music, geometry), which

use similar computational principles but rely on different cortical networks. Each

language of thought contains compositional rules which are used to compress

sequential input data into hierarchically nested mental programs that are capa-

ble of reproducing those data. As the cognitive complexity of the compression

is determined by the size of the shortest possible mental program (its minimum

description length; see Section 7.2), this type of hierarchical input compression

enables efficient storage and control of information in memory. And as it is

applicable across several cognitive domains beyond language, including mathe-

matics, music, and geometry (Al Roumi et al., 2021; Amalric et al., 2017; Bor et

al., 2003; Chater & Vitányi, 2003; Mathy & Feldman, 2012; Planton et al., 2021;

Restle, 1970; Simon, 1972; Wang et al., 2019), it might indeed form the basis
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of humans’ proclivity to infer hierarchical structure from any type of sequential

input.

Dehaene et al. (2022)’s proposal raises fundamental questions at the heart of

cognitive (neuro)science. To what extent are the compositional rules that make

up different languages of thought the same? In their proposal, all languages

of thought follow similar computational principles (i.e., discrete symbols, com-

position, efficient compression), but that raises the question where differences

between cognitive domains come from. One possibility is that they arise from the

use of different compression schemes, which can detect different regularities. As

Dehaene et al. (2022) note, many domains (mathematics, music, geometry) can

generate symmetrical structures, but symmetry is typically avoided in syntactic

structure (Kayne, 1994; Moro, 1997). The regularities underlying symmetrical

and antisymmetrical patterns might be described more or less efficiently in dif-

ferent algorithms, and these differences could form the basis of representational

domain specificity. Moreover, if all languages of thought rely on the same fun-

damental computational principles, do different domains also share the princi-

ples that underlie empirical generalizations? In other words, should one expect

to find evidence of linguistic principles, such as locality constraints or binding

principles, in other cognitive domains? While these principles are commonly

formulated in domain-specific (syntactic) terms, the concepts underlying them

(i.e., locality and binding) are fundamentally domain-general. Being able to

explain architectural similarities and differences across cognitive domains us-

ing the same principles is one of the ultimate goals of an integrated theory of

cognitive (neuro)science.

7.4 Concluding remarks

The aim of this thesis was to shed light on the question how we use and rep-

resent hierarchical syntactic structure during language comprehension. I hope

to have shown that studying these syntactic triangles in the brain is a funda-

mentally interdisciplinary endeavor, which relies on insights and methodologies

from many domains, including linguistics, psychology, cognitive neuroscience,

and computer science. In five chapters, I investigated the role of hierarchical

structure in language use, showing that people are biased to interpret phrases

hierarchically (Chapter 2), and that such a hierarchical bias is unlikely to arise

in currently popular artificial neural network models (Chapters 2 and 3). Two

neuroscientific chapters showed that the tracking of hierarchical structure is
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driven by word-level properties (Chapter 4), and that the hierarchical structure

of Dutch sentences is largely built in a predictive manner (Chapter 5). While

Chapter 6 showed that the type of hierarchy found in language is fundamentally

different from that found in the structure underlying actions, hierarchical orga-

nization might be a defining feature of human cognition. By studying cognitive

domains in terms of their tendency to organize information hierarchically, we

reach a better understanding of one of the fundamental properties of the human

mind.
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Nederlandse samenvatting

Om een kralenketting te maken, moet je één voor één de kralen aan het touw rij-

gen. Het produceren van taal lijkt op het eerste gezicht een vergelijkbaar proces.

Bij het van maken zinnen, bijvoorbeeld, zetten we woorden één voor één achter

elkaar, alsof die woorden kralen aan een zinsketting zijn. Als deze vergelijking

klopt, dan betekent dit dat de structuur en betekenis van zinnen bepaald wor-

den door de volgorde waarin woorden achter elkaar worden gezet. In zekere

zin is dat ook wel zo – “man bijt hond” is immers niet hetzelfde als “hond bijt

man” – maar in een belangrijk opzicht is die gedachte te simpel. Van buitenaf

gezien zijn zinnen inderdaad lineair, maar onder die lineaire sequentie gaat een

bepaald type structuur schuil. Die structuur is hiërarchisch, wat inhoudt dat

woorden worden gecombineerd in constituenten, die vervolgens weer worden

gecombineerd met andere woorden in grotere constituenten, en zo door. Die

hiërarchische structuur wordt vaak weergegeven in zogenaamde boomstructu-

ren, waarvan er een aantal in dit proefschrift te vinden zijn (bijvoorbeeld op

bladzijde 14 in hoofdstuk 1).

Het ingewikkelde aan dit concept is dat hiërarchische structuur zowel onzicht-

baar als onhoorbaar is; het enige dat we zien of horen is die lineaire stroom aan

woorden. Maar dat de structuur er wel degelijk is, is te zien aan het feit dat

zinnen structureel ambigu kunnen zijn. Neem bijvoorbeeld de zin “de vrouw

bekijkt de man met de verrekijker”. Deze zin heeft twee betekenissen, terwijl

geen van de woorden ambigu is. De ambiguïteit volgt uit het feit dat de consti-

tuent “met de verrekijker” gelinkt kan worden aan zowel “de man” als “zag de

man”. In het eerste geval is er een man met een verrekijker die bekeken wordt

door een vrouw. De daarbij behorende hiërarchische structuur is [zag [de man

met de verrekijker]] (de woordgroepen die hier tussen vierkante haken staan,

zijn constituenten). En in het tweede geval gebruikt de vrouw de verrekijker

om de man te bekijken. De structuur die daarbij hoort is [[zag [de man]] met

de verrekijker]. Dit voorbeeld laat zien dat zinnen meer zijn dan kettingen van

woorden. Om taal te begrijpen, moeten we aan de hand van lineaire input een

hiërarchisch georganiseerde structuur opbouwen. Dit proefschrift gaat over de

vraag hoe we dat doen.
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In hoofdstuk 2 bekijk ik of hiërarchische structuur ook wordt opgebouwd in

taalgebruik. In recente studies is namelijk beweerd dat hiërarchie vaak gene-

geerd wordt bij het gebruiken van taal, en dat taalverwerking voornamelijk een

lineair en sequentieel proces is. Als het inderdaad zo is dat taalgebruik funda-

menteel lineair is, dan zou je verwachten dat mensen een voorkeur, of bias, heb-

ben voor de lineaire interpretatie van zinnen en constituenten. Dat wil zeggen,

als er constituenten zijn waarvoor de hiërarchische en de lineaire interpretatie

niet hetzelfde zijn, en mensen hebben een lineaire bias, dan zouden ze over

het algemeen voor de lineaire interpretatie moeten kiezen. Dit heb ik getest in

een gedragsexperiment waarin proefpersonen plaatjes te zien kregen met een rij

groene en blauwe ballen. Vervolgens werden ze gevraagd om de tweede blauwe

bal aan te wijzen. Een constituent zoals tweede blauwe bal is op twee manieren

te interpreteren. Als je het lineair interpreteert, dan zeggen zowel tweede als

blauwe iets over bal; het geheel verwijst dan naar iets dat een blauwe bal en

ook een tweede bal is, oftewel, de tweede bal, die blauw is. Bij de hiërarchische

interpretatie, daarentegen, worden blauwe en bal eerst samengevoegd. Omdat

blauwe en bal nu een eenheid vormen, zegt tweede niet iets over bal maar over

blauwe bal. Het geheel verwijst dan naar de tweede van de set blauwe ballen.

De cruciale manipulatie in dit experiment was dat de plaatjes zó waren opge-

bouwd dat de lineaire en de hiërarchische interpretatie niet naar dezelfde bal

verwezen. Om een voorbeeld te geven: stel je een rijtje ballen voor, waarbij de

eerste bal groen is (bal 1), de tweede blauw (bal 2), en de derde ook blauw (bal

3). Als mensen een lineaire bias hebben, zouden ze bal 2 moeten kiezen, omdat

deze bal blauw is en de tweede in de rij. Dit is echter niet de tweede van de set

blauwe ballen, omdat de eerste bal groen is. Dus, hebben mensen een bias voor

hiërarchie, dan kiezen ze voor bal 3. De resultaten van dit experiment kunnen

heel kort worden samengevat: alle proefpersonen interpreteerden tweede blauwe

bal hiërarchisch. Dat laat zien dat hiërarchie meer is dan alleen een manier om

taalstructuur te beschrijven. Hiërarchie heeft psychologische relevantie; het is

de manier waarop onze geest structuur geeft aan de taal die we om ons heen

zien en horen.

De tweede vraag uit hoofdstuk 2 is in hoeverre computationele taalmodellen

in staat zijn om dit gedrag te simuleren. Vandaag de dag zijn er enorm veel han-

dige computersystemen die taal gebruiken, van Google translate op je computer

tot autocomplete op je smartphone. Hoewel die systemen enorm succesvol zijn,

is het niet duidelijk of ze taal leren en verwerken op de manier waarop mensen

dat doen. In het tweede gedeelte van dit hoofdstuk bekijk ik of een artificieel

234



neuraal netwerk, een veelgebruikt computationeel taalmodel, tweede blauwe bal

hiërarchisch of lineair interpreteert. De resultaten laten zien dat het model beide

interpretaties kan leren, zolang het maar op de juiste manier getraind wordt. Als

het alleen maar lineaire antwoorden ziet tijdens de trainingsfase, dan geeft het

lineaire antwoorden tijdens de testfase. Ziet het gedurende de trainingsfase al-

leen hiërarchische antwoorden, dan leert het tweede blauwe bal hiërarchisch te

interpreteren. Maar als de experimentele trials gedurende de trainingsfase am-

bigu zijn (voor tweede blauw bal is dit het geval wanneer de eerste twee ballen

blauw zijn), dan leert het neurale netwerk alleen de lineaire interpretatie. Het

lijkt er dus op dat mensen een voorkeur hebben voor de hiërarchische inter-

pretatie, maar dat neurale netwerken taal bij voorkeur lineair interpreteren. Ze

kunnen wel leren om hiërarchische antwoorden te geven, maar daarvoor moeten

ze expliciet getraind worden met volledig niet-ambigue hiërarchische data.

Hoofdstuk 3 bouwt voort op het idee dat veel huidige artificiële neurale net-

werken geen goede modellen van het menselijk taalvermogen zijn. Om dit stand-

punt te ondersteunen geef ik twee primaire redenen. Aan de ene kant zijn de

netwerken vaak niet sterk genoeg, omdat er taalkundige afhankelijkheden zijn

die de modellen niet gemakkelijk kunnen leren. Een voorbeeld hiervan zijn co-

referentiële relaties, die gaan over zinsstructuren waarin persoonsnamen en per-

soonlijk voornaamwoorden wél en niet naar elkaar kunnen verwijzen (bijvoor-

beeld “Evy denkt dat zij ...” vs. “Zij denkt dat Evy ...”). Aan de andere kant

zijn ze juist té sterk, omdat ze in staat zijn onmogelijke talen te leren. Dit zijn

artificiële talen met regels die niet voorkomen in natuurlijke talen en door men-

sen dus nooit geleerd worden. Een voorbeeld hiervan zijn artificiële talen met

lineaire regels, die verwijzen naar de ordinale positie van woorden in de zin, in

plaats van hiërarchische regels. In dit hoofdstuk bespreek ik twee aanpassingen

aan computationele taalmodellen die deze problemen zouden kunnen verhel-

pen. Aan de ene kant is het van belang dat er meer nadruk wordt gelegd op de

betekenis van taal, en niet slechts op de vorm. Veel computationele taalmodellen

worden namelijk getraind aan de hand van een corpus van grammaticale zinnen,

waardoor ze dus alleen maar weten wat de vorm van taal is. Het is daardoor

erg ingewikkeld, zo niet onmogelijk, om betekenis te leren. Aan de andere kant

moeten de modellen beperkt worden, zodat ze onmogelijke talen niet makkelijk

kunnen leren. Dit kan bijvoorbeeld gedaan worden door een hiërarchische bias

of constraint in het model in te bouwen, zodat het een voorkeur krijgt voor hi-

ërarchische in plaats van lineaire regels. Aan de hand van deze aanpassingen
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wordt het mogelijk om computationele modellen te gebruiken om het menselijk

taalvermogen beter te begrijpen.

Nadat ik heb laten zien dat hiërarchische structuur een belangrijke rol speelt

in taalgebruik, richt ik me in hoofdstukken 4 en 5 op de verwerking van hië-

rarchische structuur in het brein. Hoofdstuk 4 bouwt voort op voorgaand on-

derzoek dat heeft laten zien dat, wanneer we naar gesproken zinnen luisteren,

onze elektrische hersenactiviteit de structuur van die zinnen volgt. Dit proces

wordt cortical tracking van syntactische structuur genoemd. In dit hoofdstuk heb

ik onderzocht welke factoren van invloed zijn op dit trackingproces. Proefper-

sonen luisterden naar gesproken stimuli die varieerden in structuur en beteke-

nis. Tegelijkertijd werd hun elektrische hersenactiviteit gemeten aan de hand

van elektro-encefalografie (EEG). De resultaten laten zien dat de structuur van

gesproken zinnen sterker gevolgd wordt wanneer die zinnen bestaan uit echte

woorden in plaats van pseudowoorden. Het trackingproces wordt echter niet

beïnvloed door de betekenis van zinnen: de structuur van zinnen werd even

sterk gevolgd in reguliere zinnen als in zinnen met een afwijkende betekenis.

Dit betekent dat, wanneer we tijdens taalverwerking hiërarchische structuur op-

bouwen, onze hersenen gevoelig zijn voor de elementen waaruit deze structuur

is opgebouwd. Tegelijkertijd laten de resultaten zien dat onze hersenen tijdens

dit proces niet beïnvloed worden door de uiteindelijke betekenis van de struc-

tuur. Of we nou een reguliere zin verwerken of een afwijkende zin, zoals “een

vierkant is een driehoek”, het hersenproces dat structuur opbouwt wordt op de-

zelfde manier uitgevoerd.

In hoofdstuk 5 maak ik gebruik van magneto-encefalografie (MEG) om verder

te onderzoeken hoe die hiërarchische structuur in de hersenen wordt opgebouwd

tijdens taalverwerking. Taalverwerking is een incrementeel proces, wat betekent

dat mensen continu proberen elk nieuw woord te integreren in de hiërarchische

structuur van de zin. Ze wachten dus niet tot het laatste woord voordat ze de

zin interpreteren. Maar zelfs als we uitgaan van incrementele verwerking is het

nog steeds mogelijk dat mensen (waarschijnlijk onbewust) verschillende verwer-

kingsstrategieën hanteren. Ze kunnen bijvoorbeeld proberen de zinsstructuur te

voorspellen. Een andere mogelijkheid is dat ze juist een afwachtende houding

aannemen, waarbij ze een woord pas integreren in de zinsstructuur wanneer ze

zeker weten wat de juiste analyse is. Om dit te onderzoeken, liet ik proefperso-

nen naar een luisterboek luisteren terwijl hun hersenactiviteit werd gemeten met

MEG. Vervolgens berekende ik voor elk woord in het luisterboek twee waarden:

de ene waarde was gekoppeld aan de voorspellende verwerkingsstrategie, de an-
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dere aan de integrerende strategie. De voorspellende waarde voor een woord

geeft aan hoeveel structuur al voorspeld kan worden op het moment dat dat

woord gepresenteerd wordt. De integrerende waarde voor hetzelfde woord geeft

aan hoeveel structuur geïntegreerd kan worden op dat moment. Door te kijken

naar de correlaties tussen deze waarden en de hersenactiviteit die door die woor-

den wordt opgewekt, is het mogelijk om te bepalen of mensen een voorspellende

of een integrerende verwerkingsstrategie hanteren. De resultaten laten zien dat

de voorspellende waarden sterker correleren met hersenactiviteit (voornamelijk

in de frontale en temporale kwab in de linkerhersenhelft), wat laat zien dat men-

sen continu proberen te voorspellen wat de zinsstructuur van de huidige zin gaat

zijn. Een belangrijke bevinding van deze studie is dat de resultaten niet geheel

overeenkomen met de resultaten van vergelijkbare studies die gedaan zijn in het

Engels, wat suggereert dat het type verwerkingsstrategie dat mensen hanteren

afhangt van hun moedertaal en/of de taal die ze op dat moment verwerken.

De resultaten benadrukken daarom het belang van cross-linguïstisch onderzoek

waarbij gekeken wordt naar de verwerking van talen anders dan het Engels. Op

die manier is het mogelijk om te bepalen of taalverwerking een universeel proces

is, of dat er juist taalspecifieke processen een rol spelen.

Tot slot vergelijk ik in hoofdstuk 6 de structuur van taal met die van acties.

In de literatuur wordt vaak beweerd dat taal en acties op elkaar lijken omdat

ook acties hiërarchisch georganiseerd zijn. In een sequentie van opeenvolgende

handelingen (bijvoorbeeld alle handelingen die gedaan worden bij het zetten

van een kopje koffie) kunnen alle bij elkaar horende handelingen gegroepeerd

worden in zogenaamde actieconstituenten (vergelijkbaar met constituenten die

uit woorden bestaan), die vervolgens weer gecombineerd worden met andere

handelingen om nog grotere actieconstituenten te maken. Zo ontstaat er een

hiërarchische structuur die lijkt op het type boomstructuur dat we kennen uit de

taalwetenschap. In dit hoofdstuk laat ik zien dat de structuur van acties andere

eigenschappen heeft dan de structuur van zinnen. Het belangrijkste verschil is

dat taalstructuur sterk compositioneel is, terwijl de structuur van acties zwak com-

positioneel lijkt te zijn. Dat wil zeggen dat het doel van een reeks handelingen

slechts afhankelijk is van de volgorde waarin de handelingen worden uitgevoerd

(e.g., de koffie wordt in de machine gedaan voordat de machine wordt aangezet).

De hiërarchische structuur van acties heeft er geen invloed op of het doel van de

actie bereikt wordt. Met andere woorden, het maakt niet uit hoe opeenvolgende

handelingen hiërarchisch gegroepeerd worden; zolang de volgorde van de han-

delingen juist is, wordt het doel van de actie bereikt. Dit is duidelijk anders dan
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in taal, waarin de hiërarchische structuur van zinnen juist wel van invloed is op

de betekenis. Denk bijvoorbeeld aan de structurele ambiguïteit van “de vrouw

bekijkt de man met de verrekijker”. Dat de structuur van taal en acties funda-

menteel verschillend is, suggereert dat ze op een andere manier in de hersenen

worden gerepresenteerd.

Samengevat, in dit proefschrift heb ik de rol van hiërarchische structuur in

taalgebruik onderzocht. Ik heb laten zien dat mensen een voorkeur hebben om

taal hiërarchisch te interpreteren, en dat zo’n hiërarchische bias waarschijnlijk

niet op een natuurlijke manier zal ontstaan in huidige artificiële neurale net-

werken. In twee neurowetenschappelijke hoofdstukken laat ik vervolgens zien

hoe die hiërarchische structuur in de hersenen wordt opgebouwd. Tot slot laat

ik zien dat die structuur taalspecifiek lijkt te zijn. Andere cognitieve systemen

die hiërarchisch georganiseerd zijn hebben fundamenteel andere eigenschap-

pen. De hoofdstukken in dit proefschrift laten dus zien dat taalverwerking meer

is dan het lineair verwerken van de stroom aan woorden die binnenkomt. Met

die woorden wordt een hiërarchische structuur opgebouwd die taalspecifieke

eigenschappen heeft en die op een speciale manier in het brein wordt gerepre-

senteerd.
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Data availability

Three chapters in this thesis contain experimental data. The behavioral data of

Chapter 2 and the EEG data of Chapter 4 were acquired at the Max Planck In-

stitute for Psycholinguistics. Both chapters have been published and their data

have been archived at the MPI for Psycholinguistics Archive. Below, I provide the

link to the corresponding collections in the MPI Archive. The MEG data of Chap-

ter 5 were acquired at the Donders Centre for Cognitive Neuroimaging. These

data are part of a larger project, for which data collection is not yet complete.

The data will be archived at the Donders Repository when all data have been

acquired. Below, I provide the Data Acquisition Collection (DAC) identifier for

this project.

Chapter 2

Code and data of the behavioral experiments are available at: https://hdl
.handle.net/1839/044f49c1-ef24-4e20-a1f7-0a5592ed9b19
Code and data of the computational simulations are available at: https://
github.com/CasCoopmans/second_blue_ball

Chapter 4

Code and data of the EEG experiment are available at: https://hdl.handle
.net/1839/aea66e37-587d-426f-859c-59e15d9ca525

Chapter 5

DAC: di.dccn.DAC_3027007.01_451
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