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Abstract
The cleavage of the N2 triple bond on the Fe(111) surface is believed to be the rate limiting step of
the famed Haber-Bosch ammonia catalysis. Using a combination of machine learning potentials and
advanced simulation techniques, we study this important catalytic step as a function of temperature.
We find that at low temperatures our results agree with the well-established picture. However, if we
increase the temperature to reach operando conditions the surface undergoes a global dynamical change
and the step structure of the Fe(111) surface is destroyed. The catalytic sites, traditionally associated
with the Fe(111) surface appear and disappear continuously. Our simulations illuminate the danger of
extrapolating low-temperature results to operando conditions and indicate that the catalytic activity can
only be inferred from calculations that take dynamics fully into account. More than that, they show that
it is the transition to this highly fluctuating interfacial environment that drives the catalytic process.

The study of industrial catalysis is fraught with difficulties
since it takes place in extreme conditions of temperature
and pressure. So extreme in fact, that operando experiments
become difficult, if not impossible. Experimental investi-
gations have been limited to studying temperatures and
pressures far below the industrial ones. Theoretical studies
have also similarly assumed idealized conditions, possibly
treating the dynamic effect as a perturbation. In the lack
of other information, the operando behavior had to be in-
ferred from the low-temperature low-pressure results. Only
recently new technologies are providing access to in situ and
operando characterization of catalytic materials, revealing
the impact that such conditions have on their structure
and corresponding activity [1]. Inspired by these findings,
in this paper, we argue that at operando conditions ma-
jor changes in the surface morphology and dynamics occur
also at the atomic level rendering the extrapolation from
low-temperature results of limited relevance.
To make this apparent, we study the dissociative chemisorp-
tion of N2 on the Fe(111) surface. This is believed to be the

rate-limiting step in the Haber-Bosch process for the pro-
duction of ammonia and has been intensively studied. This
is not surprising since ∼30% of the world’s food is grown

Figure 1: N2 adsorption sites on Fe(111) from T=0 K
calculations, top and side view. Iron atoms are colored as a
function of the perpendicular z position.
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using ammonia-derived fertilizers [2]. In addition, interest in
ammonia synthesis has recently been rekindled in connection
with the development of a hydrogen-based economy, as it
could play an important role in storing hydrogen [3]. We
refer the reader to the recent reviews and references therein
for a complete overview of the process [4–6].
However, more than 100 years after its discovery, a full
understanding of this catalytic process is still lacking. The
Fe(111) crystal face is believed to be the most active, and
as such it has been thoroughly investigated [7–23]. Ertl
and coworkers [9, 11] have measured the variation of the
absorbed N2 bond vibration frequency. Their conclusion
was that the absorbed molecules are oriented either perpen-
dicular or parallel to the surface. This was supported by the
theoretical work of Itoh et. al. [24], which showed that trans-
ferring charge from the 3d orbitals of Fe to the anti-bonding
orbitals π∗ of N2 corresponds to a weakening of N-N bond
different for the two geometries. This interpretation was
later confirmed by Freund et. al. [14]. Later, Norskov and
coworkers[17] performed static DFT calculations, confirming
the scenario suggested by Ertl, but enriching it with new
atomistic details. They distinguished between two different
vertically absorbed N2 sites (γ and δ) depending on whether
the molecule sits on top of a first or second layer atom
(Fig. 1). Similarly, there are two possible absorption sites
when the molecule lies horizontally. In one, N2 is in a bridge
position between first layer atoms (α), while in the other
it sits in a hollow position on top of an atom of the third
layer(α′). The latter state is particularly relevant since it is
believed to be the precursor to dissociation. According to
Norskov such a state can be accessed either directly from
the gas phase or via the sequence γ → δ → α → α′. In the
α′ site the molecule is in contact with seven-fold coordinated
iron atoms (C7) that can more easily donate electrons to
the N2 molecules, thus weakening the N-N triple bond. The
higher activity of the (111) surface has been attributed to
the step structure that stabilizes the α structure and the
high density and easy accessibility of C7 atoms in the open
Fe(111) surface [25, 26]. Later on, we shall refer to the set
of Fe atoms that surrounds the N2 molecule in α′ as the
χ7 cavity (represented below in the inset of Fig. 4). There
are good reasons to look at this set of atoms as a catalytic
site. Indeed, when the N2 molecule moves towards the α′

position the amount of charge transferred from the iron sur-
face to the nitrogen molecule increases. Furthermore once
inside the cavity, it can rotate between different equivalent
orientations until the electronic orbitals are properly aligned
for the reaction to take place.
Thanks to these classical experiments and calculations, it
can be said that the low temperature behavior of N2 on the
Fe(111) surface is rather well understood. Unfortunately,
neither experiments nor calculations are available in the
operando range of temperature and pressures, i.e. T=700-
850 K and P=100-200 bar. In this paper, we use modern
molecular dynamical simulation methods to study the N2
adsorption and cleavage as a function of temperature from
the low ones to the operando regime. In so doing, we fully
include entropy and dynamics effects.
A number of methodological innovations have made possible
simulating such a challenging process. The first hurdle is
that to study a catalytic process in which chemical bonds

are broken and formed, the use of an ab initio approach
is mandatory. However, due to their high computational
cost ab initio simulations can only be carried out in small
systems and for short simulation times. Realistic modeling
instead, requires studying larger systems for longer times. A
satisfactory compromise between accuracy and efficiency can
be achieved if one follows the pioneering work of Behler and
Parrinello[27] and trains a machine learning potential (MLP)
to reproduce a suitably chosen set of quantum mechanical
calculations. By combining these machine learning tech-
niques with advanced sampling methods, this approach has
been shown to reproduce well the potential energy surface
of different reactive systems [28–37].
Although the use of ML potentials reduces the cost of
ab initio-quality simulations by orders of magnitudes, these
calculations are still too expensive and it is not possible
to explore the time scales over which these reactive pro-
cesses occur. However, combining them with state-of-the-
art enhanced sampling methodologies allows the time scale
problem to be circumvented. Here, we use the recently de-
veloped On-the-fly Probability Enhanced Sampling (OPES)
method [38] which is an evolution of the widely used meta-
dynamics technique [39, 40]. Once the simulations were
completed, due to the observed high-temperature complex
behavior new analysis methods were required to understand
and describe the catalytic behavior. In particular, we moni-
tor the charge transferred from the metal to the molecule.
To this effect, we trained a second machine learning model
that is able to predict charges without the need for expensive
quantum mechanical calculations.
Armed with these tools, we study the N2 adsorption and
decomposition on the Fe(111) surface as a function of tem-
perature. In particular, we find two contrasting behaviors.
At low temperatures, the reaction proceeds as described in
the literature. However, at higher temperatures, the surface
atoms become highly mobile and the step structure of the
surface is destroyed. Still, χ7 cavities can be found but
their number is reduced and have a finite lifetime, being
continuously formed and broken. In addition, new catalytic
sites are also formed. This alters both the adsorption free
energy profile and the way the reaction proceeds. As a
result, the high-temperature behavior cannot be inferred
from the low-temperature one and the reaction proceeds in
a way similar to that of a homogeneous catalytic process
in which the mobile reagent reacts when it encounters the
fluctuation of the environment that catalyzes the process.
This highly mobile behavior is at odds with the standard
picture that associates reactivity with well-defined static
atomic arrangements.

Results

A reliable potential to study N2 on Fe(111)

The first step of this work is the construction of a potential
able to describe the properties of iron surfaces and their
interaction with N2 molecules during the adsorption and
dissociation processes. To this effect, we trained a neural
network-based potential on a set of single-point calculations
so as to reproduce at best DFT energies and forces. For this
procedure to be successful a careful choice of the training
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Figure 2: Fe(111) morphology: room temperature vs in
operando condition. Top view of final structures obtained from
20 ns molecular dynamics simulations of the Fe(111) at T=300K
(left) and T=700K (right). Atoms are colored as a function of the
Z position. Bright regions indicate adatoms, while dark regions
the formation of vacancies on the surface.

data set is needed, especially to model correctly the reactive
pathways. Following our previous experience in modeling
rare events with ML potentials [28, 31, 35], we collected
configurations from a combination of enhanced and stan-
dard ab initio MD simulations followed by an active learning
procedure (see Methods). A total of about 30k single-point
DFT calculations were used in the training. Using the Deep
Potential Molecular Dynamics [41, 42] scheme our potential
obtains a mean absolute error (MAE) on energies of 0.60
meV/atom and on forces of 31 meV/A, while the Root Mean
Squared Error (RMSE) is 0.81 meV/atom and 40 meV/A for
energies and forces, respectively. In the Supporting Informa-
tion (SI) we report the detailed composition of the dataset
(Table S1) and extensive validation of the ML potential
(Figs. S1-S3).

Temperature dependence of Fe surface morphology

Before studying the N2 adsorption and the successive dis-
sociation we find instructive to study the behavior of the
pristine Fe(111) surface as a function of temperature. This
study offers a number of surprises as evident from Fig. 2
where we compare two surface snapshots taken at T=300
K and T=700 K after 20 ns of MD simulations. The lower
temperature structure is hardly distinguishable from the
equilibrium one, instead, the higher temperature structure
exhibits a considerable amount of disorder. The surface is
no longer flat, the formation of hills and holes is clearly
visible, and the ordered step structure of the (111) surface
is lost. This reflects a very dynamic behavior as will become
clear in the following.
We turn this initial impression into a quantitative study
and follow how the surface changes as a function of temper-
ature. In Fig. 3a we plot the temperature dependence of
the density of surface exposed atoms along the (111) direc-
tion. In the low-temperature regime we observe only the
expected thermal broadening. However, at temperatures
above 500 K an adlayer is formed and the number of atoms
in the first layer is depleted. This signals a very different
behavior between a low-temperature regime T < 500 K and
a higher-temperature one T > 600 K. This is reflected in

the behavior of the surface roughness (Fig. 3b). The change
in these two properties is accompanied by a different dy-
namical behavior as signaled by the increase in the diffusion
coefficient of surface atoms. An analysis of the dynamics
shows that the atoms in the first layers diffuse via jumps
between different crystallographic positions (Fig. S4). Thus,
in a grazing incidence diffraction experiment, Bragg peaks
would still be measured, but the enhanced atomic motions
would lead to a reduction of the Bragg peak intensities and
in a broad diffuse background similar to what is observed
in superionic conductors. At T=500 K the surface begins
to disorder but since the diffusion coefficient is still low its
disorder is basically static. However, at operando conditions
surface dynamics is fully developed reaching liquid-like val-
ues. However revealing, the plots in Fig. 3 are unable to
fully reflect the complex dynamics that takes place in the
operando range of temperatures, and the reader is invited to
vision the movies illustrating the dynamics (supplementary
material). The surface looks like a stormy sea with local
structures continuously being formed and broken.
So far our description has been based on standard surface
physics analysis tools. However, our main interest is un-
derstanding how the dynamics influence surface reactivity.
Thus, we study the temperature effect on the geometry of
the cavities χ7, which we recall are associated with the pre-
cursor α′ state. To this effect, we use the similarity measure
S(χ, χ7) between the atomic environments {χ} of surface
atoms and the χ7 environment as defined in the methods
section. By counting the number of surface atoms with
an high similarity, we can identify the potentially active
sites. From Fig. 4a it can be seen that at the operando
temperatures the number of active sites decreases by about
one-third as compared to the low temperature one. However,
looking at the number of sites only gives a partial view of
the phenomenon. To fully capture the behavior of the χ7
sites we need to measure also their lifetime (Fig. 4b). In
fact, the active sites are continuously created and destroyed
with a lifetime distribution that is far from being Gaussian.
As a consequence, the average values of the lifetime are not
at all representative of the typical dynamics of χ7 at high
temperatures. In fact, the average lifetime is on the order
of the tens of picoseconds, but the distributions have a tail
that reaches the nanoseconds regime. Thus the reaction is
still allowed to take place.

Nitrogen adsorption and dissociation mechanism

We now study the interaction of an incoming nitrogen
molecule with the surface, its adsorption and subsequent
splitting. To this effect we perform a set of OPES simula-
tions enhancing the fluctuations of two distinct collective
variables. One is the nitrogen-nitrogen interatomic distance
d(N, N), which is necessarily part of the reaction coordinate.
The other is the coordination number between Fe and N
atoms, which is meant to account for the geometric arrange-
ment of the molecule relative to the surface, i.e. whether it
is adsorbed and if so in which geometrical arrangement (see
Methods).
While at low temperatures the adsorption geometries are
easily identified (see Fig. 1), at high temperatures the con-
tinuous movement of surface atoms makes it difficult to
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Figure 3: Fe(111) morphology and dynamics analysis as a function of temperature. a) Atomic layer distribution of
atoms belonging to the surface as a function of z. The emergence of new peaks at high temperatures denotes a roughening of the
surface with the formation of adatoms (rightmost peak at 0.9 Å) and vacancies (leftmost peak at -2.2Å). The distribution is shown
only for surface atoms dynamically identified at each time step by the Alpha-Shape method. b) Mean and standard deviation of
the surface roughness measured as the standard deviation of the surface atoms’ height. c) Logarithm of the diffusion coefficient of
surface atoms as a function of inverse temperature (main panel) and diffusion vs temperature (inset).

find a variable able to identify the N2 pose. Previous ex-
perience [43] together with the findings of Itoh et. al. [24]
have shown that the electronic structure is a very sensitive
indicator of the atomic environment. For this reason, we
monitor the charge q transferred from the metallic surface to
the molecule. Partial charges are measured using the Bader
electronic density decomposition [44, 45] and computed as
the deviation of the Bader charges from their formal value.
To be able to compute them in large systems, we trained a

Figure 4: Number and lifetime of χ7 active sites. (top)
Average and standard deviation of the number of χ7 sites exposed
on the surface with respect to ideal surface. Inset: construction of
reference environment χ7 from the α′ adsorption site. (bottom)
Violin plot with the distribution of lifetimes of χ7 sites. Line
markers identify the average lifetime, while the width describes
the distribution of the points.

neural network on a set of DFT calculations (see Methods)
to predict partial charges given only the atomic positions.
The resulting free energy surface (FES) is plotted in Fig. 5a
for two contrasting temperatures as a function of the N-
N distance d and the sum of the N charges q = q(N2).
Let us begin by analyzing the low-temperature one, where
we clearly find metastable states that are characterized by
distinct N2 charges. In the gas phase we have q = 0, but as
soon as the molecule interacts with the surface the charge
changes. Indeed, it goes from a low value (q ≈ 0.3) when
the molecule is adsorbed perpendicular to the surface, be it
δ-like or in a γ-like vertical arrangement, to a medium value
(q ≈ 1) which corresponds to a α-like horizontal positions,
and finally to the to a very high value (q ≈ 1.6) where one
can recognize the α’ precursor state. This becomes apparent
if we look at the T=300 K geometries in Fig. 5c, where atoms
are colored on the basis of their charge. This allows us to
monitor the underlying chemical changes. In particular, we
observe how the charge transfer is asymmetrical between
the two N atoms in the vertical states and symmetrical in
the horizontal ones. The vertical adsorption states identified
by calculations at T=0 K (γ and δ) are characterized by
the same charge transfer. To resolve them, it is necessary
to project the free energy along the distance of N2 from
the surface (Fig. S6). There we see how, over the entire
temperature range, the free energy barrier between the two
is so small that they can be considered as part of the same
metastable state.
From the free energies, we can state that the only possible
path to reach the precursor α′ state is to pass first a ver-
tical position and then a horizontal one. Furthermore, we
observe that the increase in charge transfer is accompanied
by a weakening of the N-N bond, as discussed by Ertl and
collaborators [7, 24]. If we focus on the dissociation barrier,
we see that beyond the high charge basins, a narrow tube
leads the transition state which is located at values q ≈ 2
and r ≈ 1.7 which are highly consistent with the chemistry
of the process.
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If we analyze the free energy surface at high-temperature
we find that the shape is about the same, with similar
metastable states as a function of charge and distance, albeit
less defined. However, there is no longer a correspondence
between free energy minima and classical adsorption states.
As can be seen from the snapshots of T=700 K geometries
shown in Fig. 5c, the metastable states now correspond to
an ensemble of mostly disordered and defected structures.
Consequently, if we set out to enumerate all the minima
of potential energy we would find countless geometrically
distinct states. Using the charge q as a collective variable
allows us to group all geometrically different configurations
according to their ability to weaken the N-N bond, which is
the driving force of the process.
We have computed similar two-dimensional free energy plots
in the range of temperature from 300 to 800 K (Fig. S7). To
make a detailed comparison between all these free energies
it is better to make a one-dimensional projection along the
minimum free energy paths. Remarkably these pathways
can all be superimposed in the (d, q) plane (Fig. S8) in
spite of the different underlying dynamical behavior. In
Fig. 5b all these free energy curves are aligned to the α
state minimum and we see once again a strong difference
in behavior between low and high temperature (see also
Fig. S9). The low-temperature behavior is essentially the
one predicted by Norskov and collaborators modulo the
merging together of γ and δ states. Notably, the free energy
barrier between the α state and the dissociated one is close
to the one obtained from static DFT calculations [17, 21, 23,
46]. However, if we raise the temperature above 500 K things
change dramatically, and α’ is now but an imperceptible
shoulder. This is an important deviation since the α′ state
is considered the precursor state to dissociation. This is
mostly due to the temperature-induced disruption of the χ7
cavities discussed earlier. As a consequence, the free energy
barrier dividing the N2 states from 2N becomes larger in
the high-temperature regime (Fig. S9).
To deepen our analysis on the fate of the α′ site we com-
puted the distribution of the similarity S(χN2 , χ7) between
the environment of the Fe atom that sits below the N2
(see Methods) and the reactive χ7 reference one. We re-
stricted this analysis to the high-charge (precursor) region
by selecting only configurations with q > 1.35 e. At room
temperature the distribution peaks at values close to 1,
which means that N2 is effectively adsorbed inside the χ7
environment (i.e. α′ state), see Fig. 6 top panel. In con-
trast, at T=700 K, the distribution peaks at smaller values,
not compatible with the traditional site, and only a small
shoulder is associated with the χ7 site. Thus, at T=700 K
the probability of being adsorbed in the χ7 cavity is highly
suppressed relative to room temperature. In particular, this
reduction is greater than the decrease in the number of
active sites alone reported in Fig. 4. This reinforces our
argument that at high temperature we cannot rely on the
correspondence with local minima of potential energy at
T=0 K, as surface dynamics leads to dramatic distortion of
adsorption configurations.
We then study the nature of the states that pertain to the
transition region for N2 dissociation. For each tempera-
ture, we performed a committor analysis on a subset of
configurations extracted around the maxima of the mini-

T= 300 K

T= 700 K

Low Medium High

Charges color legend
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Charge 
transfer
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γ/δ α α'

γ/δ

α
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Figure 5: Adsorption and decomposition mechanism.
(a) Free energy as a function of N-N distance and the N2 partial
charge. Local minima represent the metastable states, and white
dashed lines denote the minimum free energy pathways in this
plane. (b) Free energy calculated along the minimum free energy
pathways in the d − q space, from the gas phase (N

(g)
2 ) to the

adsorption states to the dissociated state (2N). The free energy
at each temperature is rescaled by the thermal energy kBT , where
kB is the Boltzmann constant. See Fig. S9 for the free energy in
energy units. Free energies are shown only up to an N-N distance
of 2 Å, from which a harmonic restraint is applied. (c) Snapshots
of representative geometries of the adsorption states based on the
amount of charge transferred for T=300K and T=700K. Atoms
are colored according to charges predicted by the neural network
model.
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mum free energy pathways (see Methods). This allows for
identifying an ensemble of transition state configurations,
defined as atomic realizations for which the probability to
go into the reactant or in the product states is similar. If
we plot the histogram of these configurations as a function
of q the resulting distribution is centered around the q ≈ 2
value at all temperatures (see Fig. S10). This is a reassur-
ingly meaningful value since the transfer of two electrons is
needed to break the N2 triple bond. In the bottom panel of
Fig. 6 we report the distribution of transition states’ similar-
ity with the χ7 arrangement for T=300 and T=700 K. At
low temperature the reactive configurations are only of the
χ7 type while at the higher temperature a number of new
atomic arrangements capable of transferring two electrons
to the dissociating molecule are activated by the dynamical
roughening of the surface. A sample of such nonstandard
active sites can be found in the SI (Fig. S11). However, even
in this second regime the distribution remains peaked at a
value compatible with the χ7 state, unlike in the analysis of
configurations characterized by high charge. This tells us
that although the dynamics of surface atoms significantly
suppresses the α′ state, the formation of the cavity remains
crucial for nitrogen decomposition. We can describe it as the
eye of the needle through which the N2 must pass to break
the bond. However, the manner in which the molecule ar-
rives in this state is strongly influenced by surface dynamics,
and cannot be properly accounted for by approaches based
on static calculations at T=0 K or perturbations thereof.

Conclusions

Dynamics has a disruptive effect on the morphology of the Fe
(111) surface, with great consequences on the adsorption and
dissociation of nitrogen molecules. This results in a drastic
change in the behavior of the catalyst when going from low
to high temperature, a change that takes place in a highly
nonlinear way. This shows the danger of extrapolating high-
temperature behavior from low-temperature experiments or
theories.
More generally, our work puts into question a static ap-
proach to catalysis, especially the industrial one. It is not a
static atomic arrangement that induces catalysis, but cat-
alytic sites are continuously formed and disrupted. While
this may seem detrimental at first, the structural dynam-
ics of the surface could have an overall beneficial effect on
catalytic performance. For the specific case of ammonia
synthesis, the transient existence of the dissociation site for
nitrogen might prevent the resulting reactive species to form
a stable nitride [47] thus poisoning the catalyst. Likewise,
any co-adsorbate that hinders the dynamic rearrangement
of the iron surface, will act as potent poison; the extreme
sensitivity of the catalysts [48] against oxygen, water, or
sulphur species reducing the performance at concentrations
way below the onset of phase formation as oxide or sulphide
find so their functional explanation. The detailed analy-
sis of the charge re-distribution between iron and nitrogen
presented here defines a successful ammonia synthesis cata-
lyst to be bi-functional. As potent as the high availability
of negative charge is for the reductive dissociation of di-
nitrogen, as much a different active site will be needed to
allow bond formation between the resulting nitrido-ion with
the hydride form of activated hydrogen being omnipresent

Figure 6: High charge vs transition state configurations.
Distribution of the similarity between the neighborhood of the Fe
atom on which N2 is located and the χ7 state for highly charged
configurations (top) and for those in the transition state ensemble
(bottom). They are computed with a Gaussian kernel density
estimation, reweighted to reflect the equilibrium distribution (see
Methods). All curves are normalized such that their integral
sums to 1. Representative samples of the two peaks of the tran-
sition states (bottom figure) at T=700K are reported in the SI
(Fig. S11).

on the catalyst surface. This request may explain part [49]
of the crucial role of “promoters” that was found [50] ex-
perimentally. These promoters may function by forming
nitride-metallate [51] intermediates allowing hydrogenation
by partly anionic hydrogen species. The present work forms
an excellent basis for elucidating optimal configurations of
iron and its co-catalysts operating under realistic pressures
and temperatures with gases of realistic chemical compo-
sition and opens a way towards circumventing the scaling
relation barrier [52] limiting the performance of metal cata-
lysts for ammonia synthesis.
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Methods

DFT simulations. The database needed to train the ML
potential consists of a set of ab initio molecular dynam-
ics (AIMD) trajectories, as well as single-point calculations
of configurations generated by the ML potential during
the active learning procedure (see below). In both cases,
simulations are performed using the PWscf code of Quan-
tum ESPRESSO [53–55] supplemented by the PLUMED
plugin [56] which is an open-source, community-developed li-
brary [57] for enhanced sampling calculations. The PBE [58]
exchange-correlation functional is used. Ultrasoft RRKJ
pseudopotentials [59] replace explicit core-valence electron
interactions, while electron density and wavefunctions are
expanded in plane waves with energy cutoffs of 640 and 80
Ry respectively. Occupation is treated by the cold smearing
technique of Marzari et al. [60] with a Gaussian spreading of
0.04 Ry. Spin polarization is included to correctly describe
the magnetic properties of iron. Convergence against cut-
off energy, Monkhost–Pack sampling, and occupation was
tested and the setup described was chosen as a compromise
between feasibility and accuracy. Simulations were carried
out with a time step of 1.0 fs in a constant volume and
temperature (NVT) ensemble using the stochastic velocity
rescaling thermostat [61]. In order to span a larger portion
of the configurational space we simulated the systems at
different temperatures ranging between 600 and 800 K. Slab
models with 5,8,and 12 atomic layers (respectively 45, 72
and 108 atoms) are built, and a vacuum layer of at least 10
Å is set in the z-direction. The first two lowest Fe layers are
kept fixed during optimization and molecular dynamics cal-
culations. The Brillouin zone was sampled using a 2 × 2 × 1
Monkhost–Pack k-point grid [62]. The same setup is adopted
to analyze the cleavage of the N2 bond on the Fe(111) sur-
face. Enhanced sampling simulations are employed to speed
up ab initio simulations and include configurations of ad-
sorption/desorption events and especially of the cleavage of
the N2 bond (more details below).
Machine learning potential. We used the Deep Potential
Molecular Dynamics Smooth Edition scheme [41, 42] as
implemented in the DeePMD-kit software [63]. The energy
is decomposed as a sum of atomic contributions that depend
on local environments within a cut-off range. Two different
networks are used, one for embedding the atomic positions
into symmetry invariant descriptors and the other for the
regression task. The embedding network has three hidden
layers and [30, 60, 120] nodes per layer, with an embedding
matrix size of 20. The fitting network has three hidden layers
and [240,240,240] nodes per layer. The cutoff radius was set
to 6.0 Å with a switching function that decays from 5.7 Å
to ensure continuity. The learning rate decays from 0.001
to 3.5 · 10−8 with a decay constant of 4 epochs. The loss
function used is a weighted root mean square error (RMSE)
on energy and forces, with prefactors varying during training
from 0.02 to 1 for energy and from 1000 to 1 for forces. The
potentials used during the active learning phase are trained
for 200 epochs, while the final one is trained for 800 epochs.
The database is divided into training, validation, and test
(80-15-5%). Four different models are trained on different
permutations of the training and validation databases, while

the test portion is used only to assess the accuracy of the
model at the end of the fitting procedure.
After training an initial model on AIMD data, an active
learning strategy is used. The standard deviation of the
predictions given by the ensemble of 4 NN models is used
as a proxy for uncertainty. Then, standard molecular dy-
namics simulations and advanced sampling simulations are
performed to collect new configurations. To minimize the
number of costly single-point DFT calculations, only config-
urations for which the standard deviation of a force compo-
nent is greater than 200 meV/A are considered. The use of
advanced sampling simulations is critical at this stage, as
it allows the collection of configurations not only from the
local minima but along all the reactive pathways.
Molecular dynamics simulations. Classical molecu-
lar dynamics simulations were performed with Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
software [64], patched with DeepMD-kit 2.1 [63] and
PLUMED [56]. NVT simulations were performed with an
integration time step of 0.5 fs. The temperature was con-
trolled using stochastic velocity scaling thermostat [61] with
a coupling constant of 100 fs.
During the active learning phase, simulations of small sys-
tems were performed with a 3 × 3 × Nl slab and Nl is the
number of layers equal to 5, 8 or 12, such that their en-
ergy and forces can be computed with DFT calculations.
When the potential is optimized, simulations lasting 20 ns
were performed with an 8 × 8 × 12 slab corresponding to
768 Fe atoms together with an N2 molecule for the adsorp-
tion/dissociation simulations. In all simulations, the bottom
two layers were fixed to impose a boundary condition that
mimics a semi-infinite slab. Periodic boundary conditions
were applied in the x- and y-directions, while along z a
reflecting wall was applied above the surface. The distance
of the wall from the top layer of the surface depends on the
temperature and is such that a partial pressure of N2 equal
to 10 bar, according to the equation of state for ideal gases,
is maintained.
Surface analysis. To analyze the morphology and dy-
namics of the iron surface, we first apply the Alpha-Shape
method [65], as implemented in OVITO [66], to reconstruct
the surface from the atomic positions. This method con-
structs a three-dimensional surface mesh using a virtual
sphere to identify the surface separating the accessible vol-
ume (void) from the inaccessible volume (slab). The radius
of the sphere used is equal to 2 Å. This makes it possible to
identify the atoms that belong to the surface at each time
step and limit the subsequent analysis to these, even if they
change over time as is the case here due to high mobility.
Surface roughness is calculated as the standard deviation of
the heights of the atoms on the surface:

Sq(t) =

√√√√ 1
n

Ns(t)∑
i=1

(zi − z̄)2 (1)

where the sum runs over the Ns(t) surface atoms identified
by the Alpha-Shape method at time t.
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The diffusion coefficient of surface atoms is computed from
the time-lagged displacement as follows:

D = ⟨(x(t + τ) − x(t))2⟩surf

2τ
(2)

where the average is calculated only on surface atoms. In
SI we show the dependence of the diffusion coefficient on
the lag-time and its asymptotic convergence. Similar values
can be extracted from the asymptotic behavior of the mean
square displacement, however, we believe this method is
better suited to the nature of diffusion, which occurs as
jumps between lattice sites.
Environment Similarity. To compare the environment
around an atom with a reference, we use the environment
similarity measure introduced by Piaggi and Parrinello [67].
This measure can be viewed as a non-rotationally invariant
version of the popular SOAP (Smooth Overlap of Atomic
Positions) kernel [68]. First, we define a smooth local density
around the central atom by fitting a Gaussian to the position
of each neighbor i:

ρχ(r) =
∑
i∈χ

exp
(

−|ri − r|2

2σ2

)
. (3)

Here σ is a broadening parameter and ri the position of
atom i with respect to the central atom. We then define the
environment similarity between χ and a reference χref as:

S(χ, χref ) =
∫

drρχ(r)ρχref
(r) (4)

which becomes:

S(χ, χref ) = 1
n

∑
i∈χ

∑
j∈χref

exp
(

−
|ri − r0

j |2

4σ2

)
(5)

once we perform integration and we normalize the kernel
such that S(χref , χref ) = 1. Here n represents the number
of atoms in the environment χref .
The environment chosen here as reference for the analysis
of active sites is the χ7 environment defined in Fig. 4. This
is the environment of a surface atom of the third layer
corresponding to the cavity in which the N2 is adsorbed in
the α′ state, surrounded by 7-coordinated Fe atoms. As for
the computational parameters, we included all Fe neighbors
up to 3.5 Å for constructing the local density. To remove
thermal fluctuations, we first performed a moving average of
the atomic positions with a window of 2.5 ps. Furthermore,
we used different values of the broadening parameter σ
depending on the simulation temperature. Specifically, we
used σ = 0.15 for T ≤ 500 K, σ = 0.17 for T = 600,
σ = 0.185 for T = 700 and σ = 0.2 for T = 800 K. These
numbers were chosen so that the position of the peak of χ7
atoms is approximately the same for the ideal case (i.e., for
a surface with only thermal fluctuations and no observed
diffusion, see the dashed lines in Fig. S5).
Once we have calculated the environment similarity for each
atom on the surface, we define the sites χ7 as those environ-
ments that have S(χ, χ7) ≥ 0.8. The choice of the threshold
value is based on the minima of the ideal distribution of
environment similarity at each temperature (Fig. S5) where
the ideal environments are defined above.

Neural network charge model. In order to predict the
atomic charges from the atomic positions generated by the
MLP-based molecular dynamics, we fitted a second neural
network on a data set of charges computed with DFT. This
allows us to predict the charges given only the atomic posi-
tions and the chemical species. To extract the charges from
the electron charge density, we used the Bader decompo-
sition scheme [44, 45] to compute the number of valence
electrons. Then, charges were defined as the deviation of
Bader charges from their formal value. Here the reference
values were taken to be equal to 8 e and 5 e for Fe and
N atoms, respectively. The charges were computed for a
subset of configurations taken from those used to train the
potential, for a total of about 10k configurations, which were
split into training and validation set (80-20%).
To fit the charges, we used the deep tensor neural network
SchNet architecture [69], which was proposed for fitting ML
potentials, as implemented in the SchNetPack library [70].
To represent the local atomic environment we used a SchNet
module with 5 interaction layers, a 3.5 Å cosine cutoff with
pairwise distances expanded on 30 Gaussians and 64 atom-
wise features and convolution filters. As for the output, we
used an atom-wise module with 2 hidden layers and (64,64)
nodes per layer. The loss function used was the mean square
error between the predicted charges {qi} and the reference
ones {qDF T

i }:

L = 1
Nat

∑
i

(qi − qDF T
i )2 (6)

We trained the NN using the optimizer Adam [71] and a
learning rate of 0.001 with the early stopping criterion. The
model obtained with these parameters has a Root Mean
Square Error on the validation set equal to 10−4 e .
Enhanced sampling simulations. Even with the avail-
ability of a machine learning potential, many important
processes such as chemical reactions continue to occur on
time scales much longer than those accessible to standard
molecular dynamic simulations. To enable these rare events
to be simulated, numerous advanced sampling methods have
been developed, and in particular one family of these is
based on the so-called collective variables s(R) (CVs). The
CVs are functions of the atomic coordinates R and are cho-
sen to be the most difficult to sample modes of the system.
Once they are identified, an external bias potential V (s(R))
is added to the system. The role of the bias is to enhance
the s fluctuations and speed up their sampling. Thus, with
an appropriate choice of s large energy barriers can be over-
come so that rare events are accelerated and take place in
an affordable computational time. In this work, we have
used two such techniques: Metadynamics [39, 40] and the
more recent OPES [38]. The bias potential was added to the
MD engine via the PLUMED plugin [56], be it Quantum
Espresso [53–55] or LAMMPS [64].
Metadynamics is a well-established method [39] in which
a history-dependent bias potential V (s, t) is constructed
as a sum of repulsive Gaussians centered at the visited
points in the collective space. The effect is to discourage
the system from visiting already explored configurations.
In particular, we consider its Well-Tempered variant [40],
where the height of the hills is decreased over time as a
function of the already deposited bias with a rate that is
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determined by the parameter γ. During the training data
collection with ab initio simulations, we used well-tempered
metadynamics to accelerate both adsorption and cleavage
of the N2 molecule on the Fe(111) surface. This allowed us
to collect configurations along the reactive paths and teach
the NN how to represent the potential along the chemical
reaction. In these calculations, we used as CV the distance
in the z direction between the N2 center of mass and the
bottom of the slab to accelerate N2 adsorption, and the
N-N distance to speed up N2 dissociation. In both cases, a
new Gaussian was deposited every 50 steps, with an initial
height equal to 6 kJ/mol and a standard deviation equal to
0.04 Å, with a γ = 30.
OPES. In the second stage in which we studied the adsorp-
tion and decomposition of N2 with the ML potential, we
used the On-the-fly Probability Enhanced Sampling (OPES)
method [38]. OPES is an evolution of metadynamics that
converges faster and requires fewer hyperparameters to be
chosen. It also allows limiting the amount of bias that is
deposited to avoid exploring high free energy regions.[72]
In this approach, rather than building on the fly the bias
V
(
s(R)

)
, one reconstructs the equilibrium probability dis-

tribution P (s) using a Gaussian Kernel density estimator
(KDE). Given a preassigned target distribution ptg(s), the
bias is then defined as:

V (s) = − 1
β

log ptg(s)
P (s) . (7)

At convergence V (s) drives the s distribution to the target
ptg(s). The target distribution is chosen to be the well-
tempered one: ptg(s) ∝ P (s)

1
γ , in which the equilibrium

distribution is broadened and the free energy barriers are
lowered by a bias factor γ. OPES simulations for studying
the adsorption and decomposition of N2 used the N-N dis-
tance and iron-nitrogen coordination number as collective
variables. We used the iron-nitrogen coordination number as
a proxy for the charge transfer. Indeed, these two quantities
are correlated, especially in the N2 state. The coordina-
tion number is calculated in a continuous and differentiable
manner as follows:

CN,F e =
∑

i∈{N}

∑
j∈{F e}

1 −
(

rij

r0

)n

1 −
(

rij

r0

)m . (8)

The parameters used are r0 = 2.5 Å, n = 6 and m = 12.
The update of the OPES bias was performed every 1000
steps, with the initial width of the kernels equal to 0.025 for
d(N, N) and 0.25 for CN,F e. The barrier parameter was set
to 80 kJ/mol. Note finally, that a harmonic restraint was
applied at d ≥ 2 Å with an elastic constant equal to 2000
kJ/mol/Å2. This was to facilitate the reversible sampling of
the adsorption states and the dissociation barrier, without
the need to wait for the recombination to occur. Note that
the equilibrium value of the N-N distance in the 2N state is
greater than 2 Å and therefore it is not sampled.
Free energy calculations. At convergence, the free energy
surface (FES) along the collective variables used for biasing
can be recovered from the OPES simulation as:

F (s) = −kBT log P (s). (9)

A more general way, which also allows the FES to be calcu-
lated along CVs other than those used for bias, is through
a reweighting procedure [38]. When the bias is in a quasi-
static regime, we can recover the expectation value of any
quantity such as:

⟨O (R)⟩ = ⟨O (R) eβV (s(R))⟩V

⟨eβV (s(R))⟩V
. (10)

In particular, if we are interested in the free energy pro-
file along a given collective variable s we have P (s) =
⟨δ(s − s(R)⟩. To approximate P (s) from the simulation
data, we use a weighted Gaussian density estimator, with
the weights corresponding to wt = e−βV (st). For the cal-
culation of the minimum free energy pathways from the
two-dimensional FES we used the MEPSA (Minimum En-
ergy Path Surface Analysis) package [73].
Committor analysis. To identify the transition state (TS)
configurations, we selected a range around the dissociation
barrier in the minimum free energy path and randomly
chose within this range n configurations from the simulation
trajectories at each temperature. For each of the selected
configurations, m short MD simulations are started by ini-
tializing the velocities with a different random seed. The
committor probability pc, i.e., the probability of first com-
mitting to the dissociated 2N state rather than falling back
into the N2 state, is then monitored. Configurations that
have a committor probability pc ≈ 0.5 are part of the tran-
sition state ensemble. In the practice, at each temperature
studied we extracted n = 500 configurations and for each
of them we tested the committor behavior running m = 50
unbiased simulation with different initial velocities. We clas-
sified as belonging to the transition state ensemble those
configurations for which 0.25 ≤ pc ≤ 0.75. In such a way
for each temperature we harness 100-150 transition state
configurations for each temperature.
Visualization. OVITO [66] and Matplotlib [74] were used
for producing the images.
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SUPPORTING INFORMATION

Non-linear temperature dependence of nitrogen adsorption and
decomposition on Fe(111) surface

Luigi Bonati 1, Daniela Polino, Cristina Pizzolitto, Pierdomenico Biasi,
Rene Eckert, Stephan Reitmeier, Robert Schlögl, and Michele Parrinello 2.

Validation of the machine learning potential

In Table S1 we report the composition of the dataset used for the ML potential fitting. We first checked the entire
distribution of errors on the various systems (Fig. S1). Furthermore, to assess the reliability of the potential in generating
new configurations, we compared the radial distribution function of Fe predicted by the MLP with that obtained from
the DFT simulations (Fig. S2). Finally, we monitored the uncertainty of model predictions by calculating the standard
deviation of an ensemble of MLPs on the configurations generated at different temperatures (Fig. S3).

Type Formula Training Validation
AIMD Fe45 4218 744
AIMD Fe72 306 53
AIMD Fe108 1465 258
AIMD Fe45 N 1782 314
AIMD Fe45 N2 2012 354
AIMD Fe45 N4 1746 307
AIMD Fe72 N 138 24
AIMD Fe72 N2 H12 3496 616
AIMD Fe72 N4 H20 1598 282
AIMD Fe72 N6 H30 716 126
Active learning Fe45 1128 198
Active learning Fe72 336 59
Active learning Fe108 1151 202
Active learning Fe45 N 265 46
Active learning Fe45 N2 5202 917
Active learning Fe45 N4 272 48
Active learning Fe72 N2 804 141

TOTAL 26635 4689

Table S1: Dataset for MLP construction. Composition of the data set used for the fitting of the machine learning potential.
A wide variety of systems were simulated: pure iron, with one or more nitrogen molecules and with nitrogen atoms, and - though not
used in this study - also configurations with hydrogen. In all cases 5, 8, or 12 layers were simulated. Configurations were extracted
every 2 or 5 fs from AIMD depending on whether they were metadynamics or standard MD simulations. As for the active learning
part candidates were extracted every 1 ps and then selected based on the uncertainty on the predictions of a model ensemble.

1luigi.bonati@iit.it
2michele.parrinello@iit.it
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Figure S1: Accuracy of energies and forces predictions on the test set. The upper figures report the histogram of the
errors on the forces (left) and energies (right) on the test set (corresponding to 5% of the final dataset ever used for training and
validation of the ensemble of NN potentials). For the forces, the total distribution was reported along with the specific distributions
of iron and nitrogen atoms, which are remarkably close. In the lower figures, we decomposed the error distributions for each system.
The violin plot represents the error distributions on the forces (left) and energies (right) of the configurations grouped by chemical
formula. The lines represent the mean value for each system.

Figure S2: Fe radial distribution function. Comparison of the g(r) computed from DFT and from the machine learning
potential. Two different simulations are performed, one with the same number of atoms of the DFT simulation (108 atoms) and one
with a larger system (768 atoms). To make a fair comparison with the AIMD data, simulations of 10 ps were performed also with
the MLP.
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Figure S3: Uncertainty of force predictions over MD simulations. Violin plot representing the distribution of the standard
deviation of the force predictions for the configurations generated by the MLP in representative MD trajectories. The standard
deviation is calculated from 4 MLPs trained on different permuations of training+validation dataset. This is then used as proxy for
the uncertainty of the predictions. The lines denote the average values at each temperature.
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Additional results on Fe surface dynamics

Figure S4: Surface diffusion additional analysis. (left) Distribution of the time-lagged displacements of surface atoms with a
lag time τ = 1 ns. The peaks describe a jump diffusion between lattice sites rather than a liquid-like one. (right) Convergence of the
diffusion coefficient computed from the average time-lagged displacements, as a function of the lag-time τ .

Figure S5: Environment Similarity distribution. The histogram is calculated for the atoms in the surface for the equilibrated
system (filled curves) and for the ideal surface accounting only for thermal fluctuations (calculated from the first 10 ps of the
trajectory, checking that no diffusion of the surface atoms is observed). The threshold to decide whether a site is χ7 or no is chosen
to be equal to 0.8 (dotted vertical line), based on the minima of the ideal dashed curves.

Additional results on N2 adsorption and dissociation
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Figure S6: Adsorption mechanism vs temperature. Free energy profile of N2 adsorption as a function of N2 partial charge
and the distance between N2 center of mass and surface. To remove thermal fluctuations and to account for the roughening of
the surface a two steps procedure is used to compute the distance between the surface and the moleucule. First, the trajectory is
smoothed with a running average of the atomic positions of the Fe atoms. Then, a surface mesh is constructed with the Alpha-Shape
method, and the distance from the center of mass of N2 to the surface mesh. The two states around q=0.3 with different heights
from the surface correspond to the N2 molecule being adsorbed vertically on top of the first or the second layer (γ and δ sites).

Figure S7: N2 decomposition mechanism. The free energy surface is computed as a function of N-N distance and N2 charge
for all the temperature range. White dashed lines denote the minimum free energy pathway.
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Figure S8: Decomposition pathways versus temperature. The dashed lines represent the minimum free energy pathways
calculated in the N-N distance and the q(N2) plane (dashed lines in Fig. S7), superimposed to the free energy at T=300K.

Figure S9: Adsorption and decomposition free energy profile. Free energy along the minimum free energy pathways, as in
Fig. 5 but in eV units rather than rescaling by thermal energy kBT . Two different regimes are found, corresponding to the low and
high temperatures.
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Figure S10: Transition state ensemble. Distribution of the N2 charge (left) and environment similarity between the environment
of the Iron below (right) for the transition state ensemble configurations selected from the committor analysis. The distributions are
normalized such that their integral sums to 1.

Transition state configurations

q(N) q(Fe)
0 0- 0.75 e  0.4 e

   0.4 <        < 0.6

   0.8 <        < 0.9

Figure S11: Transition state snapshots. Configurations from the transition state ensemble at T=700K representative of the
two peaks in Fig. 6b. Snapshots of configurations with low similarity (top row) and high similarity (bottom) between the environment
of the Fe atom on which N2 is located and the reference site χ7. The top row contains samples of the highly disordered active sites
created by the dynamical roughening of the surface. Within each group, the snapshots are ordered by increasing similarity measures.
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