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Science-Driven Atomistic Machine Learning

Johannes T. Margraf⇤

Fritz-Haber-Institute of the Max-Planck Society

(Dated: March 6, 2023)

Machine learning (ML) algorithms are currently emerging as powerful tools in all areas of science.
Conventionally, ML is understood as a fundamentally data-driven endeavour. Unfortunately, large
well-curated databases are sparse in chemistry. In this contribution, I therefore review science-

driven ML approaches which do not rely on “big data”, focusing on the atomistic modelling of
materials and molecules. In this context, the term science-driven refers to approaches that begin
with a scientific question and then ask what training data and model design choices are appropriate.
As key features of science-driven ML, the automated and purpose-driven collection of data and the
use of chemical and physical priors to achieve high data-e�ciency are discussed. Furthermore, the
importance of appropriate model evaluation and error estimation is emphasized.

I. INTRODUCTION

Machine learning (ML) is now an established part of
several key areas of chemical research, e.g. in the de-
velopment of interatomic potentials[1, 2], the analysis of
complex simulation data[3] or the design of novel drugs[4]
and materials[5]. Beyond being a methodological novelty,
atomistic ML has enabled real scientific breakthroughs,
e.g. in predicting protein structures[6] or understand-
ing the properties of water[7, 8], silicon[9], and hydrogen
under extreme conditions[10].
While chemical ML is an extraordinarily diverse

subject (including applications in so-called self-driving
labs[11] or in the analysis of experimental data[12]),
atomistic ML is arguably one of its most mature sub-
fields. Here, atomically resolved structural data serve
as the main in- or outputs of a model. Among other
reasons, the success of atomistic ML can be attributed
to the facts that modern ML methods are inherently well
suited for such high-dimensional problems, and that elec-
tronic structure calculations (most often using Density
Functional Theory, DFT) o↵er a relatively straightfor-
ward way for generating high quality reference data.
Indeed, there is currently a veritable hype around ML

for atomistic systems, with a multitude of new applica-
tions being reported every day. As is commonly the case
with hypes, not all the reported benefits of ML hold up
to scrutiny, however. For instance, comparisons with ad-
equate (non-ML) baselines are often not performed and
the applicability of the proposed methods beyond the
scope of the training data is often unclear.[13]
Here, a certain disconnect between common practices

in method development and the practical demands of
atomistic modelers can be observed. For understand-
able reasons, the former prefer to focus on well estab-
lished benchmark datasets. These are readily available
and allow rigorously comparing new methods with the
state-of-the-art. Unfortunately, these benchmark prob-
lems merely represent an imperfect proxy to real chem-

⇤ email: margraf@fhi.mpg.de

ical research questions. Consequently, many proposed
methods do not find their way into practical applications.
Even more critically, the focus on specific benchmarks
leads to certain trends in atomistic ML research (such as
the development of ever larger deep learning models with
millions of parameters) that may actually be detrimental
for many practical applications.[14]
In this contribution, I aim to provide an overview of

how the availability of data shapes research in atom-
istic ML, with a focus on the use of supervised learning
in atomistic simulations. Based on this, I di↵erentiate
between data-driven and science-driven ML approaches
and argue that the latter are essential for addressing
many pressing scientific questions. Finally, key aspects of
science-driven ML approaches are reviewed and promis-
ing future research directions are discussed.

II. BIG AND SMALL DATA

There is a famous quote attributed to Ernest Ruther-
ford, that “all science is either physics or stamp col-
lecting”. This is often interpreted as disparaging sci-
ences like chemistry and biology for lacking a deep un-
derstanding of the physical world and merely describing
and categorizing a large variety of phenomena and obser-
vations. The authenticity of this quote is dubious and it
is actually rather unlikely that Rutherford of all people
would have belittled the value of empirical observations
in science. Nevertheless, chemical research sometimes
undeniably has a certain resemblance with stamp collect-
ing (e.g. starting with “Beilstein’s Handbook of Organic
Chemistry” first published in 1881[15]). Rather than be-
ing a frivolous hobby, however, such e↵orts have led to
the formation of essential databases that are used by mil-
lions of chemists every day.
The longest tradition of this can be found in organic

chemistry, particularly in the field of molecular synthe-
sis. Beyond the already mentioned Beilstein Handbook
(now part of Reaxys), there are several public domain
e↵orts like PubChem[16] or ChemSpider[17], each con-
taining data on hundreds of millions of small (i.e. con-
sisting of ca. 100 atoms or less) organic molecules. Such
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databases are far from complete given the size of chemi-
cal space, estimated to be on the order of 1060 molecules
(even when only considering CHNOS-containing drug-
like molecules[18]). Nonetheless, they have played a key
role in the development of ML models in chemoinformat-
ics. Here typical applications include synthesis planning
or the generation of new molecules.[19–22]
As useful as these databases are, the kind of infor-

mation they contain limits their applicability in atom-
istic ML. For example, molecules are usually represented
in terms of strings (SMILES or InCHI) or graphs, lack-
ing full three dimensional information (although approx-
imate 3D geometries are available in many cases). Fur-
thermore, for many of the contained molecules the only
available experimental information is the fact that it has
been reported in the literature. Structure-property re-
lations and regression models (e.g. for biological activ-
ities) are thus usually obtained from smaller annotated
subsets of these resources. Meanwhile, ML applications
aiming to predict 3D geometries or generate full dimen-
sional structure-property mappings (e.g. potential energy
surfaces) cannot rely on them at all.
This lack is to some extent addressed by databases

collecting experimentally determined structures (mostly
from X-ray di↵raction), such as the Cambridge Struc-
tural Database (CSD),[23] the Protein Data Bank
(PDB),[24] or the Inorganic Crystal Structure Database
(ICSD)[25]. These provide high quality insights into the
3D structure of molecules, proteins and inorganic solids,
respectively. Given the expense and technical di�culty
of performing such experiments, these databases are or-
ders of magnitude smaller than the aforementioned ones,
however (between 100,000 and one million entries). At
the same time, each entry contains a much greater depth
of information, so that powerful ML models can never-
theless be trained on them, as prominently demonstrated
by the recent success of the AlphaFold2 model trained on
the PDB.[6]
E↵orts like the PDB are thus immensely valuable. Un-

fortunately, they are hard to reproduce in other fields.
They depend on long-term funding and the collective
contributions from an entire scientific community over
several decades. Experimental databases in other fields
are therefore usually much smaller, often containing only
tens or hundreds of datapoints, if they exist at all. This
is not necessarily due to a lack of reported experiments in
principle but rather due to the di�culty of extracting the
results from the literature and, crucially, due to the in-
consistency of experimental results obtained in di↵erent
labs or with di↵erent techniques.[26] On top of this, pub-
lication bias is a real problem in some cases, e.g. when
only active catalyst materials are published, while ‘failed’
experiments remain unreported.[27] To address pressing
chemical questions such as the prediction of catalytic ac-
tivities or solvation e↵ects with ML, we thus cannot wait
for a project equivalent to the PDB to materialize in the
respective fields.
Since the mid-2000s, the increased availability of com-

Figure 1. Visualization of the QM9 dataset of small or-
ganic molecules using the kernel Pricipal Component Analysis
method. Each point represents a molecule and the distance
between points indicates their structural similarity. This is
emphasized by the paths in the figure, highlighting system-
atic structural changes. The colormap reveals that electronic
properties like the atomization energy vary smoothly across
chemical space. Adapted with permission from Ref. [39].
Copyright 2020 American Chemical Society.

putational resources and first-principles electronic struc-
ture methods (in particular DFT) has changed this situ-
ation somewhat, by enabling the creation of computa-
tional databases. Prominent examples of this include
the Materials Project,[28] AFLOW,[29] the Materials
Cloud,[30] the Open Quantum Materials Database,[31]
and NOMAD,[32] all of which mostly focus on the prop-
erties of bulk solids. Here, the Materials Project is a par-
ticularly insightful example as it expands an experimen-
tal database (the ICSD) with additional materials and
properties. The relative ease of running a DFT calcula-
tion means that this can be achieved much more quickly
and at a fraction of the cost of the corresponding ex-
periments. Similarly, a series of computational molecu-
lar databases have been developed, initially focusing on
the small organic molecules of the GDB-17 universe.[33]
The QM9 database containing ground state properties
of over 100k molecules was a pioneering achievement in
this context (see Fig. 1).[34] The landscape of molecular
databases has since been expanded further by including
non-equilibrium configurations and conformers,[35, 36]
ionized states[37], and radicals[38].

To summarize this bird’s-eye view of atomistic data,
we can say that in spite of chemist’s supposed fondness
of stamp collecting, there are only a few experimental
databases that can reasonably be called ‘big data’. This
is because large, community-wide e↵orts are required to
generate them. In most fields, high quality experimen-
tal databases are thus decidedly ‘small data’. Compu-
tational databases based on high-throughput electronic
structure calculations provide an important alternative
in this context, as they can be generated much more
cheaply. Even here, full coverage of chemical space can-
not be expected, however.
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III. DATA-DRIVEN AND SCIENCE-DRIVEN
MACHINE LEARNING

It is clear that the landscape of available databases just
described impacts the direction that research in atomistic
ML is taking. In particular, computational databases like
QM9[34] have been instrumental in the development of
atomistic ML models. This reflects the highly competi-
tive nature of ML research, where exceeding state-of-the-
art performance on a well defined dataset and task is one
of the main goals when developing new methods. This
kind of ML research is thus in a literal sense data-driven,
i.e. the available datasets and associated tasks determine
how new methods are designed. This has undeniably led
to significant progress, but it also represents a rather ar-
tificial setting compared to real chemical research. Most
importantly, for the reasons outlined above it is usually
not the case that a well-curated dataset exists that can
be used to develop an ML model.
Approaches that are optimized in a data-driven set-

ting are therefore of limited use for answering questions
like: “What is the structure of an interface between two
materials?” or “What is the free energy barrier for a par-
ticular heterogeneous catalytic reaction?”. The available
sources of big data contain little to no information about
these questions. While it would in principle be possible to
address this lack by generating new extensive databases
dedicated to a certain material class or target property
(as was recently done with the OC20 database focusing
on heterogeneous catalysis)[40], this requires massive in-
vestments of time and money. Furthermore, it is not
trivial to predict what size and shape such a database
should have, in order to cover the target domain in a
satisfactory manner.
Fortunately, there is an alternative to the data-driven

approach, which I will term “science-driven” in the fol-
lowing (see Fig. 2). The key feature of science-driven
ML is that it begins with a scientific question and then
asks what training data and model design choices are
appropriate. This is particularly important when scien-
tific questions are not reducible to a simple metric like
the mean absolute error (MAE) with respect to some
predefined test set. Indeed, this is a common situation
in atomistic ML, where training data is usually gener-
ated by first-principles electronic structure calculations
(e.g. of total energies and forces), while the property of
interest is often a macroscopic observable, such as a re-
action rate, melting point or di↵usion coe�cient at finite
temperature.[8, 38] Accurately predicting energies and
forces for a fixed test set does not guarantee that the ob-
servable is accurately predicted, since the dynamic sim-
ulation required to predict the observable can lead far
away from the configurations in the test set. Further-
more, it is not trivial to determine a priori how errors
on energies and forces translate to errors on the desired
observables. In other words, even if the test set provides
an accurate estimate of how the model performs for un-
seen data, it is unclear how low the corresponding test

Figure 2. Schematic illustration of data-driven and science-
driven machine-learning approaches. In the science-driven ap-
proach, data collection is driven by specific scientific questions
and a feedback between model fitting and data collection is
implemented.

error should be for any given application.
Having established the scope of science-driven ML,

what are the main challenges towards developing such
models? First, since predefined training sets are not
available, adaptive algorithms for data generation and
high data-e�ciency of the models are required. Second,
robust extrapolative capabilities are essential, since the
configurational space of interest is also not known at
the outset. Finally, it would be benefitial to gain in-
sights into how errors propagate from atomistic predic-
tions to macroscopic observables. In the remainder of
this manuscript, I will discuss how these requirements
can be achieved in practice, with the help of active learn-
ing, physical priors and uncertainty estimation.
Note that the concepts discussed herein are largely

agnostic towards the technical details of the ML mod-
els themselves (e.g. regarding neural networks vs. Kernel
methods). For in-depth discussions of di↵erent method-
ological approaches to atomistic ML, the reader is re-
ferred to several recent review articles.[1, 2, 41–46]

IV. ACTIVE AND ITERATIVE LEARNING

The development of ML interatomic potentials almost
immediately revealed the limitations of a purely data-
driven approach in chemistry. Indeed, it is almost impos-
sible to generate a training database that adequately cov-
ers the phase space of any reasonably complex molecule
or material a priori.[47] Even for the relatively simple
case of non-reactive closed-shell organic molecules in the
gas-phase, this requires a su�ciently representative set
of molecules, an extensive exploration of the configura-
tion space of each molecule and a set of non-equilibrium
configurations for each conformer (e.g. from molecular
dynamics or normal mode displacements).
To put this into perspective, the QM7-x database of

Hoja et al. provides over 4 million configurations that ful-
fill these criteria for organic molecules with up to seven
heavy atoms.[36] While this a↵ords su�cient coverage to
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Figure 3. Illustration of o✏ine and online active learning. Left: In the o✏ine approach, the simulation of interest is performed
with an ML model, generating new configurations. By evaluating samples of these, the accuracy of the ML model can be
checked. If the obtained error L is above a tolerance criterion, new configurations are added to the training set and the
simulation is repeated. Right: In the online approach, the model itself provides an uncertainty measure for each prediction
made, e.g., during a molecular dynamics or Monte Carlo simulation. If the predictive uncertainty � is above a tolerance factor,
a reference calculation is performed and the model is retrained based on this new information.

train robust interatomic potentials for small gas-phase
molecules, such potentials will not be able to extrapolate
to condensed systems (e.g. molecular liquids or crystals),
macromolecules (e.g. proteins or polymers) or chemical
reactions. Furthermore, data requirements tend to rise
non-linearly with the number of elements in the sys-
tem due to the curse of dimensionality. Generating a
dataset with similar coverage as QM7-x for condensed
phase systems, inorganic materials or biomolecules in so-
lution would consequently require a staggering computa-
tional e↵ort.
A hallmark of most science-driven ML approaches is

therefore that data collection and model construction are
not decoupled from each other. Instead, multiple models
are fitted in an iterative fashion so that the training set
is expanded at each step, based on the predictions of the
current model. Because the model itself influences the
training set, this is often termed active learning (AL) or
iterative training (see Fig. 3).
The key ingredient of any AL approach is a crite-

rion according to which new datapoints are selected.
Here, the most common choices either leverage data di-
versity or predictive uncertainties. In the former case,
a measure for similarity between datapoints is used to
ensure that new configurations added to the training
set are as dissimilar as possible to the already known
configurations.[48] In the latter case, the ML model pro-
vides a measure of uncertainty along with each predic-
tion. This way, highly uncertain predictions can be
checked with accurate reference calculations and subse-
quently added to the training set. These uncertainty es-
timates are often obtained by fitting ensembles of models
with di↵erent weight initializations and/or di↵erent sub-
samples of the training set.[49] Alternatively, Bayesian

ML methods like Gaussian Process Regression directly
provide predictive uncertainties.[2, 50]
While the AL concept is rather simple, it is not nec-

essarily trivial to implement in practice. In particular,
uncertainty measures must be well calibrated in order to
provide reliable and useful error estimates.[49, 50] There
is also a question of resolution: the predicted uncertainty
on the atomization energy of a large molecule may be
small, even if a certain functional group is poorly de-
scribed by the model. For both uncertainty and diversity-
driven workflows it can therefore be appropriate to use
per-atom rather than per-configuration estimates, de-
pending on the application.[51–53]
The most common use-case for AL in chemistry is the

development of interatomic potentials. Here, a prelimi-
nary potential can be used to run exploratory simulations
(often dynamics or structure searches), generating novel
configurations. These can in turn be evaluated with first-
principles calculations and added to the training set.
Since it is impossible to know a priori what configu-

rations are required for fitting an interatomic potential,
AL has always been used for in this context, though not
necessarily in fully automated workflows. This is some-
times termed “o✏ine” AL, since the simulation, data se-
lection and training are performed in separate steps (see
Fig. 3).[54] More recently, several groups have also shown
that “online” active learning can be used in some cases,
e.g. for molecular dynamics (MD) simulations.[51, 55–57]
As an example, an online AL potential for Methylam-

monium Lead Iodide (MAPI) by Jinnouchi et al. is shown
in Fig. 4.[51] It can be seen that the uncertainty estimate
in this plot correlates well with the real error of the poten-
tial, so that first-principles calculations can be invested
e↵ectively. As a consequence, 99% of the calculations
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Figure 4. Online active learning molecular dynamics for a
Methylammonium Lead Halide perovskite. Shown are the real
(black) and estimated (red) errors of a machine learned force
field (FF). Large estimated errors trigger first principles (FP)
calculations, which are used to retrain the FF. The structures
on top highlight the hydrogen atom with the highest error
in red, for two snapshots. Reprinted with permission from
Ref. [51]. Copyright 2019 by the American Physical Society.

necessary for the corresponding ab initio MD trajectory
are saved, enabling the application of the potential to
study complex phase transitions.
Similarly, o✏ine active learning was recently shown

to drastically increase the e�ciency of global structure
searches for large molecular adsorbates on transition
metal surfaces.[58] Due to the conformational flexibility
of these molecules, this is a complex global optimization
problem. In an AL workflow, interatomic potentials were
used to run extensive Minima Hopping simulations to ex-
plore this configuration space. By retraining the models
on the thus generated configurations, high accuracy and
data-e�ciency could be achieved. The converged poten-
tials were then used for extensive structure searches for
a series of molecules and fragments on di↵erent Rh sur-
faces. This revealed that the stability of some adsorbates
was previously underestimated by more than 1 eV, with
significant implications for catalysis.
In this context, interatomic potentials are a special

case as they can directly be used to generate new con-
figurations (e.g. through simulations). This is di↵er-
ent for more general regression or classification models,
e.g. when predicting electronic properties like reorgani-
zation energies[59] or biological activities[60]. Here, a
similar concept can nonetheless be applied, when a large
pool of unlabeled, potentially interesting systems is avail-
able. An uncertainty or diversity measure can be used to
e�ciently draw samples from this pool, again iteratively
expanding the training set. This strategy was, e.g., used
for the ANI-1x potential, leading to higher accuracy with
a fraction of the data used for its predecessor.[35] A sim-
ilar concept is used in the self-correcting ML of Dral and
coworkers.[61]
Another important application of AL and related tech-

niques (namely Bayesian Optimization) is for optimiza-

tion tasks.[62, 63] These include the already mentioned
structure searches (i.e. finding the most stable geometry
of a system)[52, 62–66] but also more general molecular
or materials design tasks (i.e. finding a compound with
desired properties)[59, 60, 67, 68]. Here, the goal is not
just to add diverse configurations to the training set but
also to guide the optimizer towards favourable configu-
rations or systems. Data selection is thus governed by a
acquisition function that balances exploration (as quan-
tified by uncertainty or diversity measures) and exploita-
tion (as quantified by favourable predicted properties of
a candidate).

V. INDUCTIVE BIASES AND PHYSICAL
PRIORS

It is often claimed that ML models merely interpo-
late the training data. While this is true in some
sense (though not strictly speaking, as shown by Zeni
et al.[69]), it is also vastly oversimplifying. Depending
how an ML model is set up, it will perform predictions
on unknown data (induction) in vastly di↵erent ways.
As a consequence, we can influence how robustly an ML
model will extrapolate beyond the current training set by
making the right design choices. As discussed in the pre-
vious section, AL frameworks use coarse initial models to
generate or select training configurations. It is therefore
of particular importance to use models that work well in
low-data regimes in this context.
In the ML literature, the set of assumptions that de-

termines how an algorithm performs predictions is col-
lectively termed the inductive bias of a model. This is
illustrated in Fig. 5. There is usually a space of possi-
ble ML models that can fit a given training set equally
well. However, since each model has its own inductive
bias, their predictions for unseen data will in general be
di↵erent. This variation is particularly large when little
data is available.
In more concrete terms, inductive biases can be re-

lated to how input features are passed to the model
(e.g. sequentially or all at once), how they are processed
(e.g. taking spatial locality into account) and how the
output is produced (e.g. respecting permutational invari-
ance of the input features). All of these choices influence
the predictions of the resulting models and di↵erent ap-
plications call for di↵erent model architectures. For ex-
ample, computer vision models benefit from other induc-
tive biases than natural language processing models.
Over the last decade several powerful inductive biases

for atomistic machine learning have been found. Perhaps
the most fundamental of these relate to mathematical
invariances that most chemical properties (particularly
the total energy of a system) fulfill. Specifically, these
are invariance to permutations of atoms of the same el-
ement, as well as global rotations and translations of a
system.[41, 42] By rigorously enforcing these invariances
when building representations of chemical structures, all
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Figure 5. Illustration of inductive bias. Left: There is a space of possible machine learning models that can fit the training
data similarly well. However, each of these models will make di↵erent predictions for unknown data. Right: As more data
is added (from top to bottom), the variation of di↵erent models that perfectly fit the training data decreases. Consequently,
inductive biases are particularly important in the ‘small data’ regime.

subsequent ML models automatically fulfill them. As a
consequence, they do not need to be learned from data,
making the corresponding models more data-e�cient.

While invariance is thus a key property, it has recently
been found that important structural information can
be lost in the process of making representations rota-
tionally invariant. In particular, degeneracies or near-
degeneracies can occur, meaning that di↵erent struc-
tures (with di↵erent properties) are mapped to the same
representation.[70–74] This is highly problematic for ML
models, which obviously cannot assign di↵erent outputs
to identical inputs. Furthermore, it is clear that not all
molecular properties are invariant to rotations. Instead,
tensorial properties like (hyper-)polarizabilities or dipole
vectors are equivariant, meaning that they rotate with
the molecule.

To address this, a series of equivariant ML models have
been proposed in recent years.[75–77] These are invalu-
able for the rigorous prediction of properties ranging from
dipole moments to full electron densities.[78–81] Perhaps
surprisingly, equivariant neural networks can also display
significant advantages when predicting invariant proper-
ties like the potential energy of a system.[75, 82] In this
case, the models are internally equivariant until the last
layer of the network, where an invariant output is pro-
duced. This way, the loss of structural information that
plagues some invariant representations is avoided.

Alternatively, it has also been found that higher-order
invariant representations can be generated e�ciently us-
ing the atomic cluster expansion (ACE).[83, 84] This
approach is closely related to the classic cluster and
many-body expansion methods used in chemistry and
materials modelling.[85] Importantly, the ACE invari-
ants form a systematically convergent basis so that full
structural information can be retained in an invariant
representation.[86] Indeed, due to its completeness and
e�ciency, ACE allows the development of highly accurate

Figure 6. Mean absolute error (MAE) of force predictions for
Aspirin configurations with MACE potentials, as a function of
the training set size. Left: Without equivariance (L = 0), the
data e�ciency can be increased by increasing the body-order
of the potential (⌫). Right: For a fixed body-order, introduc-
ing equivariance (L > 0) also increases the data-e�ciency. In
both cases, the slopes (s) of the learning curves increase with
better inductive biases. Figure adapted from Ref. [82] with
permission.

interatomic potentials using (regularized) linear regres-
sion, providing an ideal trade-o↵ between accuracy and
speed in many cases.[84, 87] In a similar vein, models like
UF3 or ChiMES use explicit body-order expansions of the
energy in terms of products of two-body functions.[88, 89]

To illustrate the benefits of inductive biases such as
equivariance and high body-order for science-driven ML,
it is instructive to consider the MACE approach of Bata-
tia et al.[82] In MACE, both the equivariance and the
body-order of the model can be controlled via hyperpa-
rameters. As shown in Fig. 6, both of these factors lead
to improved predictive accuracy. Interestingly, this is
not merely reflected in a consistently lower MAE, but
in a steeper slope of the learning curves, indicating that
equivariant and high body-order models learn more ef-
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7

fectively from the data.
It should be noted that an alternative approach to pre-

dicting tensorial properties is to take Cartesian deriva-
tives of invariant model outputs. Indeed, this is the stan-
dard approach for predicting force vectors, which are rig-
orously defined as energy derivatives. More recently, this
idea has been generalized to predicting dipole moments,
coupling vectors and electronic friction tensors.[90–92]
The above considerations relate to how structural in-

formation is received and transformed by the model. In-
ductive biases can also be related to the fitting target.
This can be as simple as choosing the adequate scale
when fitting energies. By predicting atomization ener-
gies and requiring that the energies of isolated atoms are
strictly zero, a model will automatically predict bond
energies that are on the correct order of magnitude,
even when no bond-breaking events are in the training
set.[2] Similarly, size-extensivity of ML models can be
enforced by adequately normalizing the representation
and fitting target.[93] This also has important conse-
quences for predicting reaction energies in complex re-
action networks.[38] Here, fitting energies per atom is
beneficial since small but chemically important molecules
like H2 and CO are described less accurately otherwise.
A particularly powerful type of inductive bias is the ex-

plicit inclusion of physical priors. This is often achieved
via the �-ML approach,[94] where the predictions of a
computationally e�cient physical model (often a semiem-
pirical method[95–97]) are used as a baseline. The ML
model then merely predicts the di↵erence between the
target method and the baseline, which can dramatically
decrease the amount of data required to achieve a given
accuracy.[98–100] The inclusion of an explicit physical
baseline furthermore often ensures better transferability
of the model.[101, 102]
An additional advantage of �-ML is that it enables the

inclusion of e↵ects at the baseline level, which cannot be
described by the ML model at all. A prominent example
of this are long-range electrostatic and dispersion inter-
actions, which are missing in many common ML models
based on local atomic environments.[102, 103] In the con-
text of dispersion interactions, a related idea is to train a
short-ranged model on (long-range) dispersion-free DFT
data. These e↵ects can then be treated separately via
physical van-der-Waals corrections. The latter may in
turn also be coupled to ML models predicting charges or
Hirshfeld volumes.[104, 105]
Such�-ML models were used in Ref. 103 to predict the

structures of organic molecular crystals. Here, a disper-
sion corrected density functional tight-binding (DFTB)
baseline was combined with a local ML correction[106,
107]. While the baseline alone was not su�ciently ac-
curate to reliably rank potential crystal polymorphs (or
predict their structures), it did provide a reasonable prior
for the relevant inter- and intramolecular interactions.
Meanwhile, a pure local ML model would also be inad-
equate here, since relative crystal stabilities are known
to depend on long-range interactions. Combining DFTB

and ML, highly accurate and data-e�cient models could
be obtained.
As an alternative to �-ML, semiempirical models can

also be used to generate more powerful, physics-based in-
put features for ML models. An example of this are the
OrbNet models, which use semiempirical electronic prop-
erties to this end.[108, 109] Such features were also found
to be advantageous when predicting molecular reorgani-
zation energies, which do not depend on the ground state
structure alone.[100]
Finally, the arguably most sophisticated way to use

physical priors is to build so-called physics-enhanced
ML models. In this case, an ML model is intimately
connected to a physical model. Indeed, it would be
equally valid to talk about ML-enhanced physical mod-
els. This is a highly active field of research which
spans ML-predicted Hamiltonians[110–112], semiempiri-
cal models with environment-dependent parameters[113]
and machine-learned quantum chemical methods[114,
115].
In this context, the electron density plays a central

role. Several groups have reported models for predict-
ing electron densities in materials and molecules.[80, 116,
117] This is of great interest since a range of impor-
tant electronic properties (such as multipole moments or
molecular electrostatic potentials) can be obtained di-
rectly from the density. Furthermore, accurate learned
densities can accelerate the convergence of DFT calcula-
tions or avoid self-consistency loops altogether.[116, 118]
A key inductive bias for such models is how the electron
density is represented (see Fig. 7).
Arguably, the most straightforward solution is to use

real space grids, which are already implemented in most
DFT codes. The feasibility of this was demonstrated in
Ref. [117] for uniform grids. Such grids are only e�-
ciently applicable for valence electron densities of dense,
condensed phase systems, however. Generalization of
density prediction to the non-uniform grids used in all-
electron DFT codes with open boundary conditions is not
straightforward. Furthermore, real space grids have enor-
mous memory demands for large systems. In a seminal
paper, Brockherde et al. showed that the density can in-
stead be predicted e�ciently in a plane-wave basis.[116]
Here, the orthogonality of the basis is mathematically
convenient, as a separate ML model can be fitted for
each Fourier component. On the flipside, this restricts
the prediction to fixed unit-cells and relatively rigid sys-
tems.
In Ref. [80] these limitations were overcome by rep-

resenting the electron density in terms of atom-centered
basis functions. A key feature of this approach is that
it naturally decomposes the density into atomic contri-
butions. This enables highly transferable and equivari-
ant density predictions, where models can be trained on
small systems and applied to large ones. This advance
was subsequently used for density prediction in large non-
covalently bonded systems[120] and periodic cells[81].
Even more physics can be introduced into density-
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8

Figure 7. Representations of electron densities in machine learning, illustrated for a one-dimensional hydrogen molecule. Left:
The most straightforward approach is to map the density onto a real space grid. Center: A plane-wave basis is more compact
and mathematically convenient due to the orthogonality of the basis functions. Right: An atom-centered basis is highly
compact and allows decomposition of the density into atomic contributions, which enables scaling to large systems. Note that
all representations yield the same density using 100, 10 and 4 basis functions, respectively. Figure adapted with permission
from Ref. [119].

based ML models by using the variational principle as an
inductive bias. This means that the electron density is
predicted by minimizing an ML-based energy functional.
In this case the model is a full-blown density functional
approximation, meaning that it o↵ers a route to all first-
order properties, energies, and forces on an equal foot-
ing. Here, flexible ML models can overcome the well-
known self-interaction problems of conventional semilo-
cal functionals.[121] In this context, the main focus has
been on machine-learned exchange-correlation function-
als, and to a lesser degree on kinetic energy functionals
for orbital-free DFT.
A key question for ML DFT is how non-locality can

be introduced into the functionals. One alternative is
to use the same non-local ingredients also used in con-
ventional DFT, such as the kinetic energy density and
the exact exchange density. This was exploited in the
recent DM21 functional.[122] While DM21 shows im-
pressive performance on a wide variety of benchmarks,
Becke subsequently showed that physics-based function-
als using the same ingredients can be equally or more
accurate.[123, 124] More critically, the local exchange
density is computationally involved to calculate, so that
these functionals are much less widely applicable than
conventional ones. Much interest has therefore been de-
voted to the development of non-local ML functionals
that depend on the electron density alone (pure density
functionals).
Here, one strategy is to use convolutions, so that

the local exchange-correlation energy density on any
given point depends on the electron densities at nearby
grid points.[125–128] Bystrom and Kozinsky showed
that these convolutions can be designed to obey scal-
ing constraints, a critical step towards more rigor in ML
DFT.[129] Indeed, a substantial advantage of the con-
volutional approach is that it can be formulated as a
straightforward generalization of semilocal functionals,
so that the same exact constraints can be enforced. It
should also be noted, however, that performing the con-

volutions represents substantial computational overhead.
As with density prediction, moving away from the

grid-based representation has some advantages in this
context. In both plane-wave and atom-centered basis
sets, non-locality is automatically included. Bogojeski
et al. showed that highly accurate non-local functionals
can be fitted in a plane wave basis.[118] This completely
avoids numerical quadrature on a grid and thus has the
potential to be more e�cient than conventional DFT, es-
pecially when combined with density prediction. Unfor-
tunately, the resulting functionals are not size-extensive,
however.
Here, the use of atom-centered basis functions again

o↵ers a promising route. Dick and Fernandez-Serra
showed that density projections could be used to cre-
ate non-local, atom-centered density representations for
size-extensive exchange-correlation functionals, using the
semilocal PBE functional as a baseline.[130] Similarly,
Margraf and Reuter used density-fitting to obtain pure,
non-local and size-extensive correlation functionals that
achieve energy errors below 1 kcal/mol with less than 100
training samples.[119]
A key advantage of using such atom-centered represen-

tations is that the corresponding models naturally scale
to large systems and are computationally highly e�cient.
A downside compared to grid based methods is that they
are not as transferable across the periodic table, since the
basis functions are to an extent element specific. Fur-
thermore, these functionals currently do not respect any
exact constraints.
A big advantage of the physics-enhanced approach in

general is that it leads to much higher interpretability
of the predictions. A pure ML model may be able to ac-
curately predict dipole moments, but a physics-enhanced
model additionally allows understanding these dipole mo-
ments in terms of more fine-grained charge distributions.
Another advantage is that physics-enhanced models of-
ten predict more fundamental quantities that allow pre-
dicting multiple molecular properties on an equal foot-
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ing. As an example, predicted electron densities give
access to multipole moments, electrostatic and exchange-
correlation energies, as well as topological properties like
partial charges and bond orders. With the appropriate
physical model, it is even possible to learn properties in-
directly (e.g. electron densities from energies[131]). Fi-
nally, as with �-ML, physics-enhanced models tend to be
highly data-e�cient since they incorporate strong priors.
On the flip-side, including physical priors in this man-

ner usually leads to lower computational e�ciency when
performing induction. Learned DFT functionals can
surpass the accuracy of conventional approximations in
many cases, but they are usually equally or more ex-
pensive to evaluate. In contrast, pure ML models are
typically several orders of magnitude faster than DFT
calculations. In this context, the scientific question of
interest must decide which approach is best suited. For-
tunately, this is not a binary question between highly
data-e�cient and interpretable models on one hand to
ultra-fast black-box models on the other.
As an example of an intermediate approach between

these extremes, it can be noted that it is not neces-
sary to know the full details of the electron density in
order to adequately describe long-range Coulomb inter-
actions. Artrith et al. showed that short-ranged ML po-
tential can instead be combined with learned atomic par-
tial charges.[90, 132, 133] However, when these charges
are directly predicted by an ML model, non-local charge
transfer e↵ects or di↵erent total charge states cannot be
described.
By invoking the variational principle as an induc-

tive bias, Goedecker and co-workers showed that ML-
based charge equilibration models can overcome this
limitation.[134] This idea has since been further devel-
oped, e.g. in the fourth generation neural network po-
tentials of Behler and co-workers[135] and our recently
proposed kernel charge equilibration method[136]. It
should also be noted that ML models using global de-
scriptors provide a di↵erent path towards including non-
local e↵ects, by explicitly correlating all atomic degrees
of freedom.[137]

VI. MODEL EVALUATION AND ERROR
PROPAGATION

The previous sections described how science-driven ML
approaches can take advantage of active learning, induc-
tive biases, and physical priors to overcome the need for
large predefined databases. Up to this point we tacitly
assumed that there is a clear performance metric with
respect to which the ML models should be optimized.
In some cases defining this metric is fairly straightfor-
ward: Molecular or materials design requires an accurate
prediction of the target property for the candidates of
interest. This can be quantified in terms of a MAE on
an unseen test set, provided that the test set is represen-
tative of the full design space (a non-trivial caveat).

In other cases, the ML model only addresses the main
scientific question in an indirect way, however.[138] A
prime example of this are interatomic potentials. From
an ML perspective these are simply regression models fit-
ted to energies and forces. From a scientific perspective,
the energies and forces are not really of much interest.
Instead, the interatomic potential is a tool used to prop-
agate atomic coordinates, e.g. in MD or Monte Carlo
simulations. The observable of interest can then be de-
rived from these simulations in the form of an average
density, a melting point, a di↵usion constant, or a free
energy di↵erence. This raises the question how the force
MAE of the potential relates to this observable.
This question may appear somewhat academic, since

one could argue that as long as the predicted PES
matches the target one (as quantified by the MAE), all
derived quantities should also match. However, it turns
out that the force MAE on a test set is not even a good
predictor for the general force error of an interatomic
potential. In Ref. [139], a series of interatomic poten-
tials were fitted to subsets of the QM7-x database.[36]
Graph neural networks based on the recent GEMNet
architecture[140] displayed the best performance in this
context, with force errors below 0.005 eV/Å for the test
set when training on 3.2 million configurations. Interest-
ingly, even the smallest training set used (3.2 thousand
configurations) yielded quite low force errors, on average
below 0.05 eV/Å. However, when running MD simula-
tions with these potentials and reevaluating the obtained
configurations with DFT, the observed error was found
to be several orders of magnitude larger for the models
trained on 32,000 configurations or less (see Fig. 8).
The problem here is that these potentials have no infor-

mation about unphysical regions of the potential energy
surface. If the trajectory leaves the scope of the train-
ing set (which is unavoidable in high dimensional PESs),
such unphysical configurations (e.g. doubly coordinated
hydrogen atoms in organic molecules) may erroneously
be assigned low energies. At this point, the simulation
becomes stuck in an unphysical region of the PES and the
trajectory is useless. Importantly, this may only become
apparent when performing rather long MD simulations
(on the order of nanoseconds), as shown in Fig. 8.
The ML potential trained on 3.2 million configurations

extrapolates quite robustly in this test, indicating that
these pathologies can to some extent be avoided with
enough data (or better yet, with improved data selection
using active learning). The point is, however, that the
only way to reliably evaluate the suitability of an atom-
istic ML model is by running real simulations with it.
From this perspective, the common practice of merely
reporting improvements on static benchmark databases
should be questioned. This is another advantage of the
o✏ine active learning approach described above, since it
includes atomistic simulations in the model fitting pro-
cess by construction.
Once a robust interatomic potential has been obtained,

the question how the force MAE translates to uncertainty
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Figure 8. Robustness of Learned Potentials. Top: The force
error on a static test set can be orders of magnitude lower than
the error observed during long and hot molecular dynamics
(MD) trajectories. Bottom: The large MD errors are only
observed when running the simulation su�ciently long, since
they stem from unphysical behaviour for particular regions of
the potential energy surface. Figure adapted with permission
from Ref. [139].

in the predicted observable can be addressed. Beyond
the intrinsic usefulness of such an uncertainty estimate,
this is important in order to determine how accurate the
underlying potential needs to be to achieve the desired
precision on the target observable. Here, Imbalzano et al.
have shown that ensemble based uncertainty estimates
can be propagated through MD simulations.[141] This is
show in Fig. 9 for the example of predicting the melting
point of hexagonal ice. While this type of calculation
is not yet common practice in the field, this approach
holds great promise for increasing the rigor of ML based
predictions.

An important aspect that has not been addressed up to
this point is that an ML model can only ever be as good
as the reference data it is trained on. In atomistic ML
this data most often stems from DFT calculations, which
do not yield experimental accuracy in many cases. Here,
the development of data-e�cient ML approaches and the
increasing availability of high-level quantum chemistry
methods for large and even periodic systems present an
opportunity to exceed DFT accuracy in complex atom-
istic simulations. Examples of this include the prediction
of surface adsorbate coverages[56], the properties of liq-
uid water[142] and crystal structure prediction[103].

An alternative route to overcome the limitations of
DFT references is to incorporated experimental data into
the training process, e.g. by biasing simulations towards

Figure 9. Propagating the uncertainty of learned potentials
to physical observables. Top: The melting point of ice is esti-
mated by computing the point of equal chemical potential be-
tween hexagonal ice and liquid water, using a committee (en-
semble) of machine learning (ML) potentials. Bottom: By in-
terrogating the individual members of the committee, the un-
certainty of this estimate can be obtained. Note that this only
captures the uncertainty due to the ML potentials, whereas
functional and sampling errors are not included. Reprinted
with permission from Ref. [141]. Copyright 2021 by the Amer-
ican Institute of Physics.

known macroscopic properties.[143] Indeed, this concept
is already well established in the domain of classical MD
simulations. For example, the non-bonding parameters
in the OPLS force field were fitted to structural and
thermodynamic properties of liquids.[144] More recently,
minimal biasing methods were developed which modify
existing potentials to reproduce experimental data.[145]
Experimental information can also be incorporated at a
non-atomistic scale, e.g. in coarse grained potentials[146],
augmented Markov Models[147] or microkinetic models
of catalytic processes[148]. Many of these methods could
in principle be directly applied to ML-based simulations.

VII. SUMMARY AND OUTLOOK

In this review I have argued that the sparsity of large,
curated databases precludes the use of purely data-driven
ML in many areas of chemistry. In contrast to this,
science-driven ML approaches can be used to answer
concrete scientific questions, even in the absence of pre-
existing databases. To this end, active and iterative
learning schemes are leveraged and data-e�ciency of the
underlying ML models is an important requirement. Fur-
thermore, the use of physical priors is often helpful since
it improves the extrapolative capabilities of the models
and reduces the need for large amounts of training data.
These hallmarks of science-driven ML have some impor-
tant implications for method development at the inter-
face of chemistry and ML.
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First, iterative training workflows depend on the capa-
bility to (re-)train a model many times on small to mid-
sized datasets, whereas the typical data-driven model is
trained only once on a very big dataset. In the latter
case, investing weeks to train a single model is possible,
but for an active learning protocol this is prohibitive.
The move to ever larger deep learning models that is ob-
served in many ML applications is potentially a worrying
development in this context.[14] Similarly, the selection
of appropriate hyperparameters for a model can be prob-
lematic as the training set is continuously changed. In
particular, common techniques like cross-validation are
not robust in early iterations, when the training set is
extremely small. Here, reliable heuristics or defaults are
necessary.[58]
Second, semiempirical models are currently experi-

encing a surprising revival, just when it seemed they
would become irrelevant with the rise of ML poten-
tials. On one hand, this is because they are invalu-
able for cheap exploratory structure searches for com-
plex molecules and materials.[95, 149] On the other hand,
they are also highly useful for describing long-range in-
teractions to complement short-ranged ML potentials,
providing baselines for �-ML or computing inexpensive
electronic structure features for ML models.[97, 103, 109]
Transfer and multi-fidelity learning approaches can also
be used to increase the accuracy on high-level targets by
(pre-)training on lower-level reference data.[150]

Third, the quality of a science-driven ML model should
mainly be assessed by how well it performs its task, not
necessarily by how well it fits some particular dataset.
For example, a reasonably low test set error on atomic
forces is a necessary but insu�cient condition for accu-
rately predicting macroscopic observables with ML-based
MD simulations. Method developers should therefore
take into account the wider context of where the pro-
posed methods are supposed to be applied. A neural
network predicting energies and forces for an atomistic
system is not just another regression model, it is an in-
teratomic potential. It should therefore also be tested in
a realistic use case for interatomic potentials, such as a
(su�ciently long) MD simulation.
Fourth, the use of error and uncertainty estimation is

still somewhat underdeveloped in the field, although the
corresponding methodology is now quite mature. Be-
yond the quantification of uncertainty due to the ML fit,
the incorporation of experimental or high-level quantum
chemical data represents the next step towards quantita-
tive predictions with science-driven ML methods. Inter-
estingly, ML potentials also play a central role in quan-
tifying the accuracy of electronic structure methods. In
ab initio MD studies, it is usually not possible to disen-
tangle basis set incompleteness, finite size and statistical
sampling errors. By training ML potentials, these can
often be overcome, leaving an unobstructed view of the
real functional error.
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[77] K. Schütt, O. Unke, M. Gastegger, Proceedings of the

38th International Conference on Machine Learning,
2021, pp. 9377–9388.

[78] P. B. Jørgensen, A. Bhowmik, npj Comput Mater 2022,
8, 736.

[79] M. Veit, D. M. Wilkins, Y. Yang, R. A. Distasio, M. Ce-
riotti, J. Chem. Phys. 2020, 153, 024113.

[80] A. Grisafi, A. Fabrizio, B. Meyer, D. M. Wilkins,
C. Corminboeuf, M. Ceriotti, ACS Cent. Sci. 2019, 5,
57–64.

[81] A. M. Lewis, A. Grisafi, M. Ceriotti, M. Rossi, J. Chem.

Theory Comput. 2021, 17, 7203–7214.
[82] I. Batatia, D. P. Kovacs, G. N. C. Simm, C. Ortner,

G. Csanyi, Advances in Neural Information Processing

Systems, 2022.
[83] R. Drautz, Phys. Rev. B 2019, 99, 014104.
[84] Y. Lysogorskiy, C. v. d. Oord, A. Bochkarev, S. Menon,

M. Rinaldi, T. Hammerschmidt, M. Mrovec, A. Thomp-
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ter, C. Van der oord, C. Ortner, J. Comput. Phys. 2022,
454, 110946.
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Table of Contents: Machine learning algorithms are currently emerging as
powerful tools in all areas of science. This review covers atomistic machine
learning approaches in chemistry beyond the conventional data-driven perspec-
tive.
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