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The focal lesion, a form of biological perturbation damaging anatomical architecture, reasonably
alters the normative healthy functional pattern but may recover over time. Nevertheless, how
the brain counters deterioration in structure by global reshaping of functional connectivity (FC)
after a lesion is largely unknown. We propose a novel equivalence principle based on structural
and dynamic similarity analysis to predict specific compensatory areas initiating lost excitatory-
inhibitory (E-I) regulation after lesion. We hypothesize that similar structural areas (SSAs) and
dynamically similar areas (DSAs) corresponding to a lesioned site are the crucial dynamical units
to restore lost homeostatic balance within the surviving cortical brain regions. SSAs and DSAs
are independent measures, one based on structural similarity properties measured by Jaccard Index
and the other based on post-lesion recovery time. Thereafter, a large-scale mean field model is
deployed on top of a virtually lesioned structural connectome for characterizing the global brain
dynamics and functional connectivity at the level of individual subjects. Despite inter-individual
variability in SSAs, we found a general normative pattern in functional re-organization within the
ipsi- and contra-lesional regions. The study demonstrates how SSAs and DSAs largely predict
overlapping brain regions for different lesion centers/sites irrespective of the complexity of the lesion
recovery process. The proposed computational framework captures the improvement of large-scale
cortical cohesion by re-adjusting local inhibition. Our results further suggest that the predicted
brain areas participating in recovery are not randomly distributed and widespread over the brain.
Instead, the predicted brain areas are predominantly recruited from the ipsilesional hemisphere,
barring a few regions from contra, suggesting that wiring proximity and similarity are the two
major guiding principles of compensation-related utilization of hemisphere (CRUH) in the post-
lesion FC re-organization process. Our finding further suggests that the re-organization of FC arises
from the interplay between the underlying structural connectivity profile and the local inhibitory
weights influencing compensatory coordinated brain dynamics during post-lesion recovery.

I. INTRODUCTION

One of the fundamental queries in neuroscience is ‘How
does the brain adapt to post-lesion recovery and whether
some general normative patterns exist irrespective of in-
dividual variations in lesion extent and locations? What
are compensatory mechanisms critical to brain network
recovery during post-injury recovery, including changes
in local homeostasis and widespread coordinated cor-
tical activity? Here, we propose a detailed computa-
tional framework using structural-and-functional equiva-
lence principles to demonstrate that the brain’s norma-
tive spontaneous dynamical pattern is compensated by
restoring local homeostasis post-lesion and whether the
participating compensatory areas are primarily recruited
utilizing two major guiding principles, structural similar-
ity and wiring proximity of compensation-related utiliza-
tion of hemisphere (CRUH) in the post-lesion functional
re-organization.

The term ‘focal lesion’ [1, 2] refers to biological pertur-
bation to the anatomical architecture, e.g., damage of a
region due to stroke (ischemic stroke due to atherosclero-

sis, hemorrhagic stroke) [2], traumatic brain injury (TBI)
[3], glioma [4] can qualitatively alter short- and long-term
brain functions. In lesions, neurons that are deprived due
to lack of oxygen, and energy from standard metabolic
substrates, cease to function in seconds and show severe
signs of anatomical damage after 2 minutes [5]. In the
first few days or weeks after injury, regular patterns of
synaptic activity in peri-infarct [6–9] and even distant
functionality-related structure are interrupted [10]. Fail-
ures in the energy-dependent processes due to loss of in-
puts from adjacent tissue [11] lead towards cell death
[12], abnormal neuronal firing rates [13], and may even
lead to delayed neuronal injury [14] which inflict local
to global level excitation-inhibition (E-I) balance on the
neuronal network [15, 16]. These mechanical and cel-
lular alterations can cause chronic functional disabilities,
including motor deficits (e.g., hemiparesis), sensory (e.g.,
hemianopia), and higher-order cognitive processes (e.g.,
aphasia, hemispatial neglect) [17] and abnormal move-
ment synergies [18, 19].

Studies have revealed the mechanism for lesion recov-
ery and identified associated factors in primate and non-
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primate [20, 21]. For example, the cerebral cortex trig-
gers a plastic mechanism in adjacent and remote areas in
post-lesion phases, correlated with limited, spontaneous
restoration of function [22–24]. Two significant factors
are involved in the plasticity mechanism in lesion recov-
ery [25], (i) an amount of surviving diffuse and redundant
connectivity in the central nervous system, and (ii) new
functional circuits can form through remapping between
related cortical regions. Homeostatic plasticity is a neg-
ative feedback-mediated form of plasticity, also known as
synaptic scaling [25], that keeps network activity at the
desired set point [26]. It helps maintain a stable ratio of
excitation and inhibition and sustains the desired work-
ing point. Nevertheless, local E-I homeostasis engenders
functional recovery by increasing excitation and attenu-
ating inhibition in both perilesional and distant cortical
areas [10, 27, 28]. In addition, enhancement of cortical
excitability in surviving cortical areas would compensate
for the lost structural circuits [29] and functional deficits
[30–32].

Other key investigations suggest that graph theoreti-
cal properties of structural and functional networks plays
a crucial role in capturing several aspects of lesion-
induced alterations in topological properties of large-
scale structural and functional brain networks [33–35].
However, these studies have yet to systematically investi-
gate region-specific roles in post-lesion functional restora-
tion of brain networks. A recent longitudinal study on
mTBI showed notable changes in structural and func-
tional brain networks in the post-lesion recovery phase
[36]. However, they did not identify specific regions par-
ticipating in the functional recovery process. They found
no association between damaged functional and struc-
tural connections after TBI [36]. Previous studies have
reported network properties, such as nodal strength, par-
ticipation coefficient, and modularity, played a decisive
role in finding the short-term and long-term effects of le-
sion [37, 38]. However, the region-specific role of anatom-
ical networks in association with the post-lesion global
functional recovery still needs to be fully uncovered and
remains an open question. From a dynamical systems
perspective, the brain is a spatially organized system [39]
with time-dependent signal propagation along multiple
pathways, each capable of adapting to changes in trans-
mission fidelity [25]. Thus, brain dynamics is governed
by underlying anatomy, and the underlying intrinsic bi-
ological parameters [40]. However, regional specificity in
association with the intrinsic parametric role must be elu-
cidated as to how specific regions may play a vital role by
adapting intrinsic parameters in shaping emerged brain
dynamics to compensate for structural damage following
lesions. With this knowledge gap and motivation, we
hypothesize that regions with similar incoming and out-
going connections corresponding to a lesion site, labeled
as similar structural areas (SSAs) in this study, could be
the potential candidate for re-establishing E-I balance (at
the level of both local and global brain scale) in the post-
injury period. Hence, the prediction of SSAs is one of the

fundamental contributions of this study. The second fun-
damental contribution to identifying dynamically similar
areas (DSAs) using readjustment time, a dynamic mea-
sure indicating the re-establishment of local E-I balance
post-lesion. For example, a region that helps compen-
sate for motor deficit should get incoming motor infor-
mation from its adjacent or distant areas, thus would be
functionally relevant and structurally equivalent. SSA
may form complementary or redundant connections in
the surviving areas, providing an alternative pathway for
information fidelity after the lesion. Thus, SSAs could
lead the adaptive mechanism to compensate for lost local
homeostasis and inter-areal excitability, further reshap-
ing collective activity.

We have systematically addressed the following ques-
tions: (i) What changes in E-I balance cause altered
neural activity after early brain injury due to anatom-
ical network damage? (ii) Which are the notable ar-
eas that re-adjust their inhibitory weights to balance E-I
homeostasis and sustain a target firing rate ∼4Hz? (iii)
What processes are related to the post-injury functional
re-organization within the surviving structural network?
To address these questions, we Identify the factors, e.g.,
time to re-establish E-I balance in local areas and mod-
ulated local inhibitory weights, next we find signatures
from the structural properties in correlation with coor-
dinated neural dynamics, and finally, identify the mech-
anisms displaying correlations between the parameters
controlling local E-I homeostasis and structural network
similarity measure, e.g., the Jaccard coefficient. Our ap-
proach identifies SSAs and DSAs (two independent mea-
sures) predicting essentially similar brain regions that
participate in the compensation-related utilization of the
hemisphere (CRUH) on the road to recovery. These ar-
eas reset local E-I balance post-lesion by modulating their
inhibitory weights. Our findings suggest a functional net-
work recovery process could be fully predicted based on
SSAs. The high correlation between these two mutually
exclusive methods (SSAs and DSAs) arises from the in-
terplay between the underlying structural connectivity
profile and the local inhibitory weights influencing com-
pensatory coordinated brain dynamics during post-lesion
recovery.

II. RESULTS

To test our hypothesis, we simulate a virtual lesion
model. The virtual lesion is introduced by deleting in-
coming and outgoing connections of a node in the struc-
tural connectome of healthy subjects [33, 37]. Fig. 1a
shows a large-scale dynamical mean field (DMF) model
[41, 42] on top of the virtually lesioned structural con-
nectivity (SC), labeled as the virtual lesion model. A
feedback inhibition control (FIC) algorithm [41], a neg-
ative feedback-mediated form of plasticity, re-adjusts lo-
cal inhibition synaptic weights to restore E-I balance and
target firing rate of ∼4Hz [43] in the post-injury period.
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FIG. 1. Workflow. (a) Schematic of the virtual lesion model. SC is generated based on the Desikan-Killiany atlas with 68
regions of interest (ROI). A dynamical mean field model (DMF) is spatially connected via virtually lesioned SC. The DMF model
generates resting-state neural activity using a feedback inhibition control (FIC) algorithm. Synthetic BOLD series are generated
from the neural signals using a hemodynamic model. The FIC is a recursive process of adjusting local inhibitory feedback
weight (J). At optimal conditions, each region maintains balanced homeostasis and an excitatory firing rate between 2.63-
3.55Hz. The pairwise Pearson correlation coefficient determines the simulated resting-state FC. (b) Our analysis is performed
considering three conditions, placed in three rows. The top row shows healthy conditions. First, the Jaccard coefficient (JC)
matrix is calculated from a healthy SC. Next, the DMF model coupled via healthy SC has been run with the FIC algorithm
establishing E-I balance. The final value of each brain region’s feedback synaptic inhibitory weights (J) is stored beside the
synaptic activity. The synaptic gating variables are further processed to generate model-based rsFC. The seesaw represents the
status of the global E-I balance state. The obtained J have been used further as initial values for inhibitory coupling weights
in the model simulation for the rest of the two conditions. In the second row, a virtual lesion is introduced to the SC by setting
all rows and columns equal to zero. Next, the virtual lesion model is run without the FIC to generate model-based altered
FC. The seesaw represents an imbalanced E-I state as an early impact of the lesion. The lower row depicts the third condition
when E-I balance is restored in the brain. The virtual lesion model is simulated with the FIC algorithm. Model parameters,
such as modulated local synaptic inhibitory weights (J ′) and re-adjustment time (RT ), are stored for further analysis. Yellow
circles show the model parameters of our interest. Two representative results are shown in (c) and (d). (c) Identified SSAs are
shown for individual subjects and group levels. (d) Estimated DSAs using RT and J ′ are shown.
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We did not consider other virtual lesion types, such as
edge deletion or multi-region damage [33, 37]. The pre-
processed data of 49 healthy subjects are taken from the
Berlin data set [44]. Desikan-Killiany [45] parcellation
divides the brain into 68 regions of interest.

The mathematical framework is set for three conditions
based on the SC status and the E-I balance state. Three
rows display the three operant conditions for model sim-
ulation in Fig. 1b.

The top row in Fig. 1b describes the healthy condition
when SC remains intact, and the E-I balance is main-
tained. We derive the JC matrix from the healthy SC.
The ‘Similar Structural Areas’ (SSAs) correspond to a
given lesion site from a healthy individual’s SC based on
the JC measure before lesion occurrence. We store the
local inhibitory weights (Ji) in parallel by running the
FIC algorithm. The FIC algorithm helps in establishing
E-I balance in the whole brain. Under the same oper-
ant condition, we synthetically generate healthy FC from
the model simulation. The obtained inhibitory synaptic
weights (Ji) are further considered as initial values for
inhibitory plasticity in the following two conditions for
the virtual lesion analysis.

In the middle row of Fig. 1b, the virtual lesion is in-
troduced into the healthy SC, resulting in loss of E-I bal-
ance, i.e., a short-term loss of E-I balance due to lesion
impact, as our second condition. Next, we simulate the
virtual lesion model without FIC to capture altered FC
for further comparison with healthy and other post-lesion
conditions.

The lower row in Fig. 1b depicts the condition after
the lesion when the FIC restores the E-I balance. At this
condition, the adaptive nature of the brain re-adjusts the
local inhibitory weights to restore the desired E-I bal-
ance. It allows the damaged brain to sustain at desired
firing rate ∼4Hz. The virtual lesion model with the FIC
is simulated to generate re-organized FC, which is com-
pared against the altered FC obtained from the previous
condition. While we numerically simulate the lesioned
model, we store re-adjusted synaptic inhibitory weights
(J ′) and capture re-adjustment time (RT ) during the re-
establishment of local E-I balance in an individual area.
Further, the curated RT and J ′ are correlated with the
measured JC values corresponding to a lesion site. As
we are more interested in finding changes in inhibitory
synaptic weights, we calculate dJJi= J ′

i-Ji for all areas.
Based on the two measured quantities (RT and J ′), we
estimate dynamically similar areas (DSAs) while observ-
ing the global homeostatic condition. We unveil the func-
tional affinity for alternation and re-organization pattern
of the brain after lesion by correlating SSAs, identified
from anatomical measure JC, and DSAs from simulation
parameters (RT , dJJ).

It is worth mentioning that the first condition is a
one-time process, whereas the following two steps are re-
peated for different virtual lesion sites at the single sub-
ject level. All three steps have been repeated for individ-
ual subjects and further analyzed at the group level.

We have performed two levels of analysis, (i) anatom-
ical level analysis and (ii) functional alteration/re-
organization analysis. Significant changes between
healthy and altered FCs and altered and re-organized
FCs are captured by parametric test, an independent
t-test analysis. Functional network properties (measur-
ing network resilience, segregation, and integration) such
as modularity, transitivity, global efficiency, and average
characteristic path length are derived to evaluate func-
tional alteration due to short-term loss of E-I balance
(mimicking early lesion phase) and long-term functional
re-organization in the post-lesion phase.

Structural connectivity analysis

Identify SSAs using Jaccard coefficient

Weighted Jaccard coefficients (JC) are calculated from
the individual subject’s healthy SC. High JC values
imply a high structural similarity, whereas low values
yield lesser similarity corresponding to an area of interest
(could be a lesion center). A threshold is put on the ob-
tained JC values corresponding to a lesion site to identify
higher similar areas. The top 25% areas with higher JC
values are considered as SSAs.

Figure 2a shows JC matrix obtained from a healthy
SC (without lesion). Descending order distribution of
JC values corresponding to the lesion at lPOPE is plot-
ted in Fig. 2b. The top 25% similar areas are shown in
blue bars and the rest in yellow. In Fig. 2c, only the top
25% similar areas (blue nodes) are plotted on the brain
surface using BrianNet viewer. Node size implies JC val-
ues. The top 25% SSAs of lPOPE are lCMF, lRMF, lP-
TRI, lPREC, rSF, rCMF, lIP, lSP, rRMF, rPREC, lINS,
lPCUN, lPCNT, rPTRI, rPOPE, written in descending
order from the similarity indices. It is observed that the
higher similar areas, e.g., rostral, caudate middle frontal
cortex, parietal cortex, insular cortex, and primary and
supplementary motor cortex, are found both in ipsile-
sional and contralesional hemispheres. SSAs correspond-
ing to lPOPE for different subjects are shown in SI Ap-
pendix, Fig. S1a. The SSAs for other lesioned sites are
shown in SI Appendix. Right POPE has SSAs such as
lCMF, lPTRI, lPOPE, and lRMF in homotopic regions
to the left hemisphere (SI Appendix, Fig. S1c), including
rostral, caudal, precentral, and postcentral gyrus. SSAs
of primary motor regions (left precentral gyrus, lPREC)
are distributed in both hemispheres, including the cau-
dal (l/rCMF), rostral (l/rRMF), frontal (l/rSF) cortex.
Regions are also in the parietal (lIP, lSP, lPCUN) and in-
sular (lINS) cortex for the left hemisphere (SI Appendix,
Fig. S1e). The left lateral occipital (lLOCC), part of
the visual cortex has SSAs mainly in the ipsilesional
hemisphere ranging from the parietal lobe (lIP, lPCAL,
lSP, lSMAR, lISTH) to the middle frontal lobe (lCMF)
via temporal regions (lST, lMT, lTT, lFUS) and insular
(lINS) cortex (SI Appendix, Fig. S1g). Other structural
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FIG. 2. Similar structural areas (SSAs) identified by JC for a single subject. (a) JC is evaluated from healthy
SC, where A and B are any two regions of interest. (b) Distribution of JC values, considering the lesion to be at left pars
opercularies (lPOPE), are plotted in descending order. The red bar is the selected lesion site (lPOPE). The top 25% areas from
the JC values are considered SSAs, shown in blue. The rest of the lower similar areas are shown in yellow bars. (c) Identified
SSAs are shown in sagittal, axial, and coronal brain views. Node sizes represent JC values.
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similar areas for different regions are tabulated in SI Ap-
pendix, Table S3.

Correlation analysis between anatomical (JC) and
dynamical (RT , dJJ) measures

The JC is derived from a healthy SC and used to test
our hypothesis, whether the SSAs corresponding to a le-
sion site are essential in restoring E-I homeostasis in lo-
cal regions and eventually within whole cortical systems.
Model-based measurable parameters, re-adjustment time
( RT ), and change in inhibitory weights (dJJ) have been
used to predict the dynamically similar areas (DSAs).
We have simulated the virtual lesion model when the dy-
namical mean field (DMF) model is spatially connected
via the virtually lesioned SC of a single subject. Area-
wise distribution of JC, RT , and dJJ correspond to
the lesion site at lPOPE is shown in Fig. 3a. A higher
RT node value implies a more extended time required to
reach the desired threshold in excitatory synaptic current
for balancing the E-I ratio. A negative value of dJJ for
an area implies a reduction in its inhibitory weight, i.e.,
a decrease in inhibition of that area. We take absolute
dJJ for better visualization and description in our anal-
ysis. We find a positive association (r = 0.69) between
JC and RT , which yields that SSAs take longer to re-
adjust the E-I balance, as shown in Fig. 3b. Conversely,
a positive correlation between JC and dJJ , fitted by a
linear fitting model with r = 0.8, see Fig. 3c. It indicates
that the SSAs have tuned their local inhibitory weights.
We find a positive correlation between RT and dJJ , fit-
ted by a linear regression model (r = 0.88); see Fig. 3d.
Overall observations suggest that SSAs have a strong cor-
relation with DSAs, which implies the SSAs take longer
to modulate their inhibitory weights to settle the neural
activity at the desired set point, i.e., balanced E-I ratio
and target firing rate of ∼4Hz.

Next, we aim to estimate the areas with a higher pos-
itive association measured from the correlation between
JC and RT , or JC and dJJ . We have selected the
regions that lie on the diagonal line (violet line) only,
shown in Fig. 3e, which are common in both independent
measures. The estimated regions, such as lCMF, lPTRI,
lPCNT, lPREC, lRMF, lSF, lINS, and rRMF, are com-
mon in both SSAs and DSAs, with larger JC and RT
values. Similarly, we identify regions from the correla-
tions between JC and dJJ , such as lCMF, lPORB, lP-
TRI, lPCNT, lPREC, lPCUN, lRMF, lSF, lINS, rPREC,
and rRMF, shown in Fig. 3f. Subsequently, we iden-
tify the predicted brain areas obtained from the substan-
tial overlap between their RT and dJJ values. This ap-
proach identifies the following brain regions lCMF, lIT,
lMT, lPTRI, lPCNT, lPREC, lRMF, lSF, lINS, rCMF,
rPOPE, rPTRI, and rRMF; see Fig. 3g. The SSAs,
selected from anatomical measure (JC), are shown in
Fig. 3h. The DSAs, identified from dynamical measures
(RT and dJJ), are plotted in Fig. 3i on the glass brain

in sagittal and axial view. Yellow nodes in Figs. 3h,i
are common in both SSAs and DSAs, where blue ones
are the non-overlapping areas. The left pars opercularis
(lPOPE) lesion site is shown in the red sphere. Inter-
estingly, areas identified by the two independent anal-
yses, i.e., SSAs and DSAs, have more than 60% over-
lapped regions corresponding to the lesion site, lPOPE.
The estimated DSAs corresponding to lesion centers at
lPOPE, rPOPE, lPREC, and lLOCC in different sub-
jects are shown in SI Appendix, Figs. S1b, S1d, S1f, and
S1h, respectively. Other DSAs for different lesion centers
are tabulated in SI Appendix, Table S3. A strong cor-
relation between JC and RT or JC and dJJ and high
overlapping between SSAs and DSAs suggest that the
predicted areas play a crucial role in re-establishing local
E-I balance by calibrating their inhibitory weights and
help sustain the target firing rate ( 4Hz) after the lesion
occurrence.

Further, we sequentially introduce virtual lesions to
all 68 areas. We investigate correlations between JC
and dynamical measures (RT, dJJ) at the level of sin-
gle subjects, as depicted in SI Appendix, Fig. S2. The
correlation between JC and RT in Fig. S2a, and JC and
dJJ in Fig. S2b is positive for different lesion centers.
Except for a few regions, such as lENT, rENT, lPARH,
rPARH, lFP, rFP, lTT, rTT, lTP, and rTP, other regions
display largely weaker or negative correlations. The es-
timated SSAs and DSAs are displayed in SI Appendix,
Figs. S3a,b. These ten nodes have less number of con-
nections and nodal strength. Lower strength and degree
of a node could be why their SSAs are not participating
in E-I balance (SI Appendix, Figs. S3e,f).

Inter-subject and inter-hemispheric variability/similarity

Figure 4 shows the results for two subjects and lesion
sites at two hemispheres. We describe the findings from
the two independent analyses. The SSAs and DSAs cor-
responding to the lesion site lPOPE are repeated for one
subject in Figs. 4a,b. Estimated common areas from both
SSAs and DSAs are shown in yellow and non-overlapping
in blue. The overlapping regions are lRMF, lPTRI,
lCMF, lINS, lPREC, lPCNT, lSF, and rRMF, respec-
tively.

Inter-subject variability is depicted for another sub-
ject in Figs. 4c and 4d. The overlapping regions for this
subject are lCAC, lLOF, lPTRI, lCMF, lINS, lPREC,
lRAC, rCAC, rCMF, rPREC, rPTRI, displayed in yel-
low in Figs 4c,d. Although the lesion centers are similar
for both subjects; still, the identified SSAs and DSAs are
different in the two subjects; compare Figs. 4a and 4c, or
Figs. 4b and 4d. Variability in SSAs arises from individ-
ual subjects’ structural/anatomical differences in brain
connectivity and manifest individual-specific SC-FC cor-
relations.

However, it is interesting to note that the areas pre-
dicted for lesion recovery by JC are similar to the re-
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gions predicted by the dynamical measures (RT -dJJ) in
individual subjects (see Figs. 4a,b or, Figs. 4c,d), de-
spite inter-subject structural differences. While compar-
ing the two Figs. 4b and 4d, the estimated DSAs lie
in the anterior cingulate cortex (l/rRAC, l/rCAC) for
subject-2 (Fig. 4d), whereas no nodes from the anterior
cingulate cortex are found for subject-1 (Fig. 4b). Pat-
terns of subject-dependent variability/similarity in the
estimated DSAs and SSAs are consistent for different
lesion locations and tested for several subjects (SI Ap-
pendix, Fig. S1).

Further, we tested our hypothesis for another lesion
site in the right hemisphere, say right pars opercularis
(rPOPE), for the two subjects. We find consistent vari-
ability patterns in the results, see Figs. 4e,g or, Figs. 4f,h,
and similarity in identified regions, comparison between
the SSAs and DSAs in Figs. 4e,f or Figs. 4g,h. The over-
lapped regions from the SSAs and DSAs are shown in
yellow, and the non-overlapping in blue.

Group-level analysis on SSAs and DSAs

A group-level analysis is performed over all 49 subjects
to find the probability of the appearance of a predicted
SSA or DSA. We determine the probability of appearance
(PA) of an area as a ratio between the number of an SSA
(or DSA) that appeared within all the subjects and the
total number of subjects as,

PA =
number of appearance of an area in all subjects

total subject
.

The value PA=1 corresponding to an SSA (or DSA) im-
plies that it appeared in all the subjects. The values and
distribution of the PA for SSAs corresponding to lPOPE
are shown in Figs. 5a, and 5b, respectively, and the PA
values for DSAs are plotted in Figs. 5c,d. Yellow nodes
and bars stand for higher PA values, and pink shade im-
plies lesser PA values, indicated by the color bar. It is
observed that the SSAs corresponding to the lesion cen-
ter at lPOPE, such as lCMF, lPTRI, lPREC, lRMF, and
lINS, are found in all 49 subjects, see Figs. 5a,b. Other
SSAs, including the postcentral gyrus, precuneus, pos-
terior cingulate, and contra lesional frontal regions, are
found in more than 90% of the subjects. SSAs in the right
hemisphere, e.g., rPOPE and rPTRI, are found in more
than 50% of subjects. Similarly, the DSAs, including
lCMF, lPTRI, lPCNT, and lRMF, are found in almost
all the subjects. We test the consistency and robustness
of our results for other lesion locations; please check SI
Appendix, Figs. S3a,b, and Figs. S3e,f.

Although the identification of SSA based on anatomi-
cal property is entirely independent of the estimation of
DSA, both these proposed methods can crucially iden-
tify and predict similar compensatory candidate brain
regions likely initiating the post-lesion recovery process.
The higher similarity between SSAs and DSAs signifies

that the similar structured areas corresponding to a pos-
sible lesion site have modulated their local inhibitory
weights and participated in restoring local and global
homeostatic E/I balance.

Functional alteration and re-organization after lesion

We have used statistical tools to investigate how
anatomical perturbation to a node affects the global func-
tional organization. The impact of lesion on FC has
been categorized into two parts: i) alteration and ii) re-
organization. Simulated FC is obtained from the spa-
tiotemporal BOLD signals using pairwise Pearson corre-
lation. Considering three conditions for each subject, we
have synthetically generated healthy FCs, altered FCs
when E-I balance is lost and re-organized FCs when the
E-I balance is restored. Statistical comparison between
any two conditions, e.g., healthy vs. altered FCs, and
altered vs. re-organized FCs, respectively, determines
significant differences between generated FCs. First, we
calculate the z-score of individual FCs for the three con-
ditions. Next, we perform paired sample t-tests to desig-
nate the significant global changes in the healthy norma-
tive pattern, i.e., deviation from the healthy FC into the
altered FC that depicts the direct impact of lesion on col-
lective dynamics. Similarly, after the global restoration
of E-I homeostatic balance, the post-lesion functional re-
configuration pattern is investigated by comparing the
altered and re-organized FC. The ROI-wise paired t-test
is performed for each element in the FC matrix between
two conditions, e.g., healthy and altered FC group and
altered and re-organized FCs, for all subjects. False dis-
covery rate (FDR) is corrected over the obtained p-values
from the t-test.

Figure 6 shows ROI-wise FC analysis between two con-
ditions, e.g., healthy-altered FC and altered-reorganized
FC, considering lesion center lPOPE. Subject-wise
model-generated healthy FC, altered FC, and re-
organized FC are shown in Figs. 6(a-c), respectively.
ROI-wise t-statistic to find significant changes in the
weights between healthy and altered, as well as altered
and re-organized FCs, are shown in Figs. 6d and 6e, re-
spectively. Upper triangular elements in Figs. 6d,e rep-
resent the t-statistics corresponding to changed weights
between any given pair of regions. Lower triangular val-
ues in Figs. 6d,e is obtained by putting a threshold on
p-values (p < 0.005).

It can be noticed that cortical cohesion is significantly
decreased in the ipsilesional hemisphere but increased in
the contralesional hemisphere, shown by the red and blue
lines in Fig. 6f. Furthermore, when the E-I balance is
globally restored, we observe a significant increase in syn-
chrony in the ipsilesional hemisphere and a decrease in
the contralesional hemisphere, shown in red and blue in
Fig. 6g. Results for other lesion centers are shown in SI
Appendix, Fig. S3.
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III. DISCUSSION

In this work, we have proposed two independent mea-
sures SSAs (anatomically self-similar areas) and DSAs
(dynamically self-similar areas), using virtual lesion mod-
eling in predicting candidate brain regions that initi-
ate the post-lesion recovery by reestablishing local and
global E/I balance. We have demonstrated the compen-
satory role of SSAs corresponding to a lesion site/center
in restoring E-I balance in the local areas and across the
whole brain mediated by the negative feedback form of
plasticity. Resetting homeostatic balance results in post-
lesion functional re-organization within the surviving cor-
tical areas. The homeostasis mechanisms, governed by
the Feedback Inhibition Control(FIC) [41], are deployed
to restore E-I balance within the virtually lesioned brain
regions at the group and subject-specific level. We mea-
sure the simulation time (called re-adjustment time, RT )
taken by each region to re-adjust their local inhibitory
weights (J ′) during the re-establishment of global home-
ostatic balance after lesion. Our hypothesis of predicting
compensatory brain regions is based on structural and
functional equivalence. Further, the observed compen-
satory utilization of the hemisphere is supported strongly
based on SC analysis and FC alteration/rewiring.

Observations from SC analyses

Findings from the structural analysis are divided into
two parts, (i) identification of SSAs and (ii) estimation
of DSAs. From the anatomically constrained dynamical
model simulation, we have estimated the DSAs, further
correlated against the SSAs. Obtaining the correlation
between SSAs and DSAs has helped to test our proposed
hypothesis. Despite the diversity in inter-individual
structural topology, the two independent methods (SSAs
and DSAs) provide computational machinery for predict-
ing common brain areas with 60%-70% overlaps. To
check the probability of an estimated region being a po-
tential candidate area for functional recovery, we have
measured the probability of appearance (PA) within all
49 subjects in our data. A Higher PA corresponding to a
predicted area indicates a high chance of being a candi-
date in all subjects and a high probability of participating
in compensation for the damaged brain.

From the derived PA, the SSAs corresponding to the
lesion at left POPE (associated with language process-
ing) is identified as caudal middle frontal gyrus (CMF),
rostral middle frontal gyrus (RMF), inferior frontal gyrus
(IFG), primary and secondary motor areas (PREC,
PCNT), and insular cortex (INS) in the ipsilesional hemi-
sphere. Contralesional homologous regions are rPOPE
and rPTRI. Dynamically similar areas for left POPE
are found in both ispi- and contra-lesional hemispheres,
including CMF, RMF, PTRI, PREC, and PCNT. Pre-
dicted areas belonging to the SSAs and DSAs in both
ipsi- and contra-lesional regions suggest a CRUH. The

predicted areas are independent of the subject’s age and
gender. The identified SSAs from both hemispheres are
also reported in earlier studies as essential candidates
for complete language recovery after lesion. For exam-
ple, the recruitment of perilesional tissue [46], as well as
contralesional areas [32, 47–51], and participation of the
homologous regions [52–54] in association with language
recovery are well documented largely concurs with our
findings. Besides, increased activation of right lesion-
homolog inferior frontal gyrus (IFG) has been reported
in a subset of patient groups [54].

For a lesion site at the primary motor region, left post-
central gyrus (lPREC), we have predicted candidate ar-
eas as CMF, RMF, pars triangularis, superior parietal,
superior frontal gyrus, and precuneus in the ipsilesional
hemisphere. Moreover, Superior frontal and rostral mid-
dle frontal regions from the contralateral hemisphere are
found in almost all subjects. Our observations align well
with previous findings on ‘motor lesion re-organization in
ipsilateral premotor cortex [55, 56], recruitment of con-
tralesional motor areas [57–59]. The areas reported by
neurological studies found to be crucial in motor function
recovery [30]. Other motor-related brain regions such as
supplementary motor area (SMA), dorsolateral premotor
cortex (PMC) and cingulate motor areas (CMA), and
insular cortex [31] provides necessary compensation to
improve motor performance [60] as documented by pre-
vious findings. Also, found to be critical for functional re-
organization in the motor recovery [61, 62] and matches
completely with the predicted brain regions based on our
proposed computational framework.

In contrast, few regions such as entorhinal (ENT),
parahippocampal (PARH), frontal pole (FP), temporal
pole (TP), and traverse temporal (TT) regions have
displayed significantly less correlation between JC and
RT (SSAs and DSAs). The weaker association, in this
case, may arise due to their sparse connectivity and less
anatomical strength. Lesions in these areas have a much
lesser impact on overall homeostasis. Thus, the damage
to these brain regions may restore the lost E-I balance
with comparatively minimal effort. In the above scenario,
the adjacent brain regions participated in resetting local
and global homeostasis other than SSAs (or DSAs), sug-
gesting local wiring specificity and proximity could be
key to initiating the neural compensatory process.

To this end, we mention two major aspects of our find-
ings. First, a large overlapping brain region predicted by
SSAs and DSAs signifies structurally similar regions pri-
marily participate in the dynamical re-organization pro-
cess. These areas reset local E-I balance after lesion by
modulating their inhibitory weights, thus, displaying the
constructive role of SSAs on functional network recov-
ery. It can be concluded that a higher correlation be-
tween these two independent methods (SSAs and DSAs)
arises from the interplay between the structural property
and the local inhibitory weights responsible for emergent
globally coordinated dynamics. Specifically, an emerg-
ing local re-adjustment of inhibitory weights mediates
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self-organized global brain dynamics during homeosta-
sis. The second aspect of the findings is that the SSAs
are identified from the healthy subject’s SC analysis. In
contrast, the DSAs are estimated after introducing vir-
tual lesions in the SC matrix. Thus, a methodological
advantage is that even if, in the clinical phase, healthy
FC is unavailable for a particular patient, the DSAs can
be employed as a tool in patient-specific FC to identify
candidate compensatory brain areas.

The compensatory mechanism

In addition, simulation of the virtual lesion model has
helped to acquire insight into the dynamic origin of the
post-lesion compensatory mechanism. We find that the
regions from both ipsi- and contra-lesion, with higher
structural similarity to the lesion site, took an extended
time to modulate their local inhibitory weights. Besides,
the SSAs, from both hemispheres have reduced regional
inhibition to balance decreased excitation due to degra-
dation in the excitatory synaptic drive, thus balancing
the overall E-I ratio and sustaining the target firing rate
of 4Hz. As documented earlier, homeostatic plasticity, a
mechanism of up-and-down regulation of both the presy-
naptic release of and the postsynaptic response to neu-
rotransmitters, is essential to maintain a stable set point
and near-normal brain condition [26]. Here, the primar-
ily recruited SSAs from the two hemispheres suggest the
dominant role of structural similarity and rewiring prox-
imity of compensation-related utilization of hemispheres,
which have guided homeostatic plasticity-driven compen-
satory mechanisms in re-organizing post-lesion functional
brain network recovery.

Observations from FC analyses

Previous studies have reported that changes in ex-
citability affect the local excitatory-inhibitory (E-I) bal-
ance of the lesion site and distant cortical networks [63],
known as diaschisis [64], suggesting remote disruptions
in FC following lesion impact. These studies have hy-
pothesized mechanisms underlying neuronal remodeling
in the perilesional area and contralesional hemisphere af-
ter motor cortex infarcts and summarized evidence from
previous studies based on analysis of electrophysiological
data that demonstrated brain-wide alterations in func-
tional connectivity in both hemispheres, well beyond the
infarcted area.[65, 66]. Our findings based on FC analy-
ses depict reshaping in the coordinated cortical cohesion,
which is not limited to the ipsilesional hemisphere but
also progresses distant from the damaged area into the
contra-lesional hemisphere showing nonlocal effects and
completely aligned with the experimental findings from
human and animal studies depicting brain regions impli-
cated during the post-lesion functional recovery process.

In our study, we have also observed that an early im-
pact of structural damage results in a specific signature,

the reduction in spatiotemporal cortical coherence in the
ipsi-lesional hemisphere. On the contrary, the spatiotem-
poral coherence increases in the contra-lesional hemi-
sphere. In the emergent FC, at E-I balanced state af-
ter lesion occurrence, we observed increased synchronous
neural activity in the ipsi-lesional site, while a decreased
synchronous neural activity in the contra-lesional hemi-
spheres. This seesaw effect in the opposing hemisphere
to the lesion center aided functional restoration. The
re-organization pattern in the ipsi- and contra-lesional
hemispheres is similar in all subjects and for different le-
sion sites heralding the robustness and consistency of the
findings reported here. In response to structural dam-
age, we find that the cortical plasticity mechanism re-
lated to E-I homeostasis facilitates FC rewiring in the
contra-lesional hemispheres, similar to the previous key
observations in [24]. Our proposed computational mecha-
nisms following lesion could be similar to re-organization
in pre-infracted to and distant regions from the lesion
site that may trigger large-scale remodeling of the corti-
cal networks to compensate for post-lesion deficits [6].

In addition, we have reconfirmed our observations us-
ing graph-theoretical properties of FC [1, 67, 68] such
as transitivity, path length, modularity, and global effi-
ciency, which are interpreted in terms of lesion impacts,
and FC recovery. Due to lesions, the biological pertur-
bation reshapes the healthy normative pattern in FC.
The loss of inter-area excitatory synapses predominantly
affects coordinated neural dynamics, which can be ob-
served from the segregated functional network captured
by the increased modularity and decreased global effi-
ciency. However, the damaged brain tries to adapt to
the global changes in functions caused by the homeo-
static imbalance across the whole brain. Our in − silico
investigation suggests that the adaptive mechanism com-
pensates for the lost E-I homeostasis, primarily driven
by the modulation of inhibition at the local level, mainly
within the SSAs (or DSAs) identified in this work.

Gradual resetting of neural activity to regain the near-
normal function is confirmed by the decreased modular-
ity and increased global efficiency concerning the altered
FCs. The FC integration has compensated segregation
of FC after the damage to underlying structural con-
nections. This further resets healthy dynamical reper-
toire driven by the negative feedback-mediated form of
plasticity. Further, it is well explained in earlier studies
[10, 69] that the global homeostasis is balanced by in-
creasing excitability in the areas near and distant to the
lesion center, suggesting a direct correlation between the
E-I balance and global cortical dynamics, which can be
one crucial aspect in proper lesion recovery.

Summary of the findings

Previous studies [2, 70] have explored the critical role
of network topology in the context of the lesion. How-
ever, whether compensatory brain regions could be pre-
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dicted based on identifying topologically self-similar and
dynamical self-similar areas (an equivalence principle) is
largely unknown. Here, we propose this equivalences
principle by introducing two new tools grounded on topo-
logical and dynamical self-similarity, which allow us to
predict compensatory brain areas and mechanisms dur-
ing post-lesion recovery. Our proposed theoretical frame-
work identifies overlapping compensatory brain regions
during the early and post-lesion recovery phase across
all subjects using two independent methods and subject-
wise variability. Our results provide the first unified
framework behind observing a variety of compensatory
brain regions identified by earlier lesion recovery stud-
ies. The cause and consequence of those identified ar-
eas remain a large knowledge gap in the neuroscience
literature. We also report that SSAs are more robust
and reliable than other network properties widely used
in the literature (e.g., clustering coefficient, participation
coefficient, node weight) when harnessing region-specific
roles in reshaping near-normal functional brain connec-
tivity and dynamics to identify the post-lesion recovery
process. The DSAs provide a broader scope for investi-
gating the post-lesion period when SSA is undetermined.
The predicted areas (SSAa or DSAs) are independent
of the subject’s age and gender. The key compensatory
mechanism demonstrated here suggests a CRUH in the
emergence of post-lesion coordinated cortical cohesion.
Most importantly, the proposed theoretical methods are
general and can be applied to broader lesion categories.

Limitations

There are also limitations of this study. (i) A precise
mapping between the accurate lesion biological time scale
and simulation time is still being determined. Therefore,
we cannot predict the time scale of the actual recovery
process. Mapping real-time-scale with simulation time
can bring us closer to uncovering the true recovery mech-
anism and will have excellent translational value. We are
currently investigating this mapping in another research
work and out of the scope of this study. (ii) The Feed-
back Inhibitory Control (FIC) mediates the homeostasis
mechanism. However, other feedback-mediated mecha-
nisms may be incorporated into the model to verify in-
creased excitability due to lesions in individual subjects,
which this work does not sufficiently explore. (iii) We
did not incorporate the effect of lesion volume in this
study. The amount of lesion volume and spread are es-
sential factors in FC re-organization and recovery, which
are not addressed here. (iv) Directed FC also holds the
key to understanding how information flow alters follow-
ing lesion and during recovery, which future studies may
explore, (v) Finally, how FC is reshaped based on lon-
gitudinal data can validate present findings in a more
nuanced fashion and establish a stronger link between le-
sion recovery and functional re-organization elucidating
region-specific roles.

Conclusion and future aspects

In conclusion, we envision a novel method to iden-
tify potential candidate areas responsible for resetting
E-I homeostasis as possible compensatory mechanisms
resulting in near-normal functional brain network recov-
ery. A fundamental open question in the literature is how
the non-lesioned brain adapts to the post-injury func-
tional recovery process and whether those areas could be
predicted using a systematic theoretical framework. Al-
though the lesion recovery process may be complex, the
current study provides a general framework elucidating
that brain recovery involves the utilization of an equiv-
alence principle based on structural and dynamic simi-
larity to tackle a wide variety of lesions. Future studies
could use controllability theory to narrow the DSA (SSA)
estimation into a specific region on the directed FC net-
work. Those studies could further pinpoint whether a
DSA (SSA) driven information flow pattern exists in the
surviving cortex. Furthermore, how do the candidate ar-
eas help information fidelity during the lesion recovery?

IV. MATERIALS AND METHODS

Participants

Resting state MRI data from 49 healthy subjects (31
females), ages ranging from 18 to 80 years (mean age
41.55±18.44 years), have been collected at Berlin Cen-
ter for Advanced Imaging, Charité University Medicine,
Berlin, Germany [44].

Anatomical connectivity

Resting state MRI, diffusion-weighted MRI, and func-
tional MRI are performed using a 3 Tesla Siemens Tim
Trio MR scanner and a 12-channel Siemens head coil.
Detailed information on data acquisition parameters is
found in [44]. We did not process the raw data. The
data was pre-processed, and structural connectome was
generated previously, using the pipeline by Schirner et
al. [44]. Cortical grey matter parcellation of 34 regions
of interest( ROI) in each hemisphere is considered follow-
ing Desikan-Killiany parcellation [45]. The SI Appendix,
Table S1 shows all the regions of interest (ROIs) with
abbreviations.

Empirical functional connectivity

Participants are subjected to a functional MRI scan in
eyes-closed awake resting-state condition. The resting-
state BOLD activity is recorded for 22 minutes (TR=2
sec). Pre-processing steps are given in SI Appendix. Af-
ter pre-processing, aggregated BOLD time series of each
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region is z-transformed. The pairwise Pearson correlation
coefficient is computed to obtain each subject’s resting-
state functional connectivity (rsFC) matrix.

Definitions and descriptions:

Defining and describing the terminologies related to
the study is worthwhile before drawing the pipeline and
workflow. The definitions of the Jaccard coefficient, vir-
tual lesion, DMF model, virtual lesion model, re-adjusted
inhibitory weights, and time to reach E-I balance are pre-
sented below:

Jaccard coefficient (JC): Jaccard coefficient (JC)
measures the pairwise correlation between any two brain
areas, defined by the ratio between the sum of their com-
mon neighbors’ weights and the total weights of their
neighbors [71]. The weighted Jaccard coefficient is ex-
pressed as JC = A∩B

A∪B , where A and B are the neigh-
bors (specifically, the edge strengths with neighbors) of
any two brain areas from the anatomical connectome of
healthy subjects. The JC is measured with an unper-
turbed structural connectivity (SC) matrix before intro-
ducing a virtual lesion in the SC matrix at the level of
an individual subject. The nodes with higher JC values
corresponding to a lesion site share a similar topological
property with the lesioned location mentioned as SSAs.

Dynamic mean field (DMF) model: We use a re-
duced dynamic mean field (DMF) model [72] to engender
lesion effects. The DMF approximates a spiking network
model [41, 73] consisting of populations of excitatory and
inhibitory neurons with excitatory NMDA synapses and
inhibitory GABA synapses. DMF is described by a set of
coupled nonlinear stochastic differential equations given
below,
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IE,I
i is the input current to area i and superscripts repre-

sent excitatory (E) and inhibitory(I) populations in that

area. rE,I
i is the population firing rate of excitatory or

inhibitory populations of area i. SE,I
i is the average ex-

citatory (inhibitory) synaptic gating variable of area i.
I0 is the effective external input scaled by wE and wI

for excitatory and inhibitory populations. w+ is the lo-
cal excitatory recurrence, JN is the excitatory synaptic
coupling, and Ji is the local feedback inhibitory synaptic
coupling. wII is the local inhibitory recurrence. Cij is
the i, jth entry in the SC matrix, obtained from diffusion
imaging, that scales the long-range excitatory currents
between jth and ith regions. G represents global coupling

strength which scales long-range excitatory connections.
To find optimal G, the DMF model is simulated for dif-
ferent values of G. The optimal value of G is chosen
based on the highest correlation between empirical and
simulated FC when the excitatory firing rate sustains at
∼4Hz within all brain regions [43, 74]. Euler’s method,
with a step size of 1 ms, has been used to generate the
synaptic activity of each area. The model is simulated
for 10 minutes, where the first 2 minutes of transients are
discarded. Parameter values are given in SI Appendix,
Table S2.

Feedback Inhibition Control: FIC algorithm, pro-
posed by Deco et al. [41] is a recursive process to estab-
lish and maintain E-I balance in individuals and across
all cortical subunits. The detailed FIC steps are found
in the supplementary material. We simulated the model
with the FIC algorithm for 10 sec time windows.

Virtual lesion: The virtual focal lesion is introduced
into an individual subject’s SC by targeted node removal.
All connections to and from the focal lesioned site have
been set to zero in the SC matrix.

Virtual lesion model: We put the DMF model on
top of a virtually lesioned SC of a single subject, labeled
as a virtual lesion model. Individual node dynamics are
governed by the stochastic DMF model spatially coupled
via lesioned SC matrix. In principle, any other form of
lesioned SC (real, virtual), if incorporated into the dy-
namical model, can produce similar effects of lesion de-
pending on the lesion type, location, and extent.

Modulated local inhibitory weight (J ′): The
modulated local inhibitory synaptic weights (J ′

i) at indi-
vidual nodes, in case of a lesion are compared against the
weights estimated in a healthy brain (Ji). The change in
inhibitory synaptic weight is calculated as dJJi = J ′

i-Ji
for all areas, i.

Re-adjustment time (RT ): In the process of FIC,
brain areas take different simulation times to reach the
desired firing rate and balanced E-I homeostasis. The
separate area’s re-adjustment time (RT ) is estimated by
tracking those simulated time windows by re-setting the
E-I balances in all regions until the entire brain reaches
the targeted balanced state. Each region modulates
the local inhibitory-to-excitatory synaptic weights while
restoring the E-I balance across the whole brain. During
the FIC process, we track the elapsed time RTi and J ′ for
all regions, measuring units sec and mMol, respectively.
Further, we use the obtained RT and dJJ to identify
DSAs. .

Supporting Information (SI)

SI Appendix contains Tables S1-S3, Figs. S1-S7, de-
tails of the empirical data, DMF model description, and
SI references. Table S1 shows model parameter descrip-
tions and default values. Table S2 contains region names
and abbreviations. Table S3 contains the list of SSAs
and DSAs for different lesion centers. Predicted SSAs
and DSAs for ten subjects in Fig. S1. Association be-
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tween structural and dynamical measures for different
lesion centers over all subjects in Fig. S2. Details of the
regions with lower connectivity are in Fig. S3. Figure S4
shows results for group-level analysis on SSAs and DSAs.
ROI-wise FC analysis over all subjects for different lesion
centers is shown in Fig. S5. Correlation between JC and
other network properties of SC in Fig. S6. Figure S7
depicts FC properties under three conditions.
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Empirical data12

Participants. MRI and resting-state functional MRI data from 49 healthy subjects (31 females), ages ranging from13

18 to 80 years (mean age: 41.55 years; standard deviation: 18.44 years), have been collected at Berlin Center for14

Advanced Imaging, Charité University Medicine, Berlin, Germany (1). The participants are healthy, and no history of15

neurologic or psychiatric conditions was reported in (1). All participants gave written informed consent to the group16

(1), and the study was performed under the compliance of laws and guidelines approved by the ethics committee of17

Charité University, Berlin, Germany.18

Anatomical connectivity. Resting state MRI, diffusion-weighted MRI, and functional MRI are performed using a 319

Tesla Siemens Tim Trio MR scanner and a 12-channel Siemens head coil. Detailed information on data acquisition20

parameters is found in (1). We did not process the raw data. The data was pre-processed, and structural connectome21

was generated previously, using the pipeline by Schirner et al. (1). Cortical grey matter parcellation of 34 regions22

of interest( ROI) in each hemisphere is considered following Desikan-Killiany parcellation (2). The SI Appendix,23

Table S1, shows all the regions of interest (ROIs) with abbreviations.24

Empirical functional connectivity. Participants are subjected to a functional MRI scan in eyes-closed awake resting-25

state condition. The resting-state BOLD activity is recorded for 22 minutes (TR=2 sec). Pre-processing steps are26

given in SI Appendix. After pre-processing, aggregated BOLD time series of each region is z-transformed. The27

pairwise Pearson correlation coefficient is computed for each subject’s resting-state functional connectivity (rs-FC)28

matrix.29

Preprocessing of empirical data.30

Structural connectivity. Each subject’s empirical structural connectivity (SC) was generated using the pipeline described31

by Schiner et al. (1). Main pre-processing steps for T1 anatomical images involved skull stripping, removal of32

non-brain tissue, brain mask generation, cortical reconstruction, motion correction, intensity normalization, WM,33

subcortical segmentation, cortical tessellation generating GM-WM and GM-pia interface surface-triangulations and34

probabilistic atlas based cortical and subcortical parcellation. Cortical grey matter parcellation of 34 regions of35

interest( ROI) in each hemisphere was undertaken following Desikan-Killiany parcellation (2). The probabilistic36

tractography algorithm estimated the connection strength (a value ranging from 0 to 1) between each pair of ROIs.37

SC matrices were generated from each subjecTs MRI data and then summed element-wise to obtain an averaged SC38

matrix. The connection of a region to itself was set to 0 in the SC matrix for the simulations. motion correction and39

eddy current correction (ECC), the b0 image is linearly registered to the subject’s anatomical T1-weighted image, and40

the resulting registration rule is used to transform the high-resolution mask volumes from the anatomical space to the41

subject’s diffusion space. MRTrix has been used to extract gradient vectors and values (b-table). DW-MRI data42

were pre-processed using FREESURFER. The pre-processing steps for the diffusion MRI data were eddy current and43

motion correction with re-orientation of b-vectors (b-zero image was linearly registered to the subject’s anatomical44

T1-weighted image). Then, fiber-response function estimation has been done. The fiber orientation distribution45

function (fODF) for each image voxel has been computed based on constrained spherical deconvolution (CSD) in46

MRTrix. Structural connectome is the count of tracks between any given pair of ROIs. SC is normalized and47

symmetric.48

Functional connectivity. Each subject’s empirical functional connectivity (FC) was computed using the pipeline described49

by Schiner et al. (1). To generate the functional connectivity (FC) matrices, pre-processing steps are as follows: 1)50

raw fMRI DICOM files were converted into a single 4D Nifti image file. 2) FSL’s FEAT pipeline is used to perform51

the following operations: a) deleting the first five images of the series to exclude possible saturation effects in the52

images, b) high-pass temporal filtering (100 seconds high-pass filter), c) motion correction, d) brain extraction and53

e) a 6 DOF linear registration to the MNI space. 3) BOLD signals are registered to the subject’s T1-weighted54

images and parcellated according to FREESURFER’s cortical segmentation (Desikan-Killiany (DK) atlas (2)). 4)55

The inverted mapping rule mapped Anatomical segmentation onto the functional space. 5) Average BOLD signal56

time series for each ROI were generated by computing the mean of all voxel time series of each region. 6) From the57

region-wise aggregated BOLD data, FC matrices were computed within MATLAB using pairwise mutual information58

(on z-transformed data), and Pearson’s linear correlation coefficient as FC metrics.59
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Dynamic mean field (DMF) model. We use a reduced dynamic mean field (DMF) model (3) to engender lesion effects.
The DMF approximates a spiking network model (4, 5) consisting of populations of excitatory and inhibitory neurons
with excitatory NMDA synapses and inhibitory GABA synapses. DMF is described by a set of coupled nonlinear
stochastic differential equations given below,

I
(E)
i = wEI0 + w+JNS

(E)
i +GJN

N∑
j=1

CijS
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j − JiS
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i
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where IE,I
i is the input current to area i and superscripts represent excitatory (E) and inhibitory(I) populations60

in that area. rE,I
i is the population firing rate of excitatory or inhibitory populations of area i. SE,I

i is the average61

excitatory (inhibitory) synaptic gating variable of area i. I0 is the effective external input scaled by wE and wI for62

excitatory and inhibitory populations. w+ is the local excitatory recurrence, JN is the excitatory synaptic coupling,63

and Ji is the local feedback inhibitory synaptic coupling. wII is the local inhibitory recurrence. Cij is the i, jth entry64

in the SC matrix, obtained from diffusion imaging, that scales the long-range excitatory currents between jth and ith
65

regions. G represents global coupling strength which scales long-range excitatory connections. Descriptions of the66

parameters and their default values are given in Table S2. To find optimal G, the DMF model is simulated for different67

values of G. The optimal value of G is chosen based on the highest correlation between empirical and simulated FC,68

when the excitatory firing rate sustains at ∼4Hz within all brain regions (6, 7). Stochasticity is incorporated into the69

two gating variables by additive white Gaussian noise, σνi(t), where σ is the noise intensity.

Table S1. Model parameters and their values

Parameter Description Value/ Units
I0 External input current 0.382 nA
wE Weight for excitatory populations 1
JN Long-range excitatory synaptic coupling constant 0.15nA
w+ Strength of local excitatory recurrent connections 1.4
aE Parameter for input-output function 310nC−1

bE Parameter for input-output function 125 Hz
dE Parameter for input-output function 0.16s
wI Weight for inhibitory populations 0.7
aI Parameter for input-output function 615 nC−1

bI Parameter for input-output function 177 Hz
dI Parameter for input-output function 0.087s
wII Strength of local inhibitory recurrent connections 1nA
γ Learning rate 0.641
τE Excitatory time constant 100 ms
τI Inhibitory time constant 10 ms
σ Noise amplitude 0.001nA
G Global coupling strength 0.55

70
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Definitions and descriptions71

Defining and describing the terminologies related to the study is worthwhile before drawing the pipeline and workflow.72

The definitions of the Jaccard coefficient, virtual lesion, DMF model, virtual lesion model, re-adjusted inhibitory73

weights, and time to reach E-I balance are presented below:74

Feedback inhibition control (FIC). FIC algorithm, proposed by Deco et al. (5), is a recursive process to establish75

and maintain E-I balance in individual and across all cortical subunits. By the term E-I balance, it means that the76

average input current (IE
i ) to an excitatory pool of ith region is equal to bE

aE
− 0.026 nA, with a tolerance of ±0.005nA.77

This range of input current clamps the firing rate between 2.63− 3.55 Hz. When the input current goes beyond the78

tolerance level, we increase that area’s local feedback inhibitory weight (Ji) by a small value (∆). Analytically, when79

IE
i − bE

aE
> −0.026, we increase or upregulate the corresponding local feedback inhibition, Ji = Ji + ∆ of the area i;80

otherwise we downregulate the corresponding inhibitory weights Ji = Ji−∆. The process is repeated until all regions’81

firing rates reach a critical firing rate regime (2.63− 3.55 Hz). We simulated the model with the FIC algorithm at82

different time windows of 10 sec.83

Virtual focal lesion. The virtual focal lesion is introduced into an individual subject’s structural connectome or84

anatomical topology by the targeted removal of a single node. Specifically, all connections to and from the focal85

lesioned site have been set to zero in the SC matrix. Thus, a lesioned center is isolated from its neighbors and86

becomes functionally non-interactive with the remaining intact network. The anatomical topology of the remaining87

network is kept invariant, except the lesioned node is functionally isolated. The lesioned site will not participate in88

or influence the functions (or dynamics) of the remaining intact network. A single node is removed to project the89

exclusive impact of a specific lesioned site. The rest of the remaining network is used in the simulation. Here we90

consider that the lesion only involves the deletion of a node (‘gray matter ’) and its afferent connections. In contrast,91

we do not attempt to model ‘while-matter’ volume, e.g., including lesions of ‘fibers of passage’ (8). We consider all 6892

regions as lesion centers covering the whole cerebral cortex.93

Virtual lesion model. When the DMF model is put on top of the virtually lesioned SC, we labeled them as the virtual94

lesion model. Individual node dynamics are governed by the stochastic DMF model spatially coupled via lesioned SC95

matrix. In principle, any other form of lesioned SC (real, virtual), if incorporated into the dynamical model, can96

produce similar effects of lesion depending on the lesion type, location, and extent.97
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Table S2. List of all 34 ROIs in each hemisphere. ROI ID represents the order of ROIs in the structural and functional connectivity
matrices for each hemisphere.

Area index Abbreviation Full form
1 BSTS Banks Of Superior Temporal Sulcus
2 CAC Caudal Anterior Cingulate
3 CMF Caudal Middle Frontal
4 CUN Cuneus
5 ENT Entorhinal
6 FITS Fusiform
7 IP Inferior Parietal
8 IT Inferior Temporal
9 ISTH Isthmus Cingulate
10 LOCC Lateral Occipital
11 LOF Lateral Orbito Frontal
12 LING Lingual
13 MOF Medial Orbito Frontal
14 MT Middle Temporal
15 PARH Parahippocampal
16 PARC Paracentral
17 POPE Pars Opercularis
18 PORB Pars Orbitalis
19 PTRI Pars Triangularis
20 PCAL Pericalcarine
21 PCNT Post Central
22 PC Posterior Cingulate
23 PREC Precentral
24 PCUN Precuneus
25 RAC Rostral Anterior Cingulate
26 RMF Rostral Middle Frontal
27 SF Superior Frontal
28 SF Superior Parietal
29 ST Superior Temporal
30 SMAR Supra Marginal
31 FP Frontal Pole
32 TP Temporal Pole
33 TT Transverse Temporal
34 INS Insula
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subject 1

F/18

subject 9

M/27

subject 4

F/30

subject 5

F/33

subject 2

F/25

subject 10

M/27

subject 11

M/28

subject 6

F/63

subject 8

M/25

Fig. S1. SSAs and DSAs for ten individual subjects corresponding to lesion centers at (a-b) lPOPE, (c-d) rPOPE, (e-f) lPREC, and (g-h) lLOCC. Red sphere represents lesion
location. Common areas found in SSAs and DSAs, are shown in yellow, and unmatched areas in blue. Subjects’ gender/age are written in the top of each brain.
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Fig. S2. Association between structural and dynamical measures for different lesion centers and subjects. (a) Correlation between JC and
RT has been determined over all the subjects for different lesion centers. The lesion center at a higher degree area displays a positive correlation, except the regions with lower
connections show less or negative correlations. Blue bars are obtained by averaging the correlation over the subjects. Subject-wise variations are depicted by red error bars. (b)
Similar trends in correlations between JC and dJJ are observed. Lesion centers are listed below the figure. The areas with low or negative correlations are marked in bold.
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Details of the regions with lower connectivity98

We also investigate the anatomical biases of the nodes with low and negative correlations. The distribution of dJJ99

for a single subject at the lesion center, lENT, is shown in SI Appendix, Fig. S3c. The nodes do show very small100

changes due to lesions at lENT. We also looked at the anatomical connections of the lENT (SI Appendix, Fig. S3d).101

The brain area lENT is sparsely connected to the rest of the network. We further analyzed all the areas’ average102

anatomical strength and degree distributions (SI Appendix, Figs. S3e,f).

lENT lPARH lFP lTP lTT rENT rPARH rFP rTP rTT

0

1

2

3

4

5
10

-3

Fig. S3. The regions written in bold in Fig. S2 are analyzed at the group level. Findings of SSAs and DSAs for a few lesion sites are given in (a) and (b), respectively. Lesion
centers are written on the top of each glass brain plot. Lesion at lENT is an example for a single subject, depicting the distribution of dJJ across all areas in (c), and anatomical
connections of the lENT in (d). (e) Average anatomical strength and (f) degree of all the areas. Regions with lower connectivities and node weights are marked in bold.

103
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Group level analysis of SSAs and DSAs104

0
1

P
A

Fig. S4. Group level analysis. The identified SSAs and DSAs corresponding to different lesion centers are shown in (a,c) and (b,d), respectively. Abbreviations of lesion sites
are written on the top of each brain plot. The red sphere is the lesion site. Yellow areas have higher PA, as they are in almost all subjects. Areas in pink with lower PA indicate
that those areas are less probable to be the potential compensatory candidates in all subjects.
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ROI-wise FC analysis over all subjects for different lesion centers105
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Fig. S5. ROI-wise FC analysis for different lesion centers. Significantly changed and rewired links with associated regions are shown in (a,c) and (b,d), respectively. Lesion
centers abbreviations are written on the top of each brain. Red and blue edges represent significant increase and decrease in cohesion, respectively.

(16, 17)106
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Table S3. Lesion centers, SSAs, DSAs and correlation between JC and RT . We choose only those areas as SSAs and DSAs,
which have P A > 0.8.

Lesion center SSAs DSAs Correlation Correlation Previous
(area index) JC and RT JC and dJJ evidence

Mean(SD) Mean(SD) (Ref.)

lCAC (2) lRAC, lPOPE, lPTRI, lPORB, lLOF, lPC, lPOPE, lCMF, lPC, lPTRI, lISTH, 0.36(0.20) 0.44(0.11)
lPARC, lISTH, lINS, rCAC lPCUN, rCMF, rPOPE, lRMF, lPCNT

lCMF (3) lRMF, lPTRI, lPOPE,lSF, lINS, lPOPE, lPCNT, lPREC, lRMF, rPOPE, lMT, 0.58(0.22) 0.76(0.08)
lREC, lPCNT,lMT lPTRI, rCMF, lIT, lINS, lSF

lCUN (4) lFUS, lISTH, lLING, lMT, lPCAL, lST, lPCAL, lFUS, lISTH, lPOPE, lPCUN, 0.28(0.14) 0.50(0.17)
lTT, lINS, lIT, lPCUN, lLOCC, lPC lCMF, lLOCC, rPOPE, lIT, lMT

lENT (5) lISTH, lLING, lPARH, lPCAL, lTP, lCMF, lFUS, lPOPE, lCAC, lCUN, -0.12(0.17) -0.06(0.08)
lCUN, lLOCC, lINS, lFUS, lIT lBSTS, lIT, lIP, lISTH, rPOPE

lIP (7) lIT, lINS, lPREC, lST, lPCNT, lMT, lCMF, lIT, lMT, lPCUN, lSP, lST, 0.41(0.22) 0.74(0.10)
lLOCC, lSMAR,lFUS,lSP, lPCUN lSMAR, lPCNT, lLOCC, lPOPE, lPREC

lIT (8) lBSTS, lFUS, lIP, lLOCC, lMT lSP, lMT, lFUS, lCMF, lLOCC, lPOPE, lIP, 0.37(0.16) 0.71(0.08)
lST, lSMAR, lINS, lLING, lPCAL, lPCUN lPCNT, lPCUN, lST, lSMAR, lPREC

lLOCC (10) lPCAL, lCUN, lIP, lLING, lPCUN, lSP, lIT, lFUS, lST, lMT, lIP, 0.31(0.15) 0.70(0.11)
lFUS, lSMAR, lMT, lST, lINS lCMF, lPOPE, lSP, lINS, lPCUN

lPARH (15) lCUN, lISTH, lPCAL, lTP, lTT, lISTH, lCMF, lFUS, lPOPE, lIT, lLING, -0.02 (0.12) 0.01 (0.15)
lINS, lLING, lFUS, lP,C lST lLOCC, lBSTS, rPOPE, lCAC lMT

lPOPE (17) lCMF, lPTRI, lPREC, lRMF, lINS, lPCNT, lCMF, lPTRI, lPCNT lRMF, lPREC, 0.47(0.22) 0.71(0.09) (9–14)
lPCUN, lPC, lCAC, rSF, lPARC, lLOF lSF, lINS, lSMAR, rCMF, lIT

lPORB (18) lPOPE, lPTRI, lLOF, lRAC, lCMF, lINS, lCMF, lLOF, lPOPE, lPTRI, rPOPE, 0.23(0.22) 0.36(0.19)
rCAC, rRAC, rMOF rPTRI, lRMF, lINS, rCMF, lPCNT

lPTRI (19) lPORB, lINS, lCMF, lLOF, lMOF, lPOPE, lPOPE, lCMF, lRMF, lINS, lLOF, rPOPE, 0.45(0.22) 0.62(0.12)
lRMF, lCAC, lPREC, lPC, lRAC, lPARC lPCNT, rCMF, rPTRI, lPREC, rRMF, lPORB

lPCNT (21) lCMF, lSP, lSMAR, lINS, lIP, lPREC, lCMF, lPOPE, lPREC, lSMAR, lINS, lPARC, 0.43(0.19) 0.67(0.09)
lST, lMT, lPCUN, lPARC, lST lIT, rPOPE, lMT, lIP, rPCNT

lPREC (23) lRMF, lCMF, lPOPE, lSMAR, lSP, lIP, lCMF, lPCNT, lPOPE, lSF, lRMF, lSMAR, 0.49(0.23) 0.72(0.09) (15)
lSF, rSF, lPCUN, lST, lPCNT, lINS rCMF, lPARC, lINS, rPOPE, rPREC

lPCUN (24) lLOCC, lSP, lIP, lSMAR, lST, lINS, lISTH, lST, lPC, lSMAR, lPOPE, lCMF, 0.47(0.14) 0.70(0.11)
lISTH, lMT, lPCNT, lIT, lBSTS, rPCUN lIT, lMT, lIP, lPCNT, lLOCC

lRMF (26) lCMF, lPOPE, lPTRI, lPREC, lSF, lINS, lCMF, lPOPE, lPTRI, lSF, lPREC, rRMF, 0.48(0.21) 0.76(0.07)
rSF, lPCNT, rRMF, rCMF, rPREC, lSP rPOPE, rCMF, lPCNT, lINS, rPTRI

lSF (27) lCMF, lPCNT, lRMF, lPREC, lPTRI, lRMF, lPOPE, lPREC, lCMF, lPTRI, lPCNT, 0.45(0.18) 0.65(0.08)
lPOPE, lSMAR, rPREC, rRMF, rSF lINS, rCMF, rRMF, rSF, rPREC

lSP (28) lIP, lIT, lLOCC, lMT, lPCNT, lIP, lSMAR, lPCUN, lCMF, lPCNT, lST, 0.42(0.18) 0.73 (0.10)
lPCUN, lST, lSMAR, lPREC, lINS lIT, lPREC, lMT, lLOCC, lINS

lST (29) lCUN, lFUS, lIP, lIT, lLOCC, lLOCC, lMT, lPOPE, lPCUN, lIT, lCMF, 0.39(0.17) 0.74(0.07)
lMT, lSP, lSMAR, lINS, lPCAL lIP, lINS, lFUS, lBSTS, lSMAR

lSMAR (30) lIP, lSP, lST, lINS, lMT, lPCNT, lPCNT, lCMF, lPOPE, lMT, lSP, lPREC, 0.40(0.21) 0.67(0.14)
lPCUN, lLOCC, lIT, lPREC, lCMF, lISTH lPCUN, lINS, lIT, lBSTS, lST, lIP

lFP (31) lCAC, lLOF, lMOF, lPORB, lPTRI, lRAC, lCMF, lPOPE, lCAC, lBSTS, lCUN, lENT, - 0.04(0.19) 0.00 (0.15)
lINS, rRAC, rCAC, rFP, rMOF, rPORB lFUS, rPOPE, lIT, lLOF, lISTH

lTP (32) lBSTS, lENT, lLOCC, lLING, lPARH, lPCAL, lCMF, lFUS, lIT, lPOPE, lBSTS, lMT, -0.10 (0.15) -0.05 (0.10)
lMT, lLOF, lIT, lTT, lINS lPTRI, lCAC, lLOCC, lINS, lISTH

lTT (33) lBSTS, lCUN, lISTH, lINS, lMT, lPOPE, lCMF 0.09 (0.13) 0.06 (0.13)
lPCAL, lST, lPC, lPCUN, lSMAR

lINS (34) lMT, lIT, lPTRI, lST, lCMF, lPOPE, lPCNT, lMT, lPOPE, lCMF, lIT, lLOF, 0.52(0.16) 0.62(0.10)
lBSTS, lPARC, lFUS, lPCAL, lPCUN, lISTH lPTRI, lFUS, lST, lPREC, lPCUN
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Table 3 (Cont.). Lesion centers, SSAs, DSAs and correlation between JC and RT . We choose only those areas as SSAs and
DSAs, which have P A > 0.8.

Lesion center SSAs DSAs Correlation Correlation Previous
(area index) JC and RT JC and dJJ evidence

Mean(SD) Mean(SD) (Ref.)

rCAC (36) rMOF, rRAC, rPORB, rPTRI, rPC, rPARC, lPOPE, lCMF, rPOPE, rPC, rCMF, 0.36(0.21) 0.46(0.15)
rPOPE, lCAC, rLOF, rINS, rCMF, lPORB rPTRI, lRMF, lPTRI, rRMF, lPCNT

rCMF (37) rPTRI, rPREC, rPOPE, rPCNT, rRMF, rPOPE, lPOPE, rPCNT, rPREC, rRMF, lCMF, 0.58(0.21) 0.76(0.08)
rSF, rINS, rMT, rSMAR, rIT, rSP rPTRI, rMT, rIP, rSMAR, lPREC, lRMF

rENT (39) rCUN, rLING, rPARH, rPCAL, rTP, lCMF, lCAC, lFUS, lCUN, lPOPE, -0.14(0.15) -0.10(0.08)
rISTH, rLOCC, rLOF, rTT, rFUS lIT, rBSTS lENT, rIP lISTH

rIP (41) rLOCC, rMT, rPCUN, rSP, rST, rSMAR, rSP, rCMF, rMT, rSMAR, rIT, rPCNT, 0.41(0.18) 0.76(0.07)
rINS, rIT, rPCNT, rFUS, rPREC rST, rBSTS, rLOCC, rPOPE, rPREC

rIT (42) rFUS, rLOCC, rLING, rMT, rPCAL, rFUS, rMT, rCMF, rLOCC, lPOPE, rPOPE, 0.37(0.17) 0.73(0.10)
rSP, rST, rSMAR, rINS, rIP, rBSTS, rPCUN rST, lCMF, rIP, rPCNT

rLOCC (44) rFUS, rIP, rIT, rLING, rMT, rPCAL, rFUS, rST, rIT, rMT, lPOPE, lSF, 0.31(0.14) 0.67(0.10)
rPCUN, rSP, rST, rSMAR, rINS, rCUN rPOPE, rCMF, lCMF, rINS, rCUN

rPOPE (51) rCMF, rPTRI, rPREC, rRMF, rINS, rCAC, lPOPE, rCMF, rPTRI, lCMF, rRMF, rPCNT, 0.47(0.20) 0.68(0.12)
rPCNT, rPC, rMOF, rPARC, rPCUN, rPORB rSF, lPTRI, rPREC, lRMF, rSMAR, rCAC

rPORB (52) rCAC, rLOF, rMOF, rPTRI, rRAC, lPOPE, rPTRI, rPOPE, lCMF, rCMF, 0.23(0.21) 0.48(0.14)
rINS, rCMF, rPOPE, rFP, rPC rLOF, lPTRI, rRMF, rMOF, rINS

rPTRI (53) rCMF, rLOF, rMOF, rPOPE, rPORB, rRMF, lPOPE, rCMF, rPOPE, lCMF, rRMF, rINS, 0.45(0.19) 0.64(0.14)
rINS, rPREC, rCAC, rPC rPORB, lPTRI, lRMF, rPCNT, rCAC

rPCNT (55) rCMF, rPREC, rSMAR, rINS, rSP, rPREC, rSMAR, rCMF, rPOPE, rINS, 0.43(0.16) 0.68(0.08)
rIP, rPCUN, rMT, rST, rPARC lPCNT, lPOPE, rPARC, lCMF, rPTRI

rPREC (57) rCMF, rRMF, rSMAR, rPOPE, rINS, rPTRI, rPCNT, rCMF, lCMF, rPOPE, lPREC, lPOPE, 0.49(0.32) 0.61(0.06)
rPCNT, rSP, rIP, rPCUN, rMT, rSF rRMF, rSF, rSMAR, rINS, rPTRI, lPCNT (18–22)

rPCUN (58) rLOCC, rSP, rSMAR, rINS, rST, rMT, rIP, rISTH, rST, rPC, rSMAR, rMT, 0.47(0.17) 0.68(0.14)
rPCNT,rISTH,rIT,lPCUN,rBSTS lPCUN, rPOPE, rPARC, rPCNT, rIT

rRMF (60) rCMF, rPOPE, rPREC, rSF, rINS, rPTRI, rCMF, lPOPE, rPOPE, rPTRI, lCMF, rSF, 0.48(0.20) 0.75(0.08)
lSF, lCMF, lPREC, lRMF lRMF, rPREC, lPTRI, rPORB

rSF (61) rCMF, rPTRI, rPREC, rRMF, rPCNT, rIP, rRMF, rPOPE, lPOPE, rPREC, lCMF, rCMF, 0.4(0.18)5 0.20(0.37)
lPREC, lRMF, lPOPE, lSF rPTRI, lRMF, lPREC, lSF, rCAC

rSP (62) rIP, rIT, rMT, rPCNT, rPCUN, rST, rSMAR, rIP, rPCUN, lPCUN, rPCNT, rST, 0.42(0.19) 0.77(0.10)
rSMAR, rINS, rLOCC, rPREC, rBSTS rMT, rLOCC, rPREC, rINS

rST (63) rFUS, rIP, rIT, rLOCC, rMT, rPCAL, rLOCC, rPCUN, rMT, rPOPE, rIT, 0.39(0.11) 0.74(0.07)
rSMAR, rINS, rCUN, rLING, rPCUN rSMAR, rINS, rCMF, rBSTS, lPOPE

rSMAR (64) rIP, rMT, rPCNT, rSP, rST, rINS, rPCNT, rPOPE, rPCUN, rSP, rINS, rCMF, 0.40(0.15) 0.69(0.09)
rPREC, rPCUN, rIT, rLOCC, rCMF, rBSTS rST, rPREC, rMT, rBSTS, rPTRI

rFP (65) rCAC, rLOF, rMOF, rPORB, rPTRI, lCMF, lPOPE, lCAC 0.03 (0.22) 0.10 (0.10)
rRAC, lRAC, rINS , rTP , lMOF

rTP(66) rCUN, rENT, rLOCC , rLOF, rLING, lCMF, lPOPE -0.14 (0.14) -0.07(0.15)
rPARH , rPCAL , rTT, rBSTS

rTT(67) rBSTS, rCUN, rISTH, rINS, rPCAL, rPC, lCMF, lPOPE 0.04 (0.16) 0.02(0.15)
rST, rPARH, rPCUN, rSMAR, rMT

rINS (68) rIT, rMT, rST, rSMAR, rCMF, rPCUN, rPCNT, rMT, rSMAR, rCMF, rPOPE, rPTRI, 0.52(0.16) 0.69(0.10)
rBSTS, rFUS, rIP, rPOPE, rPTRI, rLOCC rIT, rLOF, rST, rLOCC, lPOPE, rFUS
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Correlation between JC and other properties of SC107

If the nearest neighbours of a node are also directly connected to each other they form a cluster. The clustering108

coefficient quantifies the number of connections that exist between the nearest neighbours of a node as a proportion109

of the maximum number of possible connections18110
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Fig. S6. Correlation between JC and other network measures. Mean correlation values are obtained averaging over subjects for different lesion centers. No
specific or conclusive patterns are observed in the correlations between JC-PC, JC-CC and JC, NW. PC, CC and NW are participation coefficient, clustering coefficient and
node weight. All the network measures are obtained using BCT tools box.
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Functional network properties under three given conditions111

The alteration in functional brain network due to structural damage as an immediate impact of lesion and FC112

re-organization after restoring E-I balance are reconfirmed by measuring several network properties, such as transitivity,113

average characteristic path length, modularity, and global efficiency, presented in Fig. S7. The network properties114

computed from healthy, altered, and re-organized FCs are shown in yellow, red, and blue bars, respectively, see115

Figs. S7(a-d). Transitivity, average characteristic path length, and modularity significantly increased in the altered116

FCs, when they deviated from the healthy condition due to lost E-I homeostasis. However, the FCs regain near-117

healthy conditions when the homeostatic balance is re-established after the lesion. The three network properties are118

significantly decreased in the re-organized FCs compared to the altered FCs. Conversely, global efficiency significantly119

decreased (p < 0.001) in the altered FC and increased after the re-organization. Alteration/re-organization is further120

reconfirmed by the probability distributions of FC weights from the three conditions. Distributions for healthy,121

altered, and re-organized FCs of a single subject are shown in purple, red, and green in Fig. S7e. Blue, red, and green122

lines indicate the mean values of the three distributions, respectively.
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Fig. S7. Functional network properties. (a) Transitivity, (b) average characteristic path length, (c) modularity, and (d) global efficiency derived from healthy, altered,
and re-organized FCs are plotted in yellow, red, and blue bars, respectively. Deviation over the subjects is shown by the error bar. (e) Probability distributions of the three FCs,
driven from the three conditions, confirm FC reshaping after lesion. ∗ ∗ p < 0.001, ’NS’ for not significant. Network measures are obtained using BCT tools box.

123

Definition of network properties. (i) Transitivity (23), or clustering coefficient, measures the tendency of the nodes to124

cluster together. High transitivity means that the network contains communities or groups of nodes that are densely125

connected internally. Transitivity of a graph with degree sequence k is CC = 1
n

[〈k2〉 − 〈k〉]2

〈k〉3
, where 〈k〉 = 1/n

∑
i ki126

is the mean degree and 〈k2〉 = 1/n
∑

i k
2
i is the mean square degree.127

(ii) Characteristic path length (24), L = 1
n

∑
i∈N

∑
j∈N,j 6=i

dij

n−1 , where N is the set of all nodes; n is the total nodes;128

dij is the weighted shortest path length between i and j. The characteristic path length for weighted graphs is an129

estimate of proximity. The global efficiency is the average of the inverse shortest path length and is inversely related130

to the characteristic path length. The local efficiency is the global efficiency computed on the node’s neighborhood131

and is related to the clustering coefficient.132

(iii) Modularity (25), M = 1
l

∑
(i,j∈N)

[
wij − kikj

l

]
δmimj , where l is the sum of weights in the network; wij is the133
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connectivity weight between nodes i and j; ki, kj are the weighted degrees of nodes i and j, respectively. Modularity134

gives network resilience and adaptability, measuring the degree of segregation. Communities are subgroups of densely135

interconnected nodes sparsely connected with the rest of the network. In the case of a functional network, modularity136

signifies coherent clusters of functional modules.137

(iv) Global efficiency (26), E = 1
n

∑
i∈N

∑
j∈N,j 6=i

d−1
ij

n−1 , where N is the set of all nodes; n is the total number of nodes;138

dij is the weighted shortest path length between node i and j. It captures the integration property of a network.139
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