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Abstract
We prove that if an integer homology three-sphere con-
tains an embedded incompressible torus, then its funda-
mental group admits irreducible 𝑆𝑈(2)-representations.
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1 INTRODUCTION

The fundamental group is one of the most powerful invariants to distinguish closed three-
manifolds. In fact, by Perelman’s proof of Thurston’s Geometrization conjecture [28–30],
fundamental groups determine closed, orientable three-manifolds up to orientations of the
prime factors and up to the indeterminacy arising from lens spaces. Prominently, the three-
dimensional Poincaré conjecture, a special case of Geometrization, characterizes 𝑆3 as the
unique closed, simply connected three-manifold. For a three-manifold with non-trivial funda-
mental group, it is then useful to quantify the non-triviality of the fundamental group. Since the
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Geometrization theorem implies that three-manifolds have residually finite fundamental groups
[18], this non-triviality can be measured by representations to finite groups. However, there is
not a finite group 𝐺 such that every three-manifold group has a non-trivial homomorphism
to 𝐺. Therefore, a more uniform measurement of non-triviality can be found in the following
conjecture.

Conjecture 1 (Kirby Problem 3.105(A), [19]). If𝑌 is a closed, connected, three-manifold other than
𝑆3, then 𝜋1(𝑌) admits a non-trivial 𝑆𝑈(2)-representation.

Note that this conjecture is equivalent to the statement that the fundamental groups of all
integer homology three-spheres other than 𝑆3 admit irreducible 𝑆𝑈(2)-representations. Indeed,
every three-manifold whose first homology group is non-zero admits non-trivial abelian rep-
resentations to 𝑆𝑈(2). Moreover, lens spaces are examples of manifolds that admit non-trivial
𝑆𝑈(2)-representations of their fundamental groups, but no irreducible ones. There are also
three-manifolds with non-abelian fundamental group which do not admit irreducible represen-
tations [26]. However, for representations of perfect groups to 𝑆𝑈(2), non-triviality is equivalent
to irreducibility.
For comparison, the third author showed in [36] that Conjecture 1 is true if one replaces 𝑆𝑈(2)

with 𝑆𝐿2(ℂ). The readermay also relate Conjecture 1with characterizing the three-manifoldswith
simplest instanton or Heegaard Floer homologies. One side of the L-space conjecture predicts
that every prime integer homology three-sphere other than 𝑆3 and the Poincaré homology three-
sphere admits a co-orientable taut foliation. This fact, together with the gauge-theoretic methods
used by Kronheimer–Mrowka in [21], would then imply Conjecture 1.
There are many families of integer homology three-spheres for which Conjecture 1 has been

established, such as those which are Seifert fibred (although the methods go back to Fintushel–
Stern [13], this can be found explicitly in [32, Theorem 2.1]), branched double covers of non-trivial
knots with determinant 1 [8, Theorem 3.1] and [35, Corollary 9.2], 1∕𝑛-surgeries on non-trivial
knots in 𝑆3 [20], those that are filled by a Stein manifold which is not a homology ball [1], or for
splicings of knots in 𝑆3 [36].
It follows again from Geometrization that there are three (non-disjoint) types of prime integer

homology three spheres: Seifert fibred, hyperbolic, and toroidal ones. We remark that although
some toroidal integer homology three spheres are Seifert fibered, they are never hyperbolic. The
third author established that if all hyperbolic integer homology three spheres have irreducible
𝑆𝑈(2)-representations, then Conjecture 1 holds in general. While we are unable to complete the
remaining step in this program, we confirm the existence of 𝑆𝑈(2)-representations for toroidal
integer homology three spheres.

Theorem 1.1. Let𝑌 be a toroidal integer homology three spheres. Then𝜋1(𝑌) admits an irreducible
𝑆𝑈(2)-representation.

A proof of Theorem 1.1 could be obtained by showing that toroidal integer homology three
spheres have non-trivial instanton Floer homology. Although we expect the latter to be true (see
[19, Problem 3.106]), we do not prove it in this article. Our proof of Theorem 1.1 instead relies on
holonomy perturbations in a manner similar to the proof of [36, Theorem 8.3]. If 𝑌 is a toroidal
integer homology three-sphere, then 𝑌 can be viewed as a splice of knots 𝐾𝑖 in integer homol-
ogy three spheres 𝑌𝑖 for 𝑖 = 1, 2 (see, for example, [11, Proof of Corollary 6.2]). If some 𝑌𝑖 has an
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346 LIDMAN et al.

irreducible 𝑆𝑈(2)-representation, then there is a 𝜋1-surjective map from 𝑌 to 𝑌𝑖 and we can pull
back to an irreducible 𝑆𝑈(2)-representation for𝑌. If not, thenwewill study the image of the space
of representations of the knot exterior 𝑌𝑖 ⧵ 𝑁(𝐾𝑖)◦ in the character variety for the boundary torus
(that is, in the pillowcase). Here,𝑁(𝐾𝑖) denotes a closed tubular neighborhood of 𝐾𝑖 , and𝑁(𝐾𝑖)◦
denotes its interior. Similar to the case of non-trivial knots in 𝑆3, if 𝑌𝑖 has no irreducible repre-
sentations, we will show that the image in the pillowcase contains a suitably essential loop. The
loops for the two exteriors will have a non-trivial intersection, and therefore, the spliced manifold
𝑌 will admit an irreducible 𝑆𝑈(2)-representation.
Theorem 1.1 gives a simpler proof of [36, Theorem 9.4] since it avoids the use of a finiteness

result of Boileau–Rubinstein–Wang.

Corollary 1.2 (Theorem 9.4, [36]). Every integer homology three-sphere other than 𝑆3 has an
irreducible 𝑆𝐿2(ℂ)-representation of its fundamental group.

Proof. By the remarks above we have to consider three cases: Seifert fibred, hyperbolic, and
toroidal integer homology three spheres. Let𝑌 be an integer homology three-sphere other than 𝑆3.
If𝑌 is hyperbolic, it admits an irreducible 𝑆𝐿2(ℂ)-representation by lifting the holonomy represen-
tation to 𝑃𝑆𝐿2(ℂ) [9]. If𝑌 is Seifert fibred, then 𝜋1(𝑌) admits an irreducible 𝑆𝑈(2)-representation
by [32, Theorem 2.1]. If 𝑌 is toroidal, the result now follows from Theorem 1.1. □

In order to generalize the holonomy perturbation machinery developed by the third author
from non-trivial knots in 𝑆3, we will need to establish a non-vanishing result which may be of
independent interest.

Theorem 1.3. Let 𝐽 be a knot in an integer homology three-sphere 𝑌 such that the exterior of 𝐽 is
irreducible and boundary-incompressible. Suppose that 𝐼∗(𝑌) = 0. Then, 𝐼𝑤∗ (𝑌0(𝐽)) ≠ 0.
Here, and throughout this article, 𝐼∗ denotes Floer’s original version of instanton Floer homol-

ogy and 𝐼𝑤∗ denotes instanton Floer homology for an admissible 𝑆𝑂(3)-bundle with second
Stiefel–Whitney class 𝑤. (Note that 𝑌0(𝐽) admits only one such bundle.)
The proof of Theorem 1.3 is a combination of (1) Kronheimer–Mrowka’s non-vanishing result

for instanton Floer homology of three-manifolds with a taut-sutured manifold hierarchy [22], (2)
the surgery exact triangle in instanton Floer homology, and (3) Gordon’s description of surgery
on cable knots [17]. The argument is similar to Kronheimer–Mrowka’s proof of Property P [21].
While Theorem 1.3 itself may not be particularly interesting, it does lead to the following

corollary, whose analog in Heegaard Floer homology has been established by Ni [27, p.1144] and
Conway and Tosun [7]. The proof of the corollary appears in Section 2 below.

Corollary 1.4. Let 𝑌 ≠ 𝑆3 be an integer homology three-sphere which bounds a Mazur manifold.
Then, 𝐼∗(𝑌) ≠ 0, and hence 𝜋1(𝑌) admits an irreducible 𝑆𝑈(2)-representation.
Recall that Baldwin–Sivek prove that if an integer homology three-sphere 𝑌 bounds a Stein

domain with non-trivial homology, then 𝜋1(𝑌) admits an irreducible 𝑆𝑈(2)-representation [1,
Theorem 1.1]. In light of Conjecture 1, the following conjecture would be a natural extension of
their work.
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TOROIDAL HOMOLOGY SPHERES AND 𝑆𝑈(2)-REPRESENTATIONS 347

Conjecture 2. If𝑌 ≠ 𝑆3 is an integer homology three-sphere which bounds a Stein integer homology
ball, then 𝜋1(𝑌) admits an irreducible 𝑆𝑈(2)-representation.

Since Stein domains admit handlebody decompositions with no three handles [12], Corol-
lary 1.4 proves this conjecture for the boundaries of Stein integer homology balls with the simplest
possible handle decompositions.
Theorem 1.1 also has two simple corollaries. The first one is obtained by considering branched

covers over satellite knots in 𝑆3. Remarkably, its proof requires no use of gauge theory, beyond
our main result. Its proof appears in Section 5 below.

Corollary 1.5. Let 𝐾 be a prime, satellite knot in 𝑆3. Conjecture 1 holds for any non-trivial cyclic
branched cover of 𝐾.

To obtain the second corollary, define a graph manifold integer homology three-sphere to be a
closed, orientable three-manifold whose torus decomposition has no hyperbolic pieces.† As dis-
cussed above, the fundamental groups of Seifert integer homology three spheres other than 𝑆3
admit irreducible 𝑆𝑈(2)-representations, and hence we obtain the following.

Corollary 1.6. Let𝑌 be a graphmanifold integer homology three-sphere other than 𝑆3. Then 𝜋1(𝑌)
admits an irreducible 𝑆𝑈(2)-representation.

A first alternate proof of this corollary can be obtained by noting that every integer homology
three-sphere other than 𝑆3which is a graphmanifold can be realized as the branched double cover
of a non-trivial (arborescent) knot in 𝑆3, see [4]. A second alternate proof can be obtained by not-
ing that every prime graph manifold integer homology three-sphere 𝑌 other than 𝑆3 or Σ(2, 3, 5)
admits a co-orientable taut foliation by [3, Corollary 0.3]. This implies that 𝐼∗(𝑌) ≠ 0, and this in
turn implies that there exists an irreducible 𝑆𝑈(2)-representation. On the other hand, the binary
dodecahedral group is well known to admit two conjugacy classes of irreducible representations,
completing the proof. Note that, unlike for Seifert integer homology three spheres, the Casson
invariant of a non-trivial graphmanifold can be zero. For example, the three-manifold𝑌 obtained
as the splice of two copies of the exterior of the right-handed trefoil has trivial Casson invariant
[5, 16].

Outline

In Section 2 we establish the main technical result Theorem 1.3 whose strategy also leads us to
prove Corollary 1.4 about Mazur manifolds. In Section 3, we review the pillowcase construction
and prove Theorem 1.1 in subsection 3.3, using a technical result about invariance under holon-
omy perturbations in instanton Floer homology reviewed in Section 4. The material in Section 4
is mostly known (or at least folklore knowledge) and can be found elsewhere, but the reader
might appreciate our synthesis of the role of holonomy perturbations and our sketch of invari-
ance in order to follow more easily through the proof of our main results. In Section 5, we prove
Corollary 1.5.

† Some authors impose additional constraints, such as primeness or a non-trivial torus decomposition.
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348 LIDMAN et al.

2 INSTANTON FLOER HOMOLOGY OF 0-SURGERY

In this section we rely solely on formal properties of instanton Floer homology to prove Theo-
rem 1.3 regarding the instanton Floer homology of 0-surgeries, and Corollary 1.4 regarding the
instanton Floer homology of integer homology three spheres that bound Mazur manifolds. More
concrete aspects of instanton Floer homology groups, in particular those regarding perturbations,
appear in Section 4, but in this section we wish to place the focus on the usefulness of formal
properties for purposes of computations.
We consider instanton Floer homology for admissible bundles, as introduced by Floer [15].

For integer homology three spheres, this is the trivial 𝑆𝑈(2)-bundle over 𝑌. For three-manifolds
with positive first Betti number, this is an 𝑆𝑂(3)-bundle 𝑃 → 𝑌 such that there is a surface Σ ⊆ 𝑌
on which the second Stiefel–Whitney class 𝑤 ∶= 𝑤2(𝑃) evaluates non-trivially, that is, such that⟨𝑤2(𝑃), [Σ]⟩ ≠ 0. The instanton Floer homology group is defined as a version of Morse homology
of the Chern–Simons function on the space of connections on the admissible bundle [10, 15]. It
is denoted by 𝐼∗(𝑌) for the trivial bundle on integer homology three spheres, and it is denoted by
𝐼𝑤∗ (𝑌) for 𝑆𝑂(3)-bundles 𝑃 → 𝑌 with 𝑤2(𝑃) = 𝑤. We remark here that for an integer homology
three-sphere, the trivial connection is isolated and is the unique reducible connection (up to gauge
equivalence). In the other cases, the admissibility condition ensures that there are no reducible
flat connections on the bundle.
In the case of a knot 𝐾 in an integer homology three-sphere 𝑌, there is a unique admissible

bundle on the 0-surgery 𝑌0(𝐾), because 𝐻2(𝑌0(𝐾); ℤ∕2) ≅ ℤ∕2. Therefore, the instanton Floer
homology group 𝐼𝑤(𝑌0(𝐾)) is defined without ambiguity.

Proposition 2.1. Instanton Floer homology satisfies the following properties.

(1) For 𝑌 an integer homology three-sphere and any 𝑛 ∈ ℤ, the three-manifolds 𝑌1∕𝑛(𝐾),
𝑌1∕(𝑛+1)(𝐾), and 𝑌0(𝐾) fit into an exact triangle

(2) If𝑀 is an irreducible three-manifold with 𝑏1(𝑀) = 1, then 𝐼𝑤∗ (𝑀) ≠ 0.
(3) For 𝑌 an integer homology three-sphere, if 𝜋1(𝑌) admits no irreducible 𝑆𝑈(2)-representations,

then 𝐼∗(𝑌) = 0.
(4) 𝐼𝑤∗ (𝑆

2 × 𝑆1) = 0.

Proof. The surgery exact triangle in (2.1(1)) is originally due to Floer [15, Theorem 2.4] with details
given in [6, Theorem 2.5]. The non-triviality result in (2.1(2)) is precisely [22, Theorem 7.21]. Next,
(2.1(3)) follows from [14, Theorem 1], since if 𝜋1(𝑌) admits no irreducible 𝑆𝑈(2)-representations,
then the generating set for the instanton Floer chain groups is empty. Finally, (2.1(4)) follows
from (2.1(3)) and (2.1(1)), by considering the surgery exact triangle for surgery on the unknot in
𝑆3. Alternatively, this follows from the definition of 𝐼𝑤∗ (see Section 4), since 𝜋1(𝑆2 × 𝑆1) admits
no representations to 𝑆𝑂(3) which do not lift to 𝑆𝑈(2). □
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TOROIDAL HOMOLOGY SPHERES AND 𝑆𝑈(2)-REPRESENTATIONS 349

Wewill be particularly interested in integer homology three sphereswhose fundamental groups
do not admit irreducible 𝑆𝑈(2)-representations. We therefore establish the following definition.

Definition 2.2. An integer homology three-sphere𝑌 is𝑆𝑈(2)-cyclic if every 𝑆𝑈(2)-representation
of 𝜋1(𝑌) is trivial.

Notice that Conjecture 1 states that 𝑆3 is the only 𝑆𝑈(2)-cyclic integer homology three-sphere.
Having stated the above formal properties of instanton Floer homology, the proofs of

Theorem 1.3 and Corollary 1.4 now follow easily.

2.1 Non-vanishing of instanton Floer homology

In this subsection we illustrate the way the formal properties from Proposition 2.1 can be used to
show that the instanton homology groups are non-zero in two cases: (1) three-manifolds obtained
as 0-surgery along knots in 𝑆𝑈(2)-cyclic integer homology three spheres whose exterior is irre-
ducible and boundary incompressible, and (2) three-manifolds other than 𝑆3 obtained as the
boundary of a Mazur manifold.

Proof of Theorem 1.3. We assume that 𝐼𝑤∗ (𝑌0(𝐾)) is trivial and argue by contradiction. By
Proposition 2.1(1) the three-manifolds 𝑌1∕𝑛(𝐾), 𝑌1∕(𝑛+1)(𝐾), and 𝑌0(𝐾) fit together in an exact
triangle

The assumption 𝐼𝑤∗ (𝑌0(𝐾)) = 0 implies that there is an isomorphism

𝐼∗(𝑌1∕(𝑛+1)(𝐾)) ≅ 𝐼∗(𝑌1∕𝑛(𝐾)) for each 𝑛 ∈ ℤ.

In particular, if 𝑛 = 0, then 𝐼∗(𝑌1(𝐾)) ≅ 𝐼∗(𝑌) = 0 thus showing that for all 𝑛 ∈ ℤ,

𝐼∗(𝑌1∕𝑛(𝐾)) = 0. (1)

Now, a result of Gordon [17, Lemma 7.2] shows that 𝑌1∕4(𝐾) is diffeomorphic to 𝑌1(𝐾2,1), where
𝐾2,1 is the (2,1)-cable of the knot 𝐾 (see Figure 5 for an example of 𝐾2,1). This together with
Equation 1 implies 𝐼∗(𝑌1(𝐾2,1)) = 0. An iteration of an exact triangle as in Proposition 2.1(1) for
surgeries along 𝐾2,1 gives 𝐼𝑤∗ (𝑌0(𝐾2,1)) = 0.
We now consider a decomposition of 𝑌0(𝐾2,1) that includes the knot exterior of 𝐾 in 𝑌. Denote

by 𝐶2,1 a closed curve that lies in the boundary of a ‘small’ solid torus 𝑆1 × 𝜕𝐷21∕2 ⊂ 𝑆
1 × 𝐷2, and

representing the class 2[𝑆1] + [𝜕𝐷2
1∕2
] in 𝐻1(𝑆1 × 𝜕𝐷21∕2). Notice that the 0-framing of 𝐾2,1 in 𝑌

induces the framing on 𝐶2,1 determined by the curve 𝜆 in 𝜕𝑁(𝐶2,1) that represents the class 2[𝑆1]
in𝐻1(𝑆1 × 𝜕𝐷2) (see [17, p. 692]). Therefore, the manifold 𝑌0(𝐾2,1) can be expressed as the union
of the knot exterior 𝑌 ⧵ 𝑁(𝐾), and the result of Dehn surgery on 𝑆1 × 𝐷2 along the curve 𝐶2,1
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350 LIDMAN et al.

F IGURE 1 AMazur manifold with one two-handle attached with framing given by 𝑛 for some 𝑛 ∈ ℕ

with framing given by 𝜆. By hypothesis the knot exterior 𝑌 ⧵ 𝑁(𝐾) is irreducible and boundary-
incompressible, and by [17, Lemma 7.2] the 0-surgery along the curve 𝐶2,1 is a Seifert-fibred space
with incompressible boundary. Hence 𝑌0(𝐾2,1) is an irreducible closed three-manifold with first
Betti number equal to 1 and with trivial instanton Floer homology. However, this contradicts
Proposition 2.1(2), which says that 𝐼𝑤∗ (𝑌0(𝐾2,1)) ≠ 0. □

Next, consider integer homology three spheres that bound a Mazur manifold, that is, a four-
manifold that admits a handle decomposition in terms of exactly one 0-handle, one 1-handle, and
one 2-handle which algebraically runs exactly once over the 1-handle, such as in Figure 1. Then
we have the following.

Proof of Corollary 1.4. If 𝑌 bounds a Mazur manifold, then there exists a knot 𝐽 in 𝑌 such
that 𝑌0(𝐽) = 𝑆2 × 𝑆1. Moreover, if 𝐼∗(𝑌) = 0, a combination of the surgery exact triangle from
Proposition 2.1(1) and the computation 𝐼𝑤∗ (𝑆

2 × 𝑆1) = 0 from Proposition 2.1(4) shows once again
that 𝐼∗(𝑌1∕4(𝐽)) = 0. The same argument used above in the proof of Theorem 1.3 then gives
𝐼∗(𝑌0(𝐽2,1)) = 0.
However, the exterior of a knot in 𝑆2 × 𝑆1 which generates homology is either irreducible and

boundary-incompressible or a solid torus. To see this claim, suppose that the complement of a knot
𝐾 in 𝑆2 × 𝑆1 is reducible. Since𝐾 is non-trivial in homology, it intersects every non-separating 𝑆2,
and so there are no 𝑆2 × 𝑆1 summands in the exterior of 𝐾. Hence, the exterior of 𝐾 is the con-
nected sum of a closed three-manifold𝑁 other than 𝑆3 and a three-manifold with torus boundary
𝑀. But we know that there is a filling of the exterior of𝐾which is 𝑆2 × 𝑆1, and, in particular, this is
irreducible. Therefore, the separating 2-spheremust bound a ball on the side of𝑀 after the filling.
But this implies that 𝑁 is 𝑆2 × 𝑆1, and this is a contradiction. On the other hand, if the exterior
of 𝐾 has compressible boundary and is not a solid torus, then that means that the exterior is the
connected sum of a solid torus with a closed three-manifold. The exterior of𝐾 is then reducible, a
contradiction we have already established. So the only possibility that remains is that the exterior
is a solid torus.
The case where the exterior of a knot in 𝑆2 × 𝑆1 is a solid torus corresponds to 𝑌 = 𝑆3,

so by our assumption the exterior of 𝐽 is irreducible and boundary-incompressible. As in
the proof of Theorem 1.3 we get that 𝑌0(𝐽2,1) is irreducible with 𝑏1 = 1. But this contradicts
Proposition 2.1(2). □
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TOROIDAL HOMOLOGY SPHERES AND 𝑆𝑈(2)-REPRESENTATIONS 351

3 THE PILLOWCASE ALTERNATIVE

In this sectionwe recall the relevant background on 𝑆𝑈(2)-character varieties and generalizework
of the third author [36] to prove Theorem 1.1, our main result.

3.1 The pillowcase

Given a connected manifold𝑀, we denote by

𝑅(𝑀) = Hom(𝜋1(𝑀), 𝑆𝑈(2))∕𝑆𝑈(2)

the space of 𝑆𝑈(2)-representations of its fundamental group, up to conjugation. We will write
𝑅(𝑀)∗ for the subset of irreducible representations. For example, the space 𝑅(𝑇2) is identified
with the pillowcase, an orbifold homeomorphic to a two-dimensional sphere with four corner
points. To see this, notice that since 𝜋1(𝑇2) ≅ ℤ2 is abelian, the image of any representation
𝜌∶ 𝜋1(𝑇

2) → 𝑆𝑈(2) is contained in a maximal torus subgroup of 𝑆𝑈(2). Up to conjugation,
this torus can be identified with the circle group consisting of matrices of the form

[
𝑒𝑖𝜃 0
0 𝑒−𝑖𝜃

]
for 𝜃 ∈ [0, 2𝜋]. Thus, if we denote the generators of 𝜋1(𝑇2) ≅ ℤ2 by 𝑚 and 𝑙, then, again after
conjugation, a representation 𝜌 ∈ 𝑅(𝑇2) is determined by

𝜌(𝑚) =

[
𝑒𝑖𝛼 0

0 𝑒−𝑖𝛼

]
and 𝜌(𝑙) =

[
𝑒𝑖𝛽 0

0 𝑒−𝑖𝛽

]
,

and hence we can associate to 𝜌 a pair (𝛼, 𝛽) ∈ [0, 2𝜋] × [0, 2𝜋]. However, conjugation of 𝜌 by
the element

[
0 1
−1 0

]
gives rise to the representation associated to the pair (2𝜋 − 𝛼, 2𝜋 − 𝛽). This is

the only ambiguity, however, as can be seen using the fact that the trace of an element in 𝑆𝑈(2)
determines its conjugacy class. Therefore 𝑅(𝑇2) is isomorphic to the quotient of the fundamental
domain [0, 𝜋] × [0, 2𝜋] by identifications on the boundary as indicated in Figure 2.
If we have a three-manifold 𝑀 with torus boundary, then the inclusion 𝑖 ∶ 𝑇2 ≅ 𝜕𝑀 ↪ 𝑀

induces a map 𝑖∗ ∶ 𝑅(𝑀) → 𝑅(𝑇2) by restricting a representation to the boundary. For instance, if
𝐾 is a knot in a three-manifold𝑌, then the three-manifold𝑌(𝐾) ∶= 𝑌 ⧵ 𝑁(𝐾)◦ obtained by remov-
ing the interior of a tubular neighborhood𝑁(𝐾) of 𝐾 from 𝑌 is a three-manifold with boundary a
two-dimensional torus. Figure 2 shows the image of 𝑅(𝑆3(𝐾)) when 𝐾 is the right-handed trefoil
in 𝑆3, once in the pillowcase, and once in the fundamental domain [0, 𝜋] × [0, 2𝜋]. Here we use
the convention that the first coordinate corresponds to 𝜌(𝑚𝐾), where𝑚𝐾 is a meridian to the knot
𝐾, and the second coordinate corresponds to 𝜌(𝑙𝐾), where 𝑙𝐾 is a longitude of the knot 𝐾.
For a knot 𝐾 in a three-manifold 𝑌 there is a well-defined notion of meridian 𝑚𝐾 , and if the

knot is nullhomologous, there is a well-defined notion of longitude 𝑙𝐾 . In particular, this is the
case for any knot 𝐾 in an integer homology three-sphere 𝑌. In what follows, we will use the nota-
tion 𝑅(𝐾) ∶= 𝑅(𝑌(𝐾)) if it is clear which integer homology three-sphere 𝑌 we have in mind, and
we will stick to the above convention of the coordinates in 𝑅(𝑇2) corresponding to the merid-
ian and longitude of 𝐾. With these conventions, all abelian representations in 𝑅(𝐾) map under
𝑖∗ to the thick red line {𝛽 = 0 mod 2𝜋ℤ} ‘at the bottom’ of the pillowcase 𝑅(𝑇2). Indeed, 𝑙𝐾
is a product of commutators in the fundamental group of the knot complement, so an abelian
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352 LIDMAN et al.

F IGURE 2 The gluing pattern for obtaining the pillowcase from a rectangle, and the image of the
representation variety 𝑅(𝐾) of the trefoil in the pillowcase

representation necessarily maps 𝑙𝐾 to the identity. Furthermore, for any 𝛼 ∈ [0, 𝜋]we can find an
abelian representation of 𝑅(𝐾) whose restriction to 𝑅(𝑇2) corresponds to (𝛼, 0).
If we cut the pillowcase open along the lines 𝑎0 ∶= {𝛼 = 0 mod 2𝜋ℤ} and 𝑎𝜋 ∶= {𝛼 = 𝜋

mod 2𝜋ℤ}, we obtain a cylinder 𝐶 = [0, 𝜋] × ℝ∕2𝜋ℤ. In the gluing pattern of Figure 2 this means
that we do not perform the identifications along the four indicated vertical boundary lines.
Our main goal is to prove Theorem 3.5 below, which asserts that if 𝐾 is a knot in an 𝑆𝑈(2)-

cyclic integer homology three-sphere whose 0-surgery has non-trivial instanton homology, then
the image of𝑅(𝐾) in the pillowcase contains a homologically non-trivial embedded closed curve in
the cylinder𝐶. In order to derive Theorem 1.1 from this,weneed amore refined statement, namely,
that there is a homologically non-trivial embedded closed curve in 𝑖∗(𝑅(𝐾)) that is disjoint from a
neighborhood of the two lines 𝑎0 and 𝑎𝜋. Notice that for a knot in 𝑆3, there are no representations
with 𝜌(𝑙𝐾) ≠ id and 𝜌(𝑚𝐾) = ± id. This is because the fundamental group of a knot complement
in 𝑆3 is normally generated by the meridian of the knot. In particular, there are no representa-
tions in 𝑖∗(𝑅(𝐾)) that have coordinates (𝛼, 𝛽) with 𝛽 ≠ 0, and 𝛼 = 0 or 𝛼 = 𝜋. In [36, Proposition
8.1], it is shown that the image of 𝑅(𝐾)∗, the subset of irreducible representations in 𝑅(𝐾), in
fact, stays outside a neighborhood of these two lines. We begin with a generalization of this
fact.

Lemma 3.1. Let 𝐾 be a knot in an 𝑆𝑈(2)-cyclic integer homology three-sphere 𝑌. There is a neigh-
borhood of the lines {𝛼 = 0 mod 2𝜋ℤ} and {𝛼 = 𝜋 mod 2𝜋ℤ} in the pillowcase which is disjoint
from the image of 𝑅(𝐾)∗.

Proof. Suppose by contradiction that the image of𝑅(𝐾)∗ intersects every neighborhood of the lines
{𝛼 = 0 mod 2𝜋ℤ} and {𝛼 = 𝜋 mod 2𝜋ℤ}. If that was the case, then we could find a sequence of
elements in 𝑅(𝐾)∗ whose image under 𝑖∗ converges to a point on one of the two lines. By the
compactness of 𝑅(𝐾), the limit is the image of a representation 𝜌∶ 𝜋1(𝑌(𝐾)) → 𝑆𝑈(2) sending
every meridional curve 𝜇 to ±1. We first claim that 𝜌must be a central representation (and hence
reducible), and so its image under 𝑖∗ can only be (0,0) or (𝜋, 0).
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TOROIDAL HOMOLOGY SPHERES AND 𝑆𝑈(2)-REPRESENTATIONS 353

First, if 𝜌(𝜇) = 1, then 𝜌∶ 𝜋1(𝑌(𝐾)) → 𝑆𝑈(2) is really a representation of 𝜋1(𝑌). Since 𝑌 is
assumed to be 𝑆𝑈(2)-cyclic, then the representation is trivial and therefore 𝜌(𝜆) = 1. As a con-
sequence, if the limit of elements in 𝑅(𝐾)∗ is an element of the line {𝛼 = 0 mod 2𝜋ℤ}, then it
is the point (0,0) in the pillowcase. Next, consider the case that 𝜌(𝜇) = −1. If the representation
𝜌 is irreducible, then we obtain an irreducible representation 𝜌∶ 𝜋1(𝑌) → 𝑆𝑂(3). The obstruc-
tion to lifting an 𝑆𝑂(3) representation into an 𝑆𝑈(2)-representation is an element of𝐻2(𝑌; ℤ∕2),
and since 𝑌 is an integer homology three-sphere, the obstruction vanishes and 𝜌 would lift to
an irreducible representation to 𝑆𝑈(2), contradicting the fact that 𝑌 is 𝑆𝑈(2)-cyclic. Therefore,
a representation 𝜌∶ 𝜋1(𝑌(𝐾)) → 𝑆𝑈(2) satisfying 𝜌(𝜇) = −1 is reducible and hence abelian, and
so factors through 𝐻1(𝑌(𝐾)). Because 𝜆 is trivial in 𝐻1(𝑌(𝐾)), we see that 𝜌 is the central repre-
sentation sending 𝜇 to −1 and 𝜆 to 1, and this corresponds to the point (−𝜋, 0) in the pillowcase.
All of this shows that if a sequence of elements in 𝑖∗𝑅(𝐾) converges to a point on the lines {𝛼 = 0
mod 2𝜋ℤ} and {𝛼 = 𝜋 mod 2𝜋ℤ}, then the limit point is a central representation. For notation,
we will call these representations 𝜌± for the sign of the image of 𝜇.
Now, it remains to show that the points (0,0) and (𝜋, 0) cannot be limits of irreducible rep-

resentations. We remark here that this fact does not require that 𝑌 is 𝑆𝑈(2)-cyclic. Let Γ =
𝜋1(𝑌(𝐾)). A result of Weil [33] expanded in [25, Chapter 2] shows that 𝑇𝜌𝑅(𝐾) corresponds
to 𝐻1(Γ; 𝔰𝔲(2)ad◦𝜌). This group is identified with the first cohomology group (with twisted
coefficients) of a 𝐾(Γ, 1)-space, or more generally, with the first (twisted) cohomology of any
CW complex with fundamental group isomorphic to Γ. This shows that 𝐻1(Γ; 𝔰𝔲(2)ad◦𝜌) =

𝐻1(𝑌(𝐾); 𝔰𝔲(2)ad◦𝜌) and so 𝑇𝜌𝑅(𝐾) = 𝐻1(𝑌(𝐾); 𝔰𝔲(2)ad◦𝜌). Next, since each representation 𝜌± is
central, then 𝑎𝑑◦𝜌± is the trivial representation and so

𝐻1
(
𝑌(𝐾); 𝔰𝔲(2)ad◦𝜌±

)
= 𝐻1

(
𝑌(𝐾); ℝ3

)
≅ ℝ3.

This shows that the tangent space to 𝑅(𝐾) at 𝜌± is three-dimensional. Since we obtain three
dimensions of freedom by abelian representations near 𝜌± in 𝑅(𝐾), the entire tangent space to
𝑅(𝐾) consists of tangent vectors to abelian representations and so there cannot be irreducible
representations near 𝜌±, completing the proof. □

3.2 Essential curves in the pillowcase

In this section, we relate the instanton Floer homology of 0-surgery on a knot to the image of the
character variety of the knot exterior in the pillowcase. This will be the key step in the proof of
Theorem 1.1, found at the end of this subsection.
We next establish some notation, following Kronheimer–Mrowka in [20], which will be useful

in the proof of our next theorem.

Definition 3.2. For a subset 𝐿 ⊆ 𝑅(𝑇2), we denote by 𝑅(𝐾|𝐿) the set of elements [𝜌] ∈ 𝑅(𝐾) such
that [𝑖∗𝜌] ∈ 𝐿.

Theorem3.3. Let𝐾 be a knot in an integer homology three-sphere𝑌, and assume that the instanton
Floer homology of the 0-surgery is non-vanishing, 𝐼𝑤∗ (𝑌0(𝐾)) ≠ 0. Then any topologically embedded
path from 𝑃 = (0, 𝜋) to 𝑄 = (𝜋, 𝜋) in the associated pillowcase has an intersection point with the
image of 𝑅(𝐾).
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354 LIDMAN et al.

Before proving the theorem, we point out that this generalizes [36, Theorem 7.1], from knots
in 𝑆3 to knots in general integer homology three spheres. The main difference in the argument
compared to [36, Theorem 7.1] is that here we make use of the non-trivial instanton Floer homol-
ogy of the 0-surgery in an essential way, which is exploited through its connection with holonomy
perturbations of the Chern–Simons functional. The arguments of the third author in [36] instead
use holonomy perturbations of a moduli space which computes the Donaldson invariants of a
closed 4-manifold containing the 0-surgery as a hypersurface. In that case, the non-vanishing
result builds on the existence of a taut foliation on 𝑆3

0
(𝐾) for a non-trivial knot 𝐾. In the case

at hand, we do not know whether 𝑌0(𝐾), the 0-surgery on a knot 𝐾 in the integer homology
three-sphere 𝑌, admits a taut foliation.

Proof. Suppose by contradiction that there is a continuous embedded path 𝑐 from 𝑃 to 𝑄 such
that its image is disjoint from 𝑖∗(𝑅(𝐾)) ⊆ 𝑅(𝑇2). (We will not distinguish between paths and their
image for the remainder of this proof.) In other words, 𝑅(𝐾|𝑐) is empty. In particular, we may
suppose that 𝑐 is disjoint from the bottom line {𝛽 = 0} of the pillowcase 𝑅(𝑇2), since any element
of this line lies in the image of 𝑖∗. Since the image 𝑖∗(𝑅(𝐾)) is compact, there is a neighborhood
𝑈 ⊆ 𝑅(𝑇2) of the image of 𝑐 in 𝑅(𝑇2) which is still disjoint from 𝑖∗(𝑅(𝐾)). Since 𝑅(𝐾|𝑐) is empty,
for 𝑐′ sufficiently close to 𝑐, 𝑅(𝐾|𝑐′) is empty as well.
Associated to a three-manifold and admissible bundle, we consider two objects: the Chern–

Simons functional and holonomy perturbations of the Chern–Simons functional. These are
described in detail in Section 4, in particular Sections 4.2 and 4.3, but their definition is not
needed for the proof. Given a three-manifold 𝑍 with admissible bundle represented by 𝑤 and
a holonomy perturbation Ψ, let 𝑅𝑤

Ψ
(𝑍) denote the set of critical points of the Chern–Simons func-

tional perturbed by Ψ. By Theorem 4.4 below (which is essentially a synthesis of [36, Theorem
4.2 and Proposition 5.3]), there exists a path 𝑐′ arbitrarily close to 𝑐 and a (holonomy) pertur-
bation Ψ of the Chern–Simons functional such that 𝑅𝑤

Ψ
(𝑌0(𝐾)) is a double cover of 𝑅(𝐾|𝑐′).

Therefore, 𝑅𝑤
Ψ
(𝑌0(𝐾)) is empty, so computing Morse homology with respect to this perturba-

tion of the Chern–Simons functional produces a trivial group. However, Theorem 4.5 below
asserts that computing Morse homology with respect to the particular perturbation Ψ produces
a group isomorphic to 𝐼𝑤∗ (𝑌0(𝐾)), which is non-zero by assumption. Therefore, we obtain a
contradiction. □

Remark 3.4. Although [36, Proposition 5.3] is only stated for knots in 𝑆3, the arguments used in
its proof apply for a knot in an arbitrary 𝑆𝑈(2)-cyclic integer homology three sphere.

If we combine the constraint that𝑌 is 𝑆𝑈(2)-cyclic with the assumption that 𝐼𝑤∗ (𝑌0(𝐾)) is non-
trivial, then we obtain the following generalization of [36, Theorem 7.1], which will be the last
step before the proof of our main theorem.

Theorem 3.5 (Pillowcase alternative). Suppose that 𝑌 is an 𝑆𝑈(2)-cyclic integer homology three-
sphere. Suppose that 𝐾 is a knot in 𝑌 such that the 0-surgery 𝑌0(𝐾) has non-trivial instanton Floer
homology 𝐼𝑤∗ (𝑌0(𝐾)), where 𝑤 is the non-zero class in 𝐻2(𝑌0(𝐾); ℤ∕2) ≅ ℤ∕2. Then the image
𝑖∗(𝑅(𝑌(𝐾))) in the cut-open pillowcase 𝐶 = [0, 𝜋] × (ℝ∕2𝜋ℤ) contains a topologically embedded
curve which is homologically non-trivial in𝐻1(𝐶; ℤ) ≅ ℤ.

Proof. The hypothesis implies that the lines {(0, 𝛽) ∈ 𝑅(𝑇2) | 𝛽 ≠ 0} and {(𝜋, 𝛽) ∈ 𝑅(𝑇2) | 𝛽 ≠
0} have empty intersection with 𝑖∗(𝑅(𝑌(𝐾))) (Figure 3). The conclusion then follows from
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TOROIDAL HOMOLOGY SPHERES AND 𝑆𝑈(2)-REPRESENTATIONS 355

F IGURE 3 This is a hypothetical image of a representation variety 𝑖∗(𝑅(𝐾)) of a knot 𝐾 in an integer
homology three-sphere 𝑌. The homology three-sphere 𝑌 is assumed to satisfy 𝐼𝑤

∗
(𝑌0(𝐾)) ≠ 0 and assumed to not

be 𝑆𝑈(2)-cyclic. As a consequence, 𝑖∗(𝑅(𝐾)) intersects every path joining 𝑃 and 𝑄 as in Theorem 3.3, but it does
not contain a curve which is homologically non-trivial in the cut-open pillowcase 𝐶 = [0, 𝜋] × (ℝ∕2𝜋ℤ). This
hypothetical example thus illustrates that the 𝑆𝑈(2)-cyclic assumption is necessary in Theorem 3.5.

Theorem 3.3 together with the Alexander duality argument of [36, Lemma 7.3]. For Alexander
duality to work we use the fact that 𝑖∗(𝑅(𝑌(𝐾))) is a semi-algebraic set of dimension 1, and hence
a finite graph, see [2]. □

3.3 Main result

In this subsection we prove that if an integer homology three-sphere contains an embedded
incompressible torus, then the fundamental group of the homology three-sphere admits irre-
ducible 𝑆𝑈(2)-representations. To derive our result we first recall that we can realize a toroidal
integer homology three-sphere as a splice, as in [11, Proof of Corollary 6.2]. We then study the
image of the two knot exteriors in the pillowcase of the incompressible torus. With this in mind,
we include the following definition.

Definition 3.6. Let 𝐾1 ⊂ 𝑌1 and 𝐾2 ⊂ 𝑌2 be oriented knots in oriented integer homology three
spheres. For 𝑖 = 1, 2, denote by 𝜇𝑖, 𝜆𝑖 ⊂ 𝜕𝑁(𝐾𝑖) a meridian and longitude for 𝐾𝑖 in 𝑌𝑖 . Form a
three-manifold 𝑌 as

(𝑌1 ⧵ 𝑁(𝐾1)
◦) ∪
ℎ
(𝑌2 ⧵ 𝑁(𝐾2)

◦),

where ℎ∶ 𝜕𝑁(𝐾1) → 𝜕𝑁(𝐾2) identifies 𝜇1 with 𝜆2 and 𝜆1 with 𝜇2. The manifold 𝑌 is called the
splice of 𝑌1 and 𝑌2 along knots 𝐾1 and 𝐾2.

Let 𝑌 be an integer homology three sphere and let 𝑇 be a two-dimensional torus embedded
in 𝑌 in such manner that its normal bundle is trivial. A simple application of the Mayer–Vietoris
sequence shows that𝑌 ⧵ 𝑁(𝑇)◦ has two connected components𝑀1,𝑀2, and that each component
has the samehomology groups as 𝑆1. The ‘half lives, half dies’ principle shows that for each 𝑖 = 1, 2
there exists a basis (𝛼𝑖, 𝛽𝑖) for the peripheral subgroup of 𝜕𝑀𝑖 such that 𝛽𝑖 is nullhomologous in
𝑀𝑖 . Therefore, if 𝑌𝑖 denotes the union of𝑀𝑖 and a solid torus 𝑆1 × 𝐷2 in such a way that the curve
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356 LIDMAN et al.

{1} × 𝜕𝐷2 gets identified with 𝛼𝑖 , then 𝑌𝑖 is an integer homology three-sphere. Moreover, since
𝑇 is incompressible in 𝑌, then the core of the solid torus in 𝑌𝑖 is a non-trivial knot 𝐾𝑖 . In other
words, every toroidal integer homology three-sphere can be expressed as a splice of non-trivial
knots 𝐾1 and 𝐾2 in integer homology three spheres 𝑌1 and 𝑌2.
With all of this in place, we are ready to prove our main result.

Proof of Theorem 1.1. Realize 𝑌 as a splice (𝑌1 ⧵ 𝑁(𝐾1)◦) ∪
ℎ
(𝑌2 ⧵ 𝑁(𝐾2)

◦), with 𝐾1, 𝐾2 non-trivial
knots. Suppose first that 𝑌𝑖 ⧵ 𝑁(𝐾𝑖)◦ is reducible, in other words, that 𝑌𝑖 ⧵ 𝑁(𝐾𝑖)◦ = 𝑄𝑖#(𝑍𝑖 ⧵
𝑁(𝐽𝑖)

◦)where𝑄𝑖, 𝑍𝑖 are integer homology three spheres and 𝐽𝑖 ⊂ 𝑍𝑖 has irreducible and boundary-
incompressible exterior. As a consequence of van Kampen’s theorem, there exists a surjection
𝜋1(𝑌𝑖 ⧵ 𝑁(𝐾𝑖)

◦) → 𝜋1(𝑍𝑖 ⧵ 𝑁(𝐽𝑖)
◦), and this surjection induces a 𝜋1-surjection from 𝑌 to the

splice of (𝑍1, 𝐽1) and (𝑍2, 𝐽2). Thus, our proof reduces to the case when 𝑌 is the splice of two
knots with irreducible and boundary-incompressible exteriors, which we assume from now on.
Next, by the Seifert–vanKampen theorem, the pieces of the decomposition fit into the following

commutative diagram:

and since each 𝑌𝑖 ⧵ 𝑁(𝐾𝑖)◦ is a homology circle, there exists a 𝜋1-surjection from 𝑌 to each 𝑌𝑖 .
Therefore, our proof reduces further to the case when both 𝑌1 and 𝑌2 are 𝑆𝑈(2)-cyclic since an
irreducible representation for 𝑌𝑖 gives rise to one for 𝑌.
To recap, the previous two paragraphs allowus to assume that𝑌 is the splice of (𝑌1, 𝐾1), (𝑌2, 𝐾2)

with each 𝑌𝑖 an 𝑆𝑈(2)-cyclic homology three sphere, and each 𝐾𝑖 ⊂ 𝑌𝑖 a knot with irreducible
and boundary-incompressible exterior. Then, as a consequence of Proposition 2.1(3) we have that
each 𝑌𝑖 has trivial instanton Floer homology. Moreover, since each 𝑌𝑖 ⧵ 𝑁(𝐾𝑖)◦ is irreducible and
boundary-incompressible, Theorem 1.3 shows that the instanton Floer homology of 0-surgery on
𝑌𝑖 along 𝐾𝑖 is non-zero. Therefore, the hypotheses of both Theorem 3.5 and Lemma 3.1 hold, and
the proof now follows exactly as in [36, Proof of Theorem 8.3(i)] with [36, Theorem 7.1] and [36,
Proposition 8.1(ii)] replaced by Theorem 3.5 and Lemma 3.1 respectively (Figure 4). □

4 REVIEWOF INSTANTON FLOER HOMOLOGY ANDHOLONOMY
PERTURBATIONS

We start this section with a disclaimer: We do not claim to prove any original or new result in
this section. However, we review instanton Floer homology and holonomy perturbations to the
extent which is necessary in order to understand the proof of ourmain results above. For instance,
Section 4.3 below contains a synthesis of the third author’s results about holonomy perturbations
from [36] whichwe hope that the reader unfamiliar with this referencewill appreciate. Section 4.5
contains a result about invariance under holonomy perturbations in the context of an admissi-
ble bundle with non-trivial second Stiefel–Whitney class, together with a sketch of proof. Again,
this result is already contained in [14] and [10], but by looking up these references it may not be
immediately clear whether these results apply verbatim in our situation.
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TOROIDAL HOMOLOGY SPHERES AND 𝑆𝑈(2)-REPRESENTATIONS 357

F IGURE 4 Let 𝑌 be the three-manifold obtained as the splice of two copies of the exterior of a right-handed
trefoil, and let 𝑇 be the incompressible torus given as the intersection of the two knot exteriors. The figure shows
the image of each copy of 𝑅(𝑇2,3)∗ in the pillowcase. Note that any representation of the splice corresponding to
an intersection of the red and blue curves is irreducible.

The proof of Theorem 3.3 relies on a non-vanishing result of an instanton Floer homology group
𝐼𝑤
∗,Φ
(𝑌0(𝐾)), computed with suitable perturbation termsΦ of the Chern–Simons function.Wewill

review the construction of these perturbation terms below, which are built from the holonomy
along families of circles, parametrized by embedded surfaces. The critical points of the complex
underlying the homology group 𝐼𝑤

∗,Φ
(𝑌0(𝐾)) will have a clear interpretation in terms of inter-

sections of the representation variety 𝑅(𝐾) with certain deformations of the path given by the
straight line {𝛽 = 𝜋} in the pillowcase, resulting as the representation variety of the boundary of
the exterior of 𝐾 in 𝑌 as before.
On the other hand, Theorem 1.3 yields a non-vanishing result for 𝐼𝑤∗ (𝑌0(𝐾)), defined in the

usual way, and in particular without the above class of perturbation terms. We can therefore
complete the proof from the fact that the two instanton Floer homology groups, 𝐼𝑤∗ (𝑌0(𝐾)) and
𝐼𝑤
∗,Φ
(𝑌0(𝐾)), are isomorphic, and we sketch the proof of this below.

Remark 4.1. In the construction of both 𝐼𝑤∗ (𝑌0(𝐾)) and 𝐼
𝑤
∗,Φ
(𝑌0(𝐾)) there are typically perturbation

terms involved for the sake of transversality. These can be chosen as small as one likes, in a suitable
sense. We will omit these auxiliary perturbations from our notation. The perturbations labeled by
the terms Φ, however, will have a clear geometric purpose, and the discussion below will focus
on these.

4.1 The Chern–Simons function

For details on the holonomy perturbations we use we refer the reader to Donaldson’s book [10],
Floer’s original article [15], and the third author’s article [36].
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358 LIDMAN et al.

If we dealwith an admissible 𝑆𝑂(3)-bundle𝐹 → 𝑌 over a three-manifold𝑌with second Stiefel–
Whitney class 𝑤, we may suppose that it arises from an 𝑈(2)-bundle 𝐸 → 𝑌 as its adjoint bundle
𝔰𝔲(𝐸), see, for instance, [10, Section 5.6]. Then 𝑤 = 𝑤2(𝐸) ≡ 𝑐1(𝐸)mod 2. The space of 𝑆𝑂(3)-
connections on 𝐹 is then naturally isomorphic to the space of𝑈(2)-connections on 𝐸 that induce
a fixed connection 𝜃 in the determinant line bundle det(𝐸), whichwewill suppress from notation.
When dealingwith functoriality properties, it ismore accurate to consider𝑤 to be an embedded

1-manifold which is Poincaré dual to 𝑤2(𝐸) = 𝑤2(𝐹), see [23].
We will fix a reference connection 𝐴0 on 𝐸 and consider the Chern–Simons function

CS∶ A → ℝ

𝐴 ↦ ∫𝑌 tr(2𝑎 ∧ (𝐹𝐴0)0 + 𝑎 ∧ 𝑑𝐴0𝑎 +
1

3
𝑎 ∧ [𝑎 ∧ 𝑎]) ,

defined on the affine spaceA of connections𝐴 in 𝐸 which induce 𝜃 in det(𝐸), and where we have
written 𝐴 = 𝐴0 + 𝑎 with 𝑎 ∈ Ω1(𝑌; 𝔰𝔲(𝐸)). The term 𝐹𝐴 denotes the curvature of a connection
𝐴, and (𝐹𝐴)0 denotes its trace-free part, and 𝑑𝐴 denotes the exterior derivative associated to a
connection𝐴. We denote by G the group of bundle automorphisms of 𝐸 which have determinant
1. The Chern–Simons function induces a circle-valued functionCS∶ B → ℝ∕ℤ on the spaceB =

A ∕G of connections modulo gauge equivalence, and the instanton Floer homology 𝐼𝑤∗ (𝑌) is the
Morse homology, in a suitable sense, of the Chern–Simons function CS. To carry this out, one has
to deal with a suitable grading on the critical points, which will only be a relative ℤ∕8-grading,
with suitable compactness arguments (Uhlenbeck compactification and ‘energy running down
the ends’), and with transversality arguments. In particular, one will in general add a convenient
perturbation term to theChern–Simons function to obtain the required transversality results. This
is usually done by the use of holonomy perturbations that we discuss below. By a Sard–Smale-
type condition, this term can be chosen as small as one wants, in the respective topologies one
is working with. Therefore, we are suppressing these perturbations for the sake of transversality
from our notation. One then needs to prove independence of the various choices involved, and in
particular the Riemannian metric and the perturbation terms required for transversality.
One may also deal with orientations, but we do not need this in our situation, where ℤ∕2-

coefficients in the Floer homology will be sufficient.

4.2 Review of holonomy perturbations

To set up the perturbation of the Chern–Simons functionwe are using, we need to introduce some
notation. Let 𝜒∶ 𝑆𝑈(2) → ℝ be a class function, that is, a smooth conjugation invariant function.
Any element in 𝑆𝑈(2) is conjugate to a diagonal element, and hence there is a 2𝜋-periodic even
function g ∶ ℝ → ℝ such that

𝜒

([
𝑒𝑖𝑡 0

0 𝑒−𝑖𝑡

])
= g(𝑡) (2)

for all 𝑡 ∈ ℝ. Furthermore, let Σ be a compact surface with boundary, and let 𝜇 be a real-valued
two-form which has compact support in the interior of Σ and with ∫Σ 𝜇 = 1. Let 𝜄 ∶ Σ × 𝑆1 → 𝑌
be an embedding. Let 𝑁 ⊆ 𝑌 be a codimension-zero submanifold containing the image of 𝜄, and
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TOROIDAL HOMOLOGY SPHERES AND 𝑆𝑈(2)-REPRESENTATIONS 359

such that the bundle 𝐸 is trivialized over𝑁 in such a way that the connection 𝜃 in det(𝐸) induces
the trivial product connection in the determinant line bundle of our trivialization of 𝐸 over 𝑁.
This means that connections inA can be understood as 𝑆𝑈(2)-connections in 𝐸 when restricted
to 𝑁.
Associated to this data, we can define a function

Φ∶ A → ℝ

which is invariant under the action of the gauge group G . For 𝑧 ∈ Σ, we denote by 𝜄𝑧 ∶ 𝑆1 → 𝑌
the circle 𝑡 ↦ 𝜄(𝑧, 𝑡). A connection𝐴 ∈ A provides an 𝑆𝑈(2)-connection over the image of 𝜄. The
holonomyHol𝜄𝑧 (𝐴) of𝐴 around the loop 𝜄𝑧 (with variable starting point) is a section of the bundle
of automorphisms of 𝐸 with determinant 1 over the loop. Since 𝜒 is a class function, 𝜒(Hol𝜄𝑧 (𝐴))
is well defined. We can therefore define

Φ(𝐴) = ∫Σ 𝜒(Hol𝜄𝑧 (𝐴)) 𝜇(𝑧) , (3)

and this function is invariant under the action of the gauge groupG . It depends on the data (𝜄, 𝜒, 𝜇)
and a trivialization of the bundle over a codimension-zero submanifold 𝑁, but we will omit the
latter from notation.
We will have to work with a finite sequence of such embeddings, all supported in a sub-

manifold 𝑁 of codimension zero over which the bundle 𝐸 → 𝑁 is trivial. For some 𝑛 ∈ ℕ, let
𝜄𝑘 ∶ 𝑆

1 × Σ𝑘 → 𝑁 ⊆ 𝑌 be a sequence of embeddings for 𝑘 = 0,… , 𝑛 − 1 such that the interior of
the image of 𝜄𝑘 is disjoint from the interior of the image of 𝜄𝑙 for 𝑘 ≠ 𝑙. We also suppose class
functions 𝜒𝑘 ∶ 𝑆𝑈(2) → ℝ corresponding to even, 2𝜋-periodic functions g𝑘 ∶ ℝ → ℝ as above to
be chosen, for 𝑘 = 0,… , 𝑛 − 1, and we assume that 𝜇𝑘 is a two form on Σ𝑘 with support in the
interior of Σ𝑘 and integral 1. Just as in the case of (3), the data determine a finite sequence of
functions

Φ𝑘 ∶ A → ℝ , 𝑘 = 0,… , 𝑛 − 1 ,

and we are interested in the Morse homology of the function

CS + Ψ∶ B → ℝ∕ℤ, where Ψ =
𝑛−1∑
𝑘=0

Φ𝑘. (4)

Definition 4.2. We denote by 𝑅𝑤
Ψ
(𝑌) the space of critical points [𝐴] ∈ A ∕G of the functionCS +

Ψ∶ B → ℝ∕ℤ, where Ψ is specified by the holonomy perturbation data {𝜄𝑘, 𝜒𝑘} as above.

If the holonomy perturbation data Ψ are chosen in a way such that 𝑅𝑤
Ψ
(𝑌) does not contain

equivalence classes of connections [𝐴] such that𝐴 is reducible, then the construction for defining
a Floer homology 𝐼𝑤

Ψ
(𝑌) with generators given by critical points of the perturbed Chern–Simons

function CS + Ψ, and with differentials defined from negative gradient flow lines, goes through
in the same way as in [10, 15]. This will require additional small perturbations in order to make
the critical points non-degenerate and in order to obtain transversality for the moduli spaces of
flow lines. In fact, we really have not done anything new compared to the constructions in these
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360 LIDMAN et al.

references since the same perturbations already appear there for the sake of obtaining transversal-
ity of the moduli spaces involved in the construction. The only slight difference is that in Floer’s
work, the surfaces Σ𝑘 appearing in the definition of the embeddings 𝜄𝑘 are always chosen to be
disks, whereas those used in the proof of Theorem 3.3 above, that is, in [36, Theorem 4.2 and
Proposition 5.3], the surfaces Σ𝑘 are all annuli.
More specifically, for completeness, we recall a bit more on the implementation of the holon-

omy perturbations used in the work of the third author as needed in the previous section for
studying 𝑌0(𝐾). Suppose that we are given a smoothly embedded path 𝑐 from 𝑃 = (0, 𝜋) to 𝑄 =
(𝜋, 𝜋) avoiding (0,0) and (𝜋, 0), andwhich is homotopic to the straight line segment 𝑐0 ∶= {𝛽 = 𝜋}
from 𝑃 to 𝑄 relative to the four corner points of the pillowcase 𝑃,𝑄, (0, 0) and (𝜋, 0). There is an
isotopy 𝜙𝑡 through area-preserving maps of the pillowcase 𝑅(𝑇2) such that 𝜙1 maps the straight
line 𝑐0 to the path 𝑐, and such that 𝜙𝑡 fixes the four corner points of the pillowcase. [36, Theo-
rem 3.3] states that isotopies through area-preserving maps can be 𝐶0-approximated by isotopies
through finitely many shearingmaps. For details on shearingmaps we refer the reader to [36, Sec-
tions 2 and 3]. The essential relationship is outlined in the following subsection, whichwe include
for the sake of clarity and completeness of our exposition.

4.3 Review of holonomy perturbations and shearing maps

We denote by 𝑅(𝑁) the space of flat 𝑆𝑈(2)-connections in the trivial 𝑆𝑈(2)-bundle over𝑁 = 𝑆1 ×
Σ up to gauge equivalence, where Σ = 𝑆1 × 𝐼 = 𝑆1 × [0, 1] is an annulus. The two inclusion maps
𝑖− ∶ 𝑆

1 × (𝑆1 × {0}) → 𝑁 and 𝑖+ ∶ 𝑆1 × (𝑆1 × {1}) → 𝑁 induce restriction maps 𝑟−, 𝑟+ ∶ 𝑅(𝑁) →
𝑅(𝑇2) to the representation varieties of the two boundary tori, which are pillowcases. In this situ-
ation, we have that both 𝑟− and 𝑟+ are homeomorphisms, and under the natural identification of
these tori we have 𝑟− = 𝑟+.
Now if𝜒 is a class function as inEquation (2) above, then instead of the flatness equation𝐹𝐴 = 0

for connections 𝐴 on the trivial bundle over 𝑁 one may consider the equation

𝐹𝐴 = 𝜒
′(Hol𝑙(𝐴)) 𝜇, (5)

where the notationmeans the following: We denote by 𝑙𝑧 = 𝑆1 × {𝑧} the ‘longitude’ in𝑁 = 𝑆1 × Σ
parametrized by a point 𝑧 ∈ Σ, the holonomy of the connection 𝐴 along such a loop is denoted
by Hol𝑙𝑧 (𝐴), the map 𝜒

′ ∶ 𝑆𝑈(2) → 𝔰𝔲(2) is the trace dual of the derivative 𝑑𝜒 of 𝜒, and 𝜇 is a 2-
form in𝑁 which is the pull-back of a 2-form 𝜇Σ via the projection 𝑆1 × Σ → Σ, and 𝜇Σ has compact
support in the interior of Σ and satisfies ∫Σ 𝜇Σ = 1. Then the equation we consider instead of the
flatness equation 𝐹𝐴 = 0 is the equation (𝐹𝐴)(𝑤,𝑧) = 𝜒′(Hol𝑙𝑧 (𝐴)) 𝜇(𝑤,𝑧), for (𝑤, 𝑧) ∈ 𝑁 = 𝑆

1 × Σ.
It can be proved that solutions𝐴 of this equation are reducible, and that furthermore the holon-

omy Hol𝑙𝑧 (𝐴) does not depend on the point 𝑧 ∈ Σ. Both claims can be found in [6, Lemma 4],
and are reproved in [36, Proposition 2.1] by the third author. This finally justifies our notation in
Equation (5).
If we denote by 𝑅𝜒(𝑁) the solutions of Equation (5) up to gauge equivalence, then we still

have two restriction maps 𝑟± ∶ 𝑅𝜒(𝑁) → 𝑅(𝑇2). However, in this situation we have the following
relationship.
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TOROIDAL HOMOLOGY SPHERES AND 𝑆𝑈(2)-REPRESENTATIONS 361

Proposition 4.3. The two restriction maps 𝑟± are homeomorphisms and fit into a commutative
diagram

(6)

where 𝜙 is a shearing map that relates to 𝜒 as follows.
If we write𝑚− = {𝑝𝑡} × 𝑆1 × {0} and𝑚+ = {𝑝𝑡} × 𝑆1 × {1} for ‘meridians’ given by the boundaries

of Σ in {𝑝𝑡} × Σ, and if

Hol𝑚±(𝐴) =

[
𝑒𝑖𝛽± 0

0 𝑒−𝑖𝛽±

]
, and Hol𝑙(𝐴) =

[
𝑒𝑖𝛼 0

0 𝑒−𝑖𝛼

]
, (7)

which we may suppose up to gauge equivalence, then we have

𝜙𝜒

(
𝛼

𝛽−

)
=

(
𝛼

𝛽− + 𝑓(𝛼)

)
, (8)

where 𝑓∶ ℝ → ℝ is the derivative of the function g appearing in Equation (2). Here, (𝛼, 𝛽±)
determine points in 𝑅(𝑇2) determined byHol𝑚±(𝐴) andHol𝑙(𝐴) as in Equation (7) above.

Equation (6) is essentially proved in [6, Lemma 4], and a proof also appears in [36, Proposition
2.1].
Of course, one can iterate this construction: One may choose a finite collection of disjoint

embeddings 𝜄𝑘 ∶ 𝑆1 × Σ into a closed three-manifold 𝑌, and class functions 𝜒𝑘. The embed-
dings may chosen to be ‘parallel’ in that the image of 𝜄𝑘 corresponds to 𝑆1 × (𝑆1 × [𝑘, 𝑘 + 1]) ⊆
𝑆1 × (𝑆1 × [0, 𝑛]) ⊆ 𝑌, but the role of ‘meridian’ and ‘longitude’ may be chosen arbitrarily in an
𝑆𝐿2(ℤ) worth of possible choices. In this case the restriction maps to the two boundary compo-
nents of 𝑆1 × (𝑆1 × [0, 𝑛]) in the diagramanalogous to Equation (6)will be related by a composition
of shearing maps.

4.4 Holonomy perturbations and the pillowcase

The main application of holonomy perturbations we have in mind is stated as Theorem 4.4
below. To put it into context, note first that for a non-trivial bundle, the critical space of the
Chern–Simons function 𝑅𝑤(𝑌0(𝐾)) is a double cover of 𝑅(𝐾|𝑐0), where 𝑐0 is the straight line
from (0, 𝜋) to (𝜋, 𝜋) in the pillowcase, see [36, Proposition 5.1]. If we choose holonomy per-
turbations associated to some data {𝜄𝑘, 𝜒𝑘}𝑛−1𝑘=0 as above, where the image of 𝜄𝑘 corresponds to
𝑆1 × (𝑆1 × [𝑘, 𝑘 + 1]) ⊆ 𝑆1 × (𝑆1 × [0, 𝑛]) ⊆ 𝑌 in a collar neighborhood of the Dehn filling torus
in𝑌0(𝐾), then repeated use of Proposition 4.3 abovewill imply that for the holonomy perturbation
Ψ determined by the data {𝜄𝑘, 𝜒𝑘}𝑛−1𝑘=0, the critical space of 𝑅

𝑤
Ψ
(𝑌0(𝐾)) will correspond to 𝑅(𝐾|𝑐′),

where 𝑐′ is the image of 𝑐0 under a composition of shearing maps 𝜙𝑛−1◦… ◦𝜙0, with ‘directions’
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362 LIDMAN et al.

determined by the embeddings 𝜄𝑘. (In Equation (8) we are dealing with a shearing in direction(
0
1

)
, but we can pick any direction in ℤ2.)
Themain point of [36, Theorem 4.2] is that the area-preservingmaps of the pillowcase obtained

by composition of shearing maps is 𝐶0-dense in the space of all area-preserving maps of the
pillowcase, and this yields the following result.

Theorem 4.4 (Theorem 4.2 and Proposition 5.3, [36]). Let 𝐾 be a knot in an 𝑆𝑈(2)-cyclic integer
homology three-sphere 𝑌. Let 𝑐 be an embedded path from (0, 𝜋) to (𝜋, 𝜋)missing the other orbifold
points of the pillowcase, and which is homotopic to the straight line segment 𝑐0 ∶= {𝛽 = 𝜋} from 𝑃
to 𝑄 relative to the four corner points of the pillowcase 𝑃,𝑄, (0, 0) and (𝜋, 0). Then, there exists an
embedded path 𝑐′ arbitrarily close to 𝑐 and a holonomy perturbation Ψ along disjoint embeddings
of 𝑆1 × (𝑆1 × 𝐼) parallel to the boundary of a neighborhood of 𝐾 such that 𝑅𝑤

Ψ
(𝑌0(𝐾)) double-covers

𝑅(𝐾|𝑐′).
(To see that we get a double-cover here we refer the reader to [36, Remark 1.2]).
We only stress the fact that we must assume that there are no reducible connections in 𝑅𝑤

Ψ
(𝑌),

since the presence of such solutionswill result in a failure of the transversality arguments involved
in the discussion.

4.5 Invariance of instanton Floer homology

The instanton Floer homology groups 𝐼𝑤(𝑌) and 𝐼𝑤
Ψ
(𝑌), the latter being defined under the addi-

tional assumption that 𝑅𝑤
Ψ
(𝑌) does not contain reducible connections, depend on additional data

that we have already suppressed from notation, notably the choice of a Riemannian metric on
𝑌 and holonomy perturbations just as defined above in order to achieve transversality. More
explicitly, holonomy perturbations have already been implicit in the definition of instanton Floer
homology unless the critical points of CS had been non-degenerate at the start and the moduli
space defining the flow lines had been cut out transversally. In Floer’s original work [15], and
elaborated in more detail in Donaldson’s book [10], invariance under the choice of Riemannian
metric and the choice of holonomy perturbations follows from a more general concept, namely,
the functoriality of instanton Floer homology under cobordisms. See also the discussion in [23,
Section 3.8.]

Theorem4.5 (Invariance under holonomy perturbations). Suppose that the space of critical points
𝑅𝑤
Ψ
(𝑌) of the perturbed Chern–Simons function 4 appearing in Definition 4.2 above does not contain

equivalence classes of reducible connections. Then the associated instanton Floer homology groups
𝐼𝑤∗ (𝑌) and 𝐼

𝑤
∗,Ψ
(𝑌) are isomorphic.

Sketch of Proof. The proof of this statement is standard, so we will describe a chain map
determining the isomorphism onhomology and outline the ideas alongwhich the result is proved.
Slightly more generally, suppose that we are dealing with a smooth map [0, 1] → 𝐶∞(A , ℝ),

𝑠 ↦ Γ(𝑠). We may suppose that this map is constant near 0 and 1. The Floer differential counts
flow lines of the Chern–Simons function, possibly suitably perturbed. Instead of doing this, we
may also consider the downward gradient flow equation of the time-dependent functionCS+Γ(𝑠),
where we extend Γ(𝑠) to a map (−∞,∞) → 𝐶∞(A , ℝ) which is constant Γ(0) on (−∞, 0] and
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TOROIDAL HOMOLOGY SPHERES AND 𝑆𝑈(2)-REPRESENTATIONS 363

constantΓ(1) on [1,∞). Ifwe are given critical points𝜌0 ofCS+Γ(0) and𝜌1 ofCS+Γ(1) of the same
index, then we consider a zero-dimensional moduli space 𝑀𝜌0,𝜌1 of connections 𝐀 = {𝐴(𝑡)}𝑡 on
𝐸 → ℝ × 𝑌 of finite𝐿2-norm (inducing 𝜃 on det(𝐸), pulled back toℝ × 𝑌), such that the equation

𝑑𝐴

𝑑𝑡
= −grad(CS+Γ(𝑡))(𝐴(𝑡)) (9)

holds onℝ × 𝑌, where grad denotes the𝐿2-gradient, and𝐀 limits to 𝜌0 and 𝜌1 in the limit 𝑡 → ±∞,
respectively. Finally, we also require that the moduli space𝑀𝜌0,𝜌1 is cut out transversally.
We require that the addition of the term −grad(Γ(𝑡))(𝐴(𝑡)) to the gradient flow Equation 9

for the Chern–Simons function does not alter the linearized deformation theory for 𝐀, see, for
instance, [10, Sections 3 and 4]. Furthermore, we have to require that the Uhlenbeck compact-
ification goes through with the perturbation we have in mind. It is shown in [10, Section 5.5]
that both hold for the function Γ built from holonomy perturbations as described in Equation 10.
One essential feature is that the holonomy perturbation term appearing in the flow equation is
uniformly bounded.
A suitable interpolation between the holonomy perturbation data Γ(0) = 0 and Γ(1) = Ψ for Ψ

as in Equation (4) is given, for instance, by the following formula. Suppose that Ψ is determined
by data {𝜄𝑘, 𝜒𝑘}𝑛−1𝑘=0. Then for 𝑡 ∈ [

𝑘

𝑛
, 𝑘+1
𝑛
] we define

Γ(𝑡) =

𝑘−1∑
𝑙=0

Φ𝑙 + 𝛽(𝑡 − 𝑘∕𝑛)Φ𝑘 (10)

for any 𝑘 ∈ {0, … , 𝑛 − 1}. Here 𝛽∶ [0, 1
𝑛
] → [0, 1] is a smooth function which is 0 in a

neighborhood of 0 and 1 in a neighborhood of 1
𝑛
.

Now the moduli space𝑀𝜌0,𝜌1 does not contain any reducibles, because if it did, then the limits
𝜌0 and 𝜌1 in 𝑅𝑤(𝑌) and 𝑅𝑤Ψ(𝑌), respectively, would also be reducible, and by our assumption and
the setup for instanton Floer homology for admissible bundles, this does not occur.
One defines a linear map 𝜁 ∶ 𝐶𝑤(𝑌) → 𝐶𝑤

Ψ
(𝑌) of the underlying chain complexes such that the

‘matrix entry’ corresponding to the elements 𝜌0 ∈ 𝐶𝑤(𝑌) and 𝜌1 ∈ 𝐶𝑤Ψ(𝑌) is given by the signed
count of the moduli space 𝑀𝜌0,𝜌1 , where the sign is determined in the usual way by the choice
of a homology orientation. That 𝜁 is a chain map follows from analyzing the compactification of
suitable 1-dimensional moduli spaces, making use of Uhlenbeck compactification— no bubbling
can occur here due to the dimension of the moduli space— and the chain convergence discussed
in [10, Section 5.1], together with suitable gluing results.
That different interpolations yield chain homotopic chainmaps follows from studying the com-

pactification of (−1)-dimensional moduli spaces over a 1-dimensional family, defining a chain
homotopy equivalence between the two different interpolations.
That 𝜁 defines a chain homotopy equivalence follows from the functoriality property: One

may consider a further path Γ′ ∶ [1, 2] → 𝐶∞(A , ℝ) such that Γ′(1) = Γ(1), similar as above. This
defines a corresponding chain map 𝜁′ ∶ 𝐶𝑤

Ψ
→ 𝐶𝑤

Γ′(2)
. On the other hand, one may concatenate

the path Γ(𝑡) and the path Γ′(𝑡) and build a corresponding interpolation Γ′′ ∶ [0, 2] → 𝐶∞(A , ℝ),
resulting in a chainmap 𝜁′′ as above. A neck stretching argument then shows that 𝜁′′ and 𝜁′◦𝜁 are
chain homotopy equivalent, and hence induce the same maps on homology. In our situation we
take Γ′(2) to be 0,meaning that this defines again the ‘unperturbed’ chain complex𝐶𝑤(𝑌) (which,
again, may contain some perturbations for the sake of regularity omitted in our notation). One
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364 LIDMAN et al.

F IGURE 5 Left: The pattern representing the (2,1)-cable satellite operation. Right: The (2,1)-cable for the
right-handed trefoil. The extra twisting appears as a consequence of the requirement that a longitude in 𝑆1 × 𝐷2

maps to the canonical longitude of the trefoil.

may finally interpolate between Γ′′ and the 0-term along a 1-dimensional family. Analyzing again
the compactification of suitable (−1)-dimensionalmoduli spaces over a 1-dimensional family, one
obtains a chain homotopy equivalence between 𝜁′′ and the identity. □

Remark 4.6. There is some confusion about invariance under ‘small’ and ‘large’ holonomy pertur-
bations in the field. If one is given holonomy perturbation data for which the underlying space of
critical points and moduli spaces defining the differentials are already cut out transversally, then
for small enough perturbations the same will still hold, and the resulting chain complexes will
be isomorphic. This is due to the fact that the condition of being cut out transversally is an open
condition, expressed as the surjectivity of the deformation operators involved in the linearized
equation together with the Coulomb gauge fixing.
If, on the other hand, one is given a situation where the critical points and the unperturbed

moduli spaces are not cut out transversally, then one needs to perturb, and even if these perturba-
tions are chosen ‘small’, the resulting chain complexes will in general not be isomorphic but only
chain homotopy equivalent. In this situation, the proof of invariance is really the same as proving
the invariance under ‘large’ perturbations, and already present in [15] and [10].

5 BRANCHED COVERS OF PRIME SATELLITE KNOTS

In this section, we prove Corollary 1.5, establishing the existence of a non-trivial 𝑆𝑈(2) represen-
tation for cyclic branched covers of prime satellite knots. We begin with a definition of satellite
knots.

Definition 5.1. Let 𝑃 ⊂ 𝑆1 × 𝐷2 be an oriented knot in the solid torus. Consider an orientation-
preserving embedding ℎ∶ 𝑆1 × 𝐷2 → 𝑆3 whose image is a tubular neighborhood of a knot 𝐾 so
that 𝑆1 × {∗∈ 𝜕𝐷2} is mapped to the canonical longitude of 𝐾. The knot ℎ(𝑃) is called the satellite
knot with pattern 𝑃 and companion𝐾, and is denoted as 𝑃(𝐾). Thewinding number of the satellite
is defined to be the algebraic intersection number of 𝑃 with {∗} × 𝐷2. See Figure 5 for an example.

Corollary 1.5. Let 𝐾 be a prime, satellite knot in 𝑆3 and let Σ(𝐾) be any non-trivial cyclic cover of
𝑆3 branched over 𝐾. Then 𝜋1(Σ(𝐾)) admits a non-trivial 𝑆𝑈(2) representation.
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TOROIDAL HOMOLOGY SPHERES AND 𝑆𝑈(2)-REPRESENTATIONS 365

Proof. Let 𝐾 be a prime satellite knot in 𝑆3. If Σ(𝐾) is not an integer homology sphere, then there
is a non-trivial abelian representation. In the case when Σ(𝐾) is an integer homology three sphere,
then by Theorem 1.1 it suffices to show that Σ(𝐾) is toroidal. Write 𝐾 = 𝑃(𝐽) and observe that if
Σ(𝐾) is the 𝑑-fold cover of 𝑆3 branched over 𝑃(𝐽), then there is a decomposition of Σ(𝑃(𝐽)) as the
union of Σ(𝑆1 × 𝐷2, 𝑃), the 𝑑-fold cover of 𝑆1 × 𝐷2 branched over 𝑃, and a 𝑑-fold covering space
of the knot complement 𝑆3 ⧵ 𝑁(𝐽). The isomorphism type of this latter covering space depends
only on the greatest common divisor between 𝑑 and the winding number of 𝑆1 × 𝐷2, see, for
example, [31] or [24, p. 220]. Since the exterior of 𝐽 has incompressible boundary, the same is true
of any cover. Therefore, we just need to show that Σ(𝐷2 × 𝑆1, 𝑃) has incompressible boundary.
We claim the following. Let 𝑃 be a non-trivial pattern knot in 𝐷2 × 𝑆1 which does not correspond
to a connect-sum and which is not contained in an embedded 𝐵3. Then for any cyclic branched
cover over 𝑃, Σ(𝐷2 × 𝑆1, 𝑃) has incompressible boundary. This claim is standard and proved in
the lemma below for completeness. □

Lemma 5.2. Let 𝑃 be a non-trivial pattern knot in 𝐷2 × 𝑆1 which does not correspond to a connect-
sum and which is not contained in an embedded 𝐵3. Then for any cyclic branched cover over 𝑃, the
manifold𝑀 = Σ(𝐷2 × 𝑆1, 𝑃) has incompressible boundary.

Proof. Suppose that 𝛾 is an essential loop on 𝜕𝑀, which is nullhomotopic in 𝑀. Let 𝐺 denote
the group of covering transformations of 𝑀 and consider the action of 𝐺 on the boundary. We
first claim that 𝛾 can be isotoped on the boundary such that for each g ∈ 𝐺, either g(𝛾) ∩ 𝛾 = ∅
or g(𝛾) = 𝛾. Of course, we only need to consider the elements of 𝐺 that fix setwise the boundary
component containing 𝛾. Since the action of 𝐺 on 𝑇2 is of finite order and free, it must be the
standard covering transformation of a covering map from 𝑇2 to itself, which fixes all homology
classes. In particular, the homology class of 𝛾 in 𝜕𝑀 is fixed by this action, and the claim easily
follows. Now, because of this claim, and because the curve 𝛾 is disjoint from the lift of 𝑃, the
equivariant Dehn’s lemma [34] implies that there exists a disk𝐷 in𝑀 bounding 𝛾 such that for all
g , either g(𝐷) ∩ 𝐷 = ∅ or g(𝐷) = 𝐷, and furthermore, 𝐷 is transverse to the lift of the branch set.
Consider the (possibly disconnected) surface Σ =

⋃
g∈𝐺 g(𝐷). Then, Σ∕𝐺 is a collection of disks

in 𝐷2 × 𝑆1 and Σ → Σ∕𝐺 is a branched cover (although some components of Σ may have trivial
branch locus). Furthermore, each component of the boundary of Σ∕𝐺 is an essential curve on the
boundary of the solid torus. For homology reasons, it is necessarily ameridional curve on the solid
torus and each component of Σ∕𝐺 is a meridional disk. (The components cannot have any other
topology, since a disk can only cover/branch cover another disk.) Now, if any component of Σ∕𝐺
does not intersect 𝑃, then we can cut 𝐷2 × 𝑆1 along one of these disks, and see that 𝑃 is contained
in 𝐵3 and we have a contradiction. If some component of Σ∕𝐺 does intersect 𝑃, it must intersect
in exactly one point, since a disk cannot be a cyclic cover of a disk branched along more than one
point. (Here we are using the fact that the branch points all correspond to intersections of 𝑃 with
the disk.) In other words, 𝑃 is the pattern for a connect-sum, and again we have a contradiction.
This proves the claim and completes the proof of the lemma. □
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