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1. INTRODUCTION

Brain imaging techniques, including Magnetic Reso-
nance Imaging (MRI), are indispensable for studying brain 
function and structure and its role in supporting cognitive 
development across the lifespan. In recent years, MRI 
has been increasingly used to examine individual differ-
ences, suggesting that, for instance, individuals with 

(regional) differences in cortical morphology or structural 

connectivity also demonstrate differences in phenotypes 

such as cognitive performance ( Kievit  et  al.,  2014; 

 Magistro  et al.,  2015;  Muetzel  et al.,  2015;  Schnack  et al., 

 2015). Moreover, the crucial role of (differences in) change 

and maturation in brain structure across the lifespan has 

prompted longitudinal investigations collecting multiple 

Longitudinal stability of cortical grey matter measures varies across 
brain regions, imaging metrics, and testing sites in the ABCD study
Sam Parsonsa, Andreas M. Brandmaierb,c,d, Ulman Lindenbergerb,d, Rogier Kievita,e

aDonders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
bCenter for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
cDepartment of Psychology, MSB Medical School Berlin, Berlin, Germany
dMax Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
eMedical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom

Corresponding Author: Sam Parsons (sam.parsons@radboudumc.nl)

ABSTRACT

Magnetic resonance imaging (MRI) is a vital tool for the study of brain structure and function. It is increasingly being 
used in individual differences research to examine brain- behaviour associations. Prior work has demonstrated low 
test- retest stability of functional MRI measures, highlighting the need to examine the longitudinal stability (test- retest 
reliability across long timespans) of MRI measures across brain regions and imaging metrics, particularly in adoles-
cence. In this study, we examined the longitudinal stability of grey matter measures (cortical thickness, surface area, 
and volume) across brain regions, and testing sites in the Adolescent Brain Cognitive Development (ABCD) study 
release v4.0. Longitudinal stability ICC estimates ranged from 0 to .98, depending on the measure, parcellation, and 
brain region. We used Intra- Class Effect Decomposition (ICED) to estimate between- subjects variance and error vari-
ance, and assess the relative contribution of each across brain regions and testing sites on longitudinal stability. In 
further exploratory analyses, we examined the influence of parcellation used (Desikan- Killiany- Tourville and Destrieux) 
on longitudinal stability. Our results highlight meaningful heterogeneity in longitudinal stability across brain regions, 
structural measures (cortical thickness in particular), parcellations, and ABCD testing sites. Differences in longitudinal 
stability across brain regions were largely driven by between- subjects variance, whereas differences in longitudinal 
stability across testing sites were largely driven by differences in error variance. We argue that investigations such as 
this are essential to capture patterns of longitudinal stability heterogeneity that would otherwise go undiagnosed. 
Such improved understanding allows the field to more accurately interpret results, compare effect sizes, and plan 
more powerful studies.

Keywords: longitudinal stability, ABCD, developmental neuroscience, structural MRI, intraclass effect decomposition

Received: 16 May 2023 Revision: 30 October 2023 Accepted: 6 December 2023 Available Online: 19 January 2024

https://doi.org/10.1162/imag_a_00086
https://crossmark.crossref.org/dialog/?doi=10.1162/imag_a_00086&domain=pdf&date_stamp=2024-03-19
mailto:sam.parsons@radboudumc.nl


2

S. Parsons, A.M. Brandmaier, U. Lindenberger et al. Imaging Neuroscience, Volume 2, 2024

brain scans from individuals across the lifespan (e.g., 
 Casey  et al.,  2018;  Healthy  Brain  Study  Consortium  et al., 
 2021;  von  Rhein  et  al.,  2015;  Walhovd  et  al.,  2018). 
Addressing individual differences questions, whether 
cross- sectionally or longitudinally, rests on the assump-
tion that brain imaging measures are reliable. In other 
words, the inferences we can draw from such longitudinal 
datapoints depend on the extent to which they capture 
stable between- subjects differences with little contamina-
tion by within- subject fluctuations or measurement error.

More commonly than not, we do not know how reliable 
our measures are ( Flake  et  al.,  2017;  Gawronski  et  al., 
 2011;  Hussey  &  Hughes,  2018;  Parsons  et al.,  2019). This 
basic psychometric concern does not only relate to ques-
tionnaires, but also cognitive measurements ( Parsons 
 et al.,  2019) and neuroimaging metrics ( Anand  et al.,  2022; 
 Brandmaier,  Wenger,  et  al.,  2018;  Noble  et  al.,  2017; 
 Wenger  et al.,  2021;  Zuo  et al.,  2019). Low reliability trans-
lates to low statistical power and related challenges, 
including a decreased likelihood that a significant finding 
reflects a true effect ( Button  et al.,  2013), is in the correct 
direction (Type 2 “Sign” error;  Gelman  &  Carlin,  2014), and 
an inherent overestimation of the true effect size (Type M 
“Magnitude” error;  Gelman  &  Carlin,  2014). In short, if reli-
ability is not assessed, it is impossible to gauge its impact 
on our results and therefore the confidence we should 
have them. Failing to assess reliability can become a 
greater, more complex, problem when we wish to com-
pare effect sizes from different regions, measures, or 
studies (e.g., see  Cooper  et  al.,  2017). For example, a 
study may conclude that there is no difference in brain 
atrophy between an experimental medicine group and a 
control group, when in fact the clinical benefits are atten-
uated or hidden because of low reliability. Similarly, within 
studies, marked differences in reliability between brain 
regions could lead researchers to make incorrect conclu-
sions about the similarity of brain- behaviour associations 
across these regions. As such, we propose that mapping 
reliability across brain regions and measures provides 
vital information about reliability heterogeneity. Further, 
exploring reliability heterogeneity may allow us to uncover 
sources of unreliability, and account for this in our study 
designs to improve precision, statistical power, and effi-
ciency ( Brandmaier  et  al.,  2015;  Brandmaier,  Wenger, 
 et al.,  2018;  Noble  et al.,  2017;  Zuo  et al.,  2019).

1.1. Reliability and stability

Consider two brain scans collected from the same indi-
vidual. If, hypothetically, we observe no differences 
between brain images, we can infer our measure is per-
fectly reliable. If the second scan was obtained immedi-
ately following the first, we can assume that any differences 

between scans are due to some measurement error intro-
duced during the scans or image processing, and that 
greater differences between these scans indicate lower 
reliability. However, as the time between scans increases, 
the difference between successive scans will reflect a 
combination of (un)reliability as well as true differences, or 
changes, in brain structure. For example, time of day 
( Karch  et al.,  2019) and hydration levels (e.g.,  Trefler  et al., 
 2016) may induce differences between scans. When 
scans are taken months or years apart ( Casey  et al.,  2018; 
 Kennedy  et al.,  2022), it is highly likely that developmental 
processes have occurred: brain structure changes over 
time, and the rate of change depends on the region, imag-
ing modality, and lifespan stage ( Bethlehem  et al.,  2022). 
Moreover, impactful events that occur in between scans 
such as learning new skills (e.g.,  Wenger  et al.,  2021), or 
adverse events such as brain injury (e.g.,  Lindberg  et al., 
 2019), will lead to lasting differences. As such, differences 
in brain images over years necessarily reflect a combina-
tion of measurement reliability and longitudinal stability.

Traditional models used to estimate reliability focus on 
measurement properties and thus implicitly assume stabil-
ity, that is, no systematic changes or individual differences 
in change over time ( Nesselroade,  1991). When we use 
these models to estimate reliability over long durations, 
individual differences in change will appear as error in our 
model. To address this challenge, prior work tracing back 
to  Cronbach  and  Furby  (1970; also see  Hertzog  & 
 Nesselroade,  2003) has denoted reliability estimates from 
these models as stability ( Brandmaier,  Wenger,  et al.,  2018; 
 Deary  et al.,  2013;  Kennedy  et al.,  2022). The difference in 
interpretation relies on the tenability of the assumption that 
true change in the underlying system is negligible for the 
purposes of our repeated measurements or not. To reflect 
this inherent ambiguity, we follow previous work and use 
the term longitudinal stability to describe what is cap-
tured by our estimates. At the same time, we emphasise 
that our estimates capture a mixture of both reliability and 
stability due to expected individual differences in changes 
in brain structure over the lifespan. With appropriate study 
designs, it will be possible to disentangle these distinct 
sources of variance, but the vast majority of longitudinal 
designs do not (yet) allow for this— an issue we consider 
further in the discussion. With the emergence of develop-
mental or lifespan studies with long inter- scan intervals 
(several years in some studies), it is crucial that method-
ological work allows us to characterise the distinct sources 
of longitudinal stability across developmental time.

1.2. Reliability in brain imaging

Various tools exist to examine reliability. Readers may 
commonly see Cronbach’s alpha reported to index the 
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internal- consistency reliability of questionnaires (though 
alternatives like MacDonalds Omega are likely more suit-
able;  McNeish,  2018). Readers may also commonly see a 
Pearson correlation, or better an Intraclass Correlation 
Coefficient ( Koo  &  Li,  2016), to index the test- retest reliabil-
ity of a measure. Broadly, the ICC quantifies the proportion 
of variance attributed to between- subjects variance com-
pared to all sources of variance (including not only error, 
but also within- participant variance including between- 
sessions variance). Due to these strengths, ICCs are 
becoming more commonly reported in brain imaging 
( Noble  et al.,  2021). Various extensions and generalisations 
of the ICC exist which focus on distinct aspects such as 
the reliability of a single measurement, or the average of 
more than one, and whether one wishes to capture abso-
lute agreement or consistency across repeated measures 
(for a complete introduction, see  Koo  &  Li,  2016).

Although empirical investigations into the (un)reliability 
of (f)MRI are somewhat limited, existing evidence strongly 
suggests this reliability is considerably worse than hoped. 
For instance, analyses of the Adolescent Brain Cognitive 
Development study (ABCD;  Casey  et  al.,  2018) data 
showed very poor within- session reliability and 2- year sta-
bility, of task- based fMRI measures, with estimates (pro-
portion of non- scanner related between- subjects variance 
to all sources of variance) rarely exceeding .2 ( Kennedy 
 et al.,  2022). One review of reported test- retest estimates 
(ICC) also found fMRI measures to have low reliability 
(mean ICC = .44;  Bennett  &  Miller,  2010) and concluded 
that studies are needed that examine the factors that influ-
ence reliability. In Bennett and Miller, study test- retest 
intervals varied from less than 1 hour to 59 weeks, and the 
authors highlight a trend for lower reliability (stability) in 
studies with test- retest intervals longer than 3 months, rel-
ative to studies with intervals less than 1 hour. A recent 
meta- analysis including 90 experiments using common 
fMRI tasks found ICC to be around .4 ( Elliott  et al.,  2020). 
Test- retest intervals varied from 1 day to 1,008 days; how-
ever, unlike Bennett & Miller, the authors found no moder-
ating effect of test- retest interval on the meta- analytic ICC 
estimate. The authors identified various design factors, 
including scanner, subject, task, and study factors, which 
may help improve test- retest reliability of fMRI measures 
in studies of development. It is likely these recommenda-
tions are also applicable to structural MRI. Two related 
considerations are the size of the contribution to reliability 
and how difficult it is to modify (e.g., adapting study 
design, increasing the number of scans, etc). For example, 
Karch and colleagues found increased time between 
scans and scanning at inconsistent times of day (within 
and between participants) predicted reliability of several 
brain volume estimates ( Karch  et  al.,  2019). Maintaining 
the same scanning time for a participant should be a rela-

tively easy way to boost reliability by a small increment. In 
contrast, additional scanning sessions quickly increase 
the time and cost of a study.

There is some evidence that structural measures (e.g., 
cortical thickness) are more reliable than functional mea-
sures ( Elliott  et al.,  2020;  Han  et al.,  2006). For example, in 
one of the few studies to examine test- retest reliability of 
structural measures, Elliott et  al. (2020) analysed data 
from the Human Connectome Project (HPC; participants 
aged 25- 35, mean time between scans 140 days) and the 
Dunedin Multidisciplinary Health and Development Study 
(participants aged 45, mean time between scans 79 days). 
Across brain regions, cortical thickness ICCs ranged from 
.547 to .964 in the HPC and .385 to .975 in the Dunedin 
study, surface area ICCs ranged from .526 to .992 in the 
HPC and .572 to .991 in the Dunedin study. These results 
highlight meaningful variation in reliability across brain 
measures and brain regions. Further, is it reason to sus-
pect that the influence data processing decisions ( Li  et al., 
 2021;  Parsons,  2022), including parcellation ( Mikhael  & 
 Pernet,  2019;  Yaakub  et al.,  2020), have on the data also 
leads to differences in the longitudinal stability of those 
data? If left undiagnosed, this reliability heterogeneity can 
have impactful downstream consequences on the infer-
ences we can draw from brain imaging research.

1.3. Generating detailed maps  
of test- retest stability

In this study, we make use of the Adolescent Brain Cog-
nitive Development longitudinal study imaging data 
(ABCD;  Casey  et al.,  2018;  Compton  et al.,  2019; https://
abcdstudy . org/) to map longitudinal stability of structural 
brain imaging measures. The ABCD study is a collabora-
tion across 21 research sites across the United States, 
including a representative sample of over 11,000 children 
aged 9- 10, with plans to follow- up participants into young 
adulthood. For our purposes, the data include two brain 
imaging sessions at baseline and 2- year follow- up. Rela-
tive to prior investigations of structural and functional 
MRI longitudinal stability, ABCD also offers a consider-
ably larger sample size. For example, the estimates 
reported by Elliott et al. (2020) from the large- scale Human 
Connectome Project ( Van  Essen  et al.,  2013) and Dune-
din study ( Poulton  et al.,  2015), included only 45 and 20 
participants with repeated measures, respectively. Fur-
ther, with the ABCD data we had a decent test- retest 
sample size for each site (minimum site n = 336), allowing 
us to isolate these sources of (un)reliability, giving us con-
fidence in the precision of our multigroup analyses across 
testing sites.

In addition, we note that the opportunities to examine 
brain- behaviour associations using the ABCD data are 

https://abcdstudy.org/
https://abcdstudy.org/
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vast ( Feldstein  Ewing  et al.,  2018). Hundreds of studies 
using the ABCD data have already been published. Given 
this, there is increasing importance to generate maps of 
longitudinal stability specifically for this cohort, to inform 
data users about potential undiagnosed heterogeneity in 
longitudinal stability. We had two main questions. First, 
what is the longitudinal stability of grey matter measures 
in the ABCD study, and do they differ across brain 
regions, structural metrics, and testing sites? Second, 
are these differences in longitudinal stability driven more 
by individual differences or measurement error?

2. METHODS

2.1. ABCD data

We used imaging data from the Adolescent Brain Cognitive 
Development study ( Casey  et al.,  2018), data release 4.0 
(http://dx . doi . org / 10 . 15154 / 1523041; see Supplementary 
Materials for full acknowledgement). Full design informa-
tion about the ABCD study has been described previously, 
including: recruitment and sampling procedures ( Compton 
 et al.,  2019), imaging protocol ( Casey  et al.,  2018), details 
of image processing ( Hagler  et  al.,  2019), guides for 
researchers using this data ( Saragosa- Harris  et al.,  2022), 
and open access data from an adult equivalent of ABCD 
with an accelerated design ( Rapuano  et al.,  2022).

2.1.1. MRI imaging

The raw imaging data were processed using FreeSurfer, 
version 5.3.0 ( Fischl,  2012;  Laboratory  for  Computational 
 Neuroimaging,  n.d.) by the ABCD Data Acquisition and 
Integration Core with a standardised ABCD pipeline 
( Hagler  et al.,  2019). Participants’ images were excluded 
if severe imaging artifacts were detected in manual qual-
ity control checks. The Desikan- Killiany- Tourville atlas 
( Desikan  et al.,  2006) was used to parcellate images into 
34 regions per hemisphere. We extracted the three 
derived cortical measures: cortical thickness, surface 
area, and volume— calculated in FreeSurfer as a product 
of cortical thickness and surface area, though more 
accurate methods exist ( Winkler  et  al.,  2018) and are 
implemented in more recent versions of FreeSurfer (from 
version 6.0.0).

Following several reviewer suggestions regarding the 
role of MRI image parcellation, specifically the impact of 
region size on reliability, we also analysed data that had 
been processed using the Destrieux parcellation 
( Destrieux  et al.,  2010). These data were re- processed by 
Rutherford and colleagues to harmonise neuroimaging 
data from 82 sites (for complete details of data process-
ing, see  Rutherford  et al.,  2022). Freesurfer version 6.0 

was used to extract cortical thickness from 74 regions 
per hemisphere, following the Destrieux parcellation.

2.1.2. Participants

We included data from 7,269 participants (3,354 female, 
3,915 male), for whom there were two available structural 
MRI scans. We removed 12 participants who belonged to 
a 22nd site that was dropped from follow- up testing due to 
low numbers, as the low numbers would have hindered 
our multi- group analyses described below. Time from 
baseline to follow- up scan was on average 24.5 months 
(SD = 2.33) apart. Mean participants’ age at baseline was 
9 years 11 months (range 9 years 1 month to 11 years 1 
month), and at the 2 year follow- up was 11 years 11 
months (range 10 years 5 months to 13 years 10 months).

The ABCD data re- processed from  Rutherford  et  al. 
 (2022) included 3670 participants (1728 female, 1942 
male) for whom there were two available timepoints. Time 
from baseline to follow- up scan was on average 2 years 
0  month (SD  =  1.85). Mean age at baseline 9  years 
11 months (range 9 years to 10 years 11 months), and at 
the follow- up was 11 years 10 months (range 10 years 
7 months to 13 years 9 months).

2.2. ICED model

We used a two- timepoint ICED model implemented in  
the SEM framework ( Brandmaier,  Wenger,  et al.,  2018). 
Figure  1 (Left) presents a path diagram depicting the 
unique contribution of each source of variance. The two 
observed measurements are presented as rectangles, 
while the latent variables are presented as circles repre-
senting the sources of variance. Between- subjects vari-
ance (σ2

B) captures variance attributable to individual 
differences between participants. Error variance (σ2

E) cap-
tures the remaining variance that cannot be attributed 
to  between- subjects differences, for example, within- 
subject fluctuations (hence sometimes being called 
residual variance). Single- headed arrows represent fixed 
regression loadings (set to 1), and double- headed arrows 
indicate the variance of the latent variables. The variance 
estimates for the two error latent variables (E1 and E2) 
were constrained to be equal.

Using this model, longitudinal stability is estimated as 
Intraclass Correlation Coefficients (ICCs), which are the 
most common measures that use test- retest reliability 
and longitudinal stability in neuroimaging research ( Noble 
 et al.,  2021). ICC captures the reliability of an individual 
assessment. ICC is calculated using the between- 
subjects variance (σB

2 ) and error variance (σE
2 ) estimates 

as the proportion of between- subjects variance to total 
observed variance (Formula 1). Higher ICCs result from 

http://dx.doi.org/10.15154/1523041
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the between- subjects differences (i.e., individual differ-
ences) outweighing other sources of variance, in this case 
“error” (other sources of variance would be added to the 
denominator). Figure 1 (Right) presents four sets of simu-
lated data to demonstrate the relationship between these 
two sources of variance and ICC estimates. One practical 
important take- home message from this figure is that 
test- retest reliability reflects how well we are able to rank- 
order participants and therefore how consistent this rank 
ordering is over time. In the first scenario (top left), if there 
were no measurement error, we would observe an ICC of 
1, “perfect” reliability.1 Note that the rank ordering of par-
ticipants remains the same over time. With near- perfect 
reliability (top right), there are some disruptions to the 
rank ordering, but overall we are very able to distinguish 
between individuals. With very low reliability (bottom left), 
there is very little consistency in the ordering of partici-
pants over time and we have little information with which 
we can distinguish between individuals. Between these 
two, when we have equal parts of between- subjects dif-
ferences and error variances (bottom right), there is some 
consistency, but half of our signal (that we aim to use as a 
measure of individual differences) is unrelated to the con-

struct we wish to measure. Note that across each simula-
tion the total variance and the average difference over 
time is the same— we highlight the latter to reinforce that 
we are interested in between- subjects differences instead 
of differences in the mean over time (which may be the 
use of “stability” that some readers are more familiar 
with). To calculate ICC from our ICED model, we extract 
the between- subjects variance (σB

2 ) and error variance 
estimates (σE

2 ), and use this formula:

 
ICC = σB

2

σB
2 + σE

2
 

(1)

Often we are interested in the reliability of the underly-
ing construct, rather than individual indicators or observed 
measures. The estimate therefore takes into account the 
number of measurements— increasing the number of 
measures typically increases the reliability of the overall 
measure (e.g., Cronbach’s alpha or ICC). In the case of 
ICED models, the measurement structure is also incorpo-
rated into the model (e.g., capturing repeated measures 
nested within days;  Brandmaier,  Wenger,  et al.,  2018). To 
capture the construct- level reliability using this approach, 
we compute the effective error that would emerge as the 
residual error if we were to directly measure the construct. 
Effective error is derived from the power- equivalence  

Fig. 1. Left: Path diagram of the two timepoint ICED model used to estimate Between- subjects (σB
2 ) and error variance (σE

2 )  
components. Right: Four plots visualising hypothetical differing levels of between- subjects and error variance, with equal 
total variance, to depict the relationship between test- retest reliability and rank- ordering individuals.

1 Note: unless reliability is explicitly specified in the model, most statistical 
tools assume perfect reliability.
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theory ( Brandmaier,  von  Oertzen,  et  al.,  2018;  Oertzen, 
 2010) and is a function of the combination of all sources 
of error (i.e., non between- subjects differences). Effective 
error can be calculated by generating a power equivalent 
model using the algorithm provided by von  Oertzen  (2010) 
or calculating a numerical estimate following the equa-
tions in  Brandmaier,  von  Oertzen,  et al.  (2018) (Supple-
mentary Material 3). This provides a flexible framework to 
calculate effective error for any complex study design. 
We can then calculate the construct- level reliability as 
ICC2 ( Bliese,  2000), as follows:

 
ICC2 = σB

2

σB
2 + σEFF

2  
(2)

where the between- subjects variance (σB
2 ) remains the 

same as in the ICC calculation. All other sources of vari-
ance are incorporated into the effective error term (σEFF

2 ). 
In our two timepoint models, consisting of between- 

subjects and error variance, σEFF
2  is calculated as 

σE
2

N
 

where N is the number of repeated measures (this follows 
from the multiple- indicator theorem ( Oertzen,  2010)). 
From this, we can see that ICC2 will always show higher 
reliability relative to ICC, scaled by the number of indepen-
dent measurements assuming measurements are inde-
pendent and have identical variance. For example, our 
previous example of ICC = .5 corresponds to an ICC2 of 
.66 with two independent measurement occasions and an 
ICC2 of .75 with three independent measurement occa-
sions. This reflects the improvement of reliability of an 
average score over repeated measurements by adding 
extra measurements. This is directly comparable to how 
one might improve the reliability of a questionnaire mea-
sure by increasing the number of items, for instance with 
reliability metrics like Cronbach’s alpha ( Cronbach,  1951). 
Note that we follow prior ICED convention ( Brandmaier 
 et al.,  2018) when referring to ICC and ICC2— these formu-
las correspond to a generalisable form of ICC3 and ICC3K 
following other conventions (see  Koo  &  Li,  2016), allowing 
additional sources of variance. ICC3 defines “absolute” 
agreement across measures, that is, here that both time 1 
and time 2 scans capture the same measurement. ICC3 
then captures the reliability (or stability) of a single mea-
sure, while ICC3K captures the reliability (here longitudinal 
stability) of the mean of K number of repeated measures.

We used the R package ICED ( Parsons  et al.,  2022; 
https://github . com / sdparsons / ICED) to run these analy-
ses, which acts as a wrapper around the lavaan package 
( Rosseel,  2012). Note that the Maximum Likelihood esti-
mator assumes multivariate normality.

Additionally, ICED benefits from the powerful toolkit 
SEM offers that allow flexible modelling accommodating 

complex, nested study designs, including latent variables 
modelled by multiple indicators (e.g., left and right hemi-
spheres as examined by  Anand  et al.,  2022), (in)equality 
constraints, multigroup modelling, and model comparison 
techniques which allow for symmetric quantification of 
evidence for multiple competing models ( Rodgers,  2010). 
We make extensive use of these in this study to capture 
distinct sources of variance and longitudinal stability.

2.3. Data analyses

To address our first question (what is the longitudinal sta-
bility of grey matter measures in the ABCD study, and do 
they differ across brain regions, structural metrics, and 
testing sites?), we ran a series of ICED models 
( Brandmaier,  Wenger,  et al.,  2018; for other applied stud-
ies, see  Anand  et al.,  2022;  Wenger  et al.,  2021). We esti-
mated between- subjects and error variances for three 
grey matter measures (cortical thickness, surface area, 
and volume) across regions of interest. We present test- 
retest ICCs to provide a “map” of test- retest stability 
across structural measures and brain regions. Following 
several reviewer suggestions, we also ran these analyses 
allowing the error variances at each timepoint to vary and 
compared the model fits. To address our second ques-
tion (are these differences in longitudinal stability driven 
more by individual differences or measurement error?), 
we used a multigroup SEM and a series of model com-
parisons. We compared the relative influence of between- 
subjects variance and error variance across testing sites.

Given the challenges often associated with estimating 
such models, we implemented an approach that bal-
ances model optimisation and generalisability (proposed 
by  Srivastava,  2018 and others). Specifically, we initially 
estimated the ICED modify the model on a randomly 
selected subset of all the data (495 participants), to make 
any necessary modifications to the model needed for 
estimation, prior to estimating the model on the full data-
set (minus the initial exploratory subset). This ensures our 
final model estimation is more likely to converge and yield 
reliable estimation whilst being less likely to be overfit to 
the idiosyncrasies of a specific subset of the data. Based 
on this test- set, we multiplied surface area and grey mat-
ter volume by an arbitrary constant (.001) to ensure com-
parable variances across the three structural metrics.

3. RESULTS

3.1. Stability estimates

To estimate the longitudinal stability of grey matter mea-
sures, we fit our ICED model to each region across each 
structural measure. From each model, we extracted ICC 

https://github.com/sdparsons/ICED
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and ICC2 estimates. Figures 2 and 3 visualise the ICC 
and ICC2 estimates, respectively, across measures and 
Desikan- Killiany Cortical Atlas ( Desikan  et  al.,  2006) 
regions of interest using the R package ggseg ( Mowinckel 
 &  Vidal- Piñeiro,  2019).

ICC estimates the longitudinal stability of an individual 
indicator or measurement— essentially, how reliable do 
we expect a single measure to be? Mean ICCs for each 
measure were: cortical thickness .76 (range = .54 -  .90; 
95%CI widths ranged from .012 to .048 around ICC), sur-
face area .93, (range = .82 -  .97; 95%CI widths ranged 
from .005 to .068 around ICC), and volume (mean = .93, 
range = .76 -  .97; 95%CI widths ranged from .005 to .029 
around ICC). Estimates for each brain region and mea-
sure can be found in the Supplementary Materials. Com-
paring measures, cortical thickness showed an overall 
poorer pattern of longitudinal stability. While all estimates 
for surface area and volume above commonly used cut 
offs for “good”2 longitudinal stability (>.75), for cortical 
thickness 46% of regions had stability lower than .752. 
This relatively low longitudinal stability of this measure 
means that true patterns or associations will likely be 
attenuated and/or rendered non- significant purely because 
of lower stability estimates. We discuss these practical 
implications in more detail below.

The ICC2 provides an estimate of longitudinal stability 
at the level of the construct. ICC2 estimates (Fig. 3) show 
the same pattern of ICCs across brain regions, albeit higher 
values. The mean ICC2s for each measure were: Cortical 
Thickness  =  .86 (range  =  .70 -  .95), surface area  =  .96 
(range = .90 -  .99), and volume = .96 (range = .86 -  .99).

As several reviewers suggested, it is plausible that the 
variances of cortical measures may differ between time-
points, perhaps due to developmental factors, acclima-
tion. Therefore, as an additional exploratory analysis we 
performed these analyses again allowing the error vari-
ances at each timepoint to vary. We compared the com-
parative fit index (CFI; ( Bentler,  1990) for the constrained 
(i.e., constraining the error variances to be equal across 
time points) and unconstrained models (i.e., allowing the 
error variances to vary across time points). Briefly, the CFI 
is an incremental fit indicating better model fit and a CFI 
greater than .96 ( Hu  &  Bentler,  1999) is typically used to 
indicate good fit (CFIs cannot exceed 1). A difference in 
CFI between two models greater than .02 is typically 

used as an indication one model has meaningfully better 
fit ( Meade  et al.,  2008). Note that the unconstrained mod-
els are saturated with zero degrees of freedom and thus 
CFI always equals 1. Meaningfully poorer model fit in the 
constrained models indicates that strict measurement 
invariance does not hold and an alternative approach to 
ICC longitudinal stability may be warranted. Only two 
brain regions (the Supramarginal gyrus in both hemi-
spheres), and only for cortical thickness, had a difference 
in CFI greater than .02. Further research may benefit from 
direct examination of these regions. However, for the 
remainder of our analyses, we continue to constrain the 
error variances at both time points to be equal.

Fig. 2. ICC estimates across structural measures and 
brain regions. Lighter colours indicate higher stability.

Fig. 3. ICC2 estimates across structural measures and 
brain regions. Lighter colours indicate higher stability.

2 There have been several recommendations for standards to judge test- 
retest reliability (here, longitudinal stability) estimates. For example, a common 
historical rule of thumb is < 0.4 is poor, 0.4 – 0.59 is fair, 0.6 – 0.74 is good, and 
0.75 – 1 is excellent ( Cicchetti  &  Sparrow,  1981;  Fleiss,  1986). Others have 
proposed stricter rules of thumb of < 0.5 is poor, 0.5 – 0.75 is moderate,  
0.75 – 0.9 is good, and 0.9 – 1 is excellent ( Koo  &  Li,  2016). In this paper we 
avoid adopting any specific threshold to describe our reliability estimates. We 
aim to avoid dichotomous thinking about whether estimates are ‘good’ or 
‘bad’ in favour of considering the influence of relative differences in reliability 
across different measures, regions, and sites.
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Fig. 4. Between- subjects (left panel), error variance estimates (middle panel), and median ICC (right panel) for each 
region of interest (y- axis). Regions are ordered by the median between- subjects variance. For clarity we present only the 
right hemisphere regions. Each point represents a different testing site, and the colour mapping is the same as in Figure 5. 
The boxplots present the median and the 25th and 75th percentiles, the whiskers extend at a maximum to 1.5 times the 
interquartile range from the box.

3.2. Examining sources of longitudinal (in)stability

To probe potential variability in stability across additional 
factors, we re- ran the ICED model across each of the 21 
sites, again separately for each brain region. For brevity, 
and because Cortical Thickness showed the largest het-
erogeneity in ICC across brain regions, we present results 
from Cortical Thickness only (analysis output and figures 
for surface area and grey matter volume can be found in 
the Supplementary Materials). We then decomposed 
these longitudinal stability estimates into the between- 
subjects and error variance components. This allowed us 
to quantify the relative contributions of both variance 
components across brain regions and testing sites.

3.2.1. Region differences

To explore the sources of differences in stability esti-
mates across brain regions, we compared the relative 

size of between- subjects and error variances across 
each brain region. Figure  4 plots the between- subject 
(left panel) and error variance estimates (right panel) for 
each region of interest, with each point representing a 
different testing site. As expected from a visual inspec-
tion of Figure 4, on average, the variance of the between- 
subjects variance estimates was 2.8 times larger than the 
error variance estimates. This suggests that differences 
in stability estimates across regions are likely driven more 
by differences in the between- subjects variance than site 
differences in measurement error.

3.2.2. Site differences

Figure 5 plots the latent between- subject and error vari-
ances across brain regions separately for each site. In 
contrast to Figure 4, the distributions of between- subject 
variance estimates are largely overlapping across sites. 
In contrast, the distributions of error variance differ 
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markedly across sites in both the median estimate and 
the interquartile ranges. To help quantify the difference in 
contributions from between- subject and error variance, 
we extracted the median variance estimates for each 
region and calculated the variance of these estimates to 
compare the spread of between- subject variance and 
error variance. Across sites, there was 11.5 times more 
variance in the median error variance estimate than the 
median between- subject variance estimate. This sug-
gests that differences in stability across testing sites are 
driven mainly by differences in error across sites, rather 
than genuine differences between people in each loca-
tion. We later discuss potential causes of these differ-
ences in error.

3.2.3. Rank order stability of ICC estimates

To assist interpretation, we also calculated rank order 
stability of ICC, between- subjects variance, and error 
variance estimates. We did this separately for region dif-
ferences and site differences, allowing us to capture the 
extent to which the same region, or the same site, is (un)
reliable. Table 1 reports ICC (2,1) and ICC (3,1) estimates 
( Koo  &  Li,  2016). ICC(3,1) indexes consistency agreement 

and can be conceptualised as the degree to which scores 
can be equated to each other, with some systemic error. 
ICC(2,1) is a more conservative index of absolute agree-
ment across measures that additionally penalises for any 
systemic error. To illustrate, consider two repeated mea-
sures for which participants score the exact same num-
ber (Time1 = Time2). Here, we have perfect longitudinal 
stability, both ICC(2,1) and ICC(3,1) equal 1. Now, con-
sider instead that due to some practice effects all partic-
ipants score 2 points higher in the second measure 
(Time1 = Time2 -  2). Here, ICC(3,1) = 1, indicating perfect 
longitudinal stability, while our ICC(2,1) will be lower as a 
result. These estimates give an indication of whether the 
stability estimates for brain regions are consistent across 
testing sites, and whether the same testing sites are con-
sistently more or less reliable across brain regions.

The rank- order stability of brain region estimates (ICC, 
between- subjects variance, and error variance) suggests 
that across testing sites the same brain regions tend to 
have higher, or lower, longitudinal stability. Supporting 
our previous analyses, it is particularly clear that different 
brain regions typically have differing levels of between- 
subjects variance. In contrast, the rank- order stability of 
site estimates is considerably lower (particularly for the 

Fig. 5. Between- subjects (left panel), error variance (middle panel) estimates, separately per testing site. Sites are 
ordered by the median error variance. Each point represents a different brain region, and the site colour maps to Figure 4. 
Cortical thickness only. The boxplots present the median and the 25th and 75th percentiles, the whiskers extend at a 
maximum to 1.5 times the interquartile range from the box.
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variance estimates), suggesting that we cannot discern 
that particular testing sites show higher or lower longitu-
dinal stability across brain regions.

3.2.4. Multigroup models for site differences

To more formally assess potential cross- site variation in 
stability across measures and brain regions, we per-
formed a series of four multigroup ICED models, such 
that each site is represented by a different group. Spe-
cifically, the four models were (1) a constrained model, in 
which all groups were constrained to have equal 
between- subjects and error variances; (2) a between- 
subjects varying model in which the between- subjects 
variance parameter was free to vary across groups (while 
we set an equality constraint on the error variance 
parameter across groups); (3) an error varying model in 
which the error variance parameter was free to vary 
between groups (while we set an equality constraint on 
the between- subjects variance parameter across 
groups); and (4) an unconstrained model in which both 
variance components were allowed to vary between 
groups. Including comparisons with the between- 
subjects and error- varying models allows us to make 
some inferences about the sources of differences in sta-
bility across sites— that is, whether stability differences 
across sites are due to different levels of between- 
subjects differences or measurement error. To compare 
model fit, we extracted the Comparative Fit Index (CFI; 
 Bentler,  1990) for each model and computed the differ-
ence in CFI (ΔCFI) for five model comparisons: (A) 
constrained— between- subjects varying, (B) between- 
subjects varying— unconstrained, (C) constrained— error 
varying, (D) error varying— unconstrained, and (E) 
constrained— unconstrained. Figure 6 presents the 
models and model comparisons visually. Greater ΔCFI 
values indicate larger improvements in model fit for the 

less- constrained model. ΔCFI values greater than .02 
( Meade  et al.,  2008) have been proposed as thresholds 
to determine differences in fit.3

Figure 7 presents ΔCFI values for each model compar-
ison across each brain region. Higher values indicate that 
the more complex model (with more free parameters) 
better fit the data even when penalizing for the additional 
complexity. Allowing the error variance to vary across 
sites (comparisons B, C, and E) meaningfully improved 
model fit in almost all cases (ΔCFI greater than .02 in over 
97% brain regions). This suggests that testing sites are 
characterised by differing levels of measurement error. In 
contrast, allowing between- subjects variance to vary 
across sites (comparisons A and D) typically led to negli-
gible or negative (1.5% of brain regions in comparison A 
and 13.2% of brain regions in comparison D) improve-
ments in model fit, thus favouring the more parsimonious 
model, suggesting between- subjects variance did not 
differ systematically between sites. Allowing between- 
subjects variance to vary across sites improved the fit 
(ΔCFI greater than .02) in 19% of brain regions compared 
to the fully constrained model (comparison A) and in 0 
regions compared to the error varying model (compari-
son D). This suggests that the between- subjects variance 
components are highly similar across testing sites and 
allowing between- subjects variances to vary across sites 
does not improve model fit over allowing error variances 
to vary across sites.

3.2.5. Follow- up multigroup analyses  
by scanner manufacturer

We expanded these analyses to explore the influence of 
MRI scanner on between- subjects variance and error 
variance. We ran the series of multigroup models and 
model comparisons described above, treating MRI scan-
ner manufacturer (Siemens, 13 sites; Philips Medical 
Systems, 3 sites; and GE Medical Systems, 5 sites) as 
the grouping variable. From these analyses, we gener-
ated Figures 4, 5, and 7 for each metric (cortical thick-
ness, surface area, and volume) and provide these in the 
Supplementary Material. For Cortical thickness; scan-
ners from Siemens, Philips Medical Systems, and GE 
Medical Systems had average ICCs across brain regions 
of .83, .72, and .69, respectively. The multigroup model 
comparisons also showed a near identical pattern of 
results (Figure7_CT_scanners in the Supplementary Mate-
rial) as those presented above treating testing site as the 
grouping variable (Fig. 7).

Table 1. ICC2,1 and ICC3,1 estimates separately 
comparing the rank- order stability of site and brain  
region estimates of ICC, between- subjects variance,  
and error variances.

By region:  
How stable are 

regional estimates 
across sites?

By site:  
How stable are 
site estimates 

across regions?

ICC2 ICC3 ICC2 ICC3

ICC 0.45 0.64 0.30 0.54
Between- subjects 
variance

0.94 0.95 <0.01 0.07

Error variance 0.76 0.82 0.07 0.30

3 We also present the AIC and BIC model comparisons in the supplemental 
materials.
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We then ran three series of multigroup models by site 
(as described in the previous section), separately for the 
sites with each scanner manufacturer (Supplementary 
Figures: Figure7_CT_Siemens, Figure7_CT_Philips, and 
Figure7_CT_GE). For each scanner manufacturer, allowing 
between- subjects variance to vary between sites did not 

generally improve model fit— matching the general pat-
tern of results. However, the patterns of results for allow-
ing error variance to vary between sites differed markedly 
across brain regions within each scanner manufacturer. 
Together, these patterns of results suggest that there are 
both scanner and site- level influences on the amount of 
error variance in our measures of grey matter, and that 
these influences differ across brain regions.

3.3. Practical implications

Above, we quantified the longitudinal stability of three 
grey matter measures. We can use these estimates to 
answer pragmatic questions about study design choices, 
including: how many repeated brain scans do we need to 
achieve high longitudinal stability? And, what influence 
are differences in longitudinal stability across brain 
regions likely to have on the attenuation of our results?

3.3.1. How many repeated measures do we need  
to achieve high longitudinal stability?

We answered this question assuming that the stability 
estimates are proxies for reliability estimates. To put 
these estimates into context, we performed a brief 
decision- study ( Shavelson  &  Webb,  1991;  Vispoel  et al., 
 2018;  Webb  et  al.,  2006), using the Cortical Thickness 
estimates. We estimated the number of repeated mea-
sures needed to achieve an ICC2 longitudinal stability of 
greater than .9— “excellent” longitudinal stability, follow-
ing Koo and Li’s standards (2016). We can reformulate 
the ICC2 formula for this purpose.

 

ICC2 = σB
2

σB
2  + σE

2

N  

(3)

Fig. 6. Representation of multigroup ICED models (numbers 1- 4), and model comparisons (arrows A- E). The model 
descriptions refer to whether the between- subjects variance (σB

2 ) and error variance (σE
2 ) parameters were allowed to vary 

across sites (unconstrained) or were set to be equal across sites (equal). The arrows represent the model comparisons 
(ΔCFI) in the direction towards the less constrained model.

Fig. 7. ΔCFI for each model comparison (A- E) across 
regions. Higher values (lighter and more yellow coloured) 
indicate improved model fit with more free parameters. 
In comparisons A and D, between- subjects variance 
is allowed to vary compared to the preceding model. 
In comparisons B and C, error variance is allowed to 
vary compared to the preceding model. In panel E, both 
between- subjects and error variances are allowed to vary 
compared to the fully constrained model.
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(4)

Then, for ICC2 > .9

 
N > 9 ⋅ σE

2

σB
2

 
(5)

As visualised in Figure 8, our estimates suggest that 
most (48 of 68, or 70.5%) regions would require three or 
more timepoints to achieve an ICC2 longitudinal stability 
greater than .9. Further, 45.6% regions would require four 
or more timepoints. Performing poorest were the left and 
right temporal pole regions— both would require eight 
repeated scans to achieve high longitudinal stability. 
Given there are relatively few longitudinal brain imaging 
studies ( Kievit  &  Simpson- Kent,  2020), and most of these 
contain only two timepoints, these results suggest that 
we will be unlikely to achieve sufficient longitudinal stabil-
ity in some brain regions. Substantively, our findings 
therefore suggest that the absence of findings in these 
regions in similarly designed studies may therefore reflect 
low power (caused by suboptimal longitudinal stability) 
rather than a true absence of effects or differences 
between individuals or groups.

Also note, with repeated measures within session, we 
are likely to improve the longitudinal stability of our mea-
surements. Further, it is possible to use data with repeated 
measures within session to estimate the contribution of 
these additional components of variation. Using these 
variance components, we can perform a similar decision 

study as above to investigate the benefits (and any 
related cost- benefit trade- offs) of including additional 
within- session measurements ( Anand  et  al.,  2022; 
 Brandmaier,  Wenger,  et al.,  2018;  Noble  et al.,  2017).

3.3.2. How attenuated are our estimates  
likely to be?

A related practical implication is that our standardised 
effect sizes will be more attenuated for regions with lower 
longitudinal stability. To demonstrate this, we extracted 
estimates from regions with the highest (parahippocam-
pal gyrus, left hemisphere ICC = .9) and lowest (temporal 
pole, right hemisphere ICC = .54) Cortical Thickness lon-
gitudinal stability estimates. For example, assuming a 
“true” correlation between a hypothetical measure and 
each brain region is .3, and the hypothetical measure has 
a longitudinal stability of .9.

 robserved = rtrue correlation   rmeasure × rregion   (6)

 robserved parahippocampal gyrus( ) = .3  .9 × .9  = .27 (7)

 robserved temporal pole( ) = .3  .9 × .54  = .21 (8)

Using Spearman’s attenuation correction formula 
(Equation 6;  Spearman,  1904), we expect the parahip-
pocampal gyrus correlation to be attenuated to .27 
(equation 7) and the temporal pole to be attenuated to 
.21 (equation  8). We can use these attenuated effect 
size estimates to compare expected statistical power 
for a straightforward correlation analysis. Given the 

Fig. 8. Number of timepoints required to achieve an ICC2 longitudinal stability estimate of .9 or greater for Cortical 
Thickness brain regions (assuming no individual differences in change in cortical thickness over 2 years).
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 attenuation, we would require almost 70% more par-
ticipants (105 vs. 175) to detect the more severely 
 attenuated correlation with 80% statistical power with 
a 5% alpha.

3.4. The relationship between size of brain region 
and longitudinal stability

Above, we have focused on the Desikan- Killiany- Tourville 
atlas parcellation (34 regions per hemisphere) as it is very 
widely used within and beyond ABCD, and thus will allow 
researchers to directly compare patterns of empirical 
findings with patterns of reliability. However, it is also 
highly plausible that different atlases will yield different 
measures of reliability even in the same sample for rea-
sons of region size (averaging out noise to differing 
degrees) and anatomical fidelity4*. To that end, we have 
now added an extensive analysis based on combining 
regions into lobes (5 lobes per hemisphere) and a custom 
Destrieux parcellation (74 regions per hemisphere).

3.4.1. Lobes analysis

We reran the ICED models to estimate ICC longitudinal 
stability on lobes. We combined lobes following freesurfer 
guidelines ( Klein  &  Tourville,  2012, Appendix 1), calculat-
ing the mean cortical thickness, and sum surface area 
and volume for each lobe. Figure 9 visualises the ICC for 
each lobe across each measure. Mean ICCs for each 
measure were: cortical thickness .74 (range = .6 -  .84), 
surface area .93 (range = .82 -  .98), and volume (mean = 
.95, range = .87 -  .97). To compare the ICCs based on 
lobe and the ICCs based on individual regions, we calcu-
lated the mean ICC across brain regions for each lobe. 
The lobe ICCs were marginally larger: difference in corti-
cal thickness was .00 (range - .05 to .04), difference in sur-
face area was .02 (range .00 to .04), and difference in 
volume was .02 (range .00 to .05). Finally, following the 
exploratory analysis above, we compared the model fit for 
models with constrained and unconstrained error vari-
ances. The CFI was not meaningfully poorer in the uncon-
strained model for any lobe across the brain measures, 
indicating that we can model variances equally at each 
timepoint.

3.4.2. Destrieux parcellation analysis

Next, we ran our ICED models on data processed using 
the Destrieux parcellation ( Rutherford  et  al.,  2022).  
Figure 10 visualises the ICC, ICC2, and model fit (CFI) of the ICED models. The mean ICC for cortical thickness 

across Destrieux brain regions was .20 (range .00 to .50), 
and the mean ICC2 was .32 (range .00 to .66). We again 
compared the model fit for models with constrained and 

Fig. 9. ICC estimates across structural measures and 
lobes. Lighter colours indicate higher longitudinal stability.

Fig. 10. ICC (top), ICC2 (middle), and CFI estimates for 
the constrained (error variances equal between timepoints) 
ICED model (bottom) for cortical thickness across brain 
regions (Destrieux parcellation). For ICC estimates (top 
and middle), lighter colours indicate higher stability. Note 
that for clarity we shifted the scale compared earlier in 
ICC (Figs. 2, 3, and 9). For CFI estimates (bottom), lighter 
regions indicate higher CFIs and better model fit (above .95 
is desirable to accept the model), black regions indicate a 
CFI of zero indicating terrible model fit and that we cannot 
trust the model to yield reliable estimates.

4 We would like to thank an anonymous reviewer for highlighting this key 
point.
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unconstrained error variances. In contrast to our analyses 
using the Desikan- Killiany- Tourville atlas ( Desikan  et al., 
 2006), only 13% of regions (19 regions), the CFI differ-
ence did not favour the constrained model indicating that 
for most regions we cannot model error variances to be 
equal across timepoints. This indicates a violation of strict 
measurement invariance over time for these regions, and 
that alternative longitudinal analytic approaches may be 
needed (though for an in- depth discussion of the role of 
measurement invariance see Robitzsch & Lüdtke, 2023). 
We also found poor model fit in the constrained ICED 
models across most regions: in 57% of brain regions, the 
CFI was 0 and in 87% of cases the CFI was lower than 
.95 (usually a lower threshold for acceptable fit).

To aid comparisons of results, Figure 11 presents the 
ICC estimates for cortical thickness only for the Desikan- 
Killiany- Tourville parcellation, the combined lobes, and the 
Destrieux parcellation using the identical colour mapping.

4. DISCUSSION

In this study, we used a series of ICED models ( Brandmaier, 
 Wenger,  et al.,  2018) to generate brain maps of (2- year) 
longitudinal stability to provide a nuanced overview of the 
stability of grey matter across imaging measures and 
brain regions in the ABCD study imaging data ( Casey 
 et al.,  2018). Our first analyses demonstrated heterogene-
ity in longitudinal stability estimates of longitudinal stabil-
ity across brain regions. Further, of the grey matter 
structural measures (thickness, surface area, and vol-
ume), “one of these is not like the other.”5 Specifically, cor-
tical thickness showed a lower average longitudinal 
stability, and a wider range of longitudinal stability esti-
mates, across brain regions. In contrast, surface area and 
grey matter volume showed near identical patterns of high 
longitudinal stability.

The low longitudinal stability we see in some regions 
may simply be because those regions are harder to 
image. For example, the inferior temporal cortex and 
frontal poles are close to regions susceptible to various 
artifacts, including the temporal bones, sinuses, and 
potential dental artifacts. Indeed, these same regions 
have previously been found to have low test- retest reli-
ability ( Knussmann  et al.,  2022).

The lower stability of cortical thickness may either 
reflect true lower reliability, but also the greater individual 
differences in true cortical thickness change known to 
occur in this developmental period. Repeated scans 
closely spaced (i.e., hours or days apart) in a develop-
mental cohort would allow future researchers to disen-
tangle these explanations. During early adolescence, 

surface area and volume are relatively stable while corti-
cal thickness is rapidly changing ( Bethlehem  et al.,  2022; 
 Mills  et al.,  2016;  Rutherford  et al.,  2022). The fact that 
cortical thinning is occurring does not itself account for 
differences in longitudinal stability. The ICED estimated 
ICC does not penalise for change over time, assuming 
that all participants are changing at the same rate. How-
ever, individual differences in the rate of change will lead 
to reduced longitudinal stability as these individual differ-
ences will be included in the error term if not explicitly 
modelled. Individual differences in the rate of cortical 
thinning are well documented ( Bethlehem  et  al.,  2022; 
 Rutherford  et al.,  2022), including quantifications of corti-
cal maturation ( Fuhrmann  et al.,  2022), and are associ-
ated with pubertal timing ( Vijayakumar  et al.,  2021), itself 
an important source of intra- individual differences across 
adolescents. Together, there are exciting possibilities to 
investigate and quantify how rapid changes in brain 
structure— including during sensitive developmental 
periods including adolescence ( Fuhrmann  et  al.,  2015) 
and in later life— influence longitudinal stability. Below, 
we discuss opportunities to expand ICED into the latent 
growth curve model to incorporate these individual differ-
ences in the rate of change.

We extended our analyses to examine the relative 
contributions of between- subjects variance and error 
variance on differences in patterns of stability across 
brain region and ABCD’s 21 testing sites. Stability esti-
mates were heterogeneous across regions, and this 
appeared to be driven by differences in between- subjects 
variance, suggesting these differences are due more to 
actual between- subjects differences. This observation is 

Fig. 11. ICC estimates for cortical thickness for the 
Desikan- Killiany- Tourville parcellation (top), the combined 
lobes from the Desikan- Killiany- Tourville parcellation 
(middle), and the Destrieux parcellation (bottom). Lighter 
colours indicate higher longitudinal stability.

5 Sesame Street, Episode 1056 (1977).
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encouraging insofar as we can be more certain that 
observing individual differences across brain regions is 
likely a result of those individual differences, instead of 
differences in the amount of error captured in each region 
(perhaps with exceptions of the temporal pole, frontal 
pole, and entorhinal cortex).

In contrast, we found that differences in longitudinal 
stability across testing sites were largely driven by differ-
ences in error variance. It is not yet clear why some sites 
contribute more error than others. The ABCD consortium 
has gone to great lengths to ensure consistency in scan-
ning parameters, data processing, quality control, and 
data harmonisation ( Casey  et  al.,  2018;  Hagler  et  al., 
 2019). In our follow- up analyses, we found the average 
contribution of error variance differed between scanner 
manufacturers, and an overall similar pattern of results in 
the multigroup analyses. We also saw differing patterns of 
site- related differences in error variances when analysing 
sites with each scanner type separately. Given the study 
design, with sites using a single scanner type, we are 
unable to fully disentangle the contributions of site- related 
and scanner- related influences on error. It may be possi-
ble to test this with a multilevel ICED model, ideally on a 
dataset with cross- nesting of site and scanner, and we 
welcome extensions of our work in this area. In addition to 
site- related differences (e.g., MRI scanner and image 
acquisition), site- related sampling differences, including 
demographics like age, related to each site may also be 
impactful. It is also plausible that sites were differentially 
affected by recruitment, retesting, and COVID- 19 related 
delays. We expect that time between scans moderates 
the longitudinal stability and stability of the measures (as 
discussed in the introduction). At the site level, different 
patterns of time lags between scans may capture differing 
levels of individual differences in change over time— which 
in these models would lead to higher estimated error.

We included two follow- up exploratory analyses. First, 
we investigated the influence of cortical atlas parcellation 
on longitudinal stability, combining data across Desikan- 
Killiany- Tourville regions into lobes and analysing data 
processed with the Destrieux parcellation. We found the 
Destrieux parcellation yielded far lower longitudinal sta-
bility ICC estimates (mean = .20, range = .00 to .50) than 
for the Desikan- Killiany- Tourville parcellation (mean = .76, 
range = .54 to .90; also see Fig. 11). Although we cannot 
definitively attribute these differences to the atlases in 
question, it seems likely that authors should be mindful of 
the relative strengths and weaknesses of each atlas. 
Greater anatomical fidelity may be associated with lower 
reliability for a range of reasons— the optimal choice will 
vary depending on the goal of the study. Second, we 
investigated whether error variances across timepoints 
can be constrained to equality. For the Desikan- Killiany- 

Tourville parcellation, the only regions for which allowing 
error variances to differ improved model fit were for the 
cortical thickness of the supramarginal gyrus (both hemi-
spheres). For the Destrieux parcellation, the results were 
more complicated. Not only did the models allowing error 
variances to differ over timepoints outperform the stan-
dard ICED constrained models across most regions. We 
also found serious issues with model fit using the Des-
trieux parcellation, suggesting that alternative methods 
to estimate reliability and longitudinal stability may be 
needed as well as further investigation into the role of 
image processing and parcellation on the longitudinal 
stability across brain regions.

4.1. Practical Implications

Our results have several implications. First, we should 
expect associations between cortical thickness and a phe-
notypic variable to be more attenuated on average than 
associations between surface area or volume and the 
same phenotypic variable. We demonstrated that for corti-
cal thickness, three or more repeated measures would be 
needed for most brain regions to achieve high longitudinal 
stability to ensure true associations are not overly attenu-
ated. We also highlighted that differences in longitudinal 
stability between regions can lead to requiring as many as 
70% more participants to achieve the same level of statis-
tical power. Of course, the relationship is nuanced, depend-
ing on the particular region of interest, the “true” association 
of interest, and other characteristics of the model and 
sample. For instance, in very underpowered studies, we 
are just as likely to see attenuation as over- estimation of 
our effects, also known as Type M (magnitude) errors 
( Gelman  &  Carlin,  2014). This effectively increases the 
chances of false- positive effects observed in small sample 
studies, or studies with too few repeated measure studies, 
further exacerbated in the case of significant threshold- 
driven publication bias ( Loken  &  Gelman,  2017).

Second, our results highlight the challenge inherent to 
comparing relative contributions of brain regions and 
structures without assessing the measurement proper-
ties across measures and regions. Alongside our results 
(Section  3: practical implications), we include practical 
examples of differential effect size attenuation resulting 
from differences in longitudinal stability across brain 
regions. If these spatial differences (or, indeed, measure 
differences) are systematic across samples, then our 
empirical associations will be affected by these patterns, 
regardless of the true pattern of associations. Thus, sys-
tematic patterns of longitudinal stability may hide or even 
induce patterns of spatial specificity. This is especially 
important when studying populations where processes of 
key interest (as is the case for ABCD;  Casey  et al.,  2018; 
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B. J. Casey, Getz, & Galvan, 2008; B. J. Casey, Jones, & 
Hare, 2008; Steinberg, 2008) such as functional and 
structural changes in the (pre)frontal lobes and their 
associations with (changes in) risk- taking behaviour are 
predominantly focused on regions that may, for method-
ological reasons, have undesirably low reliability. Esti-
mating and reporting longitudinal stability and stability as 
standard practice (c.f.  Parsons  et al.,  2019) affords us the 
opportunity to correct our estimates (e.g.,  Cooper  et al., 
 2017;  Schmidt  &  Hunter,  1996), or use approaches that 
integrate longitudinal stability into the model (e.g., for 
cognitive measures, see  Haines  et  al.,  2020;  Rouder  & 
 Haaf,  2018). Both would facilitate comparisons across 
elements where we know longitudinal stability and stabil-
ity likely differ (region, measure, sample, etc).

We stress that the implications of these analyses 
stretch further than grey matter measures in the ABCD 
data. Although the precise longitudinal stability estimates 
of these metrics will likely vary in other samples as a func-
tion of the nature of the study design, participant demo-
graphics, scanner specification, and other aspects, we 
believe several of our high- level findings are likely to gen-
eralize. First and foremost, reliability and longitudinal sta-
bility are likely to vary across brain regions, measures, 
and samples. For example, MRI and fMRI show distinct 
patterns of longitudinal stability ( Elliott  et  al.,  2020), 
shorter term reliability has also been shown to differ 
across channels in functional near infrared spectroscopy 
( Blasi  et al.,  2014) and EEG components ( McEvoy  et al., 
 2000). Beyond brain measures and regions, it has been 
demonstrated that different fMRI data processing pipe-
lines can lead to marked variation in results, even using 
the same data ( Li  et al.,  2021). Similarly, in behavioural 
data, even basic data- cleaning decisions can lead to 
large variation in reliability and longitudinal stability 
( Parsons,  2022).

In sum, we may find different patterns of longitudinal 
stability across: imaging modalities (e.g., EEG, NIRS), 
analyses pipelines, brain regions and parcellations, pop-
ulations and studies, as well as over the lifespan. We 
argue that reliability (and longitudinal stability) varies 
across a number of factors, and the unrevealed variation 
in reliability poses a danger to our inferences. Much more 
work is needed to ensure we understand the psycho-
metric properties of our tools, and the heterogeneity of 
these properties across modalities. In future studies, 
ICED models ( Brandmaier,  Wenger,  et al.,  2018) could be 
expanded with moderation approaches ( Bauer,  2017) to 
directly examine predictors of error, such as time between 
scans, head movement, testing site and researcher- 
related differences, and demographic characteristics. By 
systematically accounting for these between- site and 
between- subjects features, we can further improve longi-

tudinal stability and stability estimates, while investigat-
ing how researchers could minimise these sources of 
error in future study designs.

4.2. Limitations and opportunities  
for future research

The central limitation of this paper is the reliance on two- 
timepoint data. Currently, ABCD ( Casey  et al.,  2018) has 
collected and released access to two timepoints of 
imaging data (with an average of 2 years between scans). 
As such, we did not examine sources of variance that 
could be possible in more complex testing schemes with 
three or more timepoints (e.g.  Anand  et  al.,  2022; 
 Brandmaier,  Wenger,  et  al.,  2018;  Wenger  et  al.,  2021) 
Prior work has examined the within- session reliability of 
fMRI measures within ABCD ( Kennedy  et  al.,  2022). 
However, to our knowledge, ABCD did not collect similar 
within- session repeated structural measures— we there-
fore focused on longitudinal stability. Future investiga-
tions would benefit from including repeated measures 
within session to enable the teasing apart of reliability 
and longitudinal stability and allow us to investigate pre-
dictors of both (For an example of using the Generaliz-
ability Theory, see  Noble  et al.,  2017). In this paper, we 
chose instead to capitalise on the multi- site nature of 
ABCD to examine sources of variance across brain 
regions and testing sites.

As we highlight in the introduction, individual differ-
ences in rate of change in brain structure over time will 
reduce our stability estimates. With two timepoints, we 
cannot uniquely identify these individual differences in 
change. As such, while high stability suggests we can 
adequately rank- order participants over this time period, 
it does not suggest that participants’ brain structure 
remained stable across that time period (e.g., if all partici-
pants’ cortical thickness increased by 1 mm, the stability 
estimates would be identical here). On the other hand, low 
stability indicates that we are unable to adequately rank- 
order participants in this time course. This could result 
from population- level instability; it could suggest that the 
rate of change between participants differs substantially. 
However, these estimates alone do not give us informa-
tion about the other sources of within- subject variance. 
Lifespan charts of brain development ( Bethlehem  et al., 
 2022) highlight periods of rapid change and stability in 
brain structure, as well as periods characterised by greater 
between- subjects variance. Moving forward, develop-
mental neuroscience needs models that capture the reli-
ability of change, alongside a sufficient number of 
repeated measures (longitudinal and ideally within ses-
sion). We suggest two ways this might be achieved with 
extensions of the ICED modelling approach.
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First, to model change in two timepoint data, many 
studies calculate change scores (or annualised change 
scores to account for differential timings between scans). 
Difference scores can be modelled equivalently within 
the SEM framework as latent difference scores (for a 
tutorial, see  Kievit  et al.,  2018). It is possible to extract 
reliability estimates for these change scores, with some 
adaptations to the ICED approach (the difference score 
model is a special case of a two- timepoint latent growth 
curve model). It is worth noting that the literature on the 
reliability of difference scores indicates we should expect 
generally lower reliability than individual measures (e.g. 
 Lord,  1956;  Thomas  &  Zumbo,  2012;  Zimmerman  & 
 Williams,  1998). Unfortunately, in standard latent differ-
ence score models, the error variance is not uniquely 
identifies; instead, they only capture the variance of the 
intercept and the change, which are both confounded 
with error in a single- indicator model. In effect, the model 
specification assumes perfect reliability of the change 
score if the intercept and change are to be interpreted as 
“pure” constructs. Given an estimate of reliability, or mul-
tiple indicators at each timepoint (e.g., multiple scans 
per session), the reliability of the change score can be 
estimated. Further work in this direction would enable 
mapping the reliability of change, given only two time-
points, as we have done in this paper across measures 
and brain regions.

Second, with three or more timepoints (e.g., when fur-
ther waves of ABCD data are released), the ICED models 
can be expanded into latent growth curve models 
( Brandmaier,  von  Oertzen,  et  al.,  2018;  Brandmaier, 
 Wenger,  et al.,  2018). This powerful and flexible extension 
allows for the simultaneous modelling of the intercept 
and slope reliability, termed “Effective Curve Reliability.” 
This approach would provide key insights for investiga-
tions of individual differences in trajectories of change in 
existing and future data. Further, using this approach, we 
can directly incorporate the non- linear changes in brain 
structure known to occur throughout the lifespan (e.g. 
 Bethlehem  et  al.,  2022). Psychometrically, this would 
allow us to expand the grey matter structure reliability 
maps presented in this paper into reliability maps of 
change trajectories allowing us to gauge how well we can 
detect individual differences, their antecedents, cor-
relates, and consequences. Effective curve reliability is a 
valuable tool for planning future studies for desired levels 
of precision, expected reliability, and statistical power, 
given variance estimates from studies such as ours and 
the planned longitudinal sampling. These considerations 
become especially important in clinical applications, 
such as drug trials intending to decelerate atrophy in MS 
or dementia, given the time and expense required to con-
duct longitudinal neuroscience.

Our additional exploratory analyses raises several 
additional limitations and avenues for future investiga-
tions. The pattern of longitudinal stability we observed 
using the Destrieux parcellation (mean = .20, range = .00 
to .50) was markedly poorer than using the Desikan- 
Killiany- Tourville parcellation (mean = .76, range = .54 to 
.90; also see Fig.  11). However, Freesurfer version 6.0 
was used for the Destrieux parcellation analysis, while 
version 5.3 was used for the ABCD data release. Several 
major improvements were made between versions, 
including moving from calculating grey matter volume as 
the product of surface area and cortical thickness (Free-
surfer 5.3 –  used in the ABCD release) to an irregular 
polyhedron approach ( Winkler  et  al.,  2018 -  used from 
Freesurfer version 6.0 and for the Destrieux parcellation 
analyses). We suggest that further investigations of the 
impact of processing pipelines and software versions on 
reliability and longitudinal stability are warranted (e.g., 
see  Li  et al.,  2021). This could further extend to assessing 
the progress of new software versions against older ones. 
Further, we note that the Destrieux parcellation analysis 
used a different data processing pipeline ( Rutherford 
 et al.,  2022) compared to the ABCD data releases ( Hagler 
 et al.,  2019), and the Destrieux parcellation analysis used 
a subsample of the full ABCD sample. In sum, our results 
demonstrate that cortical parcellations are impactful on 
longitudinal stability. Researchers will need to consider 
the trade- off between anatomical fidelity and stability (or 
reliability), depending on the goals of the study. An excit-
ing line of future research will be to characterise 
parcellation- related differences in longitudinal stability 
and reliability— including parcellations we did not use 
here, for example, the Glasser parcellation ( Glasser  et al., 
 2016) and the human Brainnetome atlas ( Fan  et al.,  2016)

4.3. Summary

In this study, we mapped the (2- year) test- retest stability 
of grey matter measures across brain regions using the 
first two timepoints from the ABCD study ( Casey  et al., 
 2018). This study complements previous examinations of 
the reliability and longitudinal stability of fMRI measures 
( Kennedy  et al.,  2022;  Taylor  et al.,  2020). It also adds to 
existing research on the test- retest reliability and longitu-
dinal stability of structural MRI measures ( Elliott  et  al., 
 2020;  Han  et al.,  2006), focusing on a longer timescale. 
Previous studies have used relatively short inter- scan 
intervals, for example, 2 weeks: we moved beyond prior 
investigations and examined longitudinal stability in a very 
large sample with 21 testing sites across a longer devel-
opmental period (2 years). We found patterns of stability 
to differ across structural measures, brain regions, and 
testing sites. Decomposing these estimates allowed us to 
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highlight that differences in stability across brain regions 
appear to be largely due to genuine between- subjects dif-
ferences. In contrast, differences in stability across testing 
sites were driven by variations in error, hinting at important 
cross- site differences causing increases in measurement 
error. Heterogeneity in reliability or longitudinal stability is 
not a problem in itself, but it does highlight the importance 
of examining the reliability of our measurements, and fur-
ther investigating the sources of this (un)reliability, or lon-
gitudinal (in)stability, variance. We offered suggestions for 
expanding the Intra- Class Effect Decomposition approach 
used here into future investigations. Further detailed map-
ping of the reliability and longitudinal stability of structural 
brain measures over the lifespan should facilitate improv-
ing the efficiency and accuracy of developmental cogni-
tive neuroscience.
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