
COMPLEX VALUED MULTIPLICATIVE FUNCTIONS WITH
BOUNDED PARTIAL SUMS

MARCO AYMONE

Abstract. We present a class of multiplicative functions f : N → C with bounded

partial sums. The novelty here is that our functions do not need to have modulus

bounded by 1. The key feature is that they pretend to be the constant function 1 and

that for some prime q,
∑∞

k=0
f(qk)
qk

= 0. These combined with other conditions guarantee

that these functions are periodic and have sum equal to zero inside each period. Further,

we study the class of multiplicative functions f = f1 ∗ f2, where each fj is multiplicative

and periodic with bounded partial sums. We show an omega bound for the partial

sums
∑

n≤x f(n) and an upper bound that is related with the error term in the classical

Dirichlet divisor problem.

1. Introduction.

We say that f : N → C is multiplicative if f(nm) = f(n)f(m) whenever n and m

are relatively prime, and we say that such f is completely multiplicative if this relation

holds for all n and m. Therefore, a multiplicative function f is determined by its values

at prime powers.

We say that f : N → C has bounded partial sums if there exists a constant C > 0

such that for all x ≥ 1, |
∑

n≤x f(n)| ≤ C; otherwise we say that f has unbounded partial

sums.

Resolving the Erdős discrepancy problem, Tao [9] showed that a complex valued

completely multiplicative function f with |f | = 1 has unbounded partial sums. Further,

Tao gave a partial classification of all multiplicative functions f taking only values ±1

with bounded partial sums. To state this partial classification, we need to introduce

the language of pretentious number theory [2]: Given two complex valued multiplicative

functions f and g taking values in the unit disk, we say that f pretends to be g or that

f is g-pretentious if the “distance” between f and g given by

D(f, g;x) :=

(∑
p≤x

1−Re(f(p)g(p))

p

)1/2

is O(1) as x→∞, where in the sum above p stands for a generic prime number.
1
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The multiplicative function f : N→ {−1, 1} such that f(2k) = −1 for all k ≥ 1 and

f(pk) = 1 for all primes p ≥ 3 and all powers k ≥ 1, then f is the periodic function

f(n) = (−1)n+1 which clearly has bounded partial sums. In [9], Tao showed that if

f : N→ {−1, 1} is multiplicative and has bounded partial sums, then f is 1-pretentious

and at powers of 2, f(2k) = −1 for all k ≥ 1. Later, Klurman [5] completely classified

such multiplicative functions with bounded partial sums by proving that they must be

periodic of some period m and
∑m

n=1 f(n) = 0. This last result had been known as the

Erdős-Coons-Tao conjecture.

When we allow that a multiplicative function f takes complex values, then there is no

known criterion to determine when f has bounded partial sums, therefore we must analyze

case by case. For instance, in [1] and [6] it has been proved that a multiplicative function

f supported on the squarefree integers such that at primes f(p) = ±1, has unbounded

partial sums. On the other hand, without any restriction we can easily construct examples

of multiplicative functions f : N → C with bounded partial sums. A non-trivial way to

construct such examples exists if we impose conditions on the values f(p) at primes p

such that
∑

n≤x |f(n)| is bounded below by cx for all sufficiently large x, for some positive

constant c. Here we aim to do this.

Theorem 1.1. Assume that f : N → C is multiplicative, has bounded partial sums and∑
p
|1−f(p)|

p
<∞. Then there exists a prime q such that

(1)
∞∑
k=0

f(qk)

qk
= 0.

Remark 1.1. We impose the condition
∑

p
|1−f(p)|

p
< ∞ to keep the intuiton behind pre-

tentiouness in the case that f takes values outside the unit disk. For example, if pn is

the n-th prime and f(pn) = 1 + (−1)n ∈ {0, 2}, the partial sums
∑

p≤x
1−f(p)

p
are O(1) as

x→∞ while the values f(p) are always distant from 1.

It is interesting to observe that if f is real-valued and f 2 ≤ 1, then, since f(1) = 1,

(1) can only be satisfied when q = 2 and f(2k) = −1 for all k ≥ 1. But we have many

options to satisfy (1) when we allow that f takes complex values.

Theorem 1.2. If a multiplicative function f : N → C has period m, f(m) 6= 0 and has

bounded partial sums, then the following three conditions are satisfied.

i. For some prime q|m,
∑∞

k=0
f(qk)
qk

= 0.

ii. For each pa‖m, f(pk) = f(pa) for all k ≥ a.

iii. For each gcd(p,m) = 1, f(pk) = 1, for all k ≥ 1.



COMPLEX VALUED MULTIPLICATIVE FUNCTIONS WITH BOUNDED PARTIAL SUMS 3

Conversely, if f : N → C is multiplicative and the three conditions above are satisfied,

then f has period m and has bounded partial sums.

An intermediate step in the proof of the Erdős-Coons-Tao conjecture [5] is a result

similar to Theorem 1.2 – Proposition 4.4 of [5], where it is assumed that f 2 ≤ 1. Our

contribution here is the observation that the proof of Proposition 4.4 of [5] allow us to

deal with the case where |f | is not necessarily bounded by 1.

We stress that the condition that f does not vanish at its period, f(m) 6= 0, is pivotal

to deduce the three conditions above. Indeed, a non-principal Dirichlet character is a

classical example of a periodic (completely) multiplicative function with bounded partial

sums that vanishes at its period, and does not satisfy either i. and iii. However, the three

conditions above allow us to produce examples of periodic multiplicative functions with

bounded partial sums, despite the fact that f vanishes or not at its period.

Example 1.1. Let f be multiplicative and define for all primes p 6= 3, f(pk) = 1 for all

powers k ≥ 1, and at powers of 3: f(3) = 2, f(9) = −15 and f(3k) = 0 for all k ≥ 3.

Then f has period 27, f(27) = 0, and has bounded partial sums.

Example 1.2. Let f be multiplicative and define for all primes p 6= 5, f(pk) = 1 for all

powers k ≥ 1, and at powers of 5: f(5) = π, f(5k) = −20− 4π for all k ≥ 2. Then f has

period 25, f(25) 6= 0, and has bounded partial sums.

We point out that our class of examples in Theorem 1.2 is not the only one with

bounded partial sums. Indeed we can construct very easily examples of non-periodic mul-

tiplicative functions with bounded partial sums by a standard convolution argument: If

g : N→ C is multiplicative and
∑∞

n=1 |g(n)| <∞, and if h : N→ C has bounded partial

sums, then f = g ∗ h also has bounded partial sums, where ∗ stands for Dirichlet convo-

lution. In particular, h can be as in Theorem 1.2 or a non-principal Dirichlet character

χ.

Now we turn our attention to multiplicative functions f : N → C of the form f =

f1 ∗ f2, where each fj is multiplicative and periodic with bounded partial sums. We

begin by observing that if each fj satisfies the conditions i-iii of Theorem 1.2, then f has

unbounded partial sums.

Before we state our next result, we recall the notation f(x) = Ω(g(x)), where g(x) > 0

for all x > 0. This means that lim supx→∞
|f(x)|
g(x)

> 0.
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Theorem 1.3. Let f1 and f2 be two multiplicative functions satisfying conditions i-iii of

Theorem 1.2. Let f = f1 ∗ f2. Then there exists a constant d > 0 such that∑
n≤x

f(n) = Ω

(
exp

(
d

log x

log log x

))
.

A key argument in the proof of the result above is that f(n) = τ(n) whenever

gcd(n,m) = 1 for some m, where τ(n) is the divisor function: τ(n) =
∑

d|n 1. The

omega result is then obtained by using classical estimates for the maximal value of τ .

Our next question concerns upper bounds for the partial sums of f = f1 ∗ f2 as in

Theorem 1.3. We begin by recalling the classical estimate for the partial sums of the

divisor function:

(2)
∑
n≤x

τ(n) = x log x+ (2γ − 1)x+ ∆(x),

where ∆(x) is an error term and γ is the Euler-Mascheroni constant.

In the past 200 years there were a lot of attempts to obtain sharp estimates for the

error term ∆(x). This is classically known as the Dirichlet divisor problem, where one

seeks to obtain estimates for the exponent

(3) α := inf{a > 0 : ∆(x) = Oa(x
a)},

where the notation Oa means that the implied constant may depend on the parameter a.

It is common knowledge that α ≥ 1/4 (Hardy [3] and Landau, independently), but

its exactly value is unknown. It is conjectured that α = 1/4. The best upper bound up

to date is due to Huxley [4] (2003): α ≤ 131/416 ≈ 0.314. For a nice historical account

on this problem we refer to the book of Tenenbaum [10].

Before we state our next result we recall some classical notation. Here µ is the Möbius

function.

Theorem 1.4. Let f1 and f2 be two multiplicative functions satisfying conditions i-iii of

Theorem 1.2, and let m1 and m2 be the periods of f1 and f2, respectively. Let f = f1 ∗ f2.

Then, for all x > m1m2 ∑
n≤x

f(n) =
∑

n|m1m2

f ∗ µ ∗ µ(n)∆
(x
n

)
.
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Corollary 1.1. Let f be as in Theorem 1.4 and α defined by (3). Then, for all ε > 0∑
n≤x

f(n) = Oε(x
α+ε).

In particular, by the result of Huxley:∑
n≤x

f(n) = Oε(x
131/416+ε).

Thus, we have a considerable gap between our omega result (Theorem 1.3) and our

upper bound above. Even for the simplest case f1(n) = f2(n) = (−1)n+1 it seems to be

hard to obtain sharp estimates for the partial sums of f = f1 ∗ f2. We speculate that∑
n≤x f(n) = Ω(x1/4), and in the final section of this paper we prove this omega bound for

some particular cases of non-vanishing periodic multiplicative functions. We also discuss

a possible approach to the general case.

2. Proofs of the main results

2.1. Notation. We use both f(x) � g(x) and f(x) = O(g(x)) whenever there exists a

constant C > 0 such that |f(x)| ≤ C|g(x)| for all x in a set of parameters. When not

specified, this set of parameters will be the range in which x is sufficiently large. Further,

�δ means that the implicit constant may depend on δ. The standard f(x) = o(g(x))

means that limx→a
f(x)
g(x)

= 0. Sometimes a can be ∞. We write P for the set of primes

and p for a generic element of P . The notation pk‖n means that k is the largest power of

p for which pk divides n. Dirichlet convolution is denoted by ∗.

2.2. Proof of Theorems 1.1 and 1.2. We begin with the following.

Lemma 2.1. If f : N→ C is multiplicative and has bounded partial sums, then supn |f(n)| <
∞ and for each ε > 0, there exists a M > 0 such that if p ≥M , then |f(pk)| ≤ 1 + ε, for

all k ≥ 1.

Proof. Let C > 0 be such that
∣∣∑

n≤x f(n)
∣∣ ≤ C for all x ≥ 1. Assume by contradiction

that f is not O(1). Thus there exists a sequence of integers xk →∞ such that |f(xk)| →
∞. Since

|f(xk)| −

∣∣∣∣∣ ∑
n≤xk−1

f(n)

∣∣∣∣∣ ≤
∣∣∣∣∣∑
n≤xk

f(n)

∣∣∣∣∣ ≤ C,

we obtain a contradiction for large k. Thus f must be O(1). Now if there are an infinite

number of distinct primes p1, p2, ... such that for some powers k1, k2, ..., |f(p
kj
j )| > 1 + ε,

then |f(nl)| become arbitrarily large for nl = pk11 · ... · p
kl
l , and thus f is not O(1). �
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Proof of Theorem 1.1. Assume that f has bounded partial sums. Therefore, the Dirichlet

series F (s) :=
∑∞

n=1
f(n)
ns

is analytic in the half plane Re(s) > 0. By Lemma 2.1 above

there exists a constant C > 0 such that |f(n)| ≤ C, and hence, for Re(s) > 1, F (s) is

given by the Euler product

F (s) =
∏
p∈P

∞∑
k=0

f(pk)

pks
.

Now we split the Euler product in primes below and above M , where M is such that for

all primes p ≥ M , |f(pk)| ≤ 1 + ε for all k ≥ 1. For the tail product we have that for

σ > 1
1

ζ(σ)

∏
p>M

∞∑
k=0

f(pk)

pkσ
=
∏
p≤M

(
1− 1

pσ

) ∏
p>M

(
1 +

f(p)− 1

pσ
+
O(1)

p2σ

)
.

Therefore, since we assume that
∑

p
|1−f(p)|

p
< ∞, by making σ → 1+ above we conclude

that the limit exists, and since ζ(σ) = 1
σ−1 + O(1), there exists a constant c ∈ C \ {0}

such that ∏
p>M

∞∑
k=0

f(pk)

pkσ
=
c+ o(1)

σ − 1
,

as σ → 1+. Thus, as F is analytic at s = 1, we conclude that as σ → 1+, the finite

product ∏
p≤M

∞∑
k=0

f(pk)

pkσ
= O(σ − 1),

and hence ∏
p≤M

∞∑
k=0

f(pk)

pk
= 0,

and this can happen only if some Euler factor equals to 0. �

The proof of the next result follows the lines of Proposition 4.4 of [5].

Proof of Theorem 1.2. Assume that f : N→ C is multiplicative, has period m, f(m) 6= 0

and has bounded partial sums. Then for all k ≥ 1, f(km) = f(m). In particular, since

f(m) 6= 0, for each k coprime with m, f(k) = 1. Now write m as a power of distinct

primes, say pa11 , ..., p
al
l , where each aj ≥ 1. Since f(m) 6= 0, we obtain that each f(p

aj
j ) 6= 0.

Thus, by setting k = ptj, the equation f(km) = f(m) implies that f(p
aj+t
j ) = f(p

aj
j ). Thus

we have shown that conditions ii-iii are satisfied.

Observe that, since f has periodm and bounded partial sums, we have that
∑

n≤m f(n) =

0.

Now notice that if gcd(n,m) = d, then f(n) = f(d). This is because for each pa‖n
such that gcd(p,m) = 1, we have that f(pa) = 1, and if pb‖m with b ≥ 1, we have that
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f(pa) = f(pc) where c = min(a, b). Thus we can write∑
n≤m

f(n) =
∑
d|m

∑
n≤m

gcd(n,m)=d

f(n) =
∑
d|m

f(d)ϕ(m/d) = f ∗ ϕ(m),

where ϕ is the Euler’s totient function. Since f and ϕ are multiplicative, we have that

f ∗ ϕ is multiplicative. Recall that ϕ(pa) = pa(1− 1/p). Thus for each pa‖m with a ≥ 1,

we have that

f ∗ ϕ(pa) = f(pa) + f(pa−1)p

(
1− 1

p

)
+ f(pa−2)p2

(
1− 1

p

)
+ ...+ pa

(
1− 1

p

)
= pa

(
1− 1

p

)(a−1∑
k=0

f(pk)

pk
+

f(pa)

pa(1− 1/p)

)
.

But since f(pa) = f(pk) for all k ≥ a, we have that

f(pa)

pa(1− 1/p)
=
∞∑
k=a

f(pk)

pk
.

Thus,

(4)
∑
n≤m

f(n) = ϕ(m)
∏
p|m

∞∑
k=0

f(pk)

pk
,

and hence condition i. must be satisfied.

Now assume conditions i-iii. Then as above, if gcd(a,m) = d, then f(a) = f(d), and

if n ≡ a mod m, then gcd(n,m) = gcd(a,m), and hence f has period m. Now with

conditions ii-iii we can arrive at (4), and with condition i. we conclude that
∑

n≤m f(n) =

0, and thus f must have bounded partial sums. �

2.3. Proof of Theorems 1.3 and 1.4.

Lemma 2.2. Let f = f1 ∗ f2 where f1 and f2 are multiplicative functions satisfying

conditions i) ii) and iii) of Theorem 1.2. Let m1 and m2 be the periods of f1 and f2

respectively. Then f = g ∗ τ , where g satisifies the following properties.

a)
∑

n≤x |g(n)| = Oε(x
ε), for all ε > 0;

b) If gcd(n,m1m2) = 1, then g(n) = 0;

c)
∑∞

n=1
g(n)
n

=
∑∞

n=1
g(n) logn

n
= 0.

Proof. Let Re(s) > 1. By the classical identity for the Dirichlet series of a convolution

and the Euler product formula, we have that

F (s) :=
∞∑
n=1

f1 ∗ f2(n)

ns
=
∏
p∈P

(
∞∑
k=0

f1(p
k)

pks

)(
∞∑
k=0

f2(p
k)

pks

)
.
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Now, by assumption iii., if gcd(p,m1m2) = 1, then f1(p
k) = f2(p

k) = 1 for all powers

k ≥ 1. Therefore

F (s) =
∏

p|m1m2

(
∞∑
k=0

f1(p
k)

pks

)(
∞∑
k=0

f2(p
k)

pks

) ∏
p∈P

gcd(p,m1m2)=1

(
1− 1

ps

)−2
,

and hence

(5) G(s) :=
F (s)

ζ(s)2
=

∏
p|m1m2

(
∞∑
k=0

f1(p
k)

pks

)(
∞∑
k=0

f2(p
k)

pks

)(
1− 1

ps

)2

.

Recall that ζ(s)2 is the Dirichlet series of τ = 1 ∗ 1. Thus, G(s) is the Dirichlet series of

g := f ∗ τ−1 = f ∗ (µ ∗ µ), where µ is the classical Möbius function. Therefore, by the

Euler product formula for G(s) above, we have that condition b) must be satisfied. Since

f1 and f2 are O(1), we have that there exists a constant c > 0, such that for all primes p

and all powers k ≥ 1, |g(pk)| ≤ ck. This implies that for each σ > 0∑
p|m1m2

∞∑
k=1

|g(pk)|
pkσ

<∞,

and hence, by a classical result for Dirichlet series (see for instance [10], pg. 188, Theorem

1.3), G(s) =
∑∞

n=1
g(n)
ns

converges absolutely in the half plane Re(s) > 0 and is given by

(5) for each s in this half plane. In particular, for each ε > 0,
∑∞

n=1
|g(n)|
nε

<∞, and hence,

by Kroenecker’s Lemma (see for instance [8], pg. 390, Lemma 2), we have that condition

a) is satisfied. Finally, by assumption i., there are primes q1|m1 and q2|m2 such that

∞∑
k=0

f1(q
k
1)

qk1
=
∞∑
k=0

f2(q
k
2)

qk2
= 0.

Hence, by analyticity

∞∑
k=0

f1(q
k
1)

qks1
= O(|s− 1|),

∞∑
k=0

f2(q
k
2)

qks2
= O(|s− 1|),

for all s sufficiently close to 1. This combined with (5) gives that G(s) = O(|s− 1|2), for

all s sufficiently close to 1, and since G is analytic, we have that G(1) = G′(1) = 0. But

G(1) =
∑∞

n=1
g(n)
n

and G′(1) = −
∑∞

n=1
g(n) logn

n
, and this completes the proof. �

Proof of Theorem 1.3. By the triangle inequality we have that for each positive integer x,

|f(x)| ≤

∣∣∣∣∣ ∑
n≤x−1

f(n)

∣∣∣∣∣+

∣∣∣∣∣∑
n≤x

f(n)

∣∣∣∣∣ .
Therefore, by the pigeonhole principle, we have that at least one of the two sums in

the right-hand side above is at least |f(x)|/2. By Lemma 2.2, we have that for each

gcd(n,m1m2) = 1, f(n) = τ(n) ≥ 2ω(n), where ω(n) =
∑

p|n 1. Since ω(n) can be as large
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as (1 + o(1)) log n/ log log n (see for instance [10] pg. 113, Theorem 5.4), we complete the

proof. �

Proof of Theorem 1.4. By Lemma 2.2, we have that f = g ∗ τ . This combined with (2)

gives that∑
n≤x

f(n) =
∑
n≤x

g(n)
∑
m≤x/n

τ(m) =
∑
n≤x

g(n)
(x
n

log(x/n) + (2γ − 1)
x

n
+ ∆(x/n)

)
= x log x

∑
n≤x

g(n)

n
− x

∑
n≤x

g(n) log n

n
+ (2γ − 1)x

∑
n≤x

g(n)

n
+
∑
n≤x

g(n)∆(x/n).

We will show that each of the first three sums in the right hand side above vanishes

for x > m1m2. This is the moment when we will use the condition ii) of Theorem 1.2.

The condition states that if pkj‖mj for j = 1, 2, then fj(p
tj) = fj(p

kj) for all tj ≥ kj. Here

we allow that kj = 0. Thus fj ∗ µ(ptj) = fj(p
tj)− fj(ptj−1) = 0, for all tj ≥ kj + 1. Since

g = (f1 ∗ µ) ∗ (f2 ∗ µ), we have that g(pt) = 0 for all t ≥ k1 + k2 + 1. This can be easily

seen by the fact that each Euler factor in the Euler product representation of
∑∞

n=1
g(n)
ns

has the form
k1∑
k=0

f1 ∗ µ(pk)

pks

k2∑
l=0

f2 ∗ µ(pl)

pls
.

Therefore, by b) of Lemma 2.2, if n > m1m2, we have that g(n) = 0, and by c) of the

same Lemma we obtain the desired claim. �

Remark 2.1. We observe that without ii. of Theorem 1.2, we could prove a slighty

more general statement but with weaker conclusions in comparison with the one ob-

tained in Theorem 1.4. Indeed, this was done in a preprint version of this paper (see

arXiv:2110.03401, v3). There we show that∑
n≤x

f1 ∗ f2(n) =
∑
n≤x

g(n)∆(x/n) +Oε(x
ε),

for any ε > 0. To establish this, one should impose a growth condition on each fj so that

one could prove a) from Lemma 2.2.

Proof of Corollary 1.1. By Theorem 1.4, we have that
∑

n≤x f(n) can be expressed as a

finite linear combination of the functions (∆(x/n))n. The proof is then an immediate

consequence of the triangle inequality. �

3. Discussion on Ω bounds for f1 ∗ f2

As we point out in the introduction, there is a considerable gap between our omega

bound (Theorem 1.3) and our upper bound (Corollary 1.1). Here we propose an approach

http://arxiv.org/abs/2110.03401
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to prove our conjecture that
∑

n≤x f1 ∗ f2(n) = Ω(x1/4), where each fj is periodic with

bounded partial sums that satisfy i., ii. and iii. of Theorem 1.2.

A nice result proved by Tong [11] states that∫ X

1

∆(x)2dx = (A+ o(1))X3/2,

where A is the constant given by

(6) A =
1

6π2

∞∑
n=1

τ(n)2

n3/2
.

Observe that if a function λ(x) is o(x1/4), then
∫ X
1
|λ(x)|2dx = o(X3/2). Therefore, this

combined with Tong’s result gives a second proof (different from Hardy’s) that ∆(x) =

Ω(x1/4), and also allows us to prove the following result.

Proposition 3.1. Let q be a prime number and f be the unique q-periodic multiplicative

function with bounded partial sums, and such that f(q) 6= 0. Assume that q ≥ 5. Then∑
n≤x

f ∗ f(n) = Ω(x1/4).

Proof. By Theorem 1.2 we have that f(qk) = f(q) for all k ≥ 1. Then, condition i.

determines uniquely the value of f(q):

1 + f(q)
∞∑
k=1

1

qk
= 0.

Therefore, f(q) = −(q − 1). Now, for k ≥ 1, by condition iii. of Theorem 1.2, we have

that f ∗ µ(pk) is 0 unless p = q. In this case we have that f ∗ µ(qk) is: 0 if k ≥ 2,

and f(q) − 1 = −q, if k = 1. The Euler factor corresponding to q in the Euler product

representation of the Dirichlet series of g := (f ∗ µ) ∗ (f ∗ µ) is(
1− q

qs

)2

= 1− 2q

qs
+
q2

q2s
.

This immediately implies that g(q) = −2q and g(q2) = q2. Hence, by Theorem 1.4, for

x > q2 ∑
n≤x

f ∗ f(n) = ∆(x)− 2q∆(x/q) + q2∆(x/q2).

Now, by combining Tong’s result (6) with a simple change of variables, for any n > 0 we

obtain that

‖∆(x/n)‖L2[1,X] :=

(∫ X

1

∆(x/n)2dx

)1/2

=

√
A+ o(1)

n1/4
X3/4.
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The Cauchy-Schwarz and Minkowski inequalities for L2 spaces imply that

‖∆(x)− 2q∆(x/q) + q2∆(x/q2)‖L2[1,X]

≥ q2‖∆(x/q2)‖L2[1,X] − 2q‖∆(x/q)‖L2[1,X] − ‖∆(x)‖L2[1,X]

≥
√
A+ o(1)X3/4

(
q2

q2/4
− 2q

q1/4
− 1

)
≥
√
A+ o(1)X3/4

(
q3/2 − 2q3/4 − 1

)
.

With standard calculus we can check that the function λ(q) := q3/2−2q3/4−1 is increasing

for q ≥ 1, and since λ(5) = 3.4929, we have that λ(q) > 0 for all q ≥ 5. This shows that

in this range of q, ∥∥∥∥∑
n≤x

f ∗ f(n)

∥∥∥∥
L2[1,X]

≥
√
A+ o(1)λ(q)X3/4,

which gives the desired omega bound. �

In our proof above, we see that this method does not work in the case that q ∈ {2, 3},
since in these cases λ(q) < 0. In particular, in the case q = 2, the associated periodic

multiplicative function is the classical f(n) = (−1)n+1. For this particular case, in the

next figure we plot the partial sums of f ∗ f , and the numerics are in agreement with our

conjecture.

0 0.5 1 1.5 2 2.5 3

10
4

-60

-40

-20

0

20

40

60

Figure 1. The dashed curves are given by x 7→ ±4x1/4, and the continuous

line is given by x 7→
∑

n≤x f ∗ f(n), where f(n) = (−1)n+1.

We conclude by mentioning a possible approach to the conjectured omega bound.

Since
∑

n≤x f1 ∗ f2(n) can be expressed as
∑

n≤T cn∆(x/n), where T is a positive integer

and cn are complex numbers, one could approach the conjectured omega bound by study-

ing the quadratic form obtained from the squared L2[1, X] norm of
∑

n≤T cn∆(x/n). The
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conjectured omega bound would follow if, for instance, one could prove that the eigenval-

ues of the symmetric matrix (an,m)n,m≤T are positive, where

an,m = lim
X→∞

1

X3/2

∫ X

1

∆(x/n)∆(x/m)dx.

To prove this, our preliminary calculations show that, by using the classical Voronöı’s

formula for ∆(x) (see Lemma 1 of [7]), firstly we need to understand the effect of positive

integers a and b in the correlations ∑
n≤x

τ(an)τ(bn).
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