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In this paper, we find and explore the correspondence between quivers, torus knots, and combinatorics of
counting paths. Our first result pertains to quiver representation theory—we find explicit formulas for
classical generating functions and Donaldson-Thomas invariants of an arbitrary symmetric quiver. We then
focus on quivers corresponding to ðr; sÞ torus knots and show that their classical generating functions, in
the extremal limit and framing rs, are generating functions of lattice paths under the line of the slope r=s.
Generating functions of such paths satisfy extremal A-polynomial equations, which immediately follows
after representing them in terms of the Duchon grammar. Moreover, these extremal A-polynomial
equations encode Donaldson-Thomas invariants, which provides an interesting example of algebraicity of
generating functions of these invariants. We also find a quantum generalization of these statements, i.e. a
relation between motivic quiver generating functions, quantum extremal knot invariants, and q-weighted
path counting. Finally, in the case of the unknot, we generalize this correspondence to the full HOMFLY-PT
invariants and counting of Schröder paths.
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I. INTRODUCTION

Polynomial knot invariants, such as coloredHOMFLY-PT
polynomials, are quite involved functions of various varia-
bles. In this paper,we show that for a large class of ðr; sÞ torus
knots, these polynomials admit a very simple combinatorial
interpretation—they are related to the counting of lattice
paths under a line of a specific slope r=s. This immediately
relates the field of knot theory to combinatorics and path
counting problems. Furthermore, we relate this observation
to the correspondence between knots andquivers, discovered
recently in [1,2], see also [3–6]. One important consequence
of the knots-quivers correspondence is an identification of
Labastida-Mariño-Ooguri-Vafa (LMOV) invariants [7–10]
with motivic Donaldson-Thomas invariants for quivers
[11–14], which leads to the proof of integrality of a large
class of LMOVinvariants. Altogether, these results lead to an
intricate web of relations between knot invariants, combina-
torics and path counting problems, string theory setup behind
LMOV invariants, and representation theory of quivers.

Our first important result in this paper pertains to quiver
representation theory; namely, in Proposition 3.2,we provide
an explicit formula for coefficients of a classical generating
function associated to an arbitrary symmetric quiver. Such
generating functions are of interest because they encode
numerical Donaldson-Thomas (DT) invariants. More pre-
cisely, numerical DT invariants can be extracted from the
logarithm of such generating functions. As our second
important result, in Proposition 3.3, we provide a general
formula for such a logarithm of the classical quiver generat-
ing series,which then leads to explicit formulas for numerical
DT invariants of an arbitrary symmetric quiver. These results
should be of interest to anyone interested in quiver repre-
sentation theory and DT invariants, irrespective of all other
relations to knots and counting paths that we discuss in
this paper.
Having found general formulas for classical generating

series and numerical DT invariants for arbitrary symmetric
quivers, we then focus on quivers that via the knots-quivers
correspondence are associated to ðr; sÞ torus knots in
framing rs. In Proposition 4.1, we show that classical
generating functions for such quivers, which are equal to
classical generating functions of colored extremal
HOMFLY-PT polynomials of ðr; sÞ torus knots in framing
rs, are also equal to generating functions of lattice paths
under the line of the slope r=s. Furthermore, in Proposition
4.2, we find a quantum generalization of this statement, and
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relate to each other motivic generating functions of quivers,
q-dependent generating functions of extremal colored
HOMFLY-PT polynomials for torus knots, and q-weighted
(by the area underneath) lattice paths. (Recall that extremal
HOMFLY-PT polynomials are defined as coefficients of the
highest or lowest powers of the variable a of the full
HOMFLY-PT polynomials [15].)
Analysis of generating functions of extremal colored

knot polynomials brings into our game one other concept,
namely that of (generalized and extremal) A-polynomials.
A-polynomials are algebraic curves associated to knots,
and can be defined by certain algebraic equations, which
are satisfied by classical generating functions of colored
knot polynomials. Therefore, from the identification of
knot polynomials and lattice path counting, it follows that
generating functions of lattice paths should also satisfy
A-polynomial equations (up to appropriate identification of
parameters). We prove this statement by representing the
path-counting problem in terms of the Duchon grammar,
and showing that it indeed leads to algebraic equations that
agree with knot theoretic A-polynomials. From the view-
point of LMOVand Donaldson-Thomas invariants, the fact
that their generating functions satisfy algebraic equations is
an example of algebraicity discussed in [16].
Subsequently, to illustrate the above claims, we find

quivers that correspond to ð3; sÞ torus knots. From the
knots-quivers correspondence, we then know that these
quivers encode formulas for (extremal) colored HOMFLY-
PT polynomials for ð3; sÞ torus knots; such explicit for-
mulas have not been known before; therefore, finding them
is the next important result of this paper. Furthermore, it
follows from Propositions 4.1 and 4.2 that these formulas
also encode (q-weighted) generating functions of lattice
paths under the lines of the slope 3=s. Such formulas also
have not been known before, so they provide yet another
important result of this work.
Finally, we make the first step towards generalization

of all these results from the extremal case to the full
a-dependent HOMFLY-PT polynomials. We find such a
generalization for the framed unknot, for which the lattice
path counting turns out to be generalized to the counting of
Schröder paths.
While the connection between torus knots, lattice paths,

and quivers that we find is new, it would interesting to
understand if or how it relates to other combinatorial models
of knot invariants, such as (Calabi-Yau) crystals discussed in
[17], the representation of (uncolored) HOMFLY-PT poly-
nomials in terms of motivic Donaldson-Thomas invariants
discussed in [18], the relations between path counting and
uncolored bottom row HOMFLY-PT homology of torus
knots [19], yet another relation between Schröder and
superpolynomials discussed in [20], or combinatoral models
for torus knots considered in [21,22].
The plan of this paper is as follows. In Sec. II, we

introduce relevant background: basics of knot invariants,

the knots-quivers correspondence, and a summary of ana-
lytic combinatorics and lattice path counting. In Sec. III, we
find explicit formulas for classical generating functions and
Donaldson-Thomas invariants for an arbitrary symmetric
quiver. In Sec. IV, we present the relation between invariants
of torus knots and counting of lattice paths, and illustrate it
from various perspective. In Sec. V, we derive quivers and
exact expressions for extremal colored HOMFLY-PT poly-
nomials for a series of ð3; sÞ torus knots, which then lead to
explicit expressions for the numbers of lattice paths under
the lines of the slope 3=s. Finally, in Sec. VI, we relate full
a-dependent HOMFLY-PT polynomials of the unknot to the
counting of Schröder paths.

II. CAST: KNOTS, QUIVERS, AND PATHS

In this section, we present relevant background from
three seemingly unrelated areas of research: knot invariants,
quiver representation theory, and combinatorics of lattice
paths. In the rest of the paper, wewill reveal surprising links
between these topics.

A. Knot invariants

To start with, we introduce relevant notation and briefly
review those notions from knot theory, which will be of our
main interest in the rest of the paper. We denote unreduced
HOMFLY-PT polynomials as

P̄Rða; qÞ ¼ hTrRUi; ð2:1Þ

where the right-hand side indicates that these polynomials
arise as expectation values of Wilson loops in representa-
tion R in Chern-Simons theory [23], with U ¼ P exp

H
K A

denoting the holonomy of UðNÞ Chern-Simons gauge field
along a knot K. This expectation value depends on the rank
N and the level of Chern-Simons theory, which are encoded
in two parameters a and q of HOMFLY-PT polynomials.
Unreduced polynomials are normalized so that

P̄Rða; qÞ ¼ P̄01
R PRða; qÞ; ð2:2Þ

where PRða; qÞ is the corresponding reduced colored
HOMFLY-PT polynomial (equal to 1 for the unknot), and
P̄01
R is the normalization factor of the unknot.
Physical interpretation of knot polynomials in terms of

Chern-Simons theory can be extended to topological string
theory [24]. This interpretation led to an important Labastida-
Mariño-Ooguri-Vafa (LMOV) conjecture [7–10], which
states that colored HOMFLY-PT polynomials are encoded
in certain integral invariants NR;i;j, that in M-theory inter-
pretation count bound states of M2 and M5-branes. These
invariants are encoded in the Ooguri-Vafa operator

ZðU;VÞ¼
X
R

TrRUTrRV¼ exp

�X∞
n¼1

1

n
TrUnTrVn

�
; ð2:3Þ
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where V represents a source, and the sum runs over all
two-dimensional partitions that label representations R.
According to the LMOV conjecture, the expectation value
of theOoguri-Vafaoperator provides a generating function of
colored HOMFLY-PT polynomials and takes the form

hZðU;VÞi ¼
X
R

P̄Rða; qÞTrRV

¼ exp

�X∞
n¼1

X
R

1

n
fRðan; qnÞTrRVn

�
: ð2:4Þ

The functions fRða; qÞ conjecturally encode integral invar-
iants NR;i;j and take the form

fRða; qÞ ¼
X
i;j

NR;i;jaiqj

q − q−1
; ð2:5Þ

and can be expressed as universal polynomials in colored
HOMFLY-PT polynomials. Various tests of the LMOV
conjecture have been conducted [3,7–9,15,25,26], as well
as an attempt of a proof [27], but its general proof is still
unknown. However, integrality of LMOV invariants for
symmetric representations follows from the relation between
knots and quivers and their relations to motivic Donaldson-
Thomas invariants, as found recently in [1,2].
Polynomial knot invariants have been generalized to the

realm of knot homologies. First and important examples of
such structures are Khovanov homology and Khovanov-
Rozansky homology [28–30]. It is believed that there exist
knots homologies HSr

i;j;k for colored HOMFLY-PT polyno-
mials, and various conjectural properties of those theories
enable to determine corresponding colored superpolyno-
mials for a large class of knots

Prða; q; tÞ ¼
X
i;j;k

aiqjtk dimHSr
i;j;k: ð2:6Þ

For t ¼ −1 these superpolynomials reduce to colored
HOMFLY-PT polynomials. As we will summarize in what
follows, knot homologies and superpolynomials play an
important role in the relation to quivers too.
In this paper, we are mainly interested in two simplifi-

cations of the above framework. First, we focus on
symmetric representations R ¼ Sr. This can be achieved
by considering a one-dimensional source V ¼ x, so that
TrRV ≠ 0 only for symmetric representations R ¼ Sr, and
then TrSrðxÞ ¼ xr. Upon this specialization, (2.4) reduces
to the generating function of Sr-colored HOMFLY-PT
polynomials P̄rða; qÞ≡ P̄Srða; qÞ

PðxÞ ¼ hZðU; xÞi ¼
X∞
r¼0

P̄rða; qÞxr

¼ exp

�X
r;n≥1

1

n
frðan; qnÞxnr

�
; ð2:7Þ

where frða; qÞ≡ fSrða; qÞ encode LMOV invariants
denoted now Nr;i;j ≡ NSr;i;j,

frða; qÞ ¼
X
i;j

Nr;i;jaiqj

q − q−1
: ð2:8Þ

As mentioned above, these functions are universal
polynomials in colored HOMFLY-PT polynomials, for
example,

f1ða; qÞ ¼ P̄1ða; qÞ;

f2ða; qÞ ¼ P̄2ða; qÞ −
1

2
P̄1ða; qÞ2 −

1

2
P̄1ða2; q2Þ;

f3ða; qÞ ¼ P̄3ða; qÞ − P̄1ða; qÞP̄2ða; qÞ þ
1

3
P̄1ða; qÞ3

−
1

3
P̄1ða3; q3Þ;

etc. The generating function (2.7) can be also rewritten in
the product form

PðxÞ ¼
Y

r≥1;i;j;k≥0
ð1 − xraiqjþ2kþ1ÞNr;i;j : ð2:9Þ

In the classical limit q → 1, one can then define classical
LMOV invariants1

nr;i ¼
X
j

Nr;i;j; ð2:10Þ

which are encoded in the following ratio

yðx; aÞ ¼ lim
q→1

Pðq2xÞ
PðxÞ

¼ lim
q→1

Y
r≥1;i;j;k≥0

�
1 − xraiq2ðrþjþ2kþ1Þ

1 − xraiq2ðjþ2kþ1Þ

�
Nr;i;j

¼
Y
r≥1;i

ð1 − xraiÞ−rnr;i : ð2:11Þ

Furthermore, y ¼ yðx; aÞ defined above satisfies an alge-
braic equation,

Aðx; yÞ ¼ 0; ð2:12Þ

which is closely related to the augmentation polynomial,
and it is also referred to as a-deformed A-polynomial
[15,31]. For a ¼ 1 it reduces to the original A-polynomial
corresponding to a given knot.
The second simplification we consider amounts to

taking the extremal limit [15]. In this limit, we focus on

1For fixed r and i, the LMOV invariants Nr;i;j are non-zero
only for finitely many j, therefore making the sum in (2.10) finite.
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coefficients of extremal (highest or lowest) powers of
variable a of various knot invariants, such as colored
HOMFLY-PT polynomials or superpolynomials. This limit
is of particular interest for a large class of knots, whose
colored HOMFLY-PT polynomials satisfy P̄rða; qÞ ¼Pr·cþ

i¼r·c−
aipr;iðqÞ, for some fixed integers c� and for

every natural number r, with pr;r·c�ðqÞ ≠ 0. In this case,
instead of the full colored HOMFLY-PT polynomial
Prða; qÞ, we consider extremal polynomials, which depend
then on a single variable q and are denoted, respectively,
P�
r ðqÞ≡ pr;r·c�ðqÞ. We also introduce corresponding

extremal LMOV invariants Nr;j ≡ Nr;r·c�;j encoded
in extremal functions f�r ðqÞ, as well as associated classical
extremal LMOV invariants n�r

f�r ðqÞ ¼
X
j

Nr;r·c�;jq
j

q − q−1
; n�r ¼ nr;r·c� ¼

X
j

Nr;r·c�;j:

ð2:13Þ

Extremal invariants n�r satisfy improved integrality [15],
i.e. they are divisible by r—this is an unexpected property,
more general than M-theory integrality predictions.
Furthermore, the generating series (2.7) in the extremal
limit takes the form

P�ðxÞ ¼
X∞
r¼0

P�
r ðqÞxr ¼

Y
r≥1;j;k≥0

ð1 − xrqjþ2kþ1ÞNr;r·c� ;j ;

ð2:14Þ

while the ratio (2.11) reduces to

yðxÞ ¼ lim
q→1

P�ðq2xÞ
P�ðxÞ

¼ lim
q→1

Y
r≥1;j;k≥0

�
1 − xrqð2rþjþ2kþ1Þ

1 − xrq2ðjþ2kþ1Þ

�
Nr;r·c� ;j

¼
Y
r≥1

ð1 − xrÞ−rn�r : ð2:15Þ

If it is clear from the context which extremal invariants
(minimal or maximal) we consider, we ignore the super-
script � and simply write nr ≡ n�r . Extremal invariants nr
can be extracted from the logarithmic derivative of yðxÞ.
Indeed, if we denote

x
d
dx

log yðxÞ ¼ x
y0ðxÞ
yðxÞ ¼

X∞
k¼0

akxk; ð2:16Þ

then

nr ¼
1

r2
X
djr

μðdÞar
d
; ð2:17Þ

where μðdÞ is theMöbius function. Note that integrality of nr
implies that

P
djrμðdÞar

d
is divisible by r2, which is a

nontrivial statement in number theory. Moreover, the func-
tion (2.15) satisfies the extremal A-polynomial equation,

A�ðx; yÞ ¼ 0; ð2:18Þ

whose coefficients are simply integer numbers (independent
of a), and which can be found by appropriate rescaling of
(2.12). ExtremalA-polynomials have a number of interesting
properties presented in [15], and in particular general
formulas for extremal invariants nr can be deduced from
the form of A�ðx; yÞ. Extremal A-polynomials also play a
prominent role in this paper.

B. Knots-quivers correspondence

The correspondence between knots and quivers has been
formulated in [1,2]. It states that to a given knot one can
associate a symmetric quiver, in such a way, that various
types of knot invariants are encoded in this corresponding
quiver and in the moduli space of its representations. As an
example, a quiver associated to trefoil knot is shown in Fig. 1.
Moduli spaces of quiver representations are characterized by
various invariants, in particular numerical and motivic
Donaldson-Thomas invariants [11–13]. In general, such
invariants are hard to compute; however, they can be
identified for some classes of quivers, in particular for
symmetric quivers. Amusingly, these are symmetric quivers
which play role in the knots-quivers correspondence. The
knots-quivers correspondence was proven for all knots up to
6 crossings, infinite families of twist and torus knots, and
some other examples in [1,2], and for all rational knots in [6].
Consider a symmetric quiver with m vertices. The

structure of this quiver can be encoded in a symmetric
square matrix C ∈ Zm×m with integer entries Ci;j, which
denote the number of arrows from vertex i to vertex j. The
motivic generating series associated to this quiver is
defined as

FIG. 1. Trefoil knot and the corresponding quiver.
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PCðx1;…; xmÞ ¼
X

d1;…;dm

ð−qÞ
P

m
i;j¼1

Ci;jdidj

ðq2; q2Þd1…ðq2;q2Þdm
xd11 …xdmm :

ð2:19Þ

Motivic Donaldson-Thomas invariants Ωd1;…;dm;j of a
symmetric quiver Q can be interpreted as the intersection
Betti numbers of the moduli space of all semisimple
representations of Q, or as the Chow-Betti numbers of
the moduli space of all simple representations [32,33], and
they are encoded in the following product decomposition of
the above series

PCðx1;…; xmÞ ¼
Y

ðd1;…;dmÞ≠0

Y
j∈Z

Y
k≥0

× ð1 − ðxd11 …xdmm Þqjþ2kþ1Þð−1Þjþ1Ωd1 ;…;dm ;j :

ð2:20Þ

It is conjectured in [11] and proven in [14] that Ωd1;…;dm;j

are positive integers.
One important manifestation of the knots-quivers cor-

respondence is the statement, that generating functions of
colored HOMFLY-PT polynomials (2.7) of a knot K can be
written in the form of the motivic generating function
(2.19) with some specific choice of a matrix C, and upon
the identification,

xi ¼ xaaiqlið−1ÞtiþCi;i ; ð2:21Þ
where li ¼ qi − ti, and ai, qi and ti are ða; q; tÞ–degrees of
generators of the uncolored, reduced HOMFLY-PT homol-
ogy of K. Therefore, it follows from the knots-quivers
correspondence that the generating function of colored
HOMFLY-PT polynomials can be written in the form

PðxÞ¼
X∞
r¼0

P̄rða;qÞxr

¼
X

d1;…;dm≥0
xd1þ���þdmq

P
i;j
Ci;jdidj

Q
m
i¼1q

lidiaaidið−1ÞtidiQ
m
i¼1ðq2;q2Þdi

:

ð2:22Þ

Once general expressions for colored polynomials
are known, after rewriting them in the above form, the
matrix C—and, thus, the corresponding quiver—can be
identified. Moreover, the structure of the above formula is
so constraining, that such a quiver can be identified even if
only several colored polynomials are known. Note that it
follows that all colored HOMFLY-PT polynomials for a
given knot are encoded in a finite number of parameters:
the matrix C and parameters ai, qi, and ti, which is a very
strong prediction. Also recall, that from the quiver view-
point a change of framing by f simply amounts to adding f
to each element of the matrix C,

C ↦ Cþ

2
664
f f � � �
f f � � �
..
. ..

. . .
.

3
775: ð2:23Þ

It is also immediate to write down the generating series of
extremal invariants (2.14) in the quiver form [2]. It amounts
to restricting a quiver to a subquiver, keeping only those
vertices which are relevant in a given extremal limit. For
such a smaller quiver C, with smaller number of verticesm,
the change of variables (2.21) simply does not involve a
dependence,

xi ¼ xqlið−1ÞtiþCi;i ; ð2:24Þ

and, analogously to (2.22), in the extremal limit, we get

P�ðxÞ ¼
X∞
r¼0

P�
r ðqÞxr

¼
X

d1;…;dm≥0
xd1þ���þdmq

P
i;j
Ci;jdidj

Q
m
i¼1 q

lidið−1ÞtidiQ
m
i¼1ðq2; q2Þdi

:

ð2:25Þ

Furthermore, recall that in order to define classical
LMOV invariants we considered the ratio of generating
functions of colored HOMFLY-PT polynomials (2.11), or
(2.15) in the extremal case. An analogous, albeit more
general, ratio can be considered for quiver generating
functions

PCðq2x1;…; q2xmÞ
PCðx1;…; xmÞ

¼
X

l1;…;lm

bl1;…;lmðqÞxl11 …xlmm : ð2:26Þ

Factorization of this ratio in the classical limit q → 1 enables
to define classical coefficients bl1;…;lm ≡ bl1;…;lmð1Þ and
numerical Donaldson-Thomas invariants Ωd1;…;dm ,

yðx1;…; xmÞ ¼
X

l1;…;lm

bl1;…;lmx
l1
1 …xlmm

¼
Y

ðd1;…;dmÞ≠0
ð1 − xd11 � � � xdmm ÞΩd1 ;…;dm : ð2:27Þ

Numerical Donaldson-Thomas invariants are combinations
of their motivic counterparts

Ωd1;…;dm ¼ ðd1 þ � � � þ dmÞ
X
j

ð−1ÞjΩd1;…;dm;j: ð2:28Þ

We can also consider the specialization x ¼ x1 ¼ … ¼ xm
and introduce diagonal sums Bn of coefficients bl1;…;lm , in
terms of which the generating function (2.27) reduces to
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yðxÞ≡ yðx;…; xÞ ¼
X∞
n¼0

Bnxn;

Bn ¼
X

l1þ���þlm¼n

bl1;…;lm : ð2:29Þ

Similarly, upon this specialization [and in analogy to (2.15)],
we introduce diagonal DT invariants nr,

yðxÞ≡yðx;…;xÞ¼
Y∞
r¼1

ð1−xrÞ−rnr ;

nr¼
X

d1þ���þdm¼r

X
j

ð−1ÞjΩd1;…;dm;j: ð2:30Þ

We also note that, while relating quiver generating
functions to generating functions of colored knot polyno-
mials, for a knot K associated to a quiver C, it is natural to
consider amodified quiver, encoded in amatrix C̄ defined by

C̄i;j ¼
(
−Ci;j þ 1 for i ¼ j

−Ci;j for i ≠ j
: ð2:31Þ

Polynomials defined by the generating series of the
form (2.22); however, with C replaced by such a modified
quiver C̄;

P0̄
Cðx1;…; xmÞ ¼

X
d1;…;dm

q
P

m
i;j¼1

C̄i;jdidj

ðq2; q2Þd1…ðq2;q2Þdm
xd11 …xdmm

ð2:32Þ
are colored HOMFLY-PT polynomials of a knot K̄, which is
themirror image of the original knotK. In this work, we take
advantage of the fact, that coefficients of the following
quotient of generating series associated to C̄;

P0̄
Cðx1;…; xmÞ

P0̄
Cðq2x1;…; q2xmÞ

¼
X

l1;…;lm

b̄l1;…;lmðqÞxl11 …xlmm ; ð2:33Þ

in the classical limit satisfy

bl1;…;lm ¼ b̄l1;…;lm : ð2:34Þ

More generally, we postulate that the equality with the full q
dependence also holds

bl1;…;lmðqÞ ¼ b̄l1;…;lmðq−1Þ: ð2:35Þ

As the framing plays a crucial role in this work, let us
clarify in which choice we are primarily interested in. The
quiver matrix for the bottom row of the right-handed (i.e.
with all crossings positive) trefoil (i.e. (2,3) torus) knot in
framing 0 and framing f ¼ −6 takes the form, respectively,

Cð2;3Þ ¼
�
2 1

1 0

�
; Cð2;3Þ

f¼−6 ¼
�−4 −5
−5 −6

�
: ð2:36Þ

Therefore, the quiver matrix for the top row of the mirror
(left-handed) trefoil, in framing 0 and framing f ¼ 6, reads,
respectively,

C̄ð2;3Þ ¼
�−1 −1
−1 1

�
; C̄ð2;3Þ

f¼6 ¼
�
5 5

5 7

�
: ð2:37Þ

In the rest of the paper, unless otherwise stated, we consider
top rows of left-handed torus knots, and denote their quiver
matrices simply by C (without bar). The framing rs of the
ðr; sÞ torus knot invoked in our main Proposition 4.1
corresponds to this convention—so in the above example

this is C̄ð2;3Þ
f¼6 which makes contact with path counting (and

in the rest of the paper we skip the bar on C). In view of

(2.34), the same results arise for Cð2;3Þ
f¼−6, and in this

convention the framing should be chosen as −rs.
Moreover, we usually reorder entries of C in such a
way, that the top left element is the largest; see (4.13)
and (4.14).

C. Counting of lattice paths

We discuss now the problem of counting of lattice paths.
This is one of the basic problems in combinatorics, see e.g.
[34]. Consider a square lattice (with lattice spacing 1), and a
line through the origin of a rational slope r=s, with
mutually prime positive integers r and s. This line passes
through integer lattice points ðsk; rkÞ for all non-negative
integers k. A basic question in combinatorics is how many
different paths, made of elementary steps (1,0) and (0,1),
one can draw between the origin and a given point ðsk; rkÞ,
in the wedge between the horizontal axis and the y ¼ r

s x
line. It is then natural to consider the generating series that
encodes the numbers of such paths for all k,

yPðxÞ ¼
X∞
k¼0

X
π∈k-paths

xk ¼
X∞
k¼0

ckð1Þxk; ð2:38Þ

where k-paths in the second summation denotes the
above-mentioned paths from (0,0) to ðsk; rkÞ. It is also
natural to consider a generalized counting, with each path π
weighted by the area areaðπÞ of the region between this
path and the x-axis, and the corresponding q-deformed
generating function

yqPðxÞ ¼
X∞
k¼0

X
π∈k-paths

qareaðπÞxk ¼
X∞
k¼0

ckðqÞxk: ð2:39Þ

An example of a lattice path under the line y ¼ 1
4
x, between

points (0,0) and (8,2), is shown in Fig. 2.
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The above counting is equivalent to the counting of all
paths in the upper half of the square lattice, starting at the
origin and ending on the y ¼ 0 line, made of elementary
steps ð1; rÞ and ð1;−sÞ. For example, counting paths made
of steps (1,0) and (0,1) under the line y ¼ 1

2
x, is equivalent

to counting paths in the upper half plane made of steps (1,1)
and ð1;−2Þ, as shown in Fig. 3. Paths of this form are called
excursions in [34]. Moreover, counting of these paths is
related to the counting of all paths starting at the origin and
ending on the y ¼ 0 line, made of elementary steps ð1; rÞ
and ð1;−sÞ, and unconstrained (i.e. not constrained to the
upper half of the lattice), as shown in Fig. 4. Such general
paths are called bridges, and we denote their generating
function by yBðxÞ. It can be shown that generating functions
of excursions and bridges are related by [34]2

yBðxÞ ¼ 1þ ðrþ sÞx d
dx

log yPðxÞ ¼ 1þ ðrþ sÞx y
0
PðxÞ
yPðxÞ

:

ð2:40Þ
The first explicit expression for the generating function

yPðxÞ in (2.38) was obtained by Bizley in [35] and is in fact
equivalent to (2.40). He proved that

yPðxÞ ¼ exp

�X∞
n¼1

gnxn
�
; ð2:41Þ

with the coefficients depending on the slope of the line
y ¼ r

s x and expressed through the binomial

gn ¼
1

ðrþ sÞn
�ðrþ sÞn

rn

�
; ð2:42Þ

which is clearly symmetric under the exchange of r and s.
For example, the number of paths reaching the first point of
coordinates ðr; sÞ is

g1 ¼
1

rþ s

�
rþ s
r

�
: ð2:43Þ

For example, for r ¼ s ¼ 1 we obtain a classical formula
for the numbers of lattice paths under the line y ¼ x,
which are given by Catalan numbers Cn ¼ 1

nþ1
ð2nn Þ; i.e.P∞

n¼0Cnxn¼expðP∞
n¼1ð2nn Þx

n

2nÞ. For r¼ 2 and s¼ 3we find
numbers of lattice paths under the line of the slope 2=3

yPðxÞ ¼ 1þ 2xþ 23x2 þ 377x3 þ 7229x4

þ 151491x5 þ 3361598x6 þ… ð2:44Þ

Note that no straightforward generalization of the Bizley
formula is known for the q-deformed generating function.
However, by invoking the knots-quivers correspondence, in
(4.3) we propose such a q-dependent generalization in
terms of the quiver data.
In [36], Duchon proposed an aproach to the problem of

counting paths based on constructing a (noncomuttative)

FIG. 3. Counting of paths under the line y ¼ 1
2
x is equivalent to

counting excursions, i.e. paths in the upper half plane, made of
elementary steps (1,1) and ð1;−2Þ.

FIG. 2. A lattice path under the line y ¼ 1
4
x, and a shaded area between the path and the line.

FIG. 4. An example of a bridge (an unconstrained analog of an
excursion) made of the same elementary steps as the excursion in
Fig. 3.

2It is also common in literature to take yðxÞ ¼P∞
k¼0

P
π∈k-paths x

ðrþsÞk as a generating function of lattice paths,
and in such a way the powers of x measure the number of steps
(i.e. the length) of a k-path. This just reduces to the rescaling of
parameter x and consequently an extra factor of rþ s in (2.40)
compared to the formulas in e.g. [34]. We note that the analogues
of the formula (2.40) hold for more general paths and bridges, as
explained in [34].
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grammar, such that each lattice path corresponds to exactly
one word in this grammar. From this perspective, the
counting of lattice paths is equivalent to counting words.
In fact, Duchon’s approach does not yield directly the
generating function yPðxÞ, but instead it gives an algebraic
equation it satisfies

Aðx; yPÞ ¼ 0: ð2:45Þ
For example, for the line y ¼ 2

3
x such an algebraic equation

takes the form Aðx;yPÞ¼ 1−yPþxy5Pð2−yPþy2PÞþ
x2y10P . This equation can be solved, yielding coefficients
in (2.38). First few of them are listed explicitly in (2.44)
and in general, the number of such paths of length n
(and for r ¼ 2, s ¼ 3) can be written as cnð1Þ ¼P

i
1

5nþiþ1
ð5nþ1
n−i Þð5nþ2i

i Þ. We present Duchon’s formalism
in Sec. IVG in more detail, and then employ it to prove
the equivalence of generating functions of knots and lat-
tice paths.
We note that there exist yet another formula for the

number of lattice paths cnð1Þ for arbitrary r and s. In [34],
see also [37], a unified approach to the lattice paths counting
problem was proposed, and the following result was found

cnð1Þ ¼
X

ν1þ���þνr¼rn

1

1þ ν1e

�ð1þ ν1eÞ=r
ν1

�
� � �

×
1

1þ νce

�ð1þ νceÞ=r
νc

�
ω
P

r
j¼1

ðj−1Þνj ; ð2:46Þ

where e ¼ rþ s and ω is any r-th primitive root of unity.
This approach applies more generally, e.g. to paths termi-
nating at a certain height in the upper half plane in Fig. 3.
Finally, let us also mention a relationship between the

numbers gn from (2.42) and torus knots, which is different
from the relationship that we will pursue in this paper. It
was shown in [19] that the dimension of the bottom row of
the uncolored HOMFLY-PT homology of the ðr; sÞ torus
knot equals 1

rþs ðrþs
r Þ. In particular, the dimension of the

bottom row of the uncolored HOMFLY-PT homology of
the ðn; nþ 1Þ torus knot equals the nth Catalan number.

III. DONALDSON-THOMAS INVARIANTS
OF A SYMMETRIC QUIVER

In this section, we present the first important result of this
paper, namely explicit formulas for invariants of an
arbitrary quiver. Such formulas are important in their
own right, and to our knowledge they have not been
known before. In the rest of the paper, we will relate these
expressions to knot invariants on one hand and lattice paths
counting on the other hand.

A. Explicit formulas for the classical generating series

We provide now general expressions for coefficients
bl1;…;lm of the classical limit of the generating series (2.26)

yðx1;…; xmÞ ¼ lim
q→1

PCðq2x1;…; q2xmÞ
PCðx1;…; xmÞ

¼
X

l1;…;lm

bl1;…;lmx
l1
1 …xlmm ; ð3:1Þ

where PCðx1;…; xmÞ is the motivic generating series
introduced in (2.19)

PCðx1;…;xmÞ¼
X

d1;…;dm

ð−qÞ
P

m
i;j¼1

Ci;jdidj

ðq2;q2Þd1 � � � ðq2;q2Þdm
xd11 � � �xdmm ;

determined by a matrix C of a symmetric quiver with m
vertices; i.e. C is an arbitrary symmetric m ×m matrix
whose entries are non-negative integers Ci;j.
Definition 3.1 Let k ∈ f1;…; mg. For a set3 of k pairs

ðiu; juÞ, u ¼ 1;…; k, where 1 ≤ iu, ju ≤ m, we say that it is
admissible, if it satisfies the following two conditions:
(1) there are no two equal among j1;…; jk
(2) there is no cycle of any length: for any l, 1 ≤ l ≤ k,

there is no subset of l pairs ðiul ; julÞ, l ¼ 1;…; l,
such that jul ¼ iulþ1

, l ¼ 1;…; l − 1, and jul ¼ iu1 .
Proposition 3.2 Coefficients bl1;…;lm in (3.1) take form

bl1;…;lm ¼ ð−1Þ
P

m
i¼1

ðCi;iþ1ÞliAðl1;…; lmÞ

×
Ym
j¼1

1

1þP
m
i¼1 Ci;jli

�
1þP

m
i¼1 Ci;jli
lj

�
ð3:2Þ

where

Aðl1;…; lmÞ ¼ 1þ
Xm−1

k¼1

X
admissible Σk

Y
ðiu;juÞ∈Σk

Ciu;ju liu : ð3:3Þ

Here, in the second sum, we are summing over all
admissible subsets of length k–one such subset we denote
Σk. Note that Aðl1;…; lmÞ is a polynomial in variables li, of
degree m − 1, whose coefficients depend only on the off-
diagonal entries of C.
This proposition can be proven by induction, general-

izing the results that we found for the matrix C of size
m ¼ 2 or m ¼ 3. To this end, it is useful to take advantage
of an alternative definition of Aðl1;…; lmÞ, which is not as
explicit as (3.3), but rather involves an induction on m.
Namely, for a given matrix C ¼ ½Ci;j�mi;j¼1, we shall define a
certain polynomial in m variables, PmðCÞðx1;…; xmÞ,
whose coefficients are sums and multiples of the entries
of C, with specific properties. In order to state those
properties, we define first an action of the permutation
group Sm onm ×mmatrices, and on the polynomials of the

3Just to emphasize that here we really mean (an unordered) set,
e.g. sets of two pairs fð1; 2Þ; ð1; 3Þg and fð1; 3Þ; ð1; 2Þg are
considered the same.
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form pðCÞðx1;…; xmÞ, whose coefficients are functions of
the entries of C. For a permutation σ ∈ Sm, we define its
action on m ×m matrices as follows,

½σ∘C�i;j ≔ Cσi;σj ;

i; j ¼ 1;…; m; ð3:4Þ

and on polynomials pðCÞðx1;…; xmÞ by

σ∘pðCÞðx1;…; xmÞ ≔ pðσ∘CÞðxσ1 ;…; xσmÞ: ð3:5Þ

The first property that we require on Pm’s is that they are
invariant under the action of Sm,

ðA1Þ σ∘PmðCÞðx1;…; xmÞ ¼ PmðCÞðx1;…; xmÞ;
∀ σ ∈ Sm; ð3:6Þ

and the second property is an inductive one

ðA2Þ PmðCÞðx1;…; xm−1; 0Þ

¼ Pm−1ðC0Þðx1;…; xm−1Þ ·
�
1þ

Xm−1

i¼1

Ci;mxi

�
; ð3:7Þ

where C0 denotes the submatrix of C formed by its first
m − 1 rows and columns. These two properties, together
with the initial condition,

ðA0Þ P1ðCÞðxÞ ¼ 1; ð3:8Þ

uniquely determine PmðCÞðx1;…; xmÞ. Then, for a given
m ×m matrix C, the alternative description of Aðl1;…; lmÞ
from (3.3) simply reads

Aðl1;…; lmÞ ¼ PmðCÞðl1;…; lmÞ: ð3:9Þ

1. Examples for small m

It is useful to present explicit expressions for bl1;…;lm for
several small values of m. First, for m ¼ 1, we consider a

quiver that consists of a single vertex and f ∈ Z≥0 loops,
whose structure is encoded in the matrix,

C ¼ ½f�: ð3:10Þ
In this case, the coefficients bið1Þ in (3.2) are given by

bi ¼
ð−1Þðfþ1Þi

fiþ 1

�
fiþ 1

i

�
: ð3:11Þ

Now, consider a quiver with m ¼ 2 vertices, determined
by an arbitrary 2 × 2 symmetric matrix,

C ¼
�
α β

β γ

�
; ð3:12Þ

where α, β and γ are arbitrary non-negative integers. In this
case, coefficients bi;jð1Þ in (3.2) are given by

bi;j ¼ ð−1Þðαþ1Þiþðγþ1Þj βiþ βjþ 1

ðαiþ βjþ 1Þðβiþ γjþ 1Þ

×

�
αiþ βjþ 1

i

��
βiþ γjþ 1

j

�
: ð3:13Þ

Furthermore, consider a quiver with m ¼ 3 vertices,
determined by an arbitrary 3 × 3 symmetric matrix,

C ¼

2
64
α β δ

β γ ϵ

δ ϵ ϕ

3
75; ð3:14Þ

where α, β, γ, δ, ϵ, and ϕ are arbitrary non-negative integers.
In this case, coefficients bi;j;kð1Þ in (3.2) are given by

bi;j;k ¼ ð−1Þðαþ1Þiþðγþ1Þjþðϕþ1ÞkAi;j;k

�
αiþ βjþ δkþ 1

i

�

×

�
βiþ γjþ ϵkþ 1

j

��
δiþ ϵjþ ϕkþ 1

k

�
;

ð3:15Þ
where

Ai;j;k ¼
1

ðαiþ βjþ δkþ 1Þðβiþ γjþ ϵkþ 1Þðδiþ ϵjþ ϕkþ 1Þ × ð1þ ðβ þ δÞiþ ðβ þ ϵÞjþ ðδþ ϵÞkþ βδi2

þ βϵj2 þ δϵk2 þ βðδþ ϵÞijþ δðβ þ ϵÞikþ ϵðβ þ δÞjkÞ: ð3:16Þ

B. Explicit formulas for Donaldson-Thomas invariants

We now determine explicitly numerical Donaldson-
Thomas invariants Ωd1;…;dm of an arbitrary symmetric
quiver. Recall that they are defined by the factorization
in (2.27):

yðx1;…;xmÞ¼ lim
q→1

PCðq2x1;…;q2xmÞ
PCðx1;…;xmÞ

¼
X

l1;…;lm

bl1;…;lmx
l1
1 …xlmm

¼
Y

ðd1;…;dmÞ≠0
ð1−xd11 ���xdmm ÞΩd1 ;…;dm : ð3:17Þ
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Donaldson-Thomas invariants Ωd1;…;dm can be easily
extracted from the logarithmic derivative of the function
yðx1;…; xmÞ. Therefore, the crucial task is to determine the
logarithm of yðx1;…; xmÞ. We find that it is given by an
expression closely related to bl1;…;lm in (3.2).
Proposition 3.3 The logarithm of yðx1;…; xmÞ in (3.17)

takes the form

logyðx1;…;xmÞ¼
X

l1 ;…;lm≥0
l1þ���þlm>0

ð−1Þ
P

m
i¼1

ðCi;iþ1ÞliAmaxðl1;…; lmÞ

×
Ym
j¼1

1P
m
i¼1Ci;jli

�P
m
i¼1Ci;jli
lj

�
xl11 …xlmm ;

ð3:18Þ

where

Amaxðl1;…; lmÞ ¼
X

admissible Σm−1

Y
ðiu;juÞ∈Σm−1

Ciu;ju liu : ð3:19Þ

Here, in (3.19), we sum over all admissible subsets Σm−1
of length m − 1, which is in fact the maximal possible
length of an admissible set. In other words, the factor
Amaxðl1;…; lmÞ is the homogeneous part, of the top-degree,
of the polynomial Aðl1;…; lmÞ in (3.3).
Again, we have an alternative, inductive definition for

Amax. As in Sec. III A, for an m ×m matrix C we define
polynomials Pmax

m ðCÞðx1;…; xmÞ in m variables with coef-
ficients being sums and products of Ci;j ’s. The action of the
permutation σ ∈ Sm on matrices C and polynomials Pmax

m is
defined in the same way as in Sec. III A. Then we require:

ðA0’Þ Pmax
1 ðxÞ ¼ 1; ð3:20Þ

ðA1’Þ σ∘Pmax
m ðCÞðx1;…; xmÞ ¼ Pmax

m ðCÞðx1;…; xmÞ; ∀ σ ∈ Sm; ð3:21Þ

ðA2’Þ Pmax
m ðCÞðx1;…; xm−1; 0Þ ¼ Pmax

m−1ðC0Þðx1;…; xm−1Þ
Xm−1

i¼1

Ci;mxi; ð3:22Þ

where C0 is obtained from C by erasing its last row
and column. These three axioms uniquely determine
Pmax
m ðCÞðx1;…; xmÞ. Thenwehave an alternative description

for Amaxðl1;…; lmÞ
Amaxðl1;…; lmÞ ¼ Pmax

m ðCÞðl1;…; lmÞ: ð3:23Þ
The above proposition can be proven by induction on m.

1. Examples for small m

It is again instructive to present explicitly examples for
some values of m. Consider first the simplest case of
m ¼ 1, i.e. a quiver with a single vertex and f loops, so that

C ¼ ½f�:

Then the formula (3.18) reduces to

ðlog yÞðxÞ ¼
X
n>0

ð−1Þðfþ1Þn

fn

�
fn

n

�
xn: ð3:24Þ

For m ¼ 2, in the case of quivers with two vertices
defined by 2 × 2 symmetric matrices

C ¼
�
α β

β γ

�
; ð3:25Þ

where α, β and γ are arbitrary non-negative integers, the
formula (3.18) becomes

log yðx1; x2Þ ¼
X
i;j≥0
iþj>0

ð−1Þðαþ1Þiþðγþ1Þj βiþ βj
ðαiþ βjÞðβiþ γjÞ

�
αiþ βj

i

��
βiþ γj

j

�
xi1x

j
2: ð3:26Þ

It follows that Donaldson-Thomas invariants take form

Ωr;s ¼
1

ðrþ sÞ2
X

dj gcdðr;sÞ
ð−1Þðαþ1Þr=dþðγþ1Þs=dμðdÞ ðr=dþ s=dÞðβr=dþ βs=dÞ

ðαr=dþ βs=dÞðβr=dþ γs=dÞ
�
αr=dþ βs=d

r=d

��
βr=dþ γs=d

s=d

�

¼ β

ðαrþ βsÞðβrþ γsÞ
X

dj gcdðr;sÞ
ð−1Þðαþ1Þr=dþðγþ1Þs=dμðdÞ

�
αr=dþ βs=d

r=d

��
βr=dþ γs=d

s=d

�
; ð3:27Þ

for all ðr; sÞ ∈ N2nfð0; 0Þg. Integrality of these invariants implies that ðαrþ βsÞðβrþ γsÞ in the denominator above divides
the rest of the expression, which is a nontrivial number theoretic prediction. Furthermore, specializing to diagonal invariants
(2.30), we find that
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nr ¼
1

r2
X
djr

μ

�
r
d

� X
iþj¼d

ð−1Þðαþ1Þiþðγþ1Þj ðiþ jÞðβiþ βjÞ
ðαiþ βjÞðβiþ γjÞ

�
αiþ βj

i

��
βiþ γj

j

�
∈ N; ð3:28Þ

for all r ∈ N, i.e. r2 divides the rest of the above expression, which is also an interesting divisibility property.
For m ¼ 3 and an arbitrary 3 × 3 symmetric matrix,

C ¼

2
64
α β δ

β γ ϵ

δ ϵ ϕ

3
75; ð3:29Þ

where α, β, γ, δ, ϵ, and ϕ are arbitrary non-negative integers, the formula (3.18) reduces to

log yðx1; x2; x3Þ ¼
X
i;j;k≥0

iþjþk>0

ð−1Þðαþ1Þiþðγþ1Þjþðϕþ1ÞkAmax
i;j;k

�
αiþ βjþ δk

i

��
βiþ γjþ ϵk

j

��
δiþ ϵjþ ϕk

k

�
xi1x

j
2x

k
3; ð3:30Þ

where

Amax
i;j;k ¼

βδi2 þ βðδþ ϵÞijþ βϵj2 þ δðβ þ ϵÞikþ ϵðβ þ δÞjkþ δϵk2

ðαiþ βjþ δkÞðβiþ γjþ ϵkÞðδiþ ϵjþ ϕkÞ : ð3:31Þ

In this case, for diagonal invariants (2.30), we find

nr¼
1

r2
X
djr

μ

�
r
d

� X
iþjþk¼d

ð−1Þðαþ1Þiþðγþ1Þjþðϕþ1Þkðiþ jþkÞAmax
i;j;k

�
αiþβjþδk

i

��
βiþ γjþ ϵk

j

��
δiþ ϵjþϕk

k

�
: ð3:32Þ

Because nr ∈ N, it is also an interesting property of
divisibility by r2.
Note thatBPSnumbersnr for knots, i.e. diagonal invariants

[such as (3.28) and (3.32)] for quivers that are associated to
knots, are divisible by an additional factor of r, i.e. nrr ∈ N, as
found in [15]. On the other hand, by considering many
examples of quivers associated to random (symmetric)
matrices C we realized that such an extended divisibility
does not hold in general. This confirms that invariants
associated to knots are in some way special; it is desirable
to understand precise origin of these special properties.

IV. TORUS KNOTS AND COUNTING PATHS

Having introduced all necessary ingredients, in the
following proposition we state the second main result of
this work. In this proposition, by extremal invariants we
mean maximal (top row) invariants of left-handed torus
knots, as explained at the end of Sec. II B.
Proposition 4.1 The generating function yPðxÞ in (2.38)

of lattice paths under the line of the slope r=s is equal to the
classical generating function (2.15) of maximal (top row)
HOMFLY-PT invariants of the left-handed ðr; sÞ torus knot
in framing rs. That is,

yPðxÞ ¼
X∞
k¼0

X
π∈k-paths

xk ¼ lim
q→1

Pþðq2x̄Þ
Pþðx̄Þ ; ð4:1Þ

where Pþðx̄Þ is the generating series of maximal
HOMFLY-PT polynomials defined in (2.14), which can
be also expressed in terms of the corresponding quiver
(2.25). The variables x and x̄ are related through

x ¼ ð−1Þ
P

i
ðtiþ1Þx̄; ð4:2Þ

where ti’s are homological degrees of the torus knot ðr; sÞ
in framing rs.
This statement has further consequences. First, it follows

that algebraic equations satisfied by these generating
functions—i.e. (extremal) A-polynomials and equations
determined by the Duchon grammar—are the same.
Second, via the knots-quivers correspondence, the gener-
ating function of lattice paths (2.38) can be expressed in
terms of diagonal quiver invariants (2.29), which are
combinations of classical quiver invariants bl1;…;lm ≡
bl1;…;lmð1Þ defined in (2.27), which we determined explic-
itly in (3.2). The invariants bl1;…;lm are interesting in
themselves and provide a refinement of numbers of lattice
paths; they should also have a natural combinatorial
interpretation as counting some particular paths.
Proposition 4.1 also implies an interesting relation of

classical LMOV invariants (2.17), or diagonal DT invari-
ants (2.30), to the counting functions of bridges (2.40).
Indeed, note that classical LMOV and diagonal DT invar-
iants are encoded in the logarithmic derivative (2.16).
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Similarly, the generating function of bridges is also given
by (1 plus) the logarithmic derivative (2.40). It follows that
invariants nr in (2.17) or (2.30) are expressed as combi-
nations of the numbers of bridges, divided by r2. This also
means that these combinations of the numbers of bridges
are divisible by r2, which is quite a nontrivial statement; it
would be interesting to find its combinatorial interpretation.
Furthermore, it is natural to expect that there exists a

quantum deformation of Proposition 4.1. The parameter q
that computes the area under lattice paths, as well as the
parameter q of the HOMFLY-PT polynomial, are two
parameters that provide natural deformations of the gen-
erating functions that we consider. However, it turns out that
quantum deformations associated to these two parameters
are different, and in order to find agreement of q-deformed
generating functions of paths and knot polynomials,
some adjustment is necessary. Amusingly, we find that
q-weighted paths are encoded in the quiver generating
function, with appropriate identification of each xi with x
(which is different than such an identification for knots). In
the following proposition, we present explicit formulas for
suchq-deformedpath counting (which is also closely related
to extremal invariants of torus knots, the only difference
being a different identification of parameters xi).
Proposition 4.2 The generating function yqPðxÞ in

(2.39) of lattice paths under the line of the slope r=s,
weighted by the area between this line and a given path, is
equal to the following ratio of quiver motivic generating
functions PCðx1;…; xmÞ introduced in (2.19), with iden-
tification of parameters xi ¼ ð−1ÞCi;iþ1q−1x

yqPðxÞ¼
X∞
k¼0

X
π∈k-paths

qareaðπÞxk ¼PCðq2x1;…;q2xmÞ
PCðx1;…;xmÞ

����
xi¼xq−1

:

ð4:3Þ
For the line of the slope r=s, the quiver in question is
defined by the matrix C that encodes maximal invariants of
left-handed ðr; sÞ torus knot in framing rs. The coefficients

bðr;sÞl1;…;lm
appearing in the expansion of the classical gen-

erating series yPðxÞ are related to the corresponding
coefficients bl1;…;lm of the expansion of quiver motivic
function through

bðr;sÞl1;…;lm
¼ ð−1Þ

P
m
i¼1

ðCi;iþ1Þlibl1;…;lm : ð4:4Þ
In the rest of this section, we illustrate the relation

between the lattice paths, invariants of torus knots and
quivers in various examples.

A. Unknot and Fuss-Catalan numbers

As a warm-up, let us consider a framed unknot. For
framing f, it can also be thought of as ðf; 1Þ torus knot. The
minimal colored HOMFLY-PT polynomial of the unknot,
in the trivial (f ¼ 0) framing, reads

P−
r ðqÞ ¼

qr

ðq2; q2Þr
; ð4:5Þ

so that the generating function of minimal invariants for the
framed unknot takes the form

P−ðxÞ ¼
X
r≥0

xrqfrðr−1ÞP−
r ðqÞ ¼

X
r≥0

xrqrð1−fÞ
qfr

2

ðq2; q2Þr
:

ð4:6Þ
This generating function is simply related to the quiver
generating function (2.19), for a quiver with one vertex and
f loops

P−ðxÞ ¼ PCðð−1Þfq1−fxÞ; C ¼ ½f�: ð4:7Þ
The coefficients of the classical generating series yPðxÞ in
(4.1) in this case are related to the coefficients bi in (3.11)
through

bðf;1Þi ¼ ð−1Þðfþ1Þibi ¼
1

fiþ 1

�
fiþ 1

i

�
; ð4:8Þ

and are specializations of Fuss-Catalan numbers, which are
indeed known to count lattice paths under the line y ¼ fx.
Therefore, the f-framed unknot is related to the lattice
paths under the y ¼ fx line. The corresponding BPS
number are given by the formula (3.24). Similarly, the
q-weighted paths are given by q-deformed Fuss-Catalan
numbers, and their generating function is given by (4.3).
The relation between the unknot invariants, Fuss-Catalan
numbers, Donaldson-Thomas invariants for f-loop quiver,
and LMOV invariants have been considered also in [3,13].
We generalized results briefly summarized here to the full
a-dependent unknot invariants—which turn out to corre-
spond to so-called Schröder paths—in Sec. VI.

B. BPS numbers from Bizley formula

As another simple application of the paths/torus knots
correspondence we consider the extremal invariants np
defined in (2.17) as

np ¼ 1

p2

X
djp

μðdÞap
d
; ð4:9Þ

with the Möbius function μðdÞ. The coefficients ak are
related to the logarithmic derivative of yðxÞ

x
d
dx

log yðxÞ ¼
X∞
k¼0

akxk: ð4:10Þ

Under the paths/torus knots correspondence the function
yðxÞ of the ðr; sÞ torus knot in framing rs is related to the
counting function of lattice paths under the line of slope
r=s. The only subtle point is a proper change of variables,
which takes the form
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yPðxÞ ¼ yðð−1Þtiþ1xÞ; ð4:11Þ

where ti’s are homological degrees. The counting
function yPðxÞ is given by the Bizley formula (2.41).
Straightforward computation gives

ak ¼
ð−1Þp

P
i
ðtiþ1Þ

rþ s

�ðrþ sÞk
rk

�
: ð4:12Þ

The homological degrees ti are equal to the diagonal entries
of the quiver matrix C. In Table I, we give the BPS numbers
np for several torus knots.

C. Path counting and BPS numbers from quivers

We illustrate now in more involved examples how
explicit expressions for quiver generating functions and
corresponding BPS invariants provide new (or reproduce
known) expressions for counting paths. Recall first that

quivers for maximal invariants for family of ð2; 2pþ 1Þ
left-handed torus knots, in framing 2ð2pþ 1Þ (recall
conventions presented at the end of Sec. II B), take form [2]

C ¼

2
666666664

2ð2pþ 1Þ þ 1 2ð2pþ 1Þ − 1 2ð2pþ 1Þ − 3 � � � 2ð2pþ 1Þ þ 1 − 2p

2ð2pþ 1Þ − 1 2ð2pþ 1Þ − 1 2ð2pþ 1Þ − 3 � � � 2ð2pþ 1Þ þ 1 − 2p

2ð2pþ 1Þ − 3 2ð2pþ 1Þ − 3 2ð2pþ 1Þ − 3 � � � 2ð2pþ 1Þ þ 1 − 2p

..

. ..
. ..

. . .
. ..

.

2ð2pþ 1Þ þ 1 − 2p 2ð2pþ 1Þ þ 1 − 2p 2ð2pþ 1Þ þ 1 − 2p � � � 2ð2pþ 1Þ þ 1 − 2p

3
777777775

ð4:13Þ

For example, for trefoil, (2,5) and (2,7) torus knots,
corresponding, respectively, to p ¼ 1, 2, 3, we get

Cð2;3Þ ¼
�
7 5

5 5

�
;

Cð2;5Þ ¼

2
64
11 9 7

9 9 7

7 7 7

3
75;

Cð2;7Þ ¼

2
66664
15 13 11 9

13 13 11 9

11 11 11 9

9 9 9 9

3
77775: ð4:14Þ

Let us consider in detail the trefoil knot, i.e. (2,3) torus
knot. The generating function of paths under the line of the
slope 2=3 can be computed by the relation to colored
extremal knot polynomials via (4.1) and it agrees with the
outcome of the Bizley formula (2.44)

yPðxÞ ¼ 1þ 2xþ 23x2 þ 377x3 þ 7229x4

þ 151491x5 þ 3361598x6 þ… ð4:15Þ

Furthermore, once the trefoil quiver in (4.14) is identified,
we can naturally produce the classical quiver generating
function (3.1) that in this case depends on two parameters

yðx1; x2Þ ¼
X
i;j

bð2;3Þi;j xi1x
j
2: ð4:16Þ

The coefficients bð2;3Þi;j , given by (3.2), take the explicit form
that follows from (3.13)

bð2;3Þi;j ¼ 1

7iþ5jþ1

�
7iþ5jþ1

i

��
5iþ5jþ1

j

�
; ð4:17Þ

and we present a few of them in Fig. 5. It is desirable to
understand combinatorial interpretation of these numbers.
Of course, their diagonal combinations agree with coef-
ficients in (4.15). In fact, these diagonal combinations
reproduce the original Duchon formula for the number of
lattice paths under the line of the slope 2=3

Bð2;3Þ
n ¼

X
iþj¼n

1

7iþ5jþ1

�
7iþ5jþ1

i

��
5iþ5jþ1

j

�

¼
Xn
i¼0

1

5nþ iþ1

�
5nþ2i

i

��
5nþ1

n− i

�
: ð4:18Þ

TABLE I. BPS numbers np for torus knots obtained from the
paths/torus knots correspondence and the Bizley formula.

Torus
knot np

(1,1) −1;1;−1;2;−5;13;−35;100;−300;…
(1,2) 1;1;3;10;40;171;791;3828;19287;…

(2,3) 2;10;111;1572;26150;480489;9469222;…

(2,5) 3;35;861;27742;1049025;43881197;…

(2,7) 4;84;3654;210120;14178610;1058662314;…

(3,4) 5;106;4665;271596;18559675;1403558826;…

(3,5) −7;252;−18159;1763944;−201126725;25381382988;…
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We can also consider Donaldson-Thomas invariants,
which—as explained above—are closely related to the
number of bridges (2.40). For the generating function

yðxÞ ¼ P
nB

ð2;3Þ
n xn, from (3.26) we get

ðlog yÞðxÞ ¼
X
i;j≥0
iþj>0

1

7iþ 5j

�
7iþ 5j

i

��
5iþ 5j

j

�
xiþj;

ð4:19Þ

which implies that

xy0

y
¼ xðlogyÞ0

¼
X
n≥1

X
iþj¼n

iþ j
7iþ5j

�
7iþ5j

i

��
5iþ5j

j

�
xn: ð4:20Þ

It then follows from (2.17) that extremal, classical BPS
numbers for trefoil take form

nr ¼
1

r2
X
djr

μ

�
r
d

� X
iþj¼d

iþ j
7iþ 5j

�
7iþ 5j

i

��
5iþ 5j

j

�
;

ð4:21Þ

where μðdÞ is theMöbius function. One can check that these
nr are indeed integer, as predicted by the LMOV conjecture.
Moreover, in this particular case by using the relationship

between the generating function of paths and bridges (2.40)
for the ð2;−3Þ paths, from (4.19) we rediscover the identity

�
5n

2n

�
¼

Xn
i¼0

5n
5nþ 2i

�
5nþ 2i

i

��
5n

n − i

�
: ð4:22Þ

However, in general, for a generic quiver, or arbitrarily framed
torus (or non-torus) knot, we do not find such simplification.
Finally we discuss q-weighted path counting. From

(4.3), we find that the q-weighted generating function of
paths takes the form

yqPðxÞ ¼ 1þ ðq4 þ q6Þxþ ðq8 þ 3q10 þ 4q12 þ 4q14 þ 4q16 þ 3q18 þ 2q20 þ q22 þ q24Þx2
þ ðq12 þ 5q14 þ 12q16 þ 20q18 þ 28q20 þ 34q22 þ 37q24 þ 37q26 þ 36q28

þ 33q30 þ 29q32 þ 25q34 þ 21q36 þ 17q38 þ 13q40 þ 10q42 þ 7q44 þ 5q46

þ 3q48 þ 2q50 þ q52 þ q54Þx3 þ… ð4:23Þ

It is immediate to check that powers of q in this expression indeed compute the area between the line of the slope 2=3 and a
given path, analogously as in Fig. 2. For q ¼ 1 this expression reduces to (4.15).
The above results generalize to all p. For example for p ¼ 2, i.e. (2,5) torus knot, we find that the number of lattice paths

under the line y ¼ 2
5
x, from (0,0) to ð5n; 2nÞ is equal

Bð2;5Þ
n ¼

X
iþjþk¼n

1

11iþ 9jþ 7kþ 1

�
11iþ 9jþ 7kþ 1

i

��
9iþ 9jþ 7kþ 1

j

��
7iþ 7jþ 7kþ 1

k

�
: ð4:24Þ

In general, for every p ≥ 1, we get that the number of directed lattice paths from (0,0) to ð2pþ 1Þn; 2nÞ, that stay below
the line y ¼ 2

2pþ1
x, is given by

Bð2;2pþ1Þ
n ¼

X
i1þ���þipþ1¼n

1

1þPpþ1
j¼1 ð4pþ 5 − 2jÞij

Ypþ1

j¼1

�
1þPpþ1

l¼1 ð4pþ 5 − 2max ðj; lÞÞil
ij

�
: ð4:25Þ

FIG. 5. Coefficients bð2;3Þi;j that refine enumeration of paths
under the line of the slope 2=3. Diagonal combinations of these
numbers reproduce coefficients in (4.15).
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D. Path counting and BPS numbers for (3,4) torus knot

Let us consider now another, more involved example of (3,4) torus knot, which corresponds to counting of paths under
the line of the slope 3

4
. The (extremal) quiver for (3,4) torus knot was found in [2], and for maximal invariants in framing 12,

for its left-handed version, it reads

Cð3;4Þ ¼

2
6666664

7 7 7 7 7

7 9 8 9 9

7 8 9 9 10

7 9 9 11 11

7 9 10 11 13

3
7777775
: ð4:26Þ

From Proposition 3.2, we first determine bl1;…;l5ð1Þ as a function of li. The main part of the expression for bl1;…;l5ð1Þ is
Aðl1;…; l5Þ in (3.3), which for the above quiver Cð3;4Þ takes the form

Að3;4Þðl1; l2; l3; l4; l5Þ¼ 1þ28l1þ294l21þ1372l31þ2401l41þ33l2þ693l1l2þ4851l21l2þ11319l31l2þ407l22þ5698l1l22

þ19943l21l
2
2þ2223l32þ15561l1l32þ4536l42þ34l3þ714l1l3þ4998l21l3þ11662l31l3þ838l2l3

þ11732l1l2l3þ41062l21l2l3þ6860l22l3þ48020l1l22l3þ18648l32l3þ431l23þ6034l1l23

þ21119l21l
2
3þ7051l2l23þ49357l1l2l23þ28728l22l

2
3þ2414l33þ16898l1l33þ19656l2l33

þ5040l43þ36l4þ756l1l4þ5292l21l4þ12348l31l4þ887l2l4þ12418l1l2l4þ43463l21l2l4þ7258l22l4

þ50806l1l22l4þ19719l32l4þ912l3l4þ12768l1l3l4þ44688l21l3l4þ14914l2l3l4þ104398l1l2l3l4

þ60732l22l3l4þ7656l23l4þ53592l1l23l4þ62307l2l23l4þ21294l33l4þ482l24þ6748l1l24

þ23618l21l
2
4þ7879l2l24þ55153l1l2l24þ32067l22l

2
4þ8086l3l24þ56602l1l3l24

þ65772l2l3l24þ33705l23l
2
4þ2844l34þ19908l1l34þ23121l2l34þ23688l3l34þ6237l44þ37l5þ777l1l5

þ5439l21l5þ12691l31l5þ912l2l5þ12768l1l2l5þ44688l21l2l5þ7465l22l5þ52255l1l22l5þ20286l32l5

þ938l3l5þ13132l1l3l5þ45962l21l3l5þ15342l2l3l5þ107394l1l2l3l5þ62482l22l3l5þ7877l23l5

þ55139l1l23l5þ64106l2l23l5þ21910l33l5þ991l4l5þ13874l1l4l5þ48559l21l4l5þ16204l2l4l5

þ113428l1l2l4l5þ65961l22l4l5þ16632l3l4l5þ116424l1l3l4l5þ135296l2l3l4l5þ69335l23l4l5

þ8771l24l5þ61397l1l24l5þ71316l2l24l5þ73066l3l24l5þ25641l34l5þ509l25þ7126l1l25
þ24941l21l

2
5þ8325l2l25þ58275l1l2l25þ33894l22l

2
5þ8546l3l25þ59822l1l3l25

þ69524l2l3l25þ35630l23l
2
5þ9010l4l25þ63070l1l4l25þ73269l2l4l25þ75068l3l4l25

þ39501l24l
2
5þ3083l35þ21581l1l35þ25074l2l35þ25690l3l35þ27027l4l35þ6930l45:

Therefore, we find that the number of lattice paths from (0,0) to ð4n; 3nÞ, under the line y ¼ 3
4
x, takes the form

X
l1þ���þl5¼n

bl1;…;l5ð1Þ ¼
X

l1þ���þl5¼n

Að3;4Þðl1; l2; l3; l4; l5Þ
1

7l1 þ 7l2 þ 7l3 þ 7l4 þ 7l5 þ 1

�
71l1 þ 7l2 þ 7l3 þ 7l4 þ 7l5 þ 1

l1

�

×
1

7l1 þ 9l2 þ 8l3 þ 9l4 þ 9l5 þ 1

�
7l1 þ 9l2 þ 8l3 þ 9l4 þ 9l5 þ 1

l2

�

×
1

7l1 þ 8l2 þ 9l3 þ 9l4 þ 10l5 þ 1

�
7l1 þ 8l2 þ 9l3 þ 9l4 þ 10l5 þ 1

l3

�

×
1

7l1 þ 9l2 þ 9l3 þ 11l4 þ 11l5 þ 1

�
7l1 þ 9l2 þ 9l3 þ 11l4 þ 11l5 þ 1

l4

�

×
1

7l1 þ 9l2 þ 10l3 þ 11l4 þ 13l5 þ 1

�
7l1 þ 9l2 þ 10l3 þ 11l4 þ 13l5 þ 1

l5

�
: ð4:27Þ

This expression does not seem to have been known before.
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For (3,4) torus knot we can also find an identity analogous to (4.22). First, for the quiver Cð3;4Þ we find that Amax
ð3;4Þ, i.e. the

homogeneous part of Að3;4Þ, defined in (3.19), takes the form

Amax
ð3;4Þðl1; l2; l3; l4; l5Þ ¼ 2401l41 þ 11319l31l2 þ 19943l21l

2
2 þ 15561l1l32 þ 536l42 þ 11662l31l3 þ 1062l21l2l3 þ 8020l1l22l3

þ18648l32l3 þ 1119l21l
2
3 þ 9357l1l2l23 þ 8728l22l

2
3 þ 16898l1l33 þ 19656l2l33 þ 5040l43 þ 12348l31l4

þ3463l21l2l4 þ 50806l1l22l4 þ 19719l32l4 þ 4688l21l3l4 þ 104398l1l2l3l4 þ 60732l22l3l4

þ53592l1l23l4 þ 62307l2l23l4 þ 1294l33l4 þ 618l21l
2
4 þ 55153l1l2l24 þ 067l22l

2
4 þ 56602l1l3l24

þ65772l2l3l24 þ 705l23l
2
4 þ 19908l1l34 þ 121l2l34 þ 688l3l34 þ 6237l44 þ 12691l31l5 þ 4688l21l2l5

þ52255l1l22l5 þ 20286l32l5 þ 5962l21l3l5 þ 107394l1l2l3l5 þ 62482l22l3l5 þ 55139l1l23l5

þ64106l2l23l5 þ 1910l33l5 þ 8559l21l4l5 þ 113428l1l2l4l5 þ 65961l22l4l5 þ 116424l1l3l4l5

þ135296l2l3l4l5 þ 69335l23l4l5 þ 61397l1l24l5 þ 71316l2l24l5 þ 73066l3l24l5 þ 5641l34l5 þ 941l21l
2
5

þ58275l1l2l25 þ 894l22l
2
5 þ 59822l1l3l25 þ 69524l2l3l25 þ 5630l23l

2
5 þ 63070l1l4l25

þ73269l2l4l25 þ 75068l3l4l25 þ 9501l24l
2
5 þ 1581l1l35 þ 5074l2l35 þ 5690l3l35 þ 7027l4l35 þ 6930l45:

Again by relating the number of excursion and bridges via (2.40) for ð4;−3Þ path, we find an equality

1

7n

�
7n
3n

�
¼

X
l1þ���þl5¼n

Amax
ð3;4Þðl1; l2; l3; l4; l5Þ

1

7l1 þ 7l2 þ 7l3 þ 7l4 þ 7l5

�
7l1 þ 7l2 þ 7l3 þ 7l4 þ 7l5

l1

�

×
1

7l1 þ 9l2 þ 8l3 þ 9l4 þ 9l5

�
7l1 þ 9l2 þ 8l3 þ 9l4 þ 9l5

l2

�

×
1

7l1 þ 8l2 þ 9l3 þ 9l4 þ 10l5

�
7l1 þ 8l2 þ 9l3 þ 9l4 þ 10l5

l3

�

×
1

7l1 þ 9l2 þ 9l3 þ 11l4 þ 11l5

�
7l1 þ 9l2 þ 9l3 þ 11l4 þ 11l5

l4

�

×
1

7l1 þ 9l2 þ 10l3 þ 11l4 þ 13l5

�
7l1 þ 9l2 þ 10l3 þ 11l4 þ 13l5

l5

�
:

E. Reconstructing quivers from the Bizley formula

In previous examples, we showed that indeed gen-
erating functions of lattice paths are reproduced by
generating functions of colored torus knot polynomials,
or appropriate quiver generating functions. Now we
illustrate that one can in fact reconstruct the quiver
from the knowledge of the generating function. This
should indeed be possible: the classical quiver generat-
ing function is determined by a finite set of parameters,
i.e. entries of a matrix C that encodes the quiver, and
coefficients of this function are of the form (3.2).
Therefore, once we know (from some other source)
sufficient number of coefficients of this generating
function, we should be able to reconstruct the form

of the matrix C. This is valid even when diagonal
invariants are considered—in this case one should
simply compare more coefficients of the generating
function.
Let us illustrate this procedure in the example of

paths under the line of the slope 2
3
. Assume that the

generating function of such paths is encoded in a quiver
with two vertices, determined by a matrix (3.12) with
some unknown entries α, β and γ, and consider the
quiver generating function yðxÞ with identified generat-
ing parameters x ¼ x1 ¼ x2. Instead of the generating
function itself, it is convenient to write down its
logarithm (3.26), and its expansion to the fourth order
takes the form

PANFIL, STOŠIĆ, and SUŁKOWSKI PHYS. REV. D 98, 026022 (2018)

026022-16



log yðxÞ ¼ 2xþ ð−1þ αþ 2β þ γÞx2 þ 1

6
ð4 − 9αþ 9α2 − 18β þ 18αβ þ 18β2 − 9γ þ 18βγ þ 9γ2Þx3

þ 1

6
ð−3þ 11α − 24α2 þ 16α3 þ 22β − 48αβ þ 36α2β − 48β2 þ 48αβ2 þ 32β3

þ 11γ − 48βγ þ 24αβγ þ 48β2γ − 24γ2 þ 36βγ2 þ 16γ3Þx4 þ… ð4:28Þ

On the other hand, we suspect that this generating function
should count lattice paths under the line of the slope 2

3
,

which are given by the Bizley formula (2.41) or (2.44),
whose logarithm for such paths takes the form

log yðxÞ ¼
X∞
n¼0

1

5n

�
5n
2n

�
xn

¼ 2xþ 21x2 þ 1001

3
x3 þ 12597

2
x4 þ… ð4:29Þ

Comparing coefficients at x2, x3 and x4 in the above two
expansions gives a set of three equations, which determine
three entries of the quiver matrix in either of two equivalent
forms

ðα; β; γÞ ¼ ð5; 5; 7Þ or ðα; β; γÞ ¼ ð7; 5; 5Þ: ð4:30Þ

In this way, we indeed reconstruct the quiver for the trefoil
knot (4.14).
In principle, with enough computational power, from the

Bizley formula one could reconstruct a quiver that encodes
path counting for any slope r=s. At the same time, such
quivers would encode colored extremal (q-dependent)
polynomials for arbitrary torus knots, and also q-weighted
path numbers. It is amusing that, at least in principle,
colored extremal HOMFLY-PT polynomials for all torus
knots, and q-weighted path numbers, are encoded in a
relatively simple Bizley formula (2.41).

F. Generalized Bizley formula

For completeness let us derive a version of the Bizley
formula in an arbitrary framing, once this formula is
interpreted as the generating function of torus knot invar-
iants. A change of framing of a knot by f has the following
effect on the generating function

yðfÞK ðxÞ ¼ yKðxðyðfÞK ðxÞÞfÞ: ð4:31Þ

Once we know the function yKðxÞ we can use the Faa di

Bruno formula to express coefficients of yðfÞK ðxÞ through
coefficients of yKðxÞ. Formula like this, in the special case
of relating number of factor-free words with a number of all
lattice paths, appeared already in [38]. The generating
function yKðxÞ for the ðr; sÞ torus knot with framing rs is
given by the Bizley formula (2.41).

Proposition 4.3 Generalization of the Bizley formula to
framed invariants reads

yðfÞK ¼ exp

�X∞
k¼1

cðfÞn xn
�

¼
X∞
n¼0

bðfÞn xn; ð4:32Þ

with

cðfÞn ¼ 1

nf · n!

Xn
k¼1

Bn;kðnfg11!; nfg22!; nfg33!;…Þ;

bðfÞn ¼ 1

nf
1

n!

Xn
k¼1

ð1þ nfÞ!
ð1þ nf − kÞ!

× Bn;kðb11!; b22!;…bn−kþ1ðn − kþ 1Þ!Þ: ð4:33Þ
Here, the framing f is defined with respect to the framing
rs and Bn;k are partial Bell polynomials

Bn;kðx1;x2;…;xn−kþ1Þ

¼
X
fpjg

n!
p1!p2!…

�
x1
1!

�
p1

�
x2
2!

�
p2

…

�
xn−kþ1

ðn−kþ1Þ!
�

pn−kþ1

;

ð4:34Þ

where the summation extends over all sets of numbers fpjg
such that X

j

pj ¼ k;

X
j

jpj ¼ n: ð4:35Þ

For f ¼ 0, we get the original Bizley formula (2.41)

cð0Þn ¼ gn ¼
1

ðrþ sÞn
�ðrþ sÞn

rn

�
: ð4:36Þ

Let us prove the formula for bðfÞn in (4.33). The Lagrange
inversion theorem applied to (4.31) results in the following
relation

½xn�yðfÞK ðxÞ ¼ 1

1þ nf
½xn�ðyKðxÞÞ1þnf; ð4:37Þ

where ½xn�yðxÞ denotes a coefficient of xn in the expansion
of fðxÞ. Denote ½xn�yKðxÞ ¼ bn. A power of the generating
function can be computed using the Faa di Bruno formula
for a derivative of a composite function
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∂n

∂xn hðxÞ ¼
Xn
k¼1

fðkÞðy0ðxÞÞBn;kðyð1Þ0 ðxÞ; yð2Þ0 ðxÞ;…;

× yðn−kþ1Þ
0 ðxÞÞ: ð4:38Þ

Define

fðxÞ ¼ x1þnf;

hðxÞ ¼ fðyKðxÞÞ: ð4:39Þ
Then

½xn�ðyKðxÞÞ1þnf ¼ 1

n!
∂n

∂xn hðxÞ
����
x¼0

: ð4:40Þ

Evaluating the kth derivative of f gives

fðkÞðxÞ ¼

8><
>:

ð1þ nfÞ!Þ
ð1þ nf − kÞ! x

1þnf−k; k ≤ 1þ nf

0 k > 1þ nf
ð4:41Þ

The condition k ≤ 1þ nf is always fulfilled (for positive
f) because k ≤ n. Then, using y0ð0Þ ¼ 1, we find

½xn�ðyKðxÞÞ1þnf ¼ 1

n!

Xn
k¼1

ð1þnfÞ!
ð1þnf−kÞ!

×Bn;kðb11!;b22!;…bn−kþ1ðn−kþ1Þ!Þ:
ð4:42Þ

Finally, using the relation (4.37), we obtain (4.33).
As an illustration we explicitly list coefficients bnðfÞ for

the trefoil in Table II. In this case, the zero framing
reproduces coefficients in (2.44), while results for f ¼ −5
correspond to the generating function of factor-free words
(see the next subsection IVG).
Moreover, results in this table agree with the results of

Sec. III A for coefficients bi;jð1Þ of a quiver

C ¼
�
f þ 7 f þ 5

f þ 5 f þ 5

�
; ð4:43Þ

upon the identification bðfÞn ¼ P
iþj¼nbi;jð1Þ.

G. Algebraic equations and extremal A-polynomials

Finally we illustrate, and prove in several cases, the
relation between A-polynomials and equations satisfied by
generating functions of paths. As we explained in Sec. II C,
generating functions (2.38) of lattice paths under the line of
the slope r

s satisfy algebraic equations, which can be
determined e.g. from the Duchon grammar. Proposition
4.1 implies that these equations should be the same as
extremal A-polynomial equations for ðr; sÞ torus knots in
framing rs. Extremal A-polynomials can be computed by
the saddle point method from the knowledge of colored
extremal invariants, or equivalently from the knowledge of
the corresponding quiver and the formula (2.22). For various
knots such computations have been conducted in [15].
Examples of such algebraic equations for several knots,
in framing rs, are given in Table III. It is straightforward to

TABLE II. Coefficients of framed Bizley generating function.

f bðfÞn

−5 1; 2; 3; 7; 19; 56; 174; 561;…

−4 1; 2; 7; 33; 181; 1083; 6854; 45111;…

−3 1; 2; 11; 83; 727; 6940; 70058; 735502;…

−2 1; 2; 15; 157; 1913; 25427; 357546; 5229980;…

−1 1; 2; 19; 255; 3995; 68344; 1237526; 23316295;…

0 1; 2; 23; 377; 7229; 151491; 3361598; 77635093;…

1 1; 2; 27; 523; 11871; 294668; 7747698; 212054604;…

2 1; 2; 31; 693; 18177; 521675; 15863042; 502196626;…

TABLE III. Algebraic equations and extremal (top row, left-handed) A-polynomials for ðr; sÞ torus knots in framing rs.

Paths/torus knot A(x,y)

(2,3) 1 − yþ xð2y5 − y6 þ y7Þ þ x2y10

(2,5) 1 − yþ xð3y7 − 2y8 þ 2y9 − y10 þ y11Þ þ x2ð3y14 − y15 þ 2y16Þ þ x3y21

(2,7) 1 − yþ xy9ð4 − 3yþ 3y2 − 2y3 þ 2y4 − y5 þ y6Þ þ x2y18ð6 − 3yþ 6y2 − 2y3 þ 3y4Þ
þx3y27ð4 − yþ 3y2Þ þ x4y36

(3,4) 1 − yþ xy7ð5 − 4yþ y2 þ 3y3 − y5 þ y6Þ þ x2y14ð10 − 6yþ 3y2 þ 5y3 − y4 þ y5Þ
þx3y21ð10 − 4yþ 3y2 þ y3 − y4Þ þ x4y28ð5 − yþ y2 − y3Þ þ x5y35

(3,5) 1 − yþ xy8ð7 − 6yþ y2 þ 5y3 − 3y4 þ 3y5 − y7 þ y8Þ
þx2y16ð21 − 15yþ 5y2 þ 18y3 − 9y4 þ 5y5 þ 3y6Þ þ x3y24ð35 − 20yþ 10y2 þ 22y3 − 9y4 þ 2y6 − 2y7Þ
þx4y32ð35 − 15yþ 10y2 þ 8y3 − 3y4 − 3y5Þ þ x5y40ð21 − 6yþ 5y2 − 3y3 − y5 þ y6Þ
þx6y48ð7 − yþ y2 − 2y3Þ þ x7y56
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check to arbitrarily high order, that generating functions of
lattice paths, given by the Bizley formula (2.41) or our result
(4.1), satisfy these algebraic equations.
Apart from checking that generating functions of lattice

paths satisfy A-polynomial equations we can also rederive
these equations, taking advantage of the Duchon grammar.
This proves to all orders that generating functions of lattice
paths and knot polynomials are equal.
Let us first summarize Duchon’s formalism [36],

which reformulates the problem of counting lattice paths
in terms of constructing and counting words obeying
certain grammar. The words are created from an alpha-
bet, which in the case of lattice paths under the y ¼ r

s x
line consists of two letters U ¼ fa; bg. Denote by U� the
set of all words in the alphabet U. The letters correspond
to two steps that a lattice path is made of. The type of
the lattice path counting problem is encoded in the
valuation of the letters. We define a valuation function h
on the alphabet with values in integers such that hðaÞ ¼
r and hðbÞ ¼ −s. This definition extends additively to
the set of words U�, e.g. hðaabaÞ ¼ 3r − s. The lattice
path counting problem can be then made equivalent to
the problem of counting words. The condition, that a
path in the upper half plane picture reaches back but
never crosses the horizontal axis can be formulated
with the valuation function. For the path to reach back
to the horizontal axis, the valuation function of the
corresponding word must be 0. For the path to never
cross the horizontal axis, the valuation function of every
left factor of the word cannot be negative. A left factor
wL of a word w is simply any left part of the word w.
The set of words obeying this constraint is denoted
by Dr=s ⊂ U�.
Among words in Dr=s there are special ones that cannot

be generated from simpler words. For example, for r ¼ 3
and s ¼ 2 there are two words of length 5

ababb; aabbb: ð4:44Þ

Many words of length 10 can be obtained by taking one
of the word of length 5 and using it as a template.
Between any letters of this word we can insert any word
of length 5 to obtain a word of length 10. For example
taking ababb as a template we can get abaaabbbbb by
inserting aabbb between the third and the fourth letter.
However there are words of length 10 which cannot be
obtained in this way, for example aaabbabbbb. Such
words are called factor-free words. Duchon showed
how to generate (and thus count) all factor-free
words, and how to obtain a generating function of all
words in Dr=s from the generating function of factor-
free words.
Let us denote the generating function of factor-free

words by yfPðxÞ. Then the generating function yPðxÞ of
all the words is given by

yPðxÞ ¼ yfPðxðyPðxÞÞrþsÞ; ð4:45Þ

This relation is equivalent to a change framing of the
generating function by rþ s. As an immediate conse-
quence we obtain that the factor free words also find
their place in the knots-paths correspondence and simply
correspond to ðr; sÞ torus knots framed by −rsþ rþ s.
We describe now the construction of equations for

yfPðxÞ. Duchon showed that factor free words can be
generated from the following grammar

D̃ ¼ ϵþ
X
k

L̃kR̃k;

L̃i ¼ δi;raþ
X
k

L̃kR̃k−i;

R̃j ¼ δj;sbþ
X
k

L̃kR̃jþk; ð4:46Þ

with indices in the range 1≥i≥r, 1 ≥ j ≥ s, and L̃i ¼
R̃j ¼ 0 for indices beyond this range. Here ϵ denotes an
empty word and in general the letters a and b do not
commute. To construct short words it is enough to solve
the equations iteratively. In the classical case, where
we are interested in counting paths, letters a and b
commute. Moreover each path must consists of ks a
steps and kr b steps, so that the valuation of the whole
path is ksr − ksr ¼ 0. Therefore, the relevant variable is
x ¼ asbr. Eliminating auxillary sets L̃i and R̃j we obtain a
polynomial equation for D̃ðxÞ.
As an example consider paths under the y ¼ 3

2
x line,

corresponding to the trefoil knot. This is the case solved
explicitly by Duchon. The set of equations takes the
form

D̃ ¼ ϵþ L̃1R̃1 þ L̃2R̃2;

L̃1 ¼ L̃2R̃1 þ L̃3R̃2;

L̃2 ¼ L̃3R̃1;

L̃3 ¼ a;

R̃1 ¼ L̃1R̃2;

R̃2 ¼ b: ð4:47Þ

We eliminate L̃i and R̃2 and parametrize R̃1 ¼ aUb2 to
find a set of two equations

D̃ ¼ ϵþ a2Ub3 þ abaUb2 þ a2Ub2aUb2aUb2;

U ¼ ϵþ aUb2aUb: ð4:48Þ

For the word counting problem we consider commuting
a and b and introduce x ¼ a2b3, so that we obtain
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yfPðxÞ ¼ 1þ 2xUðxÞ þ x2U3ðxÞ;
UðxÞ ¼ 1þ x2UðxÞ: ð4:49Þ

On one hand, UðxÞ is the generating function of the
Catalan numbers and using twice the equation for UðxÞ
in the equation for yfPðxÞ we get

yfPðxÞ ¼ ð1þ xÞUðxÞ ¼
X∞
k¼0

ðCk þ Ckþ1Þxk: ð4:50Þ

On the other hand, we can eliminate UðxÞ to find the
equation Afðx; yfPÞ ¼ 0 which the generating function of
factor-free words satisfies

Afðx; yfPÞ ¼ ð1þ xÞ2 − yfP − xyfP þ xy2fP: ð4:51Þ

Changing the framing by rþ s ¼ 5 gives then the
algebraic equation

Aðx; yÞ ¼ 1 − yþ xð2y5 − y6 þ y7Þ þ x2y10; ð4:52Þ

which indeed reproduces the A-polynomial equation for
(2,3) torus knot given in Table III.
Similar computations for paths under the y ¼ 2

5
x line, or

equivalently for the (2,5) torus knot, lead to the following
set of equations

yfPðxÞ ¼ 1þ 3xUðxÞ þ 4x2U3ðxÞ þ x3U5ðxÞ;
UðxÞ ¼ 1þ 3xU2ðxÞ þ x2U4ðxÞ; ð4:53Þ

withU defined this time through R̃1 ¼ aUb3 and x ¼ a2b5.
Eliminating U we find the algebraic equation satisfied by
the generating function of factor-free words

Afðx; yfPÞ ¼ 1 − yfP þ xð3 − 2yfP þ 2y2fP − y3fP þ y4fPÞ
þ x2ð3 − yfP þ 2y2fPÞ þ x3: ð4:54Þ

Changing the framing by rþ s ¼ 7 produces then the
A-polynomial equation for (2,5) torus knot, which is given
in Table III.

V. KNOT POLYNOMIALS, QUIVERS, AND PATH
COUNTING FOR ð3;sÞ TORUS KNOTS

In this section, we identify quivers and extremal
colored HOMFLY-PT polynomials for a class of ð3; sÞ
torus knots, for s ¼ 3pþ 1 or s ¼ 3pþ 2. This is
quite a non-trivial class of examples, which nicely
illustrates the power of the knots-quivers correspon-
dence, as well as the relation of torus knot invariants

to the counting of lattice paths. Indeed, it is straightfor-
ward to verify that expressions for colored polynomials
for torus knots given below, in appropriate framing,
agree with generating functions of lattice paths, as we
explained earlier.
Our strategy is similar as in other examples of knots-

quivers correspondence: we consider extremal colored
HOMFLY-PT polynomials for first few symmetric colors,
and—also based on the knowledge of homological degrees
encoded in the uncolored extremal superpolynomial—we
identify a matrix encoding the corresponding quiver
uniquely. In particular, we find various regularities, which
enable to analyze at once the whole classes of ð3; 3pþ 1Þ
and ð3; 3pþ 2Þ torus knots and reveal their recursive
structure.

A. ð3;3p+ 2Þ torus knots
The constraints that we found upon the analysis of

several first representations imply, that the quiver matrix for
ð3; 3pþ 2Þ knots has the following structure

Cð3;3pþ2Þ ¼
"
Cð2;6pþ3;−3Þ Bp

Bp Cð3;3p−1;þ5Þ

#
ð5:1Þ

Here Cðr;s;fÞ denotes a quiver matrix for ðr; sÞ torus knot
with an additional framing, f with respect to the convention
explained at the end of the Sec. II B. For example, for
p ¼ 1, the bottom right block is Cð3;2þ5Þ which is the trefoil
quiver (4.14) with all entries shifted by þ5. The off-
diagonal rectangular block B carries further information
about the recursive structure and it is organized in the
following way

Bp ¼ ½Bp;p Bp;p−1 … Bp;1 �; ð5:2Þ

where each Bp;k (for 1 ≤ k ≤ p) is a matrix of size

ð3pþ 2Þ × ð3k − 1Þ: ð5:3Þ

The block Bp;k is composed of two groups of rows

Bp;k ¼
�
Xp;k

Yp;k

�
ð5:4Þ

of sizes

Xp;k∶ ð3ðp − kþ 1ÞÞ × ð3k − 1Þ;
Yp;k∶ ð3k − 1Þ × ð3k − 1Þ: ð5:5Þ

The matrices X and Y have the following structure
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Xp;k ¼

2
666666664

6pþ 3kþ 4 6pþ 3kþ 2 6pþ 3k � � � 6p − 3kþ 8

6pþ 3kþ 3 6pþ 3kþ 1 6pþ 3k − 1 � � � 6p − 3kþ 7

6pþ 3kþ 2 6pþ 3k 6pþ 3k − 2 � � � 6p − 3kþ 6

..

. ..
. ..

. . .
. ..

.

3pþ 6kþ 2 3pþ 6k 3pþ 6k − 2 � � � 3pþ 6

3
777777775
; ð5:6Þ

Yp;k ¼

2
666666664

3pþ 6kþ 1 3pþ 6k − 1 3pþ 6k − 3 � � � 3pþ 5

3pþ 6k 3pþ 6k − 1 3pþ 6k − 3 � � � 3pþ 5

3pþ 6k − 2 3pþ 6k − 2 3pþ 6k − 3 � � � 3pþ 5

..

. ..
. ..

. . .
. ..

.

3pþ 6 3pþ 6 3pþ 6 � � � 3pþ 5

3
777777775
: ð5:7Þ

To illustrate the above structure, let us consider the first two knots in this series. The value p ¼ 1 corresponds to (3,5)
torus knot. In this case, we only have B1;1 matrix, which is built out of X1;1 and Y1;1, and takes the form

B1;1 ¼

2
66666664

13 11

12 10

11 9

10 8

9 8

3
77777775
: ð5:8Þ

The full quiver matrix, with the block structure highlighted, takes the form

Cð3;5Þ ¼
�
Cð2;9;−3Þ B1

B1 Cð3;2;þ5Þ

�
¼

2
6666666666664

16 14 12 10 8 13 11

14 14 12 10 8 12 10

12 12 12 10 8 11 9

10 10 10 10 8 10 8

8 8 8 8 8 9 8

13 12 11 10 9 12 10

11 10 9 8 8 10 10

3
7777777777775

ð5:9Þ

The second example, for p ¼ 2, corresponds to (3,8) torus knot. In this case, we introduce two matricesB2;1 and B2;2, which
are given explicitly by

B2;2 ¼

2
666666666666664

22 20 18 16 14

21 19 17 15 13

20 18 16 14 12

19 17 15 13 11

18 17 15 13 11

16 16 15 13 11

14 14 14 13 11

12 12 12 12 11

3
777777777777775

B2;1 ¼

2
666666666666664

19 17

18 16

17 15

16 14

15 13

14 12

13 11

12 11

3
777777777777775

ð5:10Þ
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The full quiver matrix, with the block structure highlighted, reads

Cð3;8Þ ¼
�
Cð2;15;−3Þ B2

B2 Cð3;5;þ5Þ

�
¼

2
666666666666666666666666666666664

25 23 21 19 17 15 13 11 22 20 18 16 14 19 17

23 23 21 19 17 15 13 11 21 19 17 15 13 18 16

21 21 21 19 17 15 13 11 20 18 16 14 12 17 15

19 19 19 19 17 15 13 11 19 17 15 13 11 16 14

17 17 17 17 17 15 13 11 18 17 15 13 11 15 13

15 15 15 15 15 15 13 11 16 16 15 13 11 14 12

13 13 13 13 13 13 13 11 14 14 14 13 11 13 11

11 11 11 11 11 11 11 11 12 12 12 12 11 12 11

22 21 20 19 18 16 14 12 21 19 17 15 13 18 16

20 19 18 17 17 16 14 12 19 19 17 15 13 17 15

18 17 16 15 15 15 14 12 17 17 17 15 13 16 14

16 15 14 13 13 13 13 12 15 15 15 15 13 15 13

14 13 12 11 11 11 11 11 13 13 13 13 13 14 13

19 18 17 16 15 14 13 12 18 17 16 15 14 17 15

17 16 15 14 13 12 11 11 16 15 14 13 13 15 15

3
777777777777777777777777777777775

ð5:11Þ

We compute now the generating functions of lattice paths
using the relation to knots and quivers (4.1). In Table IV, we
present such generating functions for the first 5 knots of the
series ð3; 3pþ 2Þ. These numbers agree with numbers of
lattice paths that follow from the Bizley formula (2.41).
The other side of the knots–quivers–paths correspon-

dence yields colored HOMLFY-PT polynomials. To this
end we need to identify, using the uncolored (extremal)
HOMFLY-PT homology, the variables xi as prescribed in
Eq. (2.21). The t degrees are equal to the diagonal entries of
the quiver matrix

ti ¼ Cii; ð5:12Þ
whereas the q degrees are an ordered union of sets Qn for
n ¼ p;…; 0 with

Qn ¼ f−6n − 2;−6nþ 2;…6n − 2; 6nþ 2g: ð5:13Þ
The ordering is such that the set of q degrees starts withQp

and the other follow in the descending order. For example
for the (3,5) and (3,8) knots the q degrees are

f−8;−4; 0; 4; 8;−2; 2g; ð5:14Þ

f−14;−10;−6;−2;2;6;10;14;−8;−4;0;4;8;−2;2;g
ð5:15Þ

To obtain the standard form of the HOMFLY-PT
polynomial—right-handed with the zero framing—the
quiver matrix has to be transformed as explained in the
Sec. II B. For example, theCð3;5Þ quiver in this case becomes

Cð3;5Þ ¼

2
6666666666664

0 1 3 5 7 2 4

1 2 3 5 7 3 5

3 3 4 5 7 4 6

5 5 5 6 7 5 7

7 7 7 7 8 6 7

2 3 4 5 6 4 5

4 5 6 7 7 5 6

3
7777777777775

ð5:16Þ

TABLE IV. Numbers of lattice paths under the y ¼ 3
3pþ2

x line. They agree with the Bizley formula, and with coefficients of classical
generating functions of invariants of ð3; 3pþ 2Þ torus knot.
Knot bn (numbers of lattice paths)

(3,5) 1; 7; 525; 58040; 7574994; 1084532963; 164734116407;…
(3,8) 1; 15; 3504; 1220135; 502998985; 227731502703; 109447217699997;…
(3,11) 1; 26; 13793; 10969231; 10342244094; 10714942416045; 11787169120183931;…
(3,14) 1; 40; 40356; 61246090; 110288829466; 218304920579248;…
(3,17) 1; 57; 97584; 251886268; 771887463392;…
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The t degrees defined in (5.12) can be read off from the
diagonal of this matrix.
From quivers that we found above, extremal colored

HOMLFY-PT polynomials for ð3; 3pþ 2Þ torus knots can
be determined using (2.25). Examples of such minimal
polynomials for several (right-handed) knots (after adjusting
the quiver so that it captures minimal invariants of right-
handed knots), in the fundamental representation, are given
in Table V. These results agreewith known such polynomials
in the fundamental representation—however, we stress that
from the quivers determined above we also immediately get
formulas for knot polynomials in arbitrary symmetric rep-
resentations, which have not been known before.
Finally, having found quivers for ð3; 3pþ 2Þ torus knots,

we can also determine q-weighted path numbers using
(4.3). The first such numbers, i.e. q-numbers of paths
between the origin and the point with coordinates
ð3pþ 2; 3Þ, for several knots, are given in Table VI. For
q ¼ 1 these expressions reduce to unweighted path num-
bers given in given in Table IV.

B. ð3;3p + 1Þ torus knots
Quiver matrices for ð3; 3pþ 1Þ torus knot have an

analogous structure to those in the previous section, and
take form

Cð3;3pþ1Þ ¼
�
Cð2;6pþ1;−2Þ Bp

Bp Cð3;3p−2;þ5Þ

�
ð5:17Þ

where againCð2;6pþ1Þ denotes a quivermatrix for ð2;6pþ1Þ
torus knot, and Cð3;3p−2;þ4Þ is a quiver matrix of ð3; 3p − 2Þ
torus knot with each entry increased by þ4 (i.e. with
additional framingþ4). The off-diagonal rectangular block
B is organized in the following way

Bp ¼ ½Bp;p Bp;p−1 … Bp;1 �; ð5:18Þ

where each Bp;k (for 1 ≤ k ≤ p) is a matrix of the size

ð3pþ 1Þ × ð3k − 2Þ: ð5:19Þ

The block Bp;k is now composed of three groups of rows

Bp;k ¼

2
64
Xp;k

Yp;k

Zp;k

3
75 ð5:20Þ

with sizes

Xp;k∶ ðp − kþ 1Þ × ð3k − 2Þ; ð5:21Þ

TABLE V. Minimal HOMFLY-PT polynomials for right-handed ð3; 3pþ 2Þ torus knots in the trivial framing, in the fundamental
representation.

Torus knot P−
1 ðqÞ

(3,5) q−8 þ q−4 þ q−2 þ 1þ q2 þ q4 þ q8

(3,8) q−14 þ q−10 þ q−8 þ q−6 þ q−4 þ 2q−2 þ 1þ 2q2 þ q4 þ q6 þ q8 þ q10 þ q14

(3,11) q−20 þ q−16 þ q−14 þ q−12 þ q−10 þ 2q−8 þ q−6 þ 2q−4 þ 2q−2 þ 2þ 2q2

þ2q4 þ q6 þ 2q8 þ q10 þ q12 þ q14 þ q16 þ q20

(3,14) q−26 þ q−22 þ q−20 þ q−18 þ q−16 þ 2q−14 þ q−12 þ 2q−10 þ 2q−8 þ 2q−6

þ2q−4 þ 3q−2 þ 2þ 3q2 þ 2q4 þ 2q6 þ 2q8 þ 2q10 þ q12 þ 2q14

þq16 þ q18 þ q20 þ q22 þ q26

(3,17) q−32 þ q−28 þ q−26 þ q−24 þ q−22 þ 2q−20 þ q−18 þ 2q−16 þ 2q−14 þ 2q12

þ2q−10 þ 3q−8 þ 2q−6 þ 3q−4 þ 3q−2 þ 3þ 3q2 þ 3q4 þ 2q6 þ 3q8

þ2q10 þ 2q12 þ 2q14 þ 2q16 þ q18 þ 2q20 þ q22 þ q24 þ q26 þ q28 þ q32

TABLE VI. q-weighted numbers of lattice paths under the y ¼ 3
3pþ1

x line. For q ¼ 1 (right column) these numbers reduce to first
nontrivial coefficients given in Table IV.

Paths b1ðqÞ b1ð1Þ
(3,5) q7 þ 2q9 þ 2q11 þ q13 þ q15 7

(3,8) q10 þ 2q12 þ 3q14 þ 3q16 þ 2q18 þ 2q20 þ q22 þ q24 15

(3,11) q13 þ 2q15 þ 3q17 þ 4q19 þ 4q21 þ 3q23 þ 3q25 þ 2q27 þ 2q29 þ q31 þ q33 26

(3,14) q16 þ 2q18 þ 3q20 þ 4q22 þ 5q24 þ 5q26 þ 4q28 þ 4q30 þ 3q32

þ3q34 þ 2q36 þ 2q38 þ q40 þ q42
40

(3,17) q19 þ 2q21 þ 3q23 þ 4q25 þ 5q27 þ 6q29 þ 6q31 þ 5q33 þ 5q35 þ 4q37

þ4q39 þ 3q41 þ 3q43 þ 2q45 þ 2q47 þ q49 þ q51
57
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Yp;k∶ ð3k − 1Þ × ð3k − 2Þ; ð5:22Þ

Zp;k∶ ð2p − 2kþ 1Þ × ð3k − 2Þ: ð5:23Þ

Matrices Xp;k and Yp;k have the same structure as for the
ð3; 3pþ 2Þ series, however their overall shift is different.
Matrix Zp;k consists of rows of constant values, and
consecutive rows differ by 1. Explicitly

Xp;k ¼

2
666666664

6pþ 3kþ 1 6pþ 3k − 1 6pþ 3k − 3 � � � 6k − 3kþ 7

6pþ 3k 6pþ 3k − 2 6pþ 3k − 4 � � � 6k − 3kþ 6

6pþ 3k − 1 6pþ 3k − 3 6pþ 3k − 5 � � � 6p − 3kþ 5

..

. ..
. ..

. . .
. ..

.

5pþ 4kþ 1 5pþ 4k − 1 5pþ 4k − 3 � � � 5p − 2kþ 7

3
777777775
; ð5:24Þ

Yp;k ¼

2
666666664

5pþ 4k 5pþ 4k − 2 5pþ 4k − 4 � � � 5p − 2kþ 6

5pþ 4k − 1 5pþ 4k − 2 5pþ 4k − 4 � � � 5p − 2kþ 6

5pþ 4k − 3 5p − 4k − 3 5pþ 4k − 4 � � � 5p − 2kþ 6

..

. ..
. ..

. . .
. ..

.

5p − 2kþ 54 5p − 2kþ 5 5p − 2kþ 5 � � � 5p − 2kþ 5

3
777777775
; ð5:25Þ

Zp;k ¼

2
666666664

5p − 2kþ 4 5p − 2kþ 4 5p − 2kþ 4 � � � 5p − 2kþ 4

5p − 2kþ 3 5p − 2kþ 3 5p − 2kþ 3 � � � 5p − 2kþ 3

5p − 2kþ 2 5p − 2kþ 2 5p − 2kþ 2 � � � 5p − 2kþ 2

..

. ..
. ..

. . .
. ..

.

3pþ 4 3pþ 4 3pþ 4 � � � 3pþ 4

3
777777775
: ð5:26Þ

Let us also consider first two examples. The value p ¼ 1 corresponds to (3,4) torus knot. In this case, B1;1 is built out of
X1;1, Y1;1 and Z1;1, and takes the form

B1;1 ¼

2
66664
10

9

8

7

3
77775: ð5:27Þ

The full quiver matrix, with the block structure highlighted, reads

Cð3;4Þ ¼
�
Cð2;7;−2Þ B1

B1 Cð3;1;þ5Þ

�
¼

2
6666664

13 11 9 7 10

11 11 9 7 9

9 9 9 7 8

7 7 7 7 7

10 9 8 7 9

3
7777775
; ð5:28Þ

and after reordering columns and rows is equal to quiver presented in (4.26). The second example, with p ¼ 2, corresponds
to (3,7) torus knot. In this case, we find two matrices

PANFIL, STOŠIĆ, and SUŁKOWSKI PHYS. REV. D 98, 026022 (2018)

026022-24



B2;2 ¼

2
6666666666664

19 17 15 13

18 16 14 12

17 16 14 12

15 15 14 12

13 13 13 12

11 11 11 11

10 10 10 10

3
7777777777775

B2;1 ¼

2
6666666666664

16

15

14

13

12

11

10

3
7777777777775

ð5:29Þ

and the full quiver matrix takes the form

Cð3;7Þ ¼
�
Cð2;13;−2Þ B1

B1 Cð3;4;þ5Þ

�
¼

2
66666666666666666666666664

22 20 18 16 14 12 10 19 17 15 13 16

20 20 18 16 14 12 10 18 16 14 12 15

18 18 18 16 14 12 10 17 16 14 12 14

16 16 16 16 14 12 10 15 15 14 12 13

14 14 14 14 14 12 10 13 13 13 12 12

12 12 12 12 12 12 10 11 11 11 11 11

10 10 10 10 10 10 10 10 10 10 10 10

19 18 17 15 13 11 10 18 16 14 12 15

17 16 16 15 13 11 10 16 16 14 12 14

15 14 14 14 13 11 10 14 14 14 12 13

13 12 12 12 12 11 10 12 12 12 12 12

16 15 14 13 12 11 10 15 14 13 12 14

3
77777777777777777777777775

ð5:30Þ

We compute again the classical limit of the generating
series (2.27). In Table VII, we present results for several
ð3; 3pþ 1Þ torus knots. These numbers agree with num-
bers of lattice paths given by the Bizley formula (2.41).

VI. FULL HOMFLY-PT POLYNOMIALS FOR THE
UNKNOT AND SCHRÖDER PATHS

So far, in the correspondence with path counting, we
considered extremal HOMFLY-PT polynomials. They
depend only on one variable q, whose powers measure
the area in the path interpretation, see Fig. 2. It is then
natural to ask whether the full HOMFLY-PT polynomials
also have some path counting interpretation, and if so, what

is the interpretation of the variable a in this case. In this
section, we present a teaser of such an analysis, by
discussing the unknot invariants. Note that some
other relation between Schröder paths and superpolyno-
mials for torus knots was also found in [20], and related
models are considered in [21]—it would be interesting to
understand if there is some relation between those works
and our results.
Recall that the full colored HOMFLY-PT polynomials of

the unknot in the trivial framing take form

Prða; qÞ ¼ a−rqr
ða2; q2Þr
ðq2; q2Þ : ð6:1Þ

TABLE VII. Number of lattice paths under the y ¼ 3
3pþ1

x line, encoded in the classical generating function of ð3; 3pþ 1Þ torus knot.
Knot bn (numbers of lattice paths)

(3,4) 1; 5; 227; 15090; 1182187; 101527596; 9247179818;…
(3,7) 1; 12; 2010; 500449; 147412519; 47674321878; 16364395381824;…
(3,10) 1; 22; 9097; 5630306; 4129734800; 3328003203564; 2847460237999311;…
(3,13) 1; 35; 28931; 35938015; 52957121322; 85769505414732;…
(3,16) 1; 51; 73950; 161559908; 418968975977;…
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Let us consider these invariants in framing f ¼ 1, which
should then correspond to counting paths under the
diagonal line y ¼ x. In the knots-quivers correspondence,
the corresponding quiver was found in [2] and in f ¼ 1
framing it takes the form

C ¼
�
2 1

1 1

�
ð6:2Þ

so that (6.1) can be obtained from (2.19) with the following
identification of the variables

x1 ¼ −aq−1x;

x2 ¼ a−1x: ð6:3Þ

The corresponding generalized A-polynomial for the
unknot in framing f ¼ 1 reads

Aðx; y; aÞ ¼ 1 − y − a−1xyþ axy2; ð6:4Þ

and written in terms of q ¼ 1 limit of variables (6.3) it reads

Aðx1; x2; aÞ ¼ 1 − y − x2y − x1y2: ð6:5Þ

For C given in (6.2), an analogous ratio of quiver
generating functions as in (4.3), with analogous rescaling
of generating parameters xi ↦ xiq−1, but without setting xi
equal to each other, takes the form

yðx1; x2; qÞ ¼
PCðx1q; x2qÞ

PCðx1q−1; x2q−1Þ
¼ 1þ qx1 þ x2 þ ðq2 þ q4Þx21
þ ð2qþ q3Þx1x2 þ x22 þ… ð6:6Þ

Amusingly, this result is related to the q-weighted counting
of so-called Schröder paths. Recall that these are paths
made of the two usual steps that we discussed so far, and an
additional diagonal step. In the generating function (6.6),
powers of x1 count the number of steps to the right [of
direction (1,0)], powers of x2 count number of diagonal
steps [of direction (1,1)], and powers of q—as before—
compute the area between the path and the y ¼ x line. An
example of a Schröder path is shown in Fig. 6. To make a
direct relation to variables of HOMFLY-PT polynomials,
we can rescale x1 and x2 as follows

x1 ¼ x;

x2 ¼ ax: ð6:7Þ

In such variables, (6.6) takes the form

yðx;a;qÞ¼ 1þðqþaÞx
þðq2þq4þð2qþq3Þaþa2Þx2þ… ð6:8Þ

with the length of a path measured by the power of x and
the number of diagonal steps measured by the power of a.
There are several interesting limits of (6.6). In the

homogenous classical limit, we get

yðx;x;1Þ¼1þ2xþ6x2þ22x3þ90x4þ394x5þ… ð6:9Þ

and the coefficients of this series simply count all Schröder
paths of a given height. For example, 6 paths of height 2 are
shown inFig. 7 (moregenerally, the areameasuredbypowers
of q in (6.6) is shown in grey). On the other hand, setting
x2 ¼ 0 we obtain the generating function of q-Catalan
numbers, which reproduce the result from Sec. IVA,

yðx1; 0; qÞ ¼ 1þ qx1 þ ðq2 þ q4Þx21 þ…: ð6:10Þ

Finally, for x1 ¼ 0, we get a geometric series representing
only all diagonal paths (with vanishing area)FIG. 6. An example of a Schröder path of length 6.

FIG. 7. All 6 Schröder paths represented by quadratic terms ðq2 þ q4Þx21 þ ð2qþ q3Þx1x2 þ x22 of the generating function (6.6).
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yð0; x2; qÞ ¼ 1þ x2 þ x22 þ… ¼ 1

1 − x2
: ð6:11Þ

One can easily check, that all above statements hold also for
the f-framed unknot that corresponds to Schröder under the
line y ¼ fx; this provides a generalization of results men-
tioned in Sec. IVA to the a-deformed case.
As in the previous cases, the A-polynomial (6.4) can be

reproduced, from the path counting perspective, from the
Duchon grammar, which now consists of three letters. It
reads

Aðx; yPÞ ¼ 1þ ðx − 1ÞyP þ xy2P; ð6:12Þ

where the term xyP is due to the horizontal step and xy2P due
to the two ascending and descending steps. Up to powers of
a, this result indeed agrees with (6.4). In this interpretation,
the role of the variable a is to distinguish paths of the same
length but with different number of horizontal steps.
Equivalently, (6.12) is directly identified with (6.5) upon
the identification x ¼ −x1 ¼ −x2 and y ¼ yP.
In summary, at least in the case of the unknot, introducing

the variable a of HOMFLY-PT polynomials corresponds to
adding an additional diagonal step in the path counting

interpretation.We postpone the generalization of this picture
to other torus knots to future work.
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