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1. Introduction

Koszul duality is a collection of related phenomena playing an important role in many 
subfields of algebra and geometry such as deformation theory [13], operads and operadic 
algebras [12], representation theory [4], to mention just a few prominent examples among 
very substantial literature on this subject. The present paper is focused on the part of this 
vast theory that is relevant to differential graded (dg) associative algebras, dg categories 
and coalgebras. Associative Koszul duality states that there is an adjunction between 
the categories of augmented dg algebras and a class of dg coalgebras (called conilpotent) 
provided by explicit bar and cobar constructions. Both categories possess structures 
of model categories and this adjunction can be strengthened to a Quillen equivalence 
between them.

There is also a version of Koszul duality between not necessarily augmented dg alge-
bras and conilpotent coalgebras supplied with a ‘differential’, that does not necessarily 
square to zero, so-called curved coalgebras [23].

The main result of this paper is a further generalization of this correspondence with 
dg algebras replaced by dg categories. The Koszul dual of a dg category D, given by a 
bar construction BD is a pointed curved coalgebra. Recall that a coalgebra is pointed if 
its coradical is a direct sum of copies of the ground field. This sum is indexed by the 
set of grouplike elements, and the grouplike elements of BD correspond to the objects 
of the dg category D. A pointed curved coalgebra consists of a curved coalgebra that 
is pointed, has a splitting of the coradical and satisfies some compatibilities. We denote 
the category of pointed curved coalgebras equipped with a final object by ptdCoa∗. We 
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will construct a model structure on ptdCoa∗ in Proposition 3.33. We denote by dgCat′

the category of small dg categories modified by the assumption that identity morphisms 
are not equal to zero except in the case of the category with one object and a single zero 
morphism. Note that dgCat′ inherits the Dwyer-Kan model structure from dgCat and is 
equivalent to it as an ∞-category. Here is our first main result (Theorem 3.40 below):

Theorem A. There is a Quillen equivalence Ω : ptdCoa∗ � dgCat′ : B between model 
categories dgCat′ and ptdCoa∗.

Restricted to the subcategory of dg categories with one object, this reduces to the 
ordinary dg Koszul duality between dg algebras and curved conilpotent coalgebras.

The key new idea for proving this result is to interpret a dg category D as a monoid 
in dg bicomodules over the coalgebra ⊕Ob(D)k. We believe that this is of independent 
interest. Then one can perform a bar construction in bicomodules to obtain a curved 
comonoid in bicomodules, which is a relative curved coalgebra. The adjoint is given by 
the relative cobar construction in bicomodules.

The bicomodule viewpoint allows us to directly adapt most of the arguments from the 
conilpotent case treated in [23]. Many proofs then boil down to the verification of various 
algebraic identities. While relatively straightforward, the computations can be quite 
cumbersome, and we have chosen to include some detailed arguments to conceptualize 
and simplify them. To this end we introduce and make extensive use of the so-called 
uncurving functor which associates to a curved (co)algebra an uncurved one in a universal 
way (see Proposition 3.6 and Corollary 3.7). This allows us to substantially streamline 
various calculations.

It is likely that our approach permits the translation of most of the results of [23] to the 
setting of dg categories and pointed curved coalgebras with only minimal modification. 
Such a translation would, of course, necessitate a considerable expansion of this paper 
and has not been undertaken here. Of particular interest is the treatment, only alluded 
to here, of A∞ categories and A∞ functors based on Koszul duality for dg categories.

Next we show that this dg categorical Koszul duality is closely related to the coherent 
nerve of simplicial categories and its adjoint. Recall from [19] that there is a Quillen 
equivalence C : qCat � sCat : Ncoh, where we write qCat for simplicial sets with the Joyal 
model structure and sCat for simplicial categories with the Dwyer-Kan model structure. 
We show that this equivalence is, in some sense, a Koszul duality in the nonlinear context.

More precisely, the normalized chain construction induces functors C̃∗ : qCat →
ptdCoa∗ and G∗ : sCat → dgCat which transform C : qCat � sCat : Ncoh into Koszul 
duality, see Corollary 4.17. For categories with one object this was shown by Rivera and 
Zeinalian [24].

Note that the functor C̃∗ : qCat → ptdCoa∗ is left Quillen and we denote by F its right 
adjoint. Thus, F associates to a pointed curved coalgebra a simplicial set; its construction 
is similar to the construction of a simplicial set out of a commutative dg algebra in 
rational homotopy theory, cf. [5]. We deduce from this an algebraic characterization of 
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categorical equivalences of reduced simplicial sets as those maps K → S that induce 
quasi-isomorphisms of cobar-constructions of C∗(S) and C∗(K) (Corollary 4.22 below).

Another consequence is our second main result (Theorem 4.16 below), the following 
description of Lurie’s dg nerve construction:

Theorem B. The functor Ndg : dgCat → qCat constructed in [20] is equivalent to the 
functor D �→ FB(D). Its left adjoint is given by K �→ ΩC̃∗(K).

In particular, this provides a clear and conceptual construction of the left adjoint to 
Lurie’s dg nerve, generalizing the construction for quasi-categories with a single object in 
[24]. The left adjoint has an especially nice form when K is a Kan complex; in that case 
L(K) is (quasi-equivalent to) the dg category whose objects are in 1-1 correspondence 
with connected components of K, the endomorphism dg algebra of each object is the 
chain algebra of the based loop space on the corresponding component and there are 
no morphisms between different objects. The right adjoint may also be characterized in 
terms of Maurer-Cartan elements in a certain simplicial convolution algebra.

For simplicity we have stated these results for the case of dg categories over a field. 
Slightly weakened versions of them hold true if we work in dg categories over the integers. 
Note, however, that the construction of Koszul duality for algebras or dg categories over 
integers (or indeed, any commutative ring that is not a field) and the corresponding 
coalgebras as a Quillen equivalence meets with technical difficulties. For example, the 
naive cobar-construction of a coalgebra that is not flat over the ground ring, may have 
the wrong quasi-isomorphism type and so, the notion of a weak equivalence (which is 
defined through the cobar-construction) for such coalgebras is problematic.

We also generalize Koszul duality for modules. As in the conilpotent case, there are 
two results of this type, see Theorem 3.43:

(1) a Quillen equivalence between dg modules over a dg category D and comodules over 
the coalgebra BD and

(2) a Quillen equivalence between comodules over a pointed curved coalgebra C and dg 
modules over the dg category ΩC.

This leads to a characterization of the functor category from a quasicategory K to the 
∞-category of chain complexes in terms of C∗K-comodules (Theorem 5.2 below).

Theorem C. Let K be an ∞-category represented as a simplicial set. Then there is an 
equivalence between Fun(K, Ndg(dgVect)) and the coderived ∞-category of the coalgebra 
C∗K.

Note that this category of functors may be considered as the derived ∞-category of 
K. As an application of this result, we show that the ∞-category of constructible sheaves 
of dg vector spaces on a stratified space X is equivalent to the coderived category of the 
chain coalgebra of the simplicial set Exit(X) of exit paths on X, see Proposition 6.2.
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1.1. Outline of the paper

In Section 2 we introduce two main objects of study: Split dg semialgebras and split 
curved coalgebras. We show that the category of small dg categories is equivalent to a 
subcategory of split dg semialgebras.

Section 3 is the main part of the paper. We begin by recalling the classical bar and 
cobar constructions for dg algebras and curved conilpotent coalgebras. We then introduce 
the uncurving functor in Section 3.2 to simplify some computations. In Section 3.3 we 
set up our natural generalization of the bar construction to split dg semialgebras, which 
will contain dg categories as a special case. We then construct the cobar construction of a 
split curved coalgebra in Section 3.4 and show the two functors are adjoint in Section 3.5. 
In Section 3.6 we specialize to the adjunction between dg categories and pointed curved 
coalgebras. We construct a model structure on pointed curved coalgebras in Section 3.7
and prove Theorem A, the Quillen equivalence between pointed curved coalgebras and 
dg categories in Section 3.8. In Section 3.9 we construct Koszul duality on the level of 
modules, showing the coderived category of comodules over a split curved coalgebra is 
equivalent to the derived category over its cobar construction.

In the remainder of the paper we consider three applications. In Section 4 we rewrite 
the dg nerve of a dg category in terms of the bar construction (Theorem B) and show 
that the bar cobar adjunction is a linearization of the equivalence of simplicial categories 
and quasi-categories.

In Section 5 we use our results to show Theorem C exhibiting certain functor categories 
as categories of comodules. In Section 6 we apply this to exhibit constructible sheaves 
on a stratified space X as comodules over the chain coalgebra of the exit paths of X.

1.2. Notation and conventions

We work in the category dgVect of differential graded (dg) vector spaces over a field 
k; the grading is always a cohomological Z-grading. The n-fold shift of a graded vector 
space V is defined as V [n]i = V i+n while the element in V [n] corresponding to v ∈ V

will be denoted by snv.
The category dgVect is symmetric monoidal, and monoids in it are called dg algebras. 

Similarly the comonoids in dgVect are dg coalgebras. The structure theory of ungraded 
coalgebras generalizes in a straightforward way to the graded case and we will use results 
and terminology from standard reference books such as [28]. A coalgebra is cosimple if 
it has no proper subcoalgebras and cosemisimple if it is a sum of its cosimple coalge-
bras. A coradical of a coalgebra C, is the maximal cosemisimple subcoalgebra C0 of 
C. A pointed (graded) coalgebra is a coalgebra whose cosimple subcoalgebras are one 
dimensional; furthermore a pointed (graded) coalgebra whose coradical is 1-dimensional 
is called conilpotent.
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Given a dg coalgebra C, a left dg C-comodule is a dg vector space M together with a 
coaction map M → C ⊗M subject to the usual coassociativity and counit axioms. The 
notions of a right dg C-comodule and of a dg C-bicomodule are defined similarly.

We will also work with pseudocompact dg vector spaces, or projective limits of finite-
dimensional vector spaces; thus a pseudocompact dg vector space V can be written 
as V = lim←−−α

Vα for a projective system {Vα} of finite dimensional dg vector spaces. 
The grading for pseudocompact vector spaces is likewise cohomological. The category 
of pseudocompact dg vector spaces PCVect is equivalent to the opposite category to 
dgVect with anti-equivalence established by the k-linear duality functor. The category 
PCVect also admits a symmetric monoidal structure, dual to that in dgVect; it will be 
denoted simply by ⊗. Monoids in PCVect are called pseudocompact algebras; they form 
a category opposite to that of dg coalgebras.

Remark 1.1. The category of graded pseudocompact algebras has an auxiliary function 
in this paper. We found the setting of pseudocompact algebras more productive for 
concrete calculations than that of coalgebras (though admittedly this is in part due to 
a psychological effect and tastes may differ). In particular, various technical results are 
significantly easier to prove and even some definitions easier to state in the algebraic 
context. We will thus freely switch to the dualized setting in the course of this paper 
when appropriate.

Given a graded pseudocompact algebra A, its maximal semisimple quotient will be 
denoted by A0; it is pointed if A0 is a product of copies of k (so that A is dual to a 
pointed coalgebra).

Occasionally we need to consider the tensor product of a pseudocompact dg vector 
space V = lim←−−α

Vα and a discrete one U ; in this situation we will always write V ⊗U for 
lim←−−α

Vα ⊗ U ; such a tensor product is in general neither discrete nor pseudocompact.
We will also need the notion of a Maurer-Cartan (MC) element in an algebra A; it is 

an element x ∈ A1 such that dx + x2 = 0; the set of MC elements in A will be denoted 
by MC(A).

A dg category is a category enriched over the category of (co)chain complexes for 
abelian groups; and unless indicated otherwise, we will always assume that dg categories 
are, in fact, enriched over dgVect. Dg categories possess a model category structure [29]
where weak equivalences are so-called quasi-equivalences, a dg-version of the ordinary 
notion of equivalence of categories.

We will use some of the language and theory of ∞-categories. In general, this term 
will stand for an (∞, 1)-category considered in a model-agnostic way.

We also use two specific models: quasicategories (weakly Kan simplicial sets) and rela-
tive categories. We will use standard results and terminology of quasicategories following 
[19,20]. The symbol qCat will stand for the category of simplicial sets supplied with the 
Joyal model structure whose fibrant objects are quasicategories. The weak equivalences 
are categorical equivalences, denoted by the symbol �. The same category with the or-
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dinary Quillen model structure will be denoted by sSet. The subcategories of qCat and 
sSet whose objects are reduced simplicial sets will be denoted by qCat0 and sSet0. Given 
simplicial sets K and L such that L is a quasicategory we denote by Fun(K, L) the 
quasicategory of functors from K to L.

Relative categories [3] are categories equipped with a special class of morphisms, to 
be thought of as weak equivalences, and their homotopy theory is equivalent to other 
models of ∞-categories. Given any category C with a class W of morphisms we may 
consider it as a relative category, and we call this the ∞-category obtained by localizing 
C at W . In particular any model category gives rise to an ∞-category.

1.3. Acknowledgments

The authors benefited from discussions with J. Chuang, B. Keller, L. Positselski and 
J. Woolf.

We thank Manuel Rivera for useful comments on the first version of this paper.
We also thank the anonymous referee for helpful comments.

2. Categories and semialgebras

2.1. Semialgebras

To prove Koszul duality for dg categories we will redefine the notion of a k-linear 
category as a monoid in a certain monoidal category.

We first need some basics of the theory of comodules over coalgebra.

Definition 2.1. Let C be a graded coalgebra, M is a left dg C-comodule and N be a right 
dg C-comodule. Then their cotensor product M �C N is the equalizer of the two maps 
given by the left and right coactions of C:

M �C N M ⊗N M ⊗ C ⊗N

If M, N are two dg bicomodules over a coalgebra C, then M�CN is a dg C-bicomodule 
in a natural way. This endows the category of dg C-bicomodules with a (nonsymmetric) 
monoidal structure. Its unit is C, viewed as a bicomodule over itself.

Definition 2.2. A semialgebra is a pair (A, R) consisting of a graded coalgebra R and a 
monoid A in dg R-bicomodules.

A homomorphism of semialgebras (A, R) → (B, S) consists of a homomorphism of 
graded coalgebras f : R → S and a dg S-bicomodule map A → B (where A becomes a 
S-bicomodule via f), which is compatible with the monoid structure, i.e. the following 
diagram commutes:
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A �R A A �S A B �S B

A B

Note that in this setup A is not necessarily a monoid in S-bicomodules. For technical 
reasons we also consider the case that R is the zero coalgebra. The only comodule over 
0 is the zero vector space, so this gives us the semialgebra (0, 0), which is initial among 
semialgebras.

Semialgebras together with their morphisms form a category that we denote by 
SemiAlg. We will often simplify the notation (A, R) to A when it does not cause confusion.

Remark 2.3. Positselski considers in [22] a more general notion of a semialgebra as a triple 
(A, R, B) where B is a k-algebra and R is an B-coring. This more general notion reduces 
to ours when B = k and so the coring R becomes a k-coalgebra. We will occasionally 
need to consider the case k = Z. Specializing further R = k, we see that a semialgebra 
of the form (A, k) is nothing but a k-algebra.

There is a corresponding notion of a module (or, more precisely, a semimodule) over 
a semialgebra:

Definition 2.4. A left semimodule M over a semialgebra (A, R) is a left dg R-comodule 
endowed with a semi-action map A �R M → M that is unital and associative. Left 
semimodules over (A, R) clearly form a category that we will denote by (A, R) -Mod. 
Right semimodules and semibimodules are defined similarly.

Remark 2.5. Note that any semialgebra (A, R) is naturally a semibimodule over itself.

We now restrict to the class of semialgebras that will interest us in this paper.

Definition 2.6. We say a semialgebra (A, R) is split if R is cosemisimple and there is 
a retract v : A → R of the unit as a map of R-bicomodules. The category of split 
semialgebras will be denoted by SemiAlgsp.

This retract is not assumed to be compatible with the monoid structure. A morphism 
of split semialgebras is not required to be compatible with the retract. Therefore all 
choices of a retract on (A, R) lead to isomorphic split semialgebras. Thus we should not 
think of the retract as meaningful extra data. However, it allows us to carry out the bar 
construction more cleanly later on.

Remark 2.7. The main reason for the restriction on R is to ensure that cotensor products 
over R be exact. There are likely generalizations of many of our results beyond the 
cosemisimple case but we will not pursue them in this paper.
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2.2. Split curved coalgebras

We will now consider a dual notion to that of a semialgebra. This will essentially be 
a suitable comonoid in bicomodules. We first note that any coalgebra homomorphism 
C → R turns C into an R-bicomodule, so a comonoid in bicomodules is just a relative 
coalgebra. However, in the setting of curved coalgebras (to be recalled shortly) a number 
of conditions are needed to make this setup precise.

We will restrict ourselves to the case where the subcoalgebra R is the coradical C0 of 
C.

Definition 2.8. A split coalgebra is a coalgebra C equipped with a section ε : C → C0 of 
the inclusion C0 → C.

Remark 2.9. In many cases (for example when k is a perfect field) such a splitting is 
guaranteed to exist, however (unless C is cocommutative) it need not be canonical, so 
we always consider it as part of our data.

We will now extend this definition to the curved case. Recall the following definition 
from [23, Section 3.1].

Definition 2.10. A curved algebra A = (A, d, h) is a graded algebra supplied with a 
derivation d : A → A (a differential) of degree 1 and an element h ∈ A2 called the 
curvature of A, such that d2(x) = [h, x] and d(h) = 0 for any x ∈ A.

A curved morphism between two curved algebras A → B is a pair (f, b) where f :
A → B is a map of graded algebras of degree zero and b ∈ B1 so that:

(1) f(dAx) = dBf(x) + [b, f(x)];
(2) f(hA) = hB + dB(b) + b2.

Two such morphisms (f, b) and (g, c) are composed as (g, c) ◦ (f, b) = (g ◦ f, c + g(b)). In 
particular, every map (f, b) can be decomposed (f, b) = (id, b) ◦ (f, 0).

Remark 2.11. In this paper we will, in fact, need pseudocompact curved algebras, whose 
definition is obtained simply by adding the adjective ‘pseudocompact’ to Definition 2.10.

Dually there are curved coalgebras.

Definition 2.12. A curved coalgebra is a coalgebra C equipped with an odd coderivation 
d and a homogeneous linear function h : C → k of degree 2, called the curvature, such 
that (C∗, d∗, h∗) is a curved pseudo-compact algebra.

A morphism of curved dg coalgebras from (C, dC , hC) to (D, dD, hD) is given by the 
data (f, a) where f : C → D is a morphism of graded coalgebras and a : C → k is a linear 
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map of degree 1, such that (f∗, a∗) is a curved morphism D∗ → C∗. The composition 
rule is (g, b) ◦ (f, a) = (g ◦ f, b ◦ f + a).

To minimize sign issues we will perform most of our computations using curved 
pseudo-compact algebras.

Definition 2.13. A split curved coalgebra is a pair (C, ε) such that

• C = (C, Δk, εk, d, hk) is a curved coalgebra (over k),
• the restriction of d to the coradical C0 ↪→ C is zero,
• ε : C → C0 is a coalgebra map compatible with the differential d, which is left inverse 

to i.

We will often write simply C for (C, ε) when it does not cause confusion.

It follows from coassociativity that Δk factors as C Δ−→ C �C0 C → C ⊗ C. Thus, 
Δ : C → C �C0 C exhibits C as a comonoid in the C0-bicomodules. The inclusion 
C0 ↪→ C provides a coaugmentation of this comonoid. The differential d is compatible 
with the C0-bicomodule structure and the comonoid structure given by Δ and ε. Note 
also that there is automatically a curvature h with values in C0, obtained by factorizing 
the curvature hk : C → k as ε ◦ (hk ⊗ idC0) ◦ ρC : C → C ⊗C0 → k⊗C0 → k, where ρC
is the right coaction. We define h as (hk ⊗ idC0) ◦ ρC .

Dually, a split curved pseudocompact algebra (A, u) consists of a curved pseudocom-
pact algebra A with maximal semisimple quotient A0, a splitting u : A0 → A of the 
quotient map and a structure of A as a monoid in A0-bicomodules, satisfying the dual 
conditions to Definition 2.13.

Definition 2.14. A morphism (f, a) : (C, ε) → (D, δ) of split curved coalgebras consists 
of

• a morphism (f, ak) of curved coalgebras
• a factorization of ak as the composition C a−→ D0 → k

such that

• δ ◦ f = f ◦ ε,
• f and a are D0-bicomodule maps,

where the D0-bicomodule structure on C is induced by f : C0 → D0.
The composition is then defined as

(g, b) ◦ (f, a) = (g ◦ f, b ◦ f + g ◦ a).
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The category of split curved coalgebras will be denoted by spCoa.

Note that the zero coalgebra, equipped with the zero map to itself, gives us an initial 
object (0, 0) in spCoa.

Furthermore, if (C, ε) is a split curved coalgebra then we call (C∗, ε∗) a split curved 
pseudocompact algebra. A map (A, u) → (B, v) of split curved pseudocompact algebras 
is of the form (f, b) with f : A → B and b : A0 → B of degree 1 satisfying all the 
compatibilities derived from 2.14. Composition is given by (g, b) ◦(f, a) = (g◦f, b ◦f+g◦a).

Dualization induces a contravariant equivalence of categories between split curved 
coalgebras and split curved pseudocompact algebras. Therefore we denote the latter 
category by spCoaop. We will liberally use this equivalence as computations are usually 
much easier to perform for pseudocompact algebras.

We will also consider comodules over split curved coalgebras; these are nothing but 
comodules over the underlying curved coalgebra, cf. [23, Section 4.1].

Definition 2.15. Let C be a split curved coalgebra. A left C-comodule is a graded k-
module M endowed with a endomorphism dM of degree 1 such that

• There is a coaction map M → C ⊗M compatible with dC and dM ,
• For all m ∈ M we have d2(m) = h ∗m where ∗ is the action of the pseudocompact 

algebra (C∗)op on M corresponding to the coaction of C on M .

Given two left C-comodules M and N we denote by HomC(M, N) the complex of C-
homomorphisms between them. It is given by the graded vector space of homomorphisms 
from M to N which are compatible with differential and coaction. The differentials on 
M and N induce the differential on HomC(M, N) which squares to zero (even if dM and 
dN do not). Thus left C-comodules form a dg category which we denote by C-Comod.

Remark 2.16. Note that a comodule over a split curved coalgebra C is a C0-comodule 
as C is a C0-bicomodule.

2.3. Categories as semialgebras

Next we show that (small) dg categories can be understood as semialgebras.
Let S be a set and k[S] be its linearization, i.e. the free k-module with S as a basis. It 

has a (cosemisimple) coassociative, cocommutative coalgebra structure with Δ(s) = s ⊗s

for any s ∈ S. Then S can be recovered from k[S] as the set of grouplike elements, and 
coalgebra homomorphisms k[S] → k[T ] correspond to maps of sets S → T .

We now observe that the data of a small dg category C over k is equivalent to a 
semialgebra of the form (VC, k[S]). The set of objects of C is given by S. A dg functor 
C → D is a homomorphism of the corresponding semialgebras.
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Proposition 2.17. The category of semialgebras of the form (V, k[S]) is equivalent to the 
category of small dg categories.

Proof. Given a set S and a dg k[S]-bicomodule V together with a monoid structure map 
V �k[S)] V → V , we construct a dg category C by setting Ob(C) = S. Note that for any 
s ∈ S the inclusion {s} ⊂ S determines an inclusion of coalgebras k ↪→ k[S] and thus, 
the structure of a k[S]-comodule on k; we will denote it by ks. Then for s1, s2 ∈ Ob(C)
set Hom(s1, s2) := ks1 �k[S] V �k[S)] ks2 . The composition Hom(s1, s2) ⊗Hom(s2, s3) →
Hom(s1, s3) is determined by the monoid structure on V .

Conversely, given a dg category C with a set of objects Ob(C), we define

VC :=
⊕

s1,s2∈Ob(C)

Hom(s1, s2).

The space V has a natural structure of a k[Ob(C)]-bicomodule VC → k[Ob(C)] ⊗ VC ⊗
k[Ob(C)] defined on each summand by the composition

Hom(s1, s2) ↪→ VC ∼= ks1 ⊗ VC ⊗ ks2 → k[Ob(C)] ⊗ VC ⊗ k[Ob(C)].

The monoid structure on VC is determined by the composition in C.
The statement about the functors is likewise straightforward. �

Remark 2.18. The reader should note, that our convention for the composition of maps 
sends (f, g) to f ◦ g rather than to g ◦ f (which is the usual convention in category 
theory). This is more natural in the context of bicomodules.

We note that the semialgebra corresponding to a dg category is split if and only if all 
its endomorphism spaces contain non-zero morphisms.

Let C be a dg category represented by a semialgebra (VC, k[S]). We will call a left 
(VC , k[S])-semimodule simply a C-module.

Recall that given a dg category C, a (dg) C-module is usually defined as a k-linear 
functor C → dgVect. This agrees with our nomenclature:

Proposition 2.19. The data of a dg functor C → dgVect is equivalent to that of a left 
(VC , k[Ob(C)])-semimodule.

Proof. Let C be a dg category and (VC, k[S]) be its corresponding semialgebra. Given a 
(VC , k[S]) -semimodule M with a structure map VC �k[S] M → M and s ∈ S = Ob(C)
we define a functor F : C → dgVect by F (s) = ks �k[S] M . For two objects s, t ∈ S the 
semi-action map VC �k[S] M → M restricts to

(kt �k[S] VC �k[S] ks) ⊗ (ks �k[S] M) → kt �k[S] M
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which can be rewritten as HomC(s, t) ⊗ F (s) → F (t) or HomC(s, t) → Hom(F (s), F (t)). 
A straightforward inspection shows that this map preserves compositions and identities.

Conversely, given a dg functor C → dgVect we define M :=
⊕

s∈S F (s); then clearly M
is naturally a (left) k[S]-bicomodule and for s, t ∈ S the homomorphisms HomC(s, t) →
Hom(F (s), F (t)) combine to give a semi-action map VC �k[S] M → M . �
Remark 2.20. For an earlier appearance of categories as monoids (but not as bicomod-
ules) see Section 5 of [17].

3. Koszul duality for categories

3.1. Bar and cobar construction for (co)algebras

We begin by reviewing the Koszul duality between dg algebras and curved conilpotent 
coalgebras following Positselski [23].

We denote by dgAlg the category of dg algebras over k and by dgAlg/k the category of 
augmented dg algebras. Next, dgCoaconil is the category of conilpotent dg coalgebras and 
cuCoaconil is the category of conilpotent curved coalgebras and cuCoaconil

∗ the category 
obtained from cuCoaconil by adding a final object ∗. Let i : dgCoaconil → cuCoaconil be 
the inclusion functor.

There is a model structure on cuCoaconil
∗ and the following theorem holds.

Theorem 3.1. The (reduced) cobar and bar construction provides adjunctions

Ω : cuCoaconil
∗ � dgAlg : B

and

Ωi : dgCoaconil � dgAlg/k : B

Composing with the adjunction U : dgAlg/k � dgAlg : (−) ⊕ k we obtain another 
adjunction

UΩ : dgCoaconil � dgAlg : Bnr

between the reduced cobar and the nonreduced bar construction Bnr = B(− ⊕ k).
Moreover, all of these adjunctions are Quillen if we choose suitable model struc-

tures. �
The construction of the adjunctions can be found in Section 6.10 in [23].
A model structure on curved coalgebras is discussed in Section 9.3 of [23]. Positselski 

does not consider dgAlg with its usual model category structure on the right hand side, 
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but one may modify his construction of the model structure on curved coalgebras in a 
natural way.

We note that the reduced bar construction is not defined on the dg algebra 0, which is 
the final object in dg algebras. This may be remedied by defining B(0) = ∗ and Ω(∗) = 0
by hand.

Then we may define the model structure on cuCoaconil by defining cofibrations and 
weak equivalences by their images under the functor Ω. Compared to Positselski’s model 
structure on cuCoaconil this only changes which maps to the final object are considered 
cofibrations and weak equivalences. This issue will be revisited when we generalize to 
pointed curved coalgebras in Section 3.7.

It follows from the proof of the theorem that morphism spaces in these adjunctions 
can be expressed as Maurer-Cartan sets.

Lemma 3.2. Let A ∈ dgAlg/k and C ∈ dgCoaconil be given. Write A for the kernel of the 
augmentation and C for the cokernel of the coaugmentation. Then we have

HomdgAlg/k(Ω(C), A) ∼= MC(Hom(C,A)) ∼= HomdgCoaconil(C,B(A)).

Let now A ∈ dgAlg and C ∈ cuCoaconil. Then we have

HomdgAlg(Ω(C), A) ∼= MC(Hom(C,A)) ∼= HomcuCoaconil(C,B(A)).

Applying the first equivalences to A ⊕ k we have

MC(Hom(C,A)) ∼= HomdgCoaconil(C,Bnr(A)) ∼= HomcuCoaconil(C,B(A)). �
We will abuse notation and identify Ω, UΩ and Ωi.
We will see in Corollary 3.7 that the inclusion i : dgCoaconil → cuCoaconil

∗ has a 
right adjoint H. It follows immediately that there is a natural isomorphism of functors 
H ◦ B ∼= Bnr, as these are both right adjoint to Ω ◦ i. We may then summarize the 
situation in the following diagram which is commutative in the sense that the two paths 
formed by composing left adjoint functors lead to isomorphic functors and similarly for 
right adjoint functors.

dgAlg/k
B

U

dgCoaconilΩ

i

dgAlg
B

⊕k
Bnr

cuCoaconilΩ

H
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3.2. Uncurving

The inclusion of dg coalgebras in curved coalgebras admits a right adjoint, called the 
‘uncurving’ functor. We will begin by explicitly constructing the uncurving functor for 
curved algebras. The same construction will apply to curved pseudocompact and split 
curved pseudocompact algebras and thus, by dualization to (split) curved coalgebras.

Definition 3.3. Given a curved algebra A we define the associated (uncurved) dg algebra 
HA as follows. The underlying graded algebra of HA is A〈η〉 where η is an element of 
degree 1. The differential dH on HA is defined by the formulas:

(1) dHa = da − [η, a], a ∈ A ⊂ HA.
(2) dH(η) = h − η2.

To motivate this definition let us consider first A〈η〉 with differential d on A ⊂ A〈η〉
and such that h −dη+η2 = 0. It is easy to see that A〈η〉 is still a curved algebra with the 
same curvature h as A and that −η is an MC element in it, i.e. it satisfies the equation 
h + d(−η) + (−η)2 = 0. Thus HA is the twisting of A〈η〉 by −η and, as such, is a dg 
(uncurved) algebra.

Remark 3.4. In fact, a simple computation shows that the data (A, d, h) (where A is a 
graded algebra, d a derivation of degree 1 and h ∈ A2) forms a curved algebra if and 
only if HA is a dg algebra, i.e. dH squares to 0.

Given another curved algebra B and a curved map (f, b) : A → B the induced 
map fb : HA → HA is equal to f : A → B ⊂ HB when restricted to A ⊂ HA and 
fb(ηA) = b + ηB .

Lemma 3.5. fb is a dg map.

Proof. Let a ∈ A ⊂ HA. Then

dHBfb(a) = dBf(A) − [ηB , f(a)].

Furthermore,

fb(dHAa) = fb(dAa− [ηA, a]) = f(dAa) − [fb(ηA), f(a)] = f(dAa) − [b + ηA, f(a)]

and taking into account condition (1) of Definition 2.10, we conclude that dHBfb(a) =
fb(dHAa).

Similarly we have

dHBfb(ηA) = dηB (b + ηB) = dBb− [ηB , b] + hB − η2
B
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Furthermore,

fb(dHA(ηA)) = fb(hA − η2
A) = f(hA) − (b + ηB)2 = f(hA) − b2 − [b, ηB ] − η2

B

and taking into account condition (2) of Definition 2.10 and the identity [b, ηB] = [ηB , b], 
we conclude that dHBfb(ηA) = fb(dHA(ηA)). �

If (A, u) is a split curved pseudo-compact algebra the same arguments go through: The 
underlying pseudocompact algebra for HA is A〈〈η〉〉 obtained from A by freely adjoining 
a power series generator η. The splitting is given by composing u with the inclusion 
A → A〈〈η〉〉. The differential dH is defined by the same formula as above and Lemma 3.5
holds with the same proof. In the rest of this subsection we will formulate and prove 
results for curved algebras but they have obvious versions, with the same proofs, in the 
split pseudocompact case.

Proposition 3.6. The uncurving functor A �→ HA, (f, b) �→ fb is left adjoint to the 
inclusion functor from dg algebras to curved algebras.

Proof. Let B be a dg algebra. Then a dg algebra map f : HA → B is determined by a 
map f̃ : A → B and the image of η in B that we denote by b ∈ B. We claim that (f̃ , b)
is a curved map A → B. Indeed, for x ∈ A we have f(dHx) = f(dx − [η, x]) = df(x) or 
f̃(dx) = [b, f̃(x)] + df(x).

Similarly, f(dHη) = f(h − η2) = f(h) − b2 = d(b). Our claim is proved. �
The following result is immediate by the duality between coalgebras and pseudocom-

pact algebras.

Corollary 3.7. The inclusion of (split) dg coalgebras into (split) curved coalgebras has 
right adjoint. We will denote this functor by the same symbol H as in the algebra case. �
Remark 3.8. It follows from Proposition 3.6 that for a curved algebra A there is a 
canonical curved map A → HA such that any curved map from A into a dg algebra 
factors through it. This map has the form (iA, η) where iA is the natural inclusion 
A ⊂ HA ∼= A〈η〉.

We see that curved maps A → B where the target B is uncurved are described solely 
in terms of uncurved maps. We will see that a similar description can be obtained for 
arbitrary curved maps.

Proposition 3.9. The set of curved maps (f, b) : A → B between curved algebras A and B
is naturally identified with the subset of dg maps fb : HA → HB such that fb(a) = f(a)
for a ∈ A and fb(ηA) = b + ηB.
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Proof. Given a curved map (f, b) : A → B we saw that the map fb : HA → HB is 
a dg map. Conversely, if fb is a dg map then repeating the calculation in the proof of 
Lemma 3.5 in the opposite direction, we find that (f, b) is a curved map A → B as 
required. �

It is also possible to understand MC elements for curved algebras in terms of their 
uncurving. Recall that for a curved algebra (A, d, h), an element a ∈ A1 is MC if it 
satisfies the equation h + da + a2 = 0.

Proposition 3.10. Let A be a curved algebra. Then a ∈ A is MC if and only if a +η ∈ HA

is MC.

Proof. We have

dη(a + η) = da− [η, a] + h− η2.

Similarly

(a + η)2 = a2 + [a, η] + η2.

Taking into account that [η, a] = [a, η], we conclude that dη(a + η) + (a + η)2 = 0 if and 
only if h + da + a2 = 0. �
3.3. The bar construction for semialgebras

We will now generalize the bar-cobar adjunction in order to extend it to dg categories.
The natural generality in which the Koszul adjunction holds is the category of split 

semialgebras on one side and that of split curved coalgebras on the other, see Defini-
tions 2.6 and 2.13. We will thus first prove the adjunction in this case before specializing
to dg categories and pointed curved coalgebras.

Note that when a ‘ground’ cosemisimple coalgebra R is fixed and finite-dimensional 
(and so gives rise by dualization to a semisimple finite-dimensional algebra), then this 
adjunction, in the augmented and noncurved case, was considered in [33]. However, in 
order for it to be applicable to dg categories, it is essential to work over non-fixed, 
possibly infinite-dimensional, cosemisimple coalgebras.

We would like to define a reduced bar construction following Section 6.1 of [23]. 
However, it is technically easier to begin with the non-reduced bar construction.

Definition 3.11. Let (A, R) be a semialgebra. Then the non-reduced bar construction on 
A is the split dg coalgebra

Bnr(A) = Bnr(A,R) := (TRA[1],m1 + m2)
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with coradical R. Here TR is formed using the iterated cotensor product over R, i.e.

TRV = R⊕ V ⊕ (V �R V ) ⊕ (V �R V �R V ) ⊕ . . . ,

the splitting is given by projection to the first factor and the differential is induced by 
multiplication and differential on A: m2 is defined as sb1⊗sb2 �→ (−1)|b1|+1(sb1.b2) while 
m1 is defined by the differential sa �→ −sdAa on A.

The coproduct is given by deconcatenation. The inclusion of R is a coaugmentation.

The computation verifying that m1 + m2 squares to zero is the same as in the non-
relative case. The details are spelled out for example in Section A.1 of [1].

Dually we can consider B∗
nr(A) := Homk(Bnr(A), k) as a pseudocompact algebra in 

bimodules over the pseudocompact algebra R∗. This may be written as T̂R∗A∗[−1]. Here 
T̂ is the completion of the tensor algebra in bimodules over R∗ so that

B∗
nr(A) ∼= R∗ ×

∞∏
n=1

(A∗[−1])⊗̂R∗n.

If now (A, v) is split, with v : A → R a retract of the unit u : R → A (as R-
bicomodules), then v determines an isomorphism Bnr(A) ∼= HBv(A) with the uncurving 
of a certain split curved coalgebra. This Bv(A) will be the non-reduced bar construction 
of A.

To explain this, we will perform this construction for the duals. As a preparation, let 
(A, u) be a split graded pseudocompact algebra; recall that u : A0 → A is a section of 
the quotient map from A onto its maximal semisimple quotient. Consider A〈〈η〉〉, the 
graded pseudocompact algebra obtained by freely adjoining a power series variable η in 
degree 1. Then the splitting u induces a splitting R → A〈〈η〉〉 → R that we denote, by 
an abuse of notation, by the same symbol u, making (A〈〈η〉〉, u) a split pseudocompact 
algebra.

Suppose we are given a split dg pseudocompact algebra whose underlying graded is 
of the form (B, u) = (A〈〈η〉〉, u). Following Definition 3.3 we define

dA(a) = dBa + [η, a]

h = dη + η2.

Let us assume that h ∈ A2 and that dA is an endomorphism of A of degree 1. Then 
we have the following result. It allows one to recognize dg algebras of the form HA for a 
curved algebra A.

Lemma 3.12. The endomorphism dA makes A into a curved pseudocompact algebra with 
curvature h and B ∼= HA.
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Proof. Consider the twisted algebra Bη = (B, dη) with differential dη = d + [η, −]. This 
is a curved algebra with the curvature element h = dη + η2. The twisted differential 
restricts to dA on A. By assumption A is a curved subalgebra, completing the proof. �
Proposition 3.13. Let (A, R) be a split semialgebra, choose a splitting v : A → R giving a 
decomposition A ∼= Ā⊕R. Then there is a structure of a curved pseudocompact algebra 
on T̂R∗Ā∗[−1] such that HT̂R∗Ā∗[−1] ∼= B∗

nr(A, R).

Proof. Denote the element in A∗[−1] ∼= Ā∗[−1] ⊕k∗[−1] dual to −1 ∈ A by η; thus there 
is an isomorphism of graded pseudocompact algebras

B∗
nr(A,R) ∼= T̂R∗Ā∗[−1] ∼= T̂R∗Ā∗[−1]〈〈η〉〉.

The differential in B∗
nr(A, R) is determined by its values on Ā∗[1] and on η and it is easy 

to see that it has the following form:

dB∗
nrA(t) = Y (t) − [η, t]

dB∗
nrA(η) = X − η2

where t ∈ Ā∗[−1] and Y (t), X ∈ T̂R∗Ā∗[−1] (more precisely, Y (t) and X are sums of 
quadratic monomials in Ā∗[1] but this is unimportant for the argument). Note that a 
similar argument was employed in [16, Proposition 3.8] in the context of A∞ algebras.

In particular dB∗
nr(A) + [η, −] preserves TR∗Ā∗[−1] and applying Lemma 3.12 we see 

that the twisted differential dBnr
+ [η, −] makes T̂R∗Ā∗[−1] into a curved algebra with 

curvature element X. It is also clearly split. �
Definition 3.14. Given a split semialgebra (A, R) with v : A → R a retract of the unit map 
u : R → A (as R-bicomodules) we let Ā = A/R ∼= ker(v). Then the dual bar construction
on (A, R) is the split curved pseudocompact algebra structure on TRĀ

∗[−1] constructed 
in Proposition 3.13. The splitting is given by the natural inclusion R∗ → TR∗A∗[−1]. 
The dual bar construction will be denoted by B∗

v(A, R) or B∗
v(A).

The dual split curved coalgebra structure on TRĀ[1] is called the bar-construction of 
(A, R). The splitting is given by the natural projection TRA[1] → R. The bar construction 
will be denoted by Bv(A, R) or Bv(A).

Remark 3.15. One can of course define differential m1 +m2 and curvature h1 +h2 of the 
reduced bar construction directly.

We write A = Ā ⊕ R and decompose differential and product as dA = dĀ + dR and 
μA = μĀ + μR.

The differential m2 is defined on Ā⊗ Ā by sb1 ⊗ sb2 �→ (−1)|b1|+1sμĀ(b1 ⊗ b2) while 
m1 is defined by the differential sa �→ −sdĀa on Ā.

The curvature h : TRV → R is induced by μR and dR via h2(sb1 ⊗ sb2) =
(−1)|b1|+1μR(b1 ⊗ b2) and h1(sb) = −dR(b).
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To compare this expression with the above computation note that by Proposition 3.13
the curvature is determined by the differential of the variable η in the non-reduced 
bar construction. Since η is dual to −1 this differential is determined by the image of 
multiplication and internal differential in the ground ring, i.e. μR and dR.

The patient reader may check by hand that this defines a curved coalgebra, invariant 
under choice of v and adjoint to the cobar construction to be constructed below. The 
point of our more indirect definition is to avoid these tedious computations in favor of 
the friendlier ones in Proposition 3.13.

An example of coalgebraic computations of the curved bar construction in the context 
of operads is given in Section 3.3 of [14].

Another computation simplified by the relation Bnr = HBv is the following.

Lemma 3.16. The bar construction is functorial.

Proof. For morphisms compatible with the retract this is clear. It remains to compare 
the bar constructions for two different retracts v, w : A → R. The underlying graded 
pseudocompact algebras are easily identified and we claim that (idB∗(A), v∗ − w∗) is an 
isomorphism of curved pseudocompact algebras B∗

v(A) ∼= B∗
w(A).

From Definition 3.14 it is clear that HB∗
v(A) ∼= HB∗

w(A) are isomorphic, the only 
difference is the indeterminate, which is v∗ respectively w∗. We apply Proposition 3.9: 
(id, v∗ − w∗) is a curved algebra map if idv∗−w∗ is a dg map. But idv∗−w∗ acts as 
v∗ �→ w∗ + (v∗ − w∗) i.e. is the identity map. �

As the isomorphism Bv(A) ∼= Bw(A) is canonical, we can drop the subscript v from 
our notation.

3.4. The cobar construction of a split curved coalgebra

Definition 3.17. Given a split curved coalgebra (C, ε) we define its (reduced) cobar con-
struction as follows. Let C̄ be the cokernel of the inclusion C0 → C. The splitting 
C = C̄ ⊕ C0 allows us to decompose coproduct, differential and curvature. We write 
ΔC̄ : C̄ → C̄ ⊗ C̄ and dC̄ : C̄ → C̄ and hC̄ : C̄ → C0 for the induced maps.

Then the cobar construction on C is the semialgebra

Ω(C) := Ω(C, ε) := (TC0C̄[−1],m0 + m1 + m2)

where TC0 is again the iterated cotensor product over C0, The differential is defined on 
C̄ by s−1c �→ m0(s−1c) + m1(s−1c) + m2(s−1c) with m0(s−1c) = +s−1hC̄ , m1(s−1c) =
−s−1dC̄(c) and m2(s−1c) = −(−1)|c(1)|s−1c(1) ⊗ c(2). Here the Sweedler notation refers 
to the comultiplication ΔC̄ .

The product is given by concatenation. Ω(A) is split via the natural map TC0C̄[−1] →
C0.
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For a split curved pseudocompact algebra (A, u) we will denote by Ω(A, u) or Ω(A)
the cobar construction on the dual split curved coalgebra (A∗, u∗).

As C0 ⊂ C is a coaugmentation there is no curvature term (we check below that the 
differential does indeed square to 0).

We note that the cobar construction makes sense over the zero coalgebra. In this case 
C, C0 and C̄ = C/C0 are all equal to the zero coalgebra. Then the tensor algebra is 0 in 
every degree (including T 0 = C0) and we have Ω(C) = 0, the zero semialgebra over the 
zero coalgebra, corresponding to the empty dg category.

We need to check that Ω(C) is in fact differential graded.

Lemma 3.18. We have (m0 + m1 + m2)2 = 0.

Proof. We check that the constant, linear, quadratic and cubic term of (m0 +m1 +m2)2
all equal 0. The equation for the cubic term m2

2 = 0 is coassociativity of C and the 
quadratic equation [m1, m2] = 0 expresses the fact that dC is a coderivation. These 
equations do not involve the curvature. Detailed derivations can be found in Section A.2 
of [1].

To consider the equations involving curvature, we denote by (A, d, h) the pseudocom-
pact dual of C. We write m̌i for the dual of mi.

Then constant term [m̌0, m̌1] = 0 is equivalent to d(h) = 0 and the quadratic term 
m̌2

1 + [m̌0, m̌2] = 0 is equivalent to the condition d2x = [h, x].
We spell out the check for the latter assertion. Fix x ∈ A and evaluate [m0, m2] on 

s−1x ∈ A[−1].

[m0,m2](s−1x) = 0 + m2(s−1h⊗ s−1x + (−1)|s
−1x|s−1x⊗ s−1h)

= −(−1)|h|s−1(hx) − (−1)|x|+|s−1x|s−1(xh)

= −s−1(hx− xh) = −s−1[h, x]

As it is clear that m̌2
1(s−1x) = s−1d2(x) this completes the proof. �

Lemma 3.19. The reduced cobar construction is a functor spCoa → SemiAlgsp.

Proof. We will construct a contravariant functor on the opposite category of spCoa, 
writing Ω(A) for Ω(A∗) etc. whenever A is a split curved pseudocompact algebra.

Let (f, b) : (A, u) → (B, v) be a map of split curved pseudocompact algebras. We note 
that b : A0 → B is an A0-bimodule map, so we may consider it as an element of B, and 
thus also as a map b : B0 → B.

Using this we may factor (f, b) as (idB , b) ◦ (f, 0), as one does in the absolute case, 
and deal with the cases b = 0 and f = id separately.

We first note that f∗ : B∗ → A∗ induces a morphism of cobar constructions by 
extending to the tensor algebras, and this is the map induced by (f, 0).



22 J. Holstein, A. Lazarev / Advances in Mathematics 409 (2022) 108644
Next we describe the morphism of cobar constructions induced by the change of curva-
ture map (id, b) : (A, dA, hA) → (B, dB , hB). Here A ∼= B as split graded pseudocompact 
algebras (and so A0 = B0) but d and h vary.

The conditions for (id, b) to be a curved map are simplified to dA(x) = dB(x) +[b, x] =
0 for any x ∈ A and hA = hB + db + b2 = 0.

We write R for A0 = B0 and denote by V the graded R-bimodule underlying both Ā
and B̄ and consider the cobar-construction TRV

∗[−1].
We define Ω(id, b) to be the affine automorphism β of TRV

∗[−1] that is defined on 
any linear generator v∗ ∈ V ∗[−1] by β(v∗) = v∗ + v∗(s−1b) and then extended uniquely 
to a (multiplicative) automorphism of TRV

∗[−1]. To analyze β we consider the constant 
derivation ξ induced by s−1b on TRA

∗[−1], i.e. ξ : v∗ �→ v(b).
If the ground field k has characteristic 0, we have that β = eξ since the two maps 

are multiplicative automorphisms of TRV
∗[−1] taking the same value on V ∗[−1]. In 

general, even though eξ has factorials in the denominators, all denominators clear when 
applying eξ to word monomials inside TRV

∗[−1] and then the corresponding map can 
be linearly extended to the whole of TRV

∗[−1]. So we can still formally write eξ for the 
automorphism β of TRV

∗[−1].
It remains to show that eξ is compatible with the differentials mA∗ and mB∗ which 

we write as mA∗ = mA
0 + mA

1 + mA
2 and mB∗ = mB

0 + mB
1 + mB

2 . We need to check 
eξmB∗ = mA∗eξ or eξmB∗e−ξ = mA∗ . Note that

eξmB∗e−ξ = ead ξmB∗ = mB∗ + [ξ,mB
0 + mB

1 + mB
2 ] + 1

2! [ξ, [ξ,m
B
0 + mB

1 + mB
2 ]].

The higher degree components are absent since [ξ, −] lowers the tensor degree by one 
and mB∗ has no terms of degree higher than two.

The degree 2 component of the above formula is mB
2 so we must have mA

2 = mB
2 . In 

other words, the multiplication on A is the same as the multiplication on B.
The degree 1 component is mB

1 + [ξ, mB
2 ] so we must have mB

1 + [ξ, mB
2 ] = mA

1 . 
Dualizing we see that this is true if and only if dA = dB + [b, −] since

[ξ,mB
2 ](v∗)(sx) = v(m∗

2(ξ∗sx))

= v(m∗
2(sb⊗ sx + (−1)|sb||sx|sx⊗ sb))

= v(−(−1)|b|s(b.x) − (−1)|x|)s(x.b))

= v(s(b.x− (−1)|x|x.b)) = v(s[b, x])

Finally the degree zero component is mB
0 + [ξ, mB

1 ] + 1
2! [ξ, [ξ, m

B
2 ]] so we must have 

mB
0 + [ξ, mB

1 ] + 1
2! [ξ, [ξ, m

B
2 ]] = mA

0 . But this corresponds exactly to hB + db + b2 = hA

in the formula for the curved map. This follows as we have seen that [ξ, mB
2 ] is the 

derivation of degree 1 of TRV
∗[−1] corresponding to the operator [b, −] in B, and then 

[ξ, [ξ, mB
2 ]] corresponds to [b, b] = 2b2.
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Thus, we define Ω by sending (f, b) to the map defined by f∗ on B∗
0 and by v∗ →

f∗(v∗) + v(s−1b) on B̄∗[−1]. Note that v(s−1b) : A0 → B → k is an element in A∗
0 ⊂

Ω(A).
We check that Ω is a contravariant functor: Let (f, b) : A → B and (g, c) : B → C be 

maps of split curved pseudocompact algebras. Then on v∗ ∈ C∗[1] we have:

Ω(f, b) ◦ Ω(g, c)(v∗) = Ω(f, b)(g∗(v∗) + v(c))

= (gf)∗(v∗) + f∗g∗v∗(s−1b) + f∗v(c)

= Ω(gf, cf + gb)(v∗)

This completes the proof. �
Remark 3.20. Of course the definition of curved coalgebras and their morphisms is chosen 
exactly so that Lemmas 3.18 and 3.19 hold. In fact, one could define a curved coalgebra 
to be a triple (C, d, h) such that dΩC squares to zero, and a morphism to be a pair (f, a)
such that Ω(f, a) is compatible with the differential.

If we fix R = k then these constructions reduce to the bar and cobar construction for 
curved conilpotent coalgebras and dg algebras.

3.5. Koszul adjunction

We can also define MC elements for the convolution algebra Hom(C, A) as in the 
conilpotent case. We will restrict to MC elements that vanish on the coradical of C.

Definition 3.21. Given C ∈ spCoa and (A, S) ∈ SemiAlgsp we define

MC(C,A) := �fO:C0→S MC(HomS(C̄, A)).

Here we take the coproduct over coalgebra homomorphisms, each such fO makes C̄ into 
S-bicomodules, and HomS denotes morphisms in S-bicomodules. Then HomS(C̄, A) is 
a curved convolution algebra. For f, g : C̄ → A we define the product f ∗ g : c �→
(−1)|g||c(1)|f(c(1))g(c(2)). Moreover we define df : c �→ dA(fc) − (−1)|f |(dCc) and a 
curvature h : c �→ −fO ◦ hC(c).

The MC condition on HomS(C, A) is the curved MC condition, i.e. the MC elements 
are all ξ : C̄ → A such that dξ + ξ ∗ ξ + h = 0.

Remark 3.22. When C0 = S = k we have that C is just an conilpotent curved coalgebra 
and S is a dg algebra. In that case MC elements in the convolution (curved) algebra are 
alternatively called twisting cochains. This terminology is adopted in [23].
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Theorem 3.23. There is an adjunction

Ω : spCoa � SemiAlgsp : B.

In fact, for any C ∈ spCoa and A ∈ SemiAlgsp we may write:

HomspCoa(C,BA) ∼= MC(C,A) ∼= HomSemiAlgsp(ΩC,A)

Proof. The proof follows the conilpotent case. Fix C ∈ spCoa and (A, S) ∈ SemiAlgsp.
We begin with the equivalence on the right. We may decompose the morphism space 

of semialgebras as a disjoint union over coalgebra homomorphisms. We may write the 
cobar construction as (ΩC, C0). We have

Hom((ΩC,C0), (A,S)) = �fO:C0→S HomS(ΩC,A)

where we take Hom in dg algebras which are S-bicomodules. This makes sense as fO
makes ΩC into a S-bicomodule. This matches with the decomposition in the definition 
of MC(C, A), so we may compare each component.

Now consider a map from TC0C̄[−1] to A. As we have fixed fO : C0 → S this factors 
uniquely through the free monoid in S-bicomodules TSC̄[−1], and it follows that a map 
ΩC → A is determined by a degree 1 map C̄ → A. Now the condition that f commutes 
with differentials is

dA ◦ f = f ◦ (m0 + m1 + m2),

which we may spell out as

dA ◦ φ = fO ◦ hC − φ ◦ dC − (−1)|c(1)|φ(c(1)).φ(c(2)),

which is in turn equivalent to the MC equation dφ + φ ∗ φ + h = 0 where h = −fO ◦ hC .
The equivalence on the left is technically a little more complicated.
Again we decompose the hom space of split curved coalgebras as a disjoint union over 

coalgebra homomorphisms. We have and we have

Hom(C,BA) = �gO:C0→S HomS(C,BA)

where we take Hom in S-coalgebras, i.e. curved coalgebras which are S-bicomodules. 
This matches with the decomposition in the definition of MC(C, A), so we may compare 
each component.

Now TSĀ[1] is cofree as a conilpotent coalgebra in S-bicomodules by the lemma in 
Section 1.2 of [34]. Explicitly, a coalgebra map f : C → TSĀ[1] is given by a coalgebra 
map C → S and an S-bicomodule map C → Ā[1].

The first map is just the composition of the counit C → C0 with f .
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The second map is equivalent to a map φ : C̄ → Ā of degree 1. To see this we note 
that by assumption C0 is cosemisimple. Thus by compatibility with the coproduct C0 is 
mapped to S ⊂ TSĀ[1] and the map C → Ā[1] is induced by φ.

It remains to unravel that curved coalgebra maps are exactly those such that φ satisfies 
the MC condition. One may just check this by hand, but in particular the signs are rather 
unpleasant.

To simplify this computation we uncurve the (nonunital) curved algebra structure on 
HomS(C̄, A). We dualize and consider (f, c) ∈ Hom(B∗A, C∗), which by Proposition 3.9
and Definition 3.14 is the same as a map fc : B∗

nr(A) → HC∗ that send a to f(a) and 
ηB∗A to ηC∗ + c.

As B∗
nr(A) is free on A the map fc is represented by an element φ : A∗ → HC̄∗. 

Here we use that the kernel of the augmentation map on HC∗ is HC̄∗. The standard 
computation for the bar construction of an augmented algebra shows that fc is dg if and 
only if φ is an MC element in Hom(A∗, HC̄∗) ∼= A ⊗ HC̄∗. See for example Section A.3 
in [1]; the computation is unaffected by working in S-bicomodules.

Moreover, the MC element φ takes the form φ′+idA ⊗ηC∗ ∈ A ⊗HC̄∗. But A ⊗HC∗ ∼=
H(A ⊗ C∗) and ηA⊗C∗ is idA ⊗ηC∗ . Thus by Lemma 3.10 it is identified with an MC 
element in A ⊗ C. �
3.6. The bar construction of a dg category

Given a dg category D we consider it as a semialgebra (VD, k[Ob(D)]) as in Propo-
sition 2.17. We can then define the bar construction of D, denoted B(D) as the split 
curved coalgebra B(VD, k[Ob(D)]).

Here coradical of B(D) is k[Ob(D)], and thus the bar construction is an example of a 
pointed curved coalgebra.

Example 3.24. Consider a graded quiver Q and associate a dg category DQ to it as follows. 
The collection of objects of D coincides with the vertices of Q and morphisms between 
objects O1 and O2 is the graded vector space spanned by the set of corresponding arrows 
together with identity morphisms if O1 = O2. All compositions not involving the identity 
morphisms are zero, as well as the differentials. Then B(D) is called the path coalgebra
of the quiver Q; note that it has the zero differential. Note that in the case when Q has 
only one vertex, B(D) is just the cofree (conilpotent) coalgebra on the set of arrows of Q. 
In general, B(D) it is known to be hereditary, i.e. the abelian category of its comodules 
has homological dimension not greater than 1, cf. [27, Proposition 8.13] or [6, Theorem 
4].

Definition 3.25. A pointed curved coalgebra is a split curved coalgebra whose coradical 
is a direct sum of copies of k. Its dual pseudocompact algebra will be referred to as a 
pointed curved pseudocompact algebra.
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By analogy with categories we denote by Ob(C) the set of grouplike elements of a 
pointed dg coalgebra. Then the coradical of C is k[Ob(C)].

We note that any morphism C → C ′ of pointed dg coalgebras induces a morphism 
Ob(C) → Ob(C ′).

We denote the full subcategory of spCoa formed by pointed curved coalgebras by 
ptdCoa. We then have the following proposition, which is the bar-cobar adjunction for 
dg categories.

Proposition 3.26. There is an adjunction Ω : ptdCoa � dgCat : B induced by equivalences 
Hom(ΩC, D) ∼= MC(C, D) ∼= Hom(C, BD).

Proof. We restrict the bar-cobar adjunction from Theorem 3.23 to the subcategories 
dgCat ⊂ SemiAlgsp and ptdCoa ⊂ spCoa.

Our discussion above shows that the functor B lands in pointed curved coalgebras. 
Conversely Ω(C) is a semialgebra over k[Ob(C)], and thus a dg category over k by 
Proposition 2.17. �
Remark 3.27. Given a pointed curved coalgebra C and a dg category D we can write the 
MC elements from Definition 3.21 explicitly as follows:

MC(C,D) ∼=
∐

O:Ob(C)→Ob(D)

MC(Homk[Ob(D)](C̄, VD))

∼=
∐

O:Ob(C)→Ob(D)

MC

⎡
⎣ ∏
s,t∈Ob(C)

Homk
(
k.es �k[Ob(C)] C̄ �k[Ob(C)] k.et,HomD(O(s), O(t))

)⎤⎦

∼=
∐

O:Ob(C)→Ob(D)

MC

⎡
⎣ ∏
s,t∈Ob(C)

esC̄
∗et ⊗k HomD(O(s), O(t))

⎤
⎦ .

Here we abuse notation and write es and et for the canonical elements in C and in 
C∗ corresponding to objects s and t in Ob(C).

The first isomorphism follows as coalgebra morphisms k[Ob(C)] → k[Ob(D)] are in 
bijective correspondence with maps on the sets of grouplike elements.

The second isomorphism holds as we can use k[S] = ⊕s∈S k.et to rewrite

C̄ = ⊕s,t∈Ob(C) k.es �k[R] C̄ �k[R] k.et

and unravel the definition of bicomodule maps.
The last isomorphism is obtained by dualizing.
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3.7. Model structure

We would like to promote the adjunction in Proposition 3.26 to a Quillen equivalence 
between the Dwyer-Kan model structure on dgCat and a suitable model structure on 
ptdCoa.

Remark 3.28. We use here the term Dwyer-Kan model structure for the model cate-
gory whose weak equivalences are quasi-equivalences [30, Théorème 1.8]. The generating 
(acyclic) cofibrations will be recalled below. This is the first of three model structures 
constructed by Tabuada and the name is by analogy with the closely related Dwyer-
Kan-Bergner model structure on simplicial categories.

However, there is an obvious obstacle in that curved coalgebras do not have a final 
object. A related issue is that a dg category having objects whose identity morphisms 
are equal to zero, are not representable by split semialgebras, and thus do not admit a 
bar construction.

The main step in avoiding these problems is adding a final object to curved coalgebras 
and defining its cobar construction to be the dg category with one object and morphism 
space equal to zero.

We thus formally define the symbol ∗ to be a curved coalgebra which receives exactly 
one morphism from every curved coalgebra and has no outgoing morphisms (except for 
a unique endomorphism).

We also declare ∗ with its identity map to be a split curved coalgebra. (While ∗ has no 
maximal cosemisimple subcoalgebra, it has a unique such admitting a splitting, namely 
itself.)

For any split curved coalgebra C we declare that there is a unique map C → ∗ and 
no map going the other way.1

We denote by spCoa∗ the finalized category of split curved coalgebras, whose objects 
are all split curved coalgebras together with ∗ and whose morphisms are as above.

We consider the full subcategory ptdCoa∗ of spCoa∗ consisting of all pointed curved 
coalgebras together with ∗. The construction of products of pointed curved coalgebras 
is somewhat subtle. To explain it, we dualize and consider the equivalent problem of 
constructing coproducts of pointed curved pseudocompact algebras. For two graded 
pseudocompact algebras A and B we will write A 

∐
B for their coproduct in the pseu-

docompact category (i.e. the completion of their ordinary coproduct). Now suppose that 
A, B are pointed and split; the splitting allows us to view their maximal semisimple 
quotients A0 and B0 as subalgebras of A and B. We denote by A 

∐
A0,B0

B the quotient 
of A 

∐
B by the closed two-sided ideal generated by the elements a0b0 − b0a0 (i.e. we 

impose the relation that the subalgebras A0 and B0 commute).

1 This case is not covered by Definition 2.14 as the curved map C → ∗ is not of the form (f, a). Therefore 
we make this definition by hand.
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Lemma 3.29.

(1) Let (A, dA) and (B, dB) be pointed split pseudocompact dg algebras. Then their cat-
egorical coproduct is isomorphic to A 

∐
A0,B0

B. The differential is induced by the 
differentials dA and dB in A and B.

(2) Let (A, dA, hA) and (B, dB , hB) be pointed curved pseudocompact algebras. Then 
their categorical coproduct is the pointed curved pseudocompact algebra
A 
∐

A0,B0
B〈〈c〉〉 where c is a generator in degree 1. The differential is given by 

a �→ dAa for a ∈ A, b �→ dBb − [c, b] for b ∈ B and c �→ hB − hA − c2 and the 
curvature element is hA.

Proof. Let us prove (1). First note that A 
∐

B is pointed. Indeed, let C be a simple 
finite dimensional algebra and consider a surjective map A 

∐
B → C. Such a map comes 

from a pair of maps A → C and B → C and so it factors through A0
∐

B0 and thus, 
through A0 ⊗B0 (which is the maximal semisimple quotient of A0

∐
B0). Since A0 ⊗B0

is a product of copies of k, so is C, which implies that A 
∐

B is pointed. The same 
argument shows that the maximal semisimple quotient of A 

∐
B is A0 ⊗ B0, and the 

splittings A0 → A, B0 → B determine a splitting A0 ⊗ B0 → A 
∐

B. Thus, A 
∐

B is a 
pointed split pseudocompact dg algebra.

Next, suppose we are given a pair of morphisms f : A → C and g : B → C into 
a pointed curved pseudocompact dg algebra C. The maps f and g determine a map 
f
∐

g : A 
∐

B → C and it is easy to see that it restricts to a map A0
∐

B0 → C0. Since 
C0 is commutative, the latter map factors through A0 ⊗ B0 and it follows that f

∐
g

factors through A 
∐

A0,B0
B. Conversely, any morphism A 

∐
A0,B0

B → C restricts to a 
pair of morphisms A → C and B → C. This establishes a 1-1 correspondence between 
maps A 

∐
A0,B0

B → C and such pairs.
The proof of (2) follows readily, with the modification of the coproduct in (1) taking 

into account the curvature as in [23, Lemma 9.2]. Explicitly, given maps (f, a) : A → C

and (g, b) : B → C the map (h, x) : A �A0,B0 B〈〈c〉〉 → C is defined by h|A = f , h|B = g

and h(c) = b − s while x : A0 ⊗B0 → C takes r ⊗ s to a(r).
Note that this construction appears asymmetrical, but there is a unique isomorphism 

to the alternative construction where the differential on A gets twisted and the curvature 
element is inherited from B. �
Lemma 3.30. ptdCoa∗ is complete and cocomplete.

Proof. This does not differ much from the conilpotent case treated in [23, Sections 9.2, 
9.3].

We consider limits first. It is enough to compute equalizers and products in ptdCoa∗, 
which we do by considering the dual category.

So let A and B be pointed curved pseudocompact algebras with maximal semisimple 
quotients A0 and B0. The coequalizer of (f, a), (g, b) : A ⇒ B is the quotient of B by 
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f(x) − g(x) and a(r) − b(r) for x ∈ A and r ∈ A0. This is naturally a pointed curved 
pseudocompact algebra over the equalizer of a, b : A0 ⇒ B0.

The product of two pointed curved pseudocompact algebras is constructed in 
Lemma 3.29, (2) above.

For an arbitrary non-empty product we follow the same playbook. Consider pointed 
curved pseudocompact algebras Ai with maximal semisimple quotients Ai

0 and single 
out an index i0. We define their categorical coproduct as

Ai0
∐

{Ai
0, i∈I}

⎛
⎝ ∐

i∈I\{i0}
Ai〈〈ci〉〉

⎞
⎠ ,

where we take the free product of all Ai together with an additional generator for each 
i ∈ I \ {i0} and quotient out by the ideal generated by all commutators of elements of 
the Ai

0.
The differential is defined as follows: Let di and hi be the differential and curvature 

of Ai. Then for a ∈ Ai0 we define a �→ di0a and for a ∈ Ai
=i0 we define a �→ dia − [ci, a]. 
The differential of ci is hi − hi0 − c2i The curvature element is hi0 .

This coproduct is a pointed curved pseudocompact algebra with maximal semisimple 
quotient 

⊗
i∈I A

i
0. Then given a family of curved maps (f i, ai) : Ai → C, the map (f, x) :

Ai0
∐

{Ai
0, i∈I}

(∐
i
=i0

Ai〈〈ci〉〉
)
→ C is determined by f |Ai = f i and f(ci) = ai − ai0 . 

while x is given by ai0 .
The empty product, i.e. the final object, in ptdCoa∗ is by definition ∗.
Arbitrary coproducts in ptdCoa∗ exist and are preserved by the forgetful functor to 

pairs of graded vector spaces, i.e. we may just equip the direct sums of the underlying 
graded vector spaces with differential, curvature and coproduct. In particular the empty 
coproduct is given by the split curved coalgebra (0, 0).

To consider coequalizers we dualize again. The equalizer of two pointed curved pseu-
docompact algebras can be computed as follows. Let (f, x), (g, y) : (A, u) → (B, v) be an 
equalizer diagram. We first define k : (E, r) → (A, u) to be the equalizer of the under-
lying diagram of graded split pseudocompact algebras. In particular E is a subalgebra 
of A and fk = gk : E → B. For this to have a curved structure we need to find z ∈ A

such that x + fz = y + gz. If no such z exists then there can’t be any map from a 
curved algebra equalizing (f, x) and (g, y). So there is no equalizer in curved pointed 
pseudocompact algebras and in the initialized category the equalizer is the initial object.

If such a z exists then we define dE(e) = dA(e) + [z, e] and hE = hA + dz + z2 and 
(k, z) : (E, r) → (A, u) equalizes (f, x) and (g, y). (Here we denote differentials and 
curvature terms in the different algebras by subscript.) The cone (k, z) is universal as 
for any other (k′, z′) : (E′, r′) → (A, u) we know k′ factors through k by considering 
the underlying gradeds. So we may assume k = k′, E = E′ and just consider the case 
z �= z′. Then z−z′ is in E and (idE , z−z′) is a unique isomorphism from (k, z′) to (k, z), 
showing we have indeed constructed the limit.
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Thus ptdCoa∗ is complete and cocomplete. �
We define the cobar construction of ∗ to be the dg category with one object and only 

the zero morphism, which we will call the zero dg category.
We similarly define the bar construction of the zero dg category as ∗.
There are other dg categories which have some identity morphisms equal to zero. 

Instead of defining new curved coalgebras to be their bar constructions, we will define a 
new model category dgCat′. It is the full subcategory of dgCat which consists of all dg 
categories where no identity morphism equals 0, together with the zero dg category.

To put a model structure on dgCat′ we first recall from [30, Théorème 1.8] the sets I
and J of generating cofibrations and generating acyclic cofibrations in dgCat:

By abuse of notation let ∅ be the empty dg category and let A be the dg category 
with a single object ∗ and Hom(∗, ∗) = k. Let e : ∅ → A be the unique functor. For 
each n ∈ Z let D(n) be the dg category with two objects 1 and 2 and with Hom(1, 1) =
Hom(2, 2) = k, Hom(1, 2) = cone(id : k[−n] → k[−n]) and Hom(2, 1) = 0. For each 
n ∈ Z let S(n) be the dg category which only differs from D(n) by Hom(1, 2) = k[−n]
and let in : S(n) → D(n) be the natural inclusion functor.

Then I is the set consisting of e and all in.
Let B be the dg category with two objects 1 and 2 that only differs from D(n) in 

that Hom(1, 2) = 0. Let K be the dg category with two objects 1, 2 and morphisms 
generated by the identities as well as f ∈ Hom0(1, 2), g ∈ Hom0(2, 1), r1 ∈ Hom−1(1, 1), 
r2 ∈ Hom−1(2, 2) and r12 ∈ Hom−2(1, 2) satisfying df = dg = 0, dr1 = gf − id1, 
dr − 2 = fg − id2 and dr12 = fr1 − r2f . Let k be the natural inclusion A → K sending 
1 to 1 and let jn be the natural inclusion B → D(n).

Then J is the set consisting of k and all jn.

Lemma 3.31. The generating cofibrations I of dgCat turn into dgCat′ a model category.

Proof. We note first that dg categories with identities equal to zero do not feature in 
the generating cofibrations and generating trivial cofibrations of dgCat, thus I and J
are contained in dgCat′. Thus we define a model structure on dgCat′ whose morphisms 
are cofibrations, weak equivalences and fibrations exactly if they are cofibrations, weak 
equivalences and fibrations in dgCat.

We will check that dgCat′ is closed under limits and colimits. Then we can run the 
small-object argument restricted to the subcategory dgCat′ to prove the existence of 
factorizations. All other model category axioms are inherited by full subcategories.

We note that the product 
∏

i Di in dgCat′ exists. It is equal to the product of all 
factors that are not the final object.

For two functor F, G : C ⇒ D in dgCat′ we denote the equalizer in dgCat by J : B → C. 
All identities in B are nonzero (as FJ(idB)) = GJ(idB) for B ∈ B), unless they are zero 
in C, in which case C, D and B are zero.
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The coproduct �iDi of objects in dgCat′ is the same as in dgCat. It is zero if one of 
the Di is, and has no zero identities otherwise.

For the coequalizer a similar argument applies. �
It is easy to see that Ω : ptdCoa∗ � dgCat′ : B is an adjunction and we will define a 

model structure on ptdCoa∗ so that this becomes a Quillen equivalence.

Lemma 3.32. The category ptdCoa∗ is locally presentable.

Proof. We recall that an object s of a category is finitely presentable if Hom(s, −) com-
mutes with filtered colimits. A category C is finitely presentable (and thus in particular 
locally presentable) if it is cocomplete and there is a small set of finitely presentable 
objects S such that every object of C is a filtered colimit of objects in S. In particular S
is a generating set.

We let S ⊂ ptdCoa be the subcategory of finite-dimensional split coalgebras. It is clear 
that any finite-dimensional split curved coalgebra is finitely presentable.

Next, any coalgebra is the union of its finite-dimensional sub-coalgebras. The same 
applies to dg coalgebras and for curved coalgebras: it is clear for graded coalgebras and 
the coalgebra obtained by adding the images of all differentials to a finite-dimensional 
subcoalgebra is still finite-dimensional (using that the action of the curvature term is 
nilpotent).

We now claim that any pointed curved coalgebra (C, ε) is a colimit of finite-
dimensional ones. Indeed, C is the union of its finite-dimensional subcoalgebras Ci, 
and the restriction of ε provides splittings εi : Ci → C0∩Ci = (Ci)0 compatible with in-
clusions. Then (C, ε) is the colimit of the (Ci, εi). Thus S generates ptdCoa under filtered 
colimits.

Thus ptdCoa is locally presentable, and the lemma follows as the additional object ∗
is finitely presentable. �
Proposition 3.33. The category ptdCoa∗ admits a left proper combinatorial model struc-
ture whose weak equivalences are maps f such that Ω(f) is a quasi-equivalence and whose 
cofibrations are all inclusions together with the map 0 → ∗.

Proof. This is an application of [19, Proposition A.2.6.15]. We let W be the class of 
maps that Ω sends to quasi-equivalences,2 and we denote by C0 a set representing all 
inclusions of finite-dimensional pointed curved coalgebras. The existence of the model 
structure then follows if we have the following:

(1) ptdCoa∗ is locally presentable.
(2) The class W is stable under filtered colimits.

2 We consider Ω as a functor into dgCat rather than dgCat′ here as this is more convenient for certain 
arguments.
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(3) There is a small set W0 contained in W such that all morphisms in W are filtered 
colimits of elements in W0.

(4) The class W is stable under pushouts along pushouts of morphisms in C0.
(5) Any morphism with the right lifting property with respect to all morphisms in C0

lies in W .

In the first condition note that Lurie uses presentable for what we call locally presentable.
The second and third condition show that W is perfect as it is clear that W contains 

isomorphisms and satisfies the two-out-of-three property. Thus (1-5) will show ptdCoa is 
a model category.

The category ptdCoa∗ is finitely presentable by Lemma 3.32.
Conditions (2) and (3) are exactly saying that W ⊂ ptdCoa[1] is a finitely accessible 

subcategory, cf. [19, Definition A.2.6.2] for the case κ = ℵ0. Here [1] denotes the category 
with 2 objects and 1 non-identity morphism.

As Ω preserves filtered colimits so does ptdCoa∗[1] → dgCat[1]. By [19, Corollary 
A.2.6.5] it then suffices to show that quasi-equivalences of dg categories are finitely 
accessible. Since dgCat is combinatorial by [15] this follows from [19, Corollary A.2.6.6]. 
We need to strengthen the conclusion a little bit, from W being accessible to being 
finitely accessible. Inspecting the proof (as well as the proof of [19, Proposition A.1.2.5]) 
this follows if the sources and targets of all generating cofibrations and generating acyclic 
cofibrations are ℵ0-compact, i.e. morphisms out of them commute with filtered colimits. 
This is immediate for the sets I and J of generating (acyclic) cofibrations for dgCat.

For (4) we first show that Ω sends inclusions of pointed curved coalgebras to cofi-
brations. Let C → D be an inclusion in ptdCoa. We need to show that Ω(D) is of the 
form colimi≥0 G

i where G0 = Ω(C) and Gi+1 is obtained from Gi by freely adjoining 
morphisms f with differentials df ∈ Gi.

It is clear that the cobar construction on D corresponds to the free category generated 
by the elements of D.

Thus we use the filtration induced by the order of comultiplication on D, i.e. F 0 =
k[Ob(D)] and F i = Δ−1(F i−1(D⊗D)). Then Ω(C +F i+1) is obtained from Ω(C +F i)
by first freely adjoining arrows for all the homogeneous elements of F i+1 with differential 
equal to 0, and then for all other homogeneous elements of F i+1. This shows Ω(C) →
Ω(D) is a cofibration in dgCat.

Now let f : X → Y be a morphism in C0 and f ′ : X ′ → Y ′ its pushout along an 
arbitrary map X → X ′. We have shown that Ω sends maps in C0 to cofibrations. As Ω
is a left adjoint it preserves pushouts and Ω(f ′) is a pushout of Ω(f) and thus also a 
cofibration.

If now g : X ′ → X ′′′ is in W and g′′ : Y ′ → Y ′′ is its pushout along f ′ we need to
show that g′′ is also in W . By assumption Ω(g) is a quasi-equivalence and Ω(f ′) is a 
cofibration. Since dgCat is left proper if k is a field, see [15], we deduce that Ω(g′) is a 
quasi-equivalence and g′ is in W .
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Finally, for (5) it suffices to show that if Ω(g) : ΩC → ΩD in dgCat has the right lifting 
property with respect to all Ω(f) for f ∈ C0, then Ωg is a quasi-equivalence. Clearly Ωg

will be a quasi-equivalence if it has the right lifting property with respect to all generating 
cofibrations of dgCat. So it suffices to show that the generating cofibrations I lie in the 
image of C0. This can be shown directly. Recall from above the generating cofibrations 
of dgCat. First note that for in : S(n) → D(n) we have in = ΩB(in): Equality holds 
as there are no valid compositions, so the bar and cobar construction degenerate. The 
other generating cofibration of dgCat is e : ∅ → A, which is the image of 0 → (k, idk) in 
ptdCoa∗. (At this point it is necessary to have the zero coalgebra in ptdCoa). This shows 
the lifting property and establishes that ptdCoa∗ is a model category.

Let us prove, using the representation of split curved coalgebras as unions of their 
finite-dimensional sub-coalgebras that the cofibrations, generated by C0, are exactly 
inclusions.3 Given an inclusion of split curved coalgebras X → Y , choose an element 
y ∈ Y such that y /∈ X and a finite dimensional split curved coalgebra Z containing 
y. It follows that the inclusion X → X + Z has finite-dimensional cokernel; call such 
inclusions good. It follows by transfinite induction that any inclusion of split curved 
coalgebras is a transfinite composition of good inclusions. Let now U → V be a good 
inclusion. Choosing a finite basis in V/U , lifting it arbitrarily to V and choosing a finite 
dimensional split curved coalgebra containing the lift of every basis element, we find a 
finite dimensional subcoalgebra W in V such that U + W = V . Then the map U → V

is obtained as a pushout of U
⋂

W → U along the inclusion of finite dimensional split 
curved coalgebra U

⋂
W → W . We have thus succeeded in obtaining any inclusion of 

curved split coalgebras using operations of a pushout and transfinite composition from 
finite dimensional inclusions. This finishes the proof. �
Remark 3.34. One may define a model category structure on pointed dg coalgebras with 
the same weak equivalences and cofibrations.

As the inclusion ι of pointed dg coalgebras into pointed curved coalgebras then pre-
serves cofibrations, the uncurving adjunction ι � H from Corollary 3.7 is Quillen. Note 
that H(∗) is the terminal dg coalgebra k.

Remark 3.35. The weak equivalences between conilpotent curved coalgebras considered 
in [23] are generated by filtered quasi-isomorphisms with respect to admissible filtrations. 
A naive generalization to pointed curved coalgebras would lead us to consider admissible 
filtrations with F 0(C) = C0 (instead of F 0 = k as in [23]). Then any filtered quasi-
isomorphism would have to preserve the set of grouplike elements of a pointed curved 
coalgebra. But we know that a quasi-equivalence of dg categories can change the set 
of objects, thus such maps do not generate all weak equivalences of pointed curved 
coalgebras.

3 We are grateful to L. Positselski for providing this argument to us.
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Remark 3.36. We may apply the same reasoning to the adjunction between conilpotent 
curved coalgebras (together with a final object) and dg algebras to obtain a model 
structure on curved conilpotent coalgebras that is Quillen equivalent to the standard 
model structure on dg algebras.

This differs from the model structure considered in [23] in that for us a map C → ∗
is only a cofibration if C = ∗ or C = 0. Moreover, there are curved coalgebras weakly 
equivalent to ∗, namely those arising as bar constructions of dg algebras with 0 homology.

Remark 3.37. One should note that from a homotopy-theoretic point of view the final 
objects ∗ and zero are not very important, and neither is the difference between dgCat
and dgCat′.

Recall that we add a final object to curved coalgebras to satisfy the requirements of 
a model category to have all limits. However, this final object is weakly equivalent to 
an honest split curved coalgebra, just like the zero dg category is quasi-equivalent to 
a dg category with one object whose identity is a coboundary. Thus the ∞-categories 
obtained by localizing at all weak equivalences in ptdCoa∗ and ptdCoa are in fact weakly 
equivalent. In particular the non-finalized category ptdCoa has all homotopy limits (or 
equivalently all ∞-categorical limits).

Similarly, dgCat and dgCat′ give rise to the same ∞-category of dg categories.
Thus it is left to the reader’s taste if they want to consider the strictly (rather than 

homotopy) terminal curved coalgebra, and if they want to consider the zero dg category 
and other dg categories with identities equal to zero.

Remark 3.38. Recall that in the model category of conilpotent curved coalgebras the 
fibrant objects are precisely those whose underlying coalgebras are conilpotent cofree 
(i.e. whose dual pseudocompact algebras are completed tensor algebras). This follows 
from a more general result of [23, Section 9.3, Lemma 2(i)] describing fibrations in this 
model category. These fibrant objects are nothing but (unital) A∞ algebras. Arguing 
similarly to [23, Section 9.3, Lemma 2(i)] we can obtain an explicit description of fibrant 
objects in ptdCoa∗; these are precisely those whose underlying pointed coalgebras are 
of the form TR(V ); the cotensor algebra over a pointed cosemisimple coalgebra R of an 
R-bimodule V . These objects are otherwise known as (unital) A∞ categories; these come 
up in various contexts of homological algebra and geometry, particularly in the study of 
Fukaya categories [26].

3.8. Quillen equivalence

Lemma 3.39. For any small dg category we have a quasi-equivalence ΩBD � D.

Proof. If all hom spaces in D are 0 this follows directly from the definitions. So let us 
assume B is given by the reduced bar construction.
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By construction ΩBD and D have the same set of objects. Thus the counit ΩBD →
D is a quasi-equivalence if for any A, B ∈ Ob(D) we have a quasi-isomorphism 
HomΩBD(A, B) � HomD(A, B). It suffices to show that the semialgebras ΩBD and 
D are quasi-isomorphic, as we can recover all morphism spaces as in Proposition 2.17
via Hom(A, B) = kA �k[Ob(D)] VD �k[Ob(D))] kB .

We apply the usual argument that the cobar-bar counit is a quasi-isomorphism, just 
in the category of k[Ob(D)]-bicomodules, see e.g. [23, Theorem 6.10]. Consider the two-
stage filtration on D:

k[Ob(D)] ⊂ D.

The induced filtration on ΩB(D) is multiplicative and compatible with the differential. 
Note that the differential in grΩB(D) has no contributions from the bar differential and 
curvature in B(D), in other words the semialgebra grΩB(D) is just the cobar construction 
of a pointed bigraded dg coalgebra whose underlying space and coproduct are the same 
as B(D) but the curvature and the bar differential are set to zero.

The counit of the cobar-bar adjunction ΩB(D) → D is compatible with these filtra-
tions, and so, it gives a map on the associated spectral sequences. The spectral sequence 
associated with the two-stage filtration on D is trivial (has zero differentials) whereas 
the differential d0 of the filtration on ΩB(D) is just the relative cobar-differential of the 
coalgebra B(D) viewed as a coalgebra relative to k[Ob(D)] and disregarding the bar 
differential and curvature of BD. The latter cobar-construction computes the functor 
Ext∗(k[Ob(D)], k[Ob(D)) in the category of graded comodules over B(D) (where it is 
understood that the bar differential and curvature in B(D) are disregarded). Choosing 
appropriate bases in the morphism spaces of D, we identify B(D) with the path coal-
gebra of a certain quiver (cf. Example 3.24). Since path coalgebras are hereditary, the 
cohomology of this cobar-construction is zero in degrees > 1. In degrees 0 and 1, on the 
other hand, it equals k[Ob(D)] and D̄ respectively.

It follows that the corresponding spectral sequences are isomorphic from the term E1
onwards which gives the desired statement. �
Theorem 3.40. The adjunction Ω � B induces a Quillen equivalence between ptdCoa∗ and 
dgCat′ with the model structures from Section 3.7.

Proof. Ω is left Quillen as it sends generating cofibrations to cofibrations, see the proof 
of Proposition 3.33.

We have shown in Lemma 3.39 that the counit is a weak equivalence. Let now C be 
any pointed curved coalgebra. Since ΩC → ΩBΩC → ΩC is the identity by the triangle 
identity of the adjunction it also follows by 2-out-of-3 that the natural map ΩC → ΩBΩC

is a quasi-equivalence, and thus the unit C → BΩC is a weak equivalence. �
If we are relaxing our assumption that the ground ring k is a field, the naive bar 

construction is no longer well-behaved. We still have a version of our main result if we 
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let k be a principal ideal domain (the case of interest is of course k = Z) and restrict 
to the category dgCatfr of dg categories such that the underlying graded modules for all 
hom spaces are free.

The second is not a serious restriction as any dg category may be canonically replaced 
by a quasi-equivalent semi-free dg category, see Lemma B.5 in [9] and the preceding 
definition.

Similarly we may consider Definition 2.13 over k and consider the category ptdCoa∗fr
of split curved coalgebras whose underlying graded k-module is free.

In this setting we define the functors B and Ω on dgCatfr and ptdCoa∗fr as in Defini-
tions 3.14 and 3.17.

We will consider dgCatfr and ptdCoa∗fr as relative categories. To do this we declare the 
quasi-equivalences in dgCatfr to be weak equivalences, and define a morphism f : C → D

in ptdCoafr to be a weak equivalence if Ω(f) is.

Corollary 3.41. Let k be a principal ideal domain. Then with notation as above there is 
a weak equivalence of relative categories between (ptdCoa∗fr, �) and (dgCatfr, �).

Proof. This follows as in [7, Proposition 3.7]: Let D be an object of dgCatfr. Then 
tensoring over k with any field commutes past the bar and cobar constructions. Thus 
the natural morphism ηD : ΩBD → D becomes a quasi-isomorphism (of bicomodules) 
after tensoring with any field, thus ηD must have been a quasi-isomorphism, and thus a 
quasi-equivalence of dg categories, by [7, Lemma 3.6].

As in the proof of Theorem 3.40 it follows that C � BΩC and together this gives a 
strict homotopy equivalence of relative categories, and thus a weak equivalence. �
3.9. Semimodule-comodule level Koszul duality

The bar-cobar adjunction 3.23 gives rise to an equivalence between the corresponding 
derived and coderived categories as in the case of ordinary dg Koszul duality, cf. [23, 
Theorem 6.3, 6.4]. We now formulate a generalization of this result with dg algebras 
replaced by dg categories and conilpotent curved coalgebras replaced by pointed curved 
coalgebras. The treatment of [23, Chapter 6], carries through with fairly obvious mod-
ifications; namely the tensor product over k needs to be consistently replaced with the 
cotensor product over a suitable cosemisimple coalgebra.

Here we only consider semialgebras of the form (A, R) where R is a cosemisimple 
coalgebra. Recall, first of all, that the category of semimodules over a such a semialgebra 
is a model category where weak equivalences are quasi-isomorphisms and fibrations are 
surjective maps [22, Theorem 9.2]. Note that the result in [22, Theorem 9.2] was formu-
lated in greater generality, particularly not requiring that R be semisimple, and with this 
simplification, Positselski’s notion of a weak equivalence reduces to a quasi-isomorphism. 
Similarly the category of comodules over a (not necessarily conilpotent) coalgebra is a 
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model category where weak equivalences are maps with a coacyclic cone and fibrations 
are injective maps, [23, Theorem 8.2].

Let C be a split curved coalgebra and (A, C0) a split semialgebra. Assume that the 
curved convolution algebra HomC0(C̄, A) possesses an MC element τ .

Recall the categories of C-comodules from Definition 2.15 and (A, C0)-semimodules 
from Definition 2.4. We construct a functor associating to a C-comodule N a dg A-
semimodule A �τ

R N as follows. The underlying A-semimodule of A �τ
R N is A �R N

with A acting freely on the left, whereas the differential dτ is given by the formula

dτ (x � n) = d(x � n) − x � (τ ⊗ 1)Δ(n)

where x ∈ A, n ∈ M, Δ : N → C ⊗N is the coaction on N and d stands for the ordinary 
differential on N induced by the differential on N . Thus, A �τ

RN is given by cotensoring 
M with A and twisting the differential by the MC element τ .

Similarly we construct a functor associating to an (A, C0)-semimodule M a C-
comodule C �

τ
C0

M as follows. Disregarding the differential, it is C �C0 M with C
coacting cofreely on the left, whereas the differential dτ is given by the formula

dτ (c � m) = d(c � m) + (1 ⊗ τ)Δ(c) � m

where c ∈ C, m ∈ M, Δ : C → C ⊗C is the diagonal on C and d stands for the ordinary 
differential on C �C0 M induced by the differentials on C and M . Thus, C �

τ
C0

M is 
given by cotensoring M with C and twisting the differential by τ .

Clearly, N �→ A �τ
C0

N is a dg functor C-Comod → (A, C0) -Mod and M �→ C �
τ
C0

M

is a dg functor (A, C0) -Mod → C-Comod.

Proposition 3.42. The functor A �τ
C0

− is left adjoint to C �
τ
C0

−.

Proof. One simply has to note that the dg spaces of morphisms HomA-Mod(A �τ
C0

N, M)
and HomC-Comod(N, C �

τ
C0

M) are naturally isomorphic to HomC0(N, M) with the dif-
ferential twisted by the MC element τ . �

We apply these constructions to two situations:

(1) Given a split semialgebra (A, C0), the split curved coalgebra C is the bar-construction 
of A, C = B(A), so that the MC element τ ∈ HomC0(C̄, A) is the one corresponding 
to the identity map B(A) → B(A) via the adjunction in Theorem 3.23.

(2) Given a split curved coalgebra C, the semialgebra (A, C0) is its cobar-construction, 
A = ΩC and the MC element τ ∈ HomC0(C̄, ΩC) is the one corresponding to the 
identity map ΩC → ΩC via the adjunction 3.23.

Then the following result holds.
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Theorem 3.43.

(1) Let (A, C0) be a split semialgebra. Then the functors

A �
τ
C0

− : B(A)-Comod � A-Mod : BA �
τ
C0

−

form a Quillen equivalence.
(2) Let C be a split curved coalgebra. Then the functors

ΩC �
τ
C0

− : C-Comod � Ω(C)-Mod : C �
τ
C0

−

form a Quillen equivalence.

Proof. The arguments of [23, Theorems 6.3, 6.4] carry over to our situation without any 
changes (other than replacing the ground field by C0) to show that in both cases (1) and 
(2) both adjoint functors

• preserve weak equivalences (and so descend to the homotopy categories) and
• determine mutual equivalences of homotopy categories.

Note that, also in both cases, the right adjoint functor preserves monomorphisms and 
so, in particular, takes cofibrations to cofibrations. Together these facts imply that, in 
both cases, the given adjunction forms a Quillen equivalence of model categories. �
Example 3.44. Let D be a dg category and BD be its bar construction. For any object X
in D we consider the 1-dimensional BD-comodule kX generated by the grouplike element 
in BD corresponding to X. Unraveling definitions, we see that D �

τ
k[Ob(D)] kX is the 

functor (co)represented by X. Thus the image under the dual Yoneda embedding of Dop

in D-Mod is identified with the dg category of 1-dimensional comodules in BD-Comod
(equivalently the Yoneda image of D is identified with dg category of 1-dimensional right
comodules in BD-comodules).

Corollary 3.45. If two split curved coalgebras are weakly equivalent, then their coderived 
categories are equivalent.

Proof. Let f : C → D be a weak equivalence between split curved coalgebras C and D. 
Recall from [23, Section 4.8] that f induces a pair of adjoint functors Ef : C-Comod �
D-Comod : Rf . Here for a D-comodule M we have Ef (M) = C �D M and Rf is the 
restriction of scalars from C to D. Consider the following diagram of dg categories and 
functors.
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C-Comod

ΩC�
τ
C0−

Ef

D-Comod
Rf

ΩD�
τ
D0−

(Ω(C), C0)-Mod

C�
τ
C0−

Ω(Ef )
(Ω(D), D0)-Mod

Ω(Rf )

D�
τ
D0−

(3.1)

Then straightforward inspection shows that it commutative in the sense that there exist 
natural isomorphisms Ef ◦ ΩD �

τ
D0

− ∼= Ω(Ef ) ◦ ΩC �
τ
C0

− and C �
τ
C0

− ◦ Ω(Rf ) ∼=
Rf ◦D �

τ
D0

−.
Since f is a weak equivalence, the functors Ω(Ef ) and Ω(Rf ) induce an adjoint equiv-

alence between the derived categories D(Ω(C)) and D(Ω(D)). It follows from (3.1) and 
Theorem 3.43 that Ef and Rf induce an adjoint equivalence between Dco(C) and Dco(D)
as claimed. �

We will also need Theorem 3.43 as a statement about ∞-categories.

Definition 3.46. The coderived ∞-category of a coalgebra C, written Dco(C) is the qua-
sicategory obtained by localizing the category of C-comodules at all maps with coacyclic 
cone.

Similarly we write D(A) for the derived ∞-category, obtained by localizing the cate-
gory of A-semimodules at all quasi-isomorphisms.

In particular if D is a dg category then D(D) stands for the ∞-category of functors 
into dgVect, localized at object-wise quasi-isomorphisms.

Then we have Dco(C) � D(Ω(C)) and Dco(B(A)) � D(A) in the setting of Theo-
rem 3.43.

Remark 3.47. It may be interesting to consider an analogue of nonconilpotent Koszul 
duality, cf. [23, Section 6.7] where the starting point is a curved relative coalgebra (C, R)
where R is a not necessarily the coradical of C. In this situation there is still an adjoint 
pair Ω(C) -Mod � C-Comod but it is not a Quillen equivalence, in general (with the 
standard model structure on ΩC-Mod). Indeed, already for R = k one has to consider 
exotic weak equivalences (of second kind) on the side of dg-modules. We will not treat 
this case.

4. The dg nerve and its adjoint

In this section we will revisit the construction of the dg nerve Ndg(C) of a dg category C
from [20] and explicitly describe its left adjoint, using our bar-cobar adjunction between 
dg categories and pointed curved coalgebras.
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To work in maximal generality we allow k = Z in this section, but we will mention 
some results specific to the case when k is a field.

We first recall Definition 1.3.1.6 from [20].

Definition 4.1. Given a dg category D we define its differential graded nerve Ndg(D) as 
a simplicial set as follows. For all n ≥ 0 we let Ndg(D)n = HomsSet(Δn, Ndg(D)) be the 
set of ordered pair ({Xi}0≤i≤n, {fI}) where:

(1) For 0 ≤ i ≤ n, Xi is an object of D.
(2) For every subset I ⊂ {i− < im < · · · < i1 < i+} ⊂ [n] with m ≥ 0, 

fI ∈ Homm
D (Xi− , Xi+) satisfying the equation

dfI =
∑

1≤j≤m

(−1)j
(
fI\{ij} − f{ij<···<i1<i+} ◦ f{i−<im<···<ij}

)

If α : [m] → [n] is a non-decreasing function then the induced map Ndg(D)n → Ndg(D)m
is given by

({Xi}0≤i≤n, {fI}) �→ ({Xα(i)}0≤j≤m, {gJ})

where for any J ⊂ [m] we define gJ = fα(J) if α|J is injective, gJ = idXi
if J = {j, j′}

and α(j) = α(j′) = i and gJ = 0 otherwise.

Remark 4.2. Note that in [20] it was shown that Ndg is right Quillen, but the left adjoint 
L was not constructed explicitly. Explicit combinatorial constructions of the adjoint were 
given in [24,25] and it was proved in [24, Proposition 7.1] that in the one-object case it is 
given as the cobar-construction of the normalized chain coalgebra as in Proposition 4.5
below.

4.1. The dg nerve of an algebra

As a warm-up, we express the dg nerve of a dg algebra in terms of its bar construction. 
We will find that it is given by a simplicial Maurer-Cartan set. Let k be a field for now.

We introduce the cosimplicial coalgebra n �→ C∗(Δn, k) given by the normalized chains 
on the standard n-simplex. The coalgebras C∗(Δn) are not conilpotent, but we may form 
a conilpotent quotient by identifying all the grouplike elements. More generally, given 
an arbitrary dg coalgebra C, form a noncounital coalgebra C/C0 by quotienting out its 
coradical C0, and add a one-dimensional space spanned by a group-like element (to make 
it counital). The resulting coalgebra Q(C) will be conilpotent. The functor Q is easily 
seen to be left adjoint to the inclusion from dgCoaconil into all dg coalgebras. We write 
Hom(Δ, −) for the functor HomcuCoaconil(QC∗(Δ•), −) whose faces and degeneracies are 
induced by the corresponding maps on simplices.
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Lemma 4.3. There is a Quillen adjunction C∗ : qCat0 � cuCoaconil : Hom(Δ, −).

Proof. As we may write the usual reduced chain coalgebra as C∗(K) = colimΔK C∗(Δn)
we have an adjunction Q ◦ C∗ : sSet � dgCoaconil : Hom(QC∗(Δ•), −). These factors
through reduced simplicial sets C∗ : sSet0 � dgCoaconil : Hom(QC∗(Δ•), −).

By Lemma 3.4 in [7] C∗ is a left Quillen functor qCat0 → dgCoaconil, which we com-
pose with the left Quillen functor i : dgCoaconil → cuCoaconil from Corollary 3.7 and 
Remark 3.34. �
Definition 4.4. Let A be a dg algebra. Then we define its dg nerve N′

dg(A) as the com-
position Hom(Δ, B(A)).

Using Lemma 3.2 we may write N′
dg(A) explicitly as the simplicial set

n �→ MC(QC∗(Δn), A) ∼= MC(C∗(Δn, τ≤0A)).

Here the truncation is needed as the MC construction with two arguments is 
MC(Hom(QC<0(Δn), A)).

Thus N′
dg(A) is the simplicial MC set of the associative algebra τ≤0A. This construc-

tion of the simplicial MC set is analogous to (but different from) the simplicial MC set 
of a dg Lie algebra as constructed in [11], which uses differential forms on the n-simplex.

Then we have the following result.

Proposition 4.5. The functor N′
dg is a right Quillen functor from the category of dg 

algebras to the category of reduced simplicial sets with the Joyal model structure. Its 
left adjoint assigns to a reduced simplicial set S the dg algebra L(S) := Ω(C∗(S)), the 
cobar-construction of the chain coalgebra of S.

Proof. This is a direct consequence of Theorem 3.1 and Lemma 4.3. �
Proposition 4.6. N′

dg as defined above is equivalent to Ndg as in Definition 4.1.

As we will work out the details in a more general case in Theorem 4.16, we only give 
an outline of the proof of this result.

Sketch of proof. The key observation is that we may define a curved coalgebra C̃∗(Δn)
for the n-simplex Δn as the chain coalgebra whose differential is obtained by removing 
the boundary summands, i.e. d̃n =

∑n−1
i=1 (−1)i∂i = ∂n − ∂0 − (−1)n∂n.

As curved coalgebras C∗(Δn) and C̃∗(Δn) are isomorphic via the isomorphism (id, e)
where e : C1(K) → k is constant and takes the value 1.

Then unraveling Lurie’s definition we have

Ndg(A)n = MC(C̃∗(Δn), A)
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= HomcuCoaconil(C̃∗(Δn),BA)

= HomcuCoaconil(C∗(Δn),BA) = N′
dg(A)n.

Compatibility with face and degeneracy maps can be checked. �
4.2. The dg nerve revisited

In this section we will define a dg nerve functor N′
dg : dgCat → sSet drawing on our 

work from the previous section. We then show our construction agrees with the explicit 
description in Definition 4.1.

We would like to apply the adjunction from Proposition 3.26 in the case where C is 
the normalized chain coalgebra of a simplicial set with coefficients in Z. The underlying 
graded Z-module of C∗(K) is free, thus we may consider its cobar construction, compare 
the discussion before Corollary 3.41.

Note however, that C∗ is a pointed coalgebra with a dg structure and a unique splitting 
given by the projection C∗ → C0, but C∗ is not a pointed curved coalgebra since this 
splitting is not compatible with the differential. However, it is isomorphic to a pointed 
curved coalgebra. We will describe this pointed model explicitly.

Definition 4.7. Given a simplicial set K we define its twisted cochain algebra C̃∗(K) as 
the usual normalized cochain algebra equipped with the differential δ̃ = δ + [−e, ], i.e. 
δ̃f = δf − e ∪ f + (−1)|f |f ∪ e where e is the constant 1-cochain with value 1. The 
curvature is δe + e ∪ e. We note that C̃∗(K) is pseudocompact since C∗(K) is and the 
twisted chain coalgebra C̃∗(K) is defined as the continuous dual of C̃∗(K).

Example 4.8. Given the n-simplex Δn we find that C̃∗(Δn) as a subspace of the un-
normalized chains has a canonical basis given by subsets of {0, . . . , n}. Unraveling the 
definition the differential becomes ∂̃ =

∑k−1
i=1 (−1)i∂i.

Remark 4.9. More generally, we want to think of the twisted differential δ̃ as removing 
the boundary terms.

Indeed, if σ is a 0-simplex such that σ01 and σn−1,n are non-degenerate then (e ∪f) =
f(σ1...n) = f(∂0σ) and ∂̃ =

∑k−1
i=1 (−1)i∂i.

However, if σ01 or σn−1,n is degenerate, this formula no longer holds since the constant 
1-cochain sends all non-degenerate simplices to 1, but of course all degenerate simplices 
must map to 0.

Similarly −e satisfies the Maurer-Cartan condition, unless there are nondegenerate 
simplices σ with degenerate σ01 or σn−1,n.

Lemma 4.10. C̃∗ is a functor from simplicial sets to ptdCoa∗. As a functor to curved 
coalgebras it is naturally isomorphic to the normalized chain coalgebra functor.
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Proof. As the differential ∂̃ in degree 1 is just the zero map it is immediate that the 
natural projection C̃∗ → C0 is compatible with the differential and C̃∗(K) is a pointed 
curved coalgebra.

The isomorphism is given by (id, −e) on objects and any map f : K → L of simplicial 
sets gives a map (id, −e) ◦ f∗ ◦ (id, e) on twisted chains. �

As −e is not in general a Maurer-Cartan element the differential ∂̃ does not square 
to 0 and the twisted chain coalgebra has nonzero curvature in general, cf. Remark 4.9.

Lemma 4.11. There is an adjunction C̃ : sSet � ptdCoa∗ : Hom(C̃∗(Δ•), −). We denote 
the right adjoint by F .

Explicitly F (D)n = Hom(C̃∗(Δn), D) and the maps [m] → [n] induce natural maps 
F (D)n → F (D)m making it into a simplicial set.

Proof. Let K be a simplicial set and C a pointed curved coalgebra. As in the untwisted 
chain case we have C̃∗(K) = colimΔn∈ΔK(C̃∗(Δn), C) where ΔK is the simplex category 
of K. Then by a standard argument

Hom(C̃∗(K), C) = lim
ΔK

Hom(C̃∗(Δn), C) = lim
ΔK

(Δn,Hom(C̃∗(Δ•), C))

= Hom(K,Hom(C̃∗(Δ•), C)) �
For later use we note down an explicit description of the functoriality for C̃∗ on the 

standard simplices.

Lemma 4.12. For a morphism α : [m] → [n] we have C̃∗(α) = (α∗, xα) : C̃∗(Δm) →
C̃∗(Δn) where α∗ sends σ : [k] → [m] to α ◦ σ : [k] → [n] and xα(σ) is 0, unless σ is a 
1-simplex and α ◦ σ is degenerate. In the latter case α ◦ σ is degenerate of the form sp
where p is the point in Δn corresponding to xα(σ) ∈ C̃∗(Δn).

Proof. We check on twisted cochains. We need to check that (id, −e) ◦(α∗, 0) = (α∗, xα) ◦
(id, −e). This is true if and only if xα − e = −e ◦α. This holds by unraveling definitions: 
e and e ◦α agree except on 1-simplices which become degenerate under α, and these are 
exactly the only simplices on which xα is nonzero. �
Definition 4.13. The dg nerve N′

dg : dgCat → qCat is defined as D �→ MC(C̃∗(Δ•), D).

Remark 4.14. If k is a field we may write N′
dg(D) = FB(D). This is immediate from 

Proposition 3.26 together with the isomorphism from Lemma 4.10.

Lemma 4.15. The functor N′
dg is left adjoint to Ω ◦ C̃∗
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Proof. If k is a field we may just combine the adjunctions of Proposition 3.26 and 
Lemma 4.11 to obtain an adjunction between F ◦ B and Ω ◦ C̃∗.

If k is not a field we argue as follows. Let K be an arbitrary simplicial set, then we 
have:

Hom(K,N′
dg(D)) ∼= Hom(K,MC(C̃∗Δ•,D))

∼= Hom(K,Hom(ΩC̃∗(Δ•),D))
∼= lim

ΔK
Hom(Δn,Hom(ΩC̃∗(Δ•),D))

∼= lim
ΔK

Hom(ΩC̃∗(Δn),D)

∼= Hom(ΩC̃∗(K),D)

To get to the second line we use the bijection HomdgCat(ΩC, D) ∼= MC(C, D) for C in 
ptdCoafr. This is the second isomorphism of Theorem 3.23. Our ground coalgebra C0 is 
now a direct sum of copies of Z, but the proof is unaffected by working over the integers 
as C̃∗ is free over Z.

Later we use the fact that Ω ◦ C̃∗ commutes with colimits. This is clear for C̃∗ by 
Lemma 4.11 and for Ω we argue as follows. Let D be an arbitrary dg category and 
C be a split curved coalgebra with free underlying k-module. Let C = colimi C

i. As 
all morphism spaces decompose over the coproduct of maps fO : C0 → k[Ob(D)]
we consider each summand in turn and fix a map fO (equivalently a collection of 
maps Ci

0 → k[Ob(D)]). Then we have Hom(colimi ΩCi, D) ∼= limi Hom(ΩCi, D) ∼=
limi MC(Hom(C̄i, D)) ∼= MC(limi Hom(C̄i, D)) ∼= MC(Hom(colimi C̄

i, D)) ∼=
Hom(Ω colimi C

i, D). Here we use the fact that taking Maurer-Cartan elements com-
mutes with limits and taking the quotient by the coradical commutes with colimits in 
ptdCoa∗. �
Theorem 4.16. In the adjunction L : qCat � dgCat : Ndg described in [20] there are 
natural isomorphisms Ndg(D) ∼= N′

dg(D) and L(K) ∼= ΩC̃∗(S).

Proof. We will explicitly compare N′
dg(D) := MC(C̃∗(Δ•), D) with Lurie’s construction 

of Ndg as recalled in Definition 4.1.
We recall first one difference in convention: We write our composition as (f, g) �→ f ◦g

while Lurie uses the convention (f, g) �→ g ◦ f , cf. Remark 2.18.
For n = 0 we have N′

dg(D)0 = Ob(D) = Ndg(D). To be precise, unraveling the 
definitions we have N′

dg(D)0 = �D∈Ob(D) MC(0, D)) = �D∈Ob(D)∗.
For n ≥ 1 we have

N′
dg(D)n∼=

∐
MC

⎡
⎣ ∏

Homk

(
k.es �R C̃<0(Δn) �R k.et,HomD(O(s), O(t)

)⎤⎦

O:Ob([n])→Ob(D) s,t∈Ob([n])
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∼=
∐

O:Ob([n])→Ob(C)

MC

⎡
⎣ ∏
s,t∈Ob([n])

esC̃
>0(Δn)et ⊗k HomD(O(s), O(t))

⎤
⎦ .

Here we write R for the coalgebra k[Ob([n])]. The differential is induced by the differen-
tial in HomD and the differential 

∑n−1
i=1 (−1)i∂i in C̃∗(Δn), see Example 4.8. The product 

is induced by the coproduct σ �→
∑n

i=0 σ0...i ⊗ σi...n where σi...j is the restriction of an 
n-simplex along [i, j] ⊂ [0, n]. (We could remove the i = 0 and i = n terms as they are 
necessarily 0 and do not contribute.)

Unraveling definitions, we conclude that this is exactly Ndg(D)n as defined by Lurie 
(once we flip the order of composition).

For the face and degeneracy maps, consider the rules for α : [m] → [n] inducing a map 
Ndg(D)n → Ndg(D)m in Definition 4.1 and compare with the functoriality of C̃∗ set out 
in Lemma 4.10.

For any subset J ⊂ [m] we distinguish three cases:
If α|J⊂[m] is injective we just consider the map f �→ f ◦α|J on cochains in both cases.
If α|J⊂[m] is not injective then in general the induced map on Ndg is 0. This agrees 

with our definition on N′
dg because the image of J is a reduced simplex and there is no 

MC element associated to it.
However, there is an exception in the case that α|J is of the form [1] → [0]. In this 

case Definition 4.1 sends X0 ∈ Ndg(D)0 to the data ((X0, X0), idX0) in Ndg(D)1.
By Lemma 4.12 the map on N′

dg(C) is induced by (α∗, xα). Let now α|J : [1] →
[0]. This is the only case when xα takes a nonzero value. We split the semialgebra 
corresponding to D as VD = V̄D ⊕ k[Ob(D)] where the second summand is identified 
with the units. The MC element ξ : C̃0 → D is sent to ξ ◦α+xα : C̃1 → V̄D ⊕k[Ob(D)].

The first summand vanishes as ξ ◦α is degenerate, and the second summand picks out 
the element eX0 ∈ kOb(D) corresponding to the identity at X0. Thus the map induced 
by α sends X0 ∈ N′

dg(D)0 to ((X0, X0), idX0) in Ndg(D)1. �
We have the following corollary of Theorem 4.16, which makes precise that Koszul 

duality is a linear version of the coherent nerve construction, an idea which was previously 
exploited in [7].

Corollary 4.17. Consider the following diagram of ∞-categories

qCat
C

C̃∗

sCat
Ncoh

G∗

ptdCoa∗
Ω

dgCat
B



46 J. Holstein, A. Lazarev / Advances in Mathematics 409 (2022) 108644
where the horizontal arrows are ∞-equivalences and downward arrows are induced by 
normalized chain functors. Then in the associated diagram of homotopy categories we 
have natural equivalences G∗ ◦ C � Ω ◦ C̃∗ and C̃∗ ◦ Ncoh � B ◦ C̃∗.

If k is not a field we understand the categories on the bottom to be ptdCoa∗fr and 
dgCatfr.

Proof. The right vertical functor G∗ : sCat → dgCat is more precisely the composition 
i ◦ NDK ◦ k where on hom spaces i is inclusion of non-negative complexes, NDK is 
normalization and k is the free functor. There is a natural functor H = U ◦DK ◦ τ≥0 :
dgCat → sCat which is a right adjoint to G∗ on the level of homotopy categories. Note 
that DK is a left adjoint, see [31], but it induces an equivalence of homotopy categories.

The composition Ncoh ◦H is equivalent to the dg nerve Ndg, see [20, Proposition 
1.3.1.17]. Ndg is right Quillen and its left adjoint is L by Theorem 4.16.

Thus on the level of homotopy categories the two left adjoints of Ndg must agree and 
L(S) = ΩC̃∗(S) is homotopy equivalent to G∗ ◦ C. In the other direction we have

B ◦G∗ � B ◦G∗ ◦ C ◦ Ncoh � B ◦ Ω ◦ C̃∗ ◦ Ncoh � C̃∗ ◦ Ncoh .

Here we use the fact that the top and bottom row are weak equivalences, by Theorem 3.40
resp. Corollary 3.41. �
Corollary 4.18. The functor C̃∗ : qCat → ptdCoa∗ preserves weak equivalences. If k is a 
field it is left Quillen.

Proof. Since G∗ and C preserve weak equivalences so does C̃∗ by Corollary 4.17. If k is 
a field we have model structures and it follows from the definitions that C̃∗ preserves 
cofibrations. �
Remark 4.19. It follows from Theorem 3.40 and Corollary 4.18 that L � Ndg is Quillen 
if k is a field.

This result holds more generally, see [20, Proposition 1.3.1.20].

Corollary 4.20. For any grouplike simplicial set K, the dg category ΩC̃K is naturally 
quasi-equivalent to the dg category obtained by applying the normalized singular chains 
functor to the topological path category of |K|, the geometric realization of K.

Proof. Let us first assume that K is connected. Then K is categorically equivalent to a 
reduced group-like simplicial set. Corollary 4.18 and Theorem 4.16 show that categorical 
equivalences are preserved by ΩC̃∗. The result now follows from [7, Corollary 4.2].

The general statement now follows since ΩC̃∗ preserves coproducts (i.e. disjoint 
unions) of simplicial sets. �
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Remark 4.21. Corollary 4.20 generalizes [7, Corollary 4.2] from reduced to connected 
(grouplike) simplicial sets. A similar argument generalizes [7, Corollary 4.7] to connected 
Kan complexes.

Corollary 4.22. Let k = Z. Then C̃∗ : qCat0 → ptdCoa∗ preserves and reflects weak 
equivalences.

Proof. Preservation was already shown in Corollary 4.18.
In view of Lemma 4.10 and Corollary 3.41 it suffices to show that ΩC̃∗ reflects weak 

equivalences.
Let now f : K → L be a morphism of reduced quasicategories such that ΩC̃∗(f)

is a weak equivalence of dg categories, in fact a quasi-isomorphism of dg algebras. By 
Corollary 4.17 if ΩC̃∗(f) is a weak equivalence then so is G∗C(f). But the functor C
on qCat0 factors through the category sMon of simplicial monoids. Thus we have a 
map C(f) whose normalized chain algebra is a quasi-isomorphism. But any homology 
isomorphism of H-spaces is a weak equivalence [10]. From this we deduce that f was a 
categorical equivalence of reduced quasicategories. �

Composing with the cobar construction we see that f : K → L is a categorical 
equivalence in qCat0 if and only if ΩC∗(f) is a quasi-isomorphism of dg algebras.

Remark 4.23. The corollary shows that the chain coalgebra contains information about 
the homotopy theory of quasicategories (which is finer than the homotopy theory of 
spaces).

Note however that the result does not remain true in the non-reduced case. If C̃∗ were 
to reflect weak equivalences, so would G∗ ◦ C and thus G∗. Consider now a simplicial 
category C with two objects a and b with trivial endomorphisms and morphism spaces 
Map(a, b) ∼= ∅ and Map(b, a) any non-trivial acyclic space. Then the natural inclusion 
from a discrete category with two objects is clearly not a weak equivalence of simplicial 
categories, yet it induces a quasi-equivalence after applying G∗.

5. Functor categories and comodules

Lemma 5.1. Let S be a simplicial set. We denote by RHom the derived internal hom of 
dg categories. Then there is a categorical equivalence of quasicategories

Ndg(RHom(L(S), dgVect)) � Fun(S,Ndg(dgVect)).

In particular this implies that Fun(S, Ndg(dgVect)) is categorically equivalent to D(L(S)), 
the ∞-category of dg modules over L(S).

Proof. By the Yoneda lemma it suffices to compare the functors Hom(−, Ndg(Fun(L(S),
dgVect))) and Hom(−, Fun(S, Ndg(dgVect))) on the homotopy category of quasicate-
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gories. We recall that L � Ndg induces an adjunction of homotopy categories between 
quasicategories and dg categories by [20, Proposition 1.3.1.20].

Let K be any simplicial set. By the proof of [19, Proposition 1.2.7.3] we have

HomHo(qCat)(K,Fun(S,Ndg(dgVect))) � HomHo(qCat)(K × S,Ndg(dgVect))

� HomHo(dgCat)(L(K × S), dgVect)

� HomHo(dgCat)(LK ⊗ LS, dgVect)

� HomHo(dgCat)(LK,RHom(LS, dgVect))

� HomHo(qCat)(K,Ndg(RHom(LS, dgVect))

To show that L sends products to tensor product in the homotopy category of dg cat-
egories we used that as in Corollary 4.17 we may write L = G∗ ◦ C on the level of 
homotopy categories. Then C preserves products by [19, Corollary 2.2.5.6]. Note that 
LS is cofibrant so we may consider the tensor product as derived. The derived tensor 
product in dgCat is adjoint to the derived internal hom by [32, Corollary 6.4].

For the final part we recall from [32] that RHom(LS, dgVect) has an explicit model 
given by the dg category of fibrant cofibrant right quasi-representable LS ⊗L dgVectop-
modules. Unraveling the definitions, we see that these are exactly fibrant cofibrant 
dg modules over LS. The dg nerve of the subcategory of fibrant cofibrant objects 
in a dg model structure is equivalent to the localization at weak equivalences, thus 
Ndg(RHom(L(S), dgVect)) � D(L(S)). �

Note that the quasicategory Fun(S, Ndg(dgVect)) can be viewed as the derived ∞-
category of the quasicategory S.

Theorem 5.2. Let S be a simplicial set considered as a quasicategory. Then there is an 
equivalence of ∞-categories between Fun(S, Ndg(dgVect)) and Dco(C∗S).

Proof. Theorem 3.43 (with the notation of Definition 3.46) provides an equivalence 
Dco(C̃∗S) � D(Ω(C̃∗S)), where the right hand side is just the ∞-categorical local-
ization of Ω(C∗S)-modules at quasi-isomorphisms. The isomorphism C∗S ∼= C̃∗S gives 
Dco(C̃∗S) � Dco(C∗S).

By Theorem 4.16 we know Ω(C̃∗S) � L(S) and thus the result follows from 
Lemma 5.1. �
Remark 5.3. The coderived ∞-category of C∗(S) is also equivalent to (the ∞-version of) 
the category of twisted modules over C∗(S) as they were considered in [8].

We also have the following consequence of our earlier results.



J. Holstein, A. Lazarev / Advances in Mathematics 409 (2022) 108644 49
Proposition 5.4. For any simplicial set S, the Morita fibrant replacement of the dg cat-
egory L(S)op is quasi-equivalent to the category of finite dimensional C∗(S) comodules. 
This may be viewed as the perfect derived category of S.

Proof. Note that we can identify the dg category generated by one-dimensional comod-
ules with the image of L(S)op under the Yoneda embedding in L(S) -Mod. Indeed, for 
any vertex s ∈ S0 consider the corresponding one-dimensional comodule ks of C∗S (all 
1-dimensional C∗S-comodules are of this form). By Example 3.44 the adjunction from 
Proposition 3.42 identifies ks with the right L(S)-module represented by s ∈ Ob(L(S)).

To complete the proof of the corollary we close both sides of this correspondence under 
extensions and suspensions. �
Corollary 5.5. The functor S �→ Dco(C∗(S)) sends colimits to limits.

Proof. This is immediate from Theorem 5.2. �
6. Stratified spaces

We finish with an application of Theorem 5.2 to stratified spaces. We will use the 
terminology of [20, Appendix B]. Let X be a paracompact topological space which is 
locally of singular shape and is equipped with a conical A-stratification where A is a 
partially ordered set satisfying the ascending chain condition. We write Exit(X) for the 
∞-category of exit paths of the A-stratified space X, denoted by SingA(X) in [20].

Then Theorem A.9.3 of [20] (together with the discussion just before Construction 
A.9.2) states that the ∞-categories of constructible sheaves of spaces on X, written as 
Constr(X, S) is equivalent to Fun(Exit(X), S) where S is the quasicategory of spaces. 
We write this equivalence as Ψ.

We are interested in the linear version. This is probably well-known to experts, we 
outline a proof for lack of a reference.

Proposition 6.1. The ∞-category of constructible sheaves of cochain complexes on X is 
equivalent to Fun(Exit(X), Ndg(dgVect)).

Proof. We first extend the result to spectra by considering the associated stabilizations. 
We may for example identify categories of spectrum objects in the sense of [20, Sec-
tion 1.4.2] for both categories, obtaining an equivalence Ψ : Sp(Fun(Exit(X), S)) �
Sp(Constr(X, S)).

By [20, Remark 1.4.2.] we have Sp(Fun(Exit(X), S)) � Fun(Exit(X), Sp(S)), and of 
course Sp(S) is the ∞-category of spectra Sp.

It remains to check that spectrum objects in constructible sheaves of spaces are con-
structible sheaves of spectra.

The stabilization of the ∞-category of sheaves of spaces is the ∞-category of sheaves 
of spectra, see [18, Remark 1.2]. Moreover, the subcategories of constructible sheaves 
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can be identified. Constructible sheaves are those whose pullback to small enough open 
subsets of strata of X are constant. We first observe that constant sheaves on both 
sides are identified. Thus it suffices to show that the equivalence of sheaves of spectra 
with the stabilization of sheaves of spaces is compatible with pullbacks. We consider 
the stabilization as the homotopy limit of a tower of loop functors, see [20, Proposition 
1.4.2.24]. As the pullback functor is left exact it commutes with constructing the loop 
functor and we can identify constructible sheaves as desired.

Next we replace spectra by (unbounded) chain complexes. By the stable Dold-Kan 
correspondence dgVectk is equivalent to k-modules in spectra, and these may be char-
acterized as k-module objects in Sp, i.e. abelian group objects in the cartesian monoidal 
category Sp equipped with a compatible action of the monoid k.

We now claim that the ∞-categories of the corollary arise as k-module objects in the 
categories considered above. To be precise, the equivalence Ψ, and the induced map on 
constructible spectra, is an equivalence of cartesian monoidal categories and it identifies 
the constant functor k with the constant sheaf with value k. We write k for both. In both 
categories k is a monoid and we may identify the k-module objects of Constr(X, Sp) and 
Fun(Exit(X), Sp).

These are the objects we are interested in, as the product of sheaves or functors is 
defined object-wise. �

We may now interpret constructible sheaves as follows:

Proposition 6.2. Let X be a topological space with an A-stratification as above. Then the 
derived ∞-category of constructible sheaves of chain complexes on X is equivalent to 
Dco(C∗ Exit(X)).

Proof. This follows by combining Theorem 5.2 with Proposition 6.1. �
Of course the exit path category is in general quite unwieldy. However, it forms part 

of an adjunction with the left adjoint given by a stratified realization functor K �→ ||K||
from simplicial sets to stratified spaces, see [21, Definition 7.1.0.1]. To construct the 
stratified realization we send Δn to |Δn| stratified by the k-simplices spanned by the 
first k + 1 vertices for all k ≥ 0, and then extend by colimits.

Corollary 6.3. Let K be a simplicial set. If K � Exit(||K||) then the ∞-category of 
constructible sheaves on the stratified space ||K|| is categorically equivalent to Dco(C∗K).

While K � Exit(||K||) does not hold for all simplicial sets, there is a natural class for 
which one can expect it.

Conjecture 6.4. Let K be a quasicategory in which all endomorphisms are equivalences. 
Then the ∞-category of constructible sheaves on the stratified space ||K|| is categorically 
equivalent to Dco(C∗K).
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This is in line with Conjecture 0.0.8 in [2] which states that these are exactly the 
quasi-categories arising as exit paths of stratified spaces.

References

[1] M. Anel, A. Joyal, Sweedler theory for (co)algebras and the bar-cobar constructions, arXive-prints, 
arXiv :1309 .6952, 2013.

[2] D. Ayala, J. Francis, N. Rozenblyum, A stratified homotopy hypothesis, ArXiv e-prints, arXiv :
1502 .01713, 2015.

[3] C. Barwick, D.M. Kan, Relative categories: another model for the homotopy theory of homotopy 
theories, Indag. Math. 23 (2012) 42–68.

[4] A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory, J. Am. 
Math. Soc. 9 (1996) 473–527.

[5] A.K. Bousfield, V.K.A.M. Gugenheim, On PL de Rham theory and rational homotopy type, Mem. 
Am. Math. Soc. 8 (1976), ix+94.

[6] W. Chin, Hereditary and path coalgebras, Commun. Algebra 30 (2002) 1829–1831.
[7] J. Chuang, J. Holstein, A. Lazarev, Homotopy theory of monoids and derived localization, Arxiv 

e-prints, arXiv :1810 .00373, 2018.
[8] J. Chuang, J. Holstein, A. Lazarev, Maurer-Cartan moduli and theorems of Riemann-Hilbert type, 

ArXiv e-prints, arXiv :1802 .02549, 2018.
[9] V. Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004) 643–691.

[10] E. Dror, A Generalization of the Whitehead Theorem, Lecture Notes in Math., vol. 249, 1971, 
pp. 13–22.

[11] E. Getzler, Lie theory for nilpotent-algebras, Ann. Math. (2009) 271–301.
[12] V. Ginzburg, M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994) 203–272.
[13] V. Hinich, DG coalgebras as formal stacks, J. Pure Appl. Algebra 162 (2001) 209–250.
[14] J. Hirsh, J. Milles, Curved Koszul duality theory, Math. Ann. 354 (2012) 1465–1520.
[15] J.V.S. Holstein, Properness and simplicial resolutions for the model category dgCat, Homol. Homo-

topy Appl. 16 (2014) 263–273.
[16] A. Lazarev, Hochschild cohomology and moduli spaces of strongly homotopy associative algebras, 

Homol. Homotopy Appl. 5 (2003) 73–100.
[17] K. Lefèvre-Hasegawa, Sur les A-infini catégories, arXiv Mathematics e-prints (2003), arXiv :math /

0310337.
[18] J. Lurie, Derived Algebraic Geometry VII: Spectral Schemes, preprint available from author’s web-

site as http://math .harvard .edu /~lurie /papers /DAG -VII .pdf, 2011.
[19] J. Lurie, Higher Topos Theory, Annals of Mathematics Studies, vol. 170, 2011.
[20] J. Lurie, Higher algebra, Available from the author’s website as www .math .ias .edu /~lurie /papers /

HA .pdf, 2017.
[21] S.J. Nand-Lal, A simplicial approach to stratified homotopy theory, PhD thesis, University of Liv-

erpool, 2019.
[22] L. Positselski, Homological Algebra of Semimodules and Semicontramodules, Instytut Matematy-

czny Polskiej Akademii Nauk. Monografie Matematyczne (New Series), vol. 70, Birkhäuser/Springer, 
Basel AG, Basel, 2010.

[23] L. Positselski, Two kinds of derived categories, Koszul duality, and comodule-contramodule corre-
spondence, Mem. Am. Math. Soc. 212 (2011), vi+133.

[24] M. Rivera, M. Zeinalian, Cubical rigidification, the cobar construction and the based loop space, 
Algebraic Geom. Topol. 18 (2018) 3789–3820.

[25] M. Rivera, M. Zeinalian, The colimit of an infinity local system as a twisted tensor product, Higher 
Struct. 3 (2019) 1–24.

[26] P. Seidel, Fukaya Categories and Picard-Lefschetz Theory, Zurich Lectures in Advanced Mathemat-
ics, European Mathematical Society (EMS), Zürich, 2008.

[27] D. Simson, Coalgebras, comodules, pseudocompact algebras and tame comodule type, Colloq. Math. 
90 (2001) 101–150.

[28] M.E. Sweedler, Hopf Algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 
1969.

[29] G. Tabuada, Invariants additifs de dg-categories, Int. Math. Res. Not. (2005) 3309.

http://refhub.elsevier.com/S0001-8708(22)00461-3/bib9BCBDF34D7E8E4A63BCA05C1CC1BB22As1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib9BCBDF34D7E8E4A63BCA05C1CC1BB22As1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib25280930EFDEAB33458F4B6E1E7F12A0s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib25280930EFDEAB33458F4B6E1E7F12A0s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib162415B37D1786A93D7F912C5693C13Ds1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib162415B37D1786A93D7F912C5693C13Ds1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib9829C5CD947EF6BCC18C1AA56B36FFC1s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib9829C5CD947EF6BCC18C1AA56B36FFC1s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibE9872ED713587D58E93359FE99618C3Cs1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibE9872ED713587D58E93359FE99618C3Cs1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibBAEC6D9A7A34658EB3D66AEB22197A20s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib8B1B3AD31ED6C25AB79A9EC4CFB3DC05s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib8B1B3AD31ED6C25AB79A9EC4CFB3DC05s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib8777341619C4FB75549A6CEEB9C4CE33s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib8777341619C4FB75549A6CEEB9C4CE33s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib16DF3199C3B52746AF41F923CEC6CE6Cs1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib3363C37381219E005C60312E9089747Bs1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib3363C37381219E005C60312E9089747Bs1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibD4BC5E42CC5F6417E8A5C94CDEA8A3FFs1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibB4BF733068A127D925E9897D225404B0s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib18A988D7032F8EA6FDDD1FF30AD61678s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib50F45F5C6F7154C4D008DEFB089B4E04s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib08ACFFADFB7856707FBBD3CC6A6A1DFAs1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib08ACFFADFB7856707FBBD3CC6A6A1DFAs1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibFA4B2BB76FECDD04DF848285D04E9A03s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibFA4B2BB76FECDD04DF848285D04E9A03s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib147F5AD70B698D72FAEC25F54DE0D479s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib147F5AD70B698D72FAEC25F54DE0D479s1
http://math.harvard.edu/~lurie/papers/DAG-VII.pdf
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibB0B09B6FBFBB6639B2CBC5E7DACE2C1Ds1
http://www.math.ias.edu/~lurie/papers/HA.pdf
http://www.math.ias.edu/~lurie/papers/HA.pdf
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib783D9475271D3F2F191AF8F57A402F12s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib783D9475271D3F2F191AF8F57A402F12s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibAA96B3E55ECB6A41A8BA245EB754A6E9s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibAA96B3E55ECB6A41A8BA245EB754A6E9s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibAA96B3E55ECB6A41A8BA245EB754A6E9s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibEE0AFBACD4E08FC5255F926093FCAF1Fs1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibEE0AFBACD4E08FC5255F926093FCAF1Fs1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib09380EC8E08F3DB50878817725F0DEE4s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib09380EC8E08F3DB50878817725F0DEE4s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib8FED6D5B269CDDFEF9E7533AD1C62F56s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib8FED6D5B269CDDFEF9E7533AD1C62F56s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibBE028F2829F6B542159CACDF55125020s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibBE028F2829F6B542159CACDF55125020s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib294F7CB4B13DDAD9F4A03D2910C8BC86s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib294F7CB4B13DDAD9F4A03D2910C8BC86s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib69437978F833ABCCA2E1548892214AC5s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib69437978F833ABCCA2E1548892214AC5s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib9AB4E9F8C7DAE1E2247C38418C86F710s1


52 J. Holstein, A. Lazarev / Advances in Mathematics 409 (2022) 108644
[30] G. Tabuada, Theorie homotopique des DG-categories, PhD thesis, Université Paris Diderot - Paris 
7, 2007, arXiv :0710 .4303v1.

[31] G. Tabuada, Differential graded versus simplicial categories, Topol. Appl. 157 (2010) 563–593.
[32] B. Toën, The homotopy theory of dg-categories and derived Morita theory, Invent. Math. 167 (2006) 

615–667.
[33] M. Van den Bergh, Calabi-Yau algebras and superpotentials, Sel. Math. 21 (2015) 555–603.
[34] F. Van Oystaeyen, P. Zhang, Quiver Hopf algebras, J. Algebra 280 (2004) 577–589.

http://refhub.elsevier.com/S0001-8708(22)00461-3/bibF9E2A2C1CED1CACC05FB2FA2FEA63D8Bs1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibF9E2A2C1CED1CACC05FB2FA2FEA63D8Bs1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib16BF664175C29940EA053937E91C53E9s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibE1E83178465491017795D64CFB1C901Ds1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bibE1E83178465491017795D64CFB1C901Ds1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib0723D1DDA9301D8F5593590DE6197E26s1
http://refhub.elsevier.com/S0001-8708(22)00461-3/bib018A563EA8124714873FBB37B7E7BBEBs1

	Categorical Koszul duality
	1 Introduction
	1.1 Outline of the paper
	1.2 Notation and conventions
	1.3 Acknowledgments

	2 Categories and semialgebras
	2.1 Semialgebras
	2.2 Split curved coalgebras
	2.3 Categories as semialgebras

	3 Koszul duality for categories
	3.1 Bar and cobar construction for (co)algebras
	3.2 Uncurving
	3.3 The bar construction for semialgebras
	3.4 The cobar construction of a split curved coalgebra
	3.5 Koszul adjunction
	3.6 The bar construction of a dg category
	3.7 Model structure
	3.8 Quillen equivalence
	3.9 Semimodule-comodule level Koszul duality

	4 The dg nerve and its adjoint
	4.1 The dg nerve of an algebra
	4.2 The dg nerve revisited

	5 Functor categories and comodules
	6 Stratified spaces
	References


