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A B S T R A C T 

We derive a Fisher matrix for the parameters characterizing a population of gra vitational-wa v e ev ents. This pro vides a guide 
to the precision with which population parameters can be estimated with multiple observations, which becomes increasingly 

accurate as the number of events and the signal-to-noise ratio of the sampled events increase. The formalism takes into account 
indi vidual e vent measurement uncertainties and selection effects, and can be applied to arbitrary population models. We illustrate 
the framework with two examples: an analytical calculation of the Fisher matrix for the mean and variance of a Gaussian model 
describing a population affected by selection effects, and an estimation of the precision with which the slope of a power-law 

distribution of supermassive black hole masses can be measured using extreme-mass-ratio inspiral observations. We compare 
the Fisher predictions to results from Monte Carlo analyses, finding very good agreement. 

Key w ords: gravitational w aves – methods: analytical. 
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 I N T RO D U C T I O N  

opulation analyses aim at inferring the parameters that describe
he distribution of the properties of a set of observ ed ev ents dra wn
rom a common population. In the context of gra vitational-wa ve
GW) astrophysics, such analyses have been carried out for the 90
oalescing compact-object binaries that have so far been observed
y ground-based gravitational wave detectors, and reported in the
hird gravitational wave transient catalogue, GWTC-3 (Abbott et al.
021a , b , c ). Together with simulation-based studies (Taylor &
erosa 2018 ), these population analyses aimed at understanding

he astrophysical processes that lead to the formation of the bi-
aries (Abbott et al. 2019 ; Rodriguez et al. 2020 ), their evolution
Fishbach et al. 2021 ; Mould et al. 2022 ) and at measuring the
urrent parameters describing their population (Vitale, Bisco v eanu &
albot 2022 ). Furthermore, population analyses are also used to
onstrain cosmic expansion history by estimating parameters like the
ubble constant (Mastrogiovanni et al. 2021 ; Abbott et al. 2021d ;
ancarella, Genoud-Prachex & Maggiore 2022 ; Mukherjee et al.

022 ). 
Given a set of observed events, the usual approach to estimate

istribution parameters is to complete a Bayesian hierarchical anal-
sis using techniques such as Markov Chain Monte Carlo (MCMC).
hile these are the most reliable way to obtain posterior samples

rom actual data, they are typically computationally expensive and so
t can become impractical to use these approaches to make forecasts
or future observations that include surv e ys o v er parameter space.
o we v er, such surv e ys are crucial for scoping out the science cases
f future detectors, such as the Einstein Telescope (Punturo et al.
010 ), Cosmic Explorer (Reitze et al. 2019 ), and the spaceborne
 E-mail: jonathan.gair@aei.mpg.de 
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ISA mission (Amaro-Seoane et al. 2017 ), all of which are expected
o detect thousands of sources from multiple populations. For
xplorations of this nature, one can trade off accuracy in the estimates
f parameter-measurement precision for computational speed by
sing approximations that are valid in the limit of high signal-to-
oise ratio (SNR). In the context of source parameters for individual
ignals, the Fisher matrix is commonly used to cheaply assess the
easurement precision of a parameter (Vallisneri 2008 ). Within the

inear-signal approximation, valid for high SNR sources, the inverse
f the Fisher matrix is an approximation to the covariance matrix and
herefore the width of the likelihood function. Under the assumption
f flat priors, it also approximates the shape of the Bayesian posterior
robability distribution we would expect to obtain in an MCMC
nalyses. For a parameter set � λ, the Fisher matrix can be written
n general terms as the expectation value over the data generating
rocess of deri v ati ves of the log likelihood p( d | � λ), 

 � λ) ij = E 

[ 

−∂ 2 ln p( d | � λ) 

∂ λi ∂ λj 

] 

. (1) 

hile this provides a guide to measurement uncertainties for individ-
al events, the Fisher matrix does not directly provide an indication
f how well the properties of the population can be inferred when
hose events are subsequently combined in a hierarchical model. In
his paper, we address this shortcoming by deriving a Fisher Matrix
or the population parameters assuming Gaussian noise and using
he likelihood for population inference in the presence of selection
ffects from Mandel, Farr & Gair ( 2019 ). The expression we obtain
s valid for high SNRs and small biases in the individual events’
arameters. We illustrate our formalism with two examples. First,
e consider a ‘Gaussian–Gaussian’ case, in which both noise and

he data generation processes are normally distributed, and check
ur expressions against the direct calculation of the Fisher matrix as
© The Author(s) 2022. 
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n expectation value over data realizations. We also perform MCMC 

nalyses with and without selection effects, as a cross-check to verify 
ur results. Secondly, we consider the more astrophysically rele v ant 
ase of a power-law distributed population (while still assuming 
aussian noise) and again validate our results against MCMC 

nalyses with and without selection effects. We generally find an 
xcellent agreement between the Fisher and MCMC estimates, while 
onfirming results in Gair, Tang & Volonteri ( 2010 ) for the latter
cenario. 

The paper is organized as follows. In Section 2 , we describe
ur population Fisher Matrix formalism, highlighting the main 
ssumptions and steps to obtain the result. A deri v ation of corrections
o this formula and their scalings is found in Appendix B . In
ection 3 , we consider the Gaussian population model, checking 
ur formula against a direct calculation of the Fisher Matrix and an
CMC analysis. In Section 4 , we consider the case of inference of

 po wer-law massi ve black hole mass distribution using extreme- 
ass-ratio inspiral (EMRI) observations, once again comparing 

he result against MCMC. Finally, in Section 5 , we discuss our
esults and prospects for future w ork. The framew ork we develop
ere could be applied in a wide variety of contexts. The focus
n gravitational wave detectors and the choice of the examples 
rovided here are driven purely by the authors’ areas of expertise. The
esults can be fully reproduced with codes made publicly available 
t https:// github.com/aantonelli94/ PopFisher. 

 T H E  FISHER  MATRIX  F O R  POPULATION  

ISTRIBU TIONS  

he standard model used to represent the data stream, d , of a
ra vitational wa ve detector is as a linear combination of a signal,
 ( � θ), dependent on some parameters � θ , and noise, n , that is usually
ssumed to be a realization of a stationary and Gaussian stochastic 
rocess described by a power spectral density S h ( f ), 

 = h ( � θ ) + n , 〈 ̃  n ∗( f ) ̃  n ( f ′ ) 〉 = S h ( f ) δ( f − f ′ ) . (2) 

n this model, the likelihood is 

p( d | � θ) ∝ exp 

[
−1 

2 

(
d − h ( � θ) | d − h ( � θ) 

)]
, 

here ( a | b ) = 4 Re 
∫ ∞ 

0 

˜ a ∗( f ) ̃  b ( f ) 

S h ( f ) 
d f . (3) 

o understand the precision with which gravitational wave obser- 
ations can determine the parameters of a source, it is common to
ompute the Fisher information matrix, defined by 

 � θ ) ij = E 

[ 

∂ ln p( d | � θ) 

∂θ i 

∂ ln p( d | � θ) 

∂θj 

] 

, (4) 

here the expectation value is taken over realizations of the data 
rawn from the data generating process, d . For the gravitational wave
etector likelihood in equation ( 3 ), the Fisher information matrix can
e seen to reduce to 

 � θ ) ij = 

(
∂h 

∂θ i 

∣∣∣∣ ∂h 

∂θj 

)
, (5) 

here we are using the inner product introduced in equation ( 3 ).
he Fisher matrix provides a leading order approximation to the 
hape of the likelihood and hence also the Bayesian posterior when 
sing priors that are approximately flat o v er the support of the
ikelihood. It becomes an increasingly good guide to the precision of
arameter estimation as the SNR with which the source is observed 
ncreases. 
In population inference, we are no longer primarily interested in 
he parameters of the individual events, but in the parameters that
haracterize the population from which the indi vidual e vents are
rawn. We assume that we have some population model, p( � θ | � λ),
hat describes the probability distribution of the parameters, � θ , of 
ndi vidual e v ents dra wn randomly from a population characterized
y parameters, � λ. We want to infer the parameters of the population
y combining the information from many observed events. For a 
iven choice of population parameters, the distribution of observed 
ata sets is characterized by 

( d | � λ) = 

p full ( d | � λ) 
P det ( � λ) 

(6) 

here p full ( d | � λ) = 

∫ 
p ( d | � θ) p ( � θ | � λ) d � θ

P det ( � λ) = 

∫ 
P det ( � θ) p( � θ | � λ) d � θ

P det ( � θ ) = 

∫ 
d > thresh p( d | � θ) d d . (7) 

ere and elsewhere, we will use lowercase p ( x ) to denote probability
ensity functions, which have units of 1/ x , and uppercase P ( x ) to
enote cumulative density functions, which are dimensionless. This 
xpression accounts for the fact that not all events that occur in
he Universe are detected. Detection is a property of the observed
ata, d , and the last integral is over all data sets that would pass the
hreshold to be counted as a detected event and hence included in the
opulation inference. The normalization term, P det ( � λ), depends only 
n the population parameters and represents the fraction of events 
n the Universe that are detectable. We refer the reader to Mandel
t al. 2019 for further details. This form of the likelihood assumes
hat the number of ev ents observ ed in a fixed time period does not
onv e y an y information about the population parameters. Ho we ver,
he precision with which the population parameters are estimated 
symptotically is independent of that assumption. This is discussed 
n more detail in Appendix A . 

Equation ( 1 ) is the equi v alent of equation ( 4 ) for this population
ikelihood, and so it should give a guide to the precision with which
he population parameters can be measured. Note that the two forms
f the expression are slightly different, but it is straightforward to
how that the two results are equivalent by integrating by parts
nd using conservation of probability. This will be a good guide
or a ‘high SNR’, which for populations means a large number of
bserv ed ev ents. The fact that equation ( 1 ) is a good approximation
o the precision of population inference can be seen as follows. In
 general population inference problem, we hav e observ ed a set of
v ents, inde x ed by i , with corresponding data sets { d i } . The posterior
istribution on the population parameters from this set of events can
e found from Bayes’ theorem and takes the form 

( � λ| { d i } ) ∝ π ( � λ) 
n ∏ 

i= 1 

p( d i | � λ) , (8) 

here n is the total number of events observed, π ( � λ) is the prior
n the population parameters, and p( d i | � λ) is the likelihood of the
opulation parameters � λ for data set d i . The log posterior is 

ln p( � λ| { d i } ) ∝ ln π ( � λ) + 

n ∑ 

i= 1 

ln p( d i | � λ) . (9) 

he latter quantity is a sum of independent random variables 
assuming that all observations are independent). In the limit that 
 → ∞ , we can use the central limit theorem to deduce 

1 

n 

n ∑ 

i= 1 

ln p( d i | � λ) ∼ N 

( 

μ( � λ| � λt ) , 
σ 2 ( � λ| � λt ) 

n 

) 

, (10) 
MNRAS 519, 2736–2753 (2023) 
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here 

( � λ| � λt ) = E 

[ 
ln p( d | � λ) 

] 
, σ 2 ( � λ| � λt ) = E 

[ 
( ln p( d | � λ) − μ) 2 

] 
(11) 

nd the expectation value is taken over the data generating process,
hich we assume to be consistent with the likelihood we are using,
 v aluated for the true values of the population parameters � λt . 

Since 

∂μ

∂λi 
= 

∫ 
p ( d | � λt ) 

1 

p ( d | � λ) 

∂p ( d | � λ) 

∂λi 
d d 

 

∂μ

∂λi � λ= 

� λt 

= 

∫ 
∂p( d | � λ) 

∂λi 
d d = 

∂ 

∂λi 

∫ 
p( d | � λ) d d 

= 

∂ 

∂λi 
(1) = 0 , (12) 

e deduce that the population likelihood is peaked at the true
arameters asymptotically (this is not true on average for a finite
umber of observations, as discussed in Appendix B ). Note that this
appens by virtue of the assumed consistency between the likelihood
nd the data-generating process, and would not be the case if the
ik elihood w as only an approximation to the true population. As n

 ∞ , the log posterior converges to the function nμ( � λ), and so the
osterior becomes increasingly concentrated around � λt . Expanding
he function μ( � λ| � λt ) near � λt we have 

( � λ| � λt ) = μ
(
� λt | � λt 

)
+ 

1 

2 

(
d 2 μ

d λi d λj 

)
� λt 

( λi − λi 
t )( λ

j − λ
j 
t ) + · · · . (13) 

e deduce that the asymptotic covariance matrix is � 

−1 
λ /n , where 

 � λ) ij = −
(

d 2 μ

d λi d λj 

)
� λt 

= E 

[ 

−∂ 2 ln p( d | � λ) 

∂ λi ∂ λj 

] 

. (14) 

n the last equality, we use equation ( 12 ). This justifies the use of
quation ( 1 ) to characterize the precision of parameter estimation in
he limit n → ∞ . It becomes increasingly reliable as n → ∞ , as
orrections to this formula scale like n −1 / 2 relative to leading order.
his is justified in more detail in Appendix B . 
This result can be e v aluated at v arious le vels of approximation.

he full asymptotic posterior is described by the function μ( � λ| � λt ),
hich can be e v aluated through Monte Carlo integration. This is

omputationally e xpensiv e as it requires e v aluation o v er different
hoices of � λ and � λt . The ne xt lev el of approximation is to e v aluate
quation ( 1 ) directly. This makes a linear signal approximation in
he population parameters, but no approximation to the e v aluation
f p( d | � λ). This is less complex because e v aluation is only needed
n the vicinity of � λt . A final level of approximation is to simplify
( d | � λ) by using the linear signal approximation for the individual
vent parameters as well. This is the approach we will now describe.

We consider a single observation of a source with parameters � θ0 ,
nd data d = h ( � θ0 ) + n . Taking the expectation value over the true
ata distribution then reduces to taking the expectation value over the
istribution of the noise n and the distribution of the parameters � θ0 ,
hich is p( � θ0 | � λt ). Under the linear signal approximation, we expand 

 ( � θ ) = h ( � θ0 ) + 

∂h 

∂θ i 

θi (15) 
NRAS 519, 2736–2753 (2023) 
here 
θi = θ i − θ i 
0 . The gravitational wave likelihood can then be

ritten 

˜ p ( { d }| � θ) ∝ exp 

[
−1 

2 
( d − h ( � θ ) | d − h ( � θ)) 

]

≈ exp 

[
−1 

2 
( n | n ) + N i 
θi − 1 

2 
( � θ ) ij 
θi 
θj 

]

here N i = 

(
∂h 

∂θ i 

∣∣∣∣n 

)
(16) 

nd ( � θ ) ij is the single source Fisher matrix defined in equation ( 5 ).
his is to be e v aluated at θ0 and therefore has a dependence on those
arameters. We similarly expand the source prior term 

ln p( � θ | � λ) = ln p( � θ0 | � λ) + P i 
θi − 1 

2 
H ij 
θi 
θj + · · ·

where P i = 

∂ ln p( � θ | � λ) 

∂θ i 
, H ij = −∂ 2 ln p( � θ | � λ) 

∂ θ i ∂ θj 
, (17) 

n which the deri v ati ves are e v aluated at the parameter space point
0 . Substituting the preceding two expressions into equation ( 7 ) and

nte grating o v er � θ , which is equi v alent to inte grating o v er 
 

� θ in the
inear signal approximation, we obtain 

˜  ( { d }| � λ) ≈ exp [ −( n | n ) / 2] 

P det ( � λ) 

∫ 
d 
 

� θ
[ 
p( � θ0 | � λ) 

exp 

{
−1 

2 
( � ij + H ij )( 
θi − 
θi 

bf )( 
θj − 
θ
j 

bf ) 

+ 

1 

2 
( N i + P i )( � + H ) −1 

ij ( N j + P j ) 

}]

= (2 π ) N/ 2 p( � θ0 | � λ) exp [ −( n | n ) / 2] 

P det ( � λ) 
√ 

det ( � + H ) 

× exp 

[
1 

2 
( N i + P i )( � + H ) −1 

ij ( N j + P j ) 

]
, (18) 

here we have written 

θ i 
bf = ( � + H ) −1 

ik ( N k + P k ) . 

his is the point at which the likelihood is maximized and hence
s the ‘best-fit’ point in parameter space. We can no w e v aluate the
opulation Fisher matrix using the expression 

− ( � λ) ij = 

∫ ( 

∂ 2 ln p( d | � λ) 

∂ λi ∂ λj 

) 

� λt 

p( d | � λt )d d 

= 

∫ ∫ ( 

∂ 2 ln p( d | � λ) 

∂ λi ∂ λj 

) 

� λt 

p ( � θ0 | � λt ) p ( n | � θ0 )d n d � θ0 . (19) 

n the abo v e, the inte gral o v er the noise distribution is conditioned
n � θ0 because of selection effects. This integral is o v er all noise real-
zations that ensure d = h ( � θ0 ) + n is abo v e the detection threshold.
ubstituting equation ( 18 ) into the abo v e, we obtain a sequence of

erms. To simplify these, we carry out the integral over the noise,
 . The only terms in equation ( 18 ) that depend on n are N i and the
refactor exp [ −( n | n ) / 2]. The latter enters ln ˜ p additively and has no
ependence on the population parameters, so it does not contribute
o the final result. The former term also has no explicit dependence
n the population parameters, but it appears multiplied by terms that
o. There are thus three distinct types of term that appear in the
rgument of the integral – terms that have no explicit dependence on
 , terms that are linear in N i , and terms that are quadratic in N i . We
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efine these integrals as follows 

 det ( � θ0 ) = 

∫ 
p( n | � θ0 )d n 

D i ≡
∫ (

n 

∣∣∣∣ ∂h 

∂θ i 

)
p( n )d n = 

∂P det ( � θ0 ) 

∂θ i 
, 

D ij ≡
∫ (

n 

∣∣∣∣ ∂h 

∂θ i 

)(
n 

∣∣∣∣ ∂h 

∂θj 

)
p( n )d n . (20) 

sing these expressions to carry out the integrals over n , we obtain
he final result 

 � λ) ij ≡ ( � I ) ij + ( � II ) ij + ( � III ) ij + ( � IV ) ij + ( � V ) ij , (21) 

ith 

( � I ) ij = −
∫ 

∂ 2 ln ( p( � θ0 | � λ) /P det ( � λ)) 

∂ λi ∂ λj 

P det ( � θ0 ) 

P det ( � λ) 
p( � θ0 | � λ)d � θ0 , 

( � II ) ij = 

1 

2 

∫ 
∂ 2 ln det ( � + H ) 

∂ λi ∂ λj 

P det ( � θ0 ) 

P det ( � λ) 
p( � θ0 | � λ)d � θ0 , 

( � III ) ij = −1 

2 

∫ 
∂ 2 

∂ λi ∂ λj 

[
( � + H ) −1 

kl 

]
D kl 

p( � θ0 | � λ) 

P det ( � λ) 
d � θ0 , 

( � IV ) ij = −
∫ 

∂ 2 

∂ λi ∂ λj 

[
P k ( � + H ) −1 

kl 

]
D l 

p( � θ0 | � λ) 

P det ( � λ) 
d � θ0 , 

( � V ) ij = −1 

2 

∫ 
∂ 2 

∂ λi ∂ λj 

[
P k ( � + H ) −1 

kl P l 

] P det ( � θ0 ) 

P det ( � λ) 
p( � θ0 | � λ)d � θ0 . 

his is an approximate expression for the population Fisher matrix 
hich can be used to estimate the precision with which observations 
ill be able to determine the population parameters. In deriving 

he abo v e e xpressions, we hav e made use of the standard form of
he likelihood for the gravitational wave detection problem, which 
ermits some simplifications. In Appendix C , we describe how the 
esult is changed for a generic likelihood, p( d | θ0 ). 

We note that when measurement errors for the source parameters 
re small, only the first of these terms is required. This limit
orresponds to � → ∞ , so that � + H ≈ � and ( � + H ) −1 →
. In this limit, it is clear that ( � III ) ij , ( � IV ) ij , and ( � V ) ij immediately
anish. The matrix ( � II ) ij also vanishes because � does not depend on
he population parameters λ. Therefore, we expect ( � I ) ij to dominate
nd provide a good approximation to the population Fisher matrix. 
his will be true whenever individual measurement errors are small 

elative to the scale over which the population parameters change the 
ource parameter distribution. The approximation holds in the three 
xamples we describe below, but this will not al w ays be the case. 

.1 Validity of approximations 

o derive the population Fisher matrix, we have made two ap- 
roximations. First, we have used expression ( 14 ) to define the
opulation Fisher matrix. Corrections to this expression are derived 
n Appendix B and are shown to scale with inverse powers of the
umber of observed events, n . This assumption will therefore al w ays
e valid once we have made sufficiently many observations, and 
his is the limit in which we want to use this result. The second
pproximation was to use the linear signal approximation to represent 
he posteriors for individual events in equation ( 16 ) and equation ( 17 ).
his approximation will not necessarily be valid in all circumstances, 
r across the whole of parameter space. In Vallisneri 2008 , a criterion
s provided for the validity of the indi vidual e vent Fisher matrix at
� 0 
1 

2 

(

 h LSA ( � 
θ ) | 
 h LSA ( � 
θ ) 

)
� 1 

∀ 

� 
θ1 σ : � ij 
θi 
1 σ 
θ

j 

1 σ = 1 

here 
 h LSA ( � 
θ ) = 
θi 
1 σ

∂h 

∂θ i 
−

[ 
h ( � θ0 + 

� 
θ1 σ ) − h ( � θ0 ) 
] 
. (22) 

f this criterion holds throughout the parameter space of observed 
vents, then the approximations used to derive the population Fisher 
atrix will definitely be v alid. Ho we ver, this condition is more

tringent than is strictly required since the population Fisher matrix is
etermined by deri v ati ves with respect to the population parameters
f the average of the individual event Fisher matrix over the parameter 
pace. 

An alternative criterion can be obtained by identifying the next 
igher order terms in equation ( 16 ) and equation ( 17 ). These
ontribute a multiplicative correction to the integral ( 18 ) of the form

exp 
[(


 ijk + T ijk 

)

θi 
θj 
θk + N ij 
θi 
θj 

]
, 

here 

 ijk = 

1 

6 

∂ 3 ln p( � θ | � λ) 

∂ θ i ∂ θj ∂ θk 

 ijk = 

1 

2 

(
∂ 2 h 

∂ θ i ∂ θj 

∣∣∣∣ ∂h 

∂θk 

)

N ij = 

(
∂ 2 h 

∂ θ i ∂ θj 

∣∣∣∣n 

)
. (23) 

pproximating the exponential as exp ( x ) ≈ 1 + x , these terms
ontribute additively to the integral over 
θ an amount δI . The
ontribution to ln p( d | � λ) is then an additive ln (1 + δI / I 0 ) ≈ δI / I 0 ,
here I 0 is the value of the leading order integral. We deduce that

he next order correction to the population Fisher matrix is 

 VI = 

∫ ∫ (
∂ 2 ( δI /I 0 ) 

∂ λi ∂ λj 

)
� λt 

p ( � θ0 | � λt ) p ( n | � θ0 )d n d � θ0 , 

δI 

I 0 
= 

(

 ijk + T ijk 

)(
3 
θi 

bf ( � + H ) −1 
jk + 
θi 

bf 
θ
j 

bf 
θk 
bf 

)
+ N ij 

(

θi 

bf 
θ
j 

bf + ( � + H ) −1 
ij 

)
. (24) 

his expression can be simplified further, but as we will not use it
lsewhere in this paper, we will leave it in this form, but we will
ake a few observations 

(i) This expression can be used to assess the validity of the
pproximations used to build the population Fisher matrix. If the 
redicted errors computed including this correction are similar to 
hose computed without then we can trust the population Fisher 
atrix. 
(ii) The correction depends on deri v ati ves with respect to the

opulation parameters. If higher order corrections are only significant 
or parameters that are weakly coupled to those described by the
opulation model, then this correction is still likely to be small,
nd the predictions of the population Fisher matrix are likely to be
rustworthy. 

(iii) In the examples discussed later, the dominant contribution 
o the Fisher matrix comes from � I , which is independent of the
ndi vidual e vent uncertainties. Thus, e ven if � VI is of comparable
ize to � V , it might still be ne gligible relativ e to � I . In that case,
 I can continue to be used to estimate the population parameter
ncertainties. 
(iv) In general, the Fisher Matrix approximation will be better 

or events of higher SNR, and so the population Fisher matrix will
end to be a better approximation if we use a higher threshold for
ncluding events in the analysis. By adjusting the detection threshold 
MNRAS 519, 2736–2753 (2023) 
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1 For the last integral, it is useful to notice that 

∫ ∞ 

d th 
( d − μ) 2 p( d | � λ) d d = ( σ 2 + � 

2 ) 

[ 
1 + ( d th − μ) 

p( d th | � λ) 

P det ( � λ) 

] 
, 

which follows from ( d − μ) p( d | � λ) = −( σ 2 + � 

2 ) ∂ p( d | � λ) /∂ d , integrat- 
ing by parts, and using equation( 31 ). 
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o be high enough that the individual events are well characterized
y the Fisher matrix, we will be able to obtain a reliable estimate
rom the population Fisher matrix for any analysis. This will provide
 conserv ati ve estimate to the precision that could be achie ved using
ll events. 

In summary, when using the population Fisher matrix to scope
ut the potential of future GW observations, it is important to
onitor the validity of the approximations by using equation ( 24 ).

n some contexts, the indi vidual e vent Fisher matrix will be valid
hroughout the parameter space of observable events and so the
ull population Fisher matrix can be used directly. For example,
n the context of extreme-mass-ratio inspirals, on which the GW-like
xample in Section 4.1 is based, it is expected that an SNR of at
east 20 will be required for the confident detection of an event in
he data (Babak et al. 2017 ), and so the Fisher matrix is likely to
e a good approximation for all observed events. In other contexts,
he indi vidual e vent Fisher matrix might be a poor approximation
or some parameters, but if it is valid for the parameters for which
he population model has been written down, and these are weakly
orrelated with the other parameters, then the population Fisher
atrix is still likely to provide a good estimate of measurement

recision. There will be situations in which the approximation will
ot be valid, but even there, the population Fisher matrix might be
ccurate if it is dominated by the measurement-error independent
art, � I . In any scenario, it can be used to obtain a conserv ati ve
stimate of accuracy by raising the detection threshold sufficiently.
t will thus al w ays provide a valuable tool for quickly scoping out
he potential of future observations without the need for e xpensiv e
imulations. 

 ILLUSTRATION  I :  A  G A  U S S I A N – G A  USSIAN  

O D E L  

e will now consider sev eral e xamples, which will demonstrate that
he population Fisher matrix works and show how to compute it
n practice. The first application of equation ( 21 ) we will consider
s to a ‘Gaussian–Gaussian’ model in which both observations and
oise are normally distributed. We simplify the setting by assuming
 waveform dependent on a single parameter θ . The distribution of
he parameter is 

( θ | � λ) = N ( μ, � 

2 ) = 

1 √ 

2 π� 

2 
exp 

[
− ( θ − μ) 2 

2 � 

2 

]
, (25) 

ith population parameters (henceforth, hyperparameters) � λ =
 μ, � 

2 } . Noise is also a Gaussian with zero mean and variance
. Since the data stream is a sum of Gaussians, it is modelled
y N ( μ, σ 2 + � 

2 ), with mean and variance given by the sums of
ndividual means and variances, 

( d | � λ) = 

1 √ 

2 π ( σ 2 + � 

2 ) 
exp 

[
− ( d − μ) 2 

2( σ 2 + � 

2 ) 

]
. (26) 

iven the implicit simple choice for the signals, the Fisher matrix of
ource parameters reduces to 

 θ = 

(
∂ h 

∂θ

∣∣∣∣∂ h 

∂θ

)
= 

1 

σ 2 

∣∣∣∣∂ h 

∂θ

∣∣∣∣
2 

= 

1 

σ 2 
, (27) 

hile from equation ( 25 ), we have that P and H in ( 17 ) are 

 = − ( θ − μ) 

� 

2 
and H = 

1 

� 

2 
. (28) 

he example reported in this section does not have an immediate
nalogy in GW astrophysics, but it can be thought of as a more
NRAS 519, 2736–2753 (2023) 
eneral application of the population Fisher matrix. The advantage
f choosing such a simple setting is that the matrix entries can be
irectly integrated as expectation values over data realizations. In the
resence of selection effects, the integrals to be solved are 

 � λ) ij = E 

( 

− ∂ 2 

∂ λi ∂ λj 

[ 

ln 

( 

p( d | θ, � λ) 

P det ( � λ) 

) ] ) 

= −
∫ ∞ 

d th 

∂ 2 

∂ λi ∂ λj 

[ 

ln 

( 

p( d | � λ) 

P det ( � λ) 

) ] 

p( d | � λ) 

P det ( � λ) 
d d . (29) 

e only select realizations of the data d > d th that are abo v e a
ertain threshold. The predictions for the various components of the
opulation Fisher matrix are 1 

( � λ) μμ = 

∂ 2 ln P det ( � λ) 

∂μ2 
+ 

1 

( σ 2 + � 

2 ) 
, 

( � λ) μ� 2 = 

∂ 2 ln P det ( � λ) 

∂ μ∂ � 

2 
+ 

1 

( σ 2 + � 

2 ) 

p( d th | � λ) 

P det ( � λ) 
, 

 � λ) � 2 � 2 = 

∂ 2 ln P det ( � λ) 

( ∂� 

2 ) 2 
+ 

1 

2( σ 2 + � 

2 ) 2 

+ 

( d th − μ) 

( σ 2 + � 

2 ) 2 
p( d th | � λ) 

P det ( � λ) 
, (30) 

here we have used equations ( 26 ) and ( 29 ), the fact that the integral
s normalized through 

 det ( � λ) = 

∫ ∞ 

d th 

p( d | � λ) d d = 

1 

2 
erfc 

( 

( d th − μ) √ 

2( σ 2 + � 

2 ) 

) 

, (31) 

nd the definition 

( d th | � λ) ≡ 1 √ 

2 π ( σ 2 + � 

2 ) 
exp 

[
− ( d th − μ) 2 

2( σ 2 + � 

2 ) 

]
. (32) 

inally, from equation ( 31 ), it follows that 

∂ 2 ln p det ( λ) 
( ∂μ) 2 

= 

(
d th −μ

σ 2 + � 2 

)
p( d th | λ) 
p det ( λ) − p( d th | λ) 2 

p det ( λ) 2 
, 

∂ 2 ln p det ( λ) 
∂ μ∂ � 2 

= 

p( d th | λ) 
p det ( λ) 

[ 
( d th −μ) 2 

2( σ 2 + � 2 ) 2 
− 1 

2( σ 2 + � 2 ) 

] 
− p( d th | λ) 2 

2 p det ( λ) 2 

(
d th −μ

σ 2 + � 2 

)
, 

∂ 2 ln p det ( λ) 
( ∂� 2 ) 2 

= 

p( d th | λ) 
p det ( λ) 

[ 
( d th −μ) 3 

4( σ 2 + � 2 ) 3 
− 3( d th −μ) 

4( σ 2 + � 2 ) 2 

] 
− p( d th | λ) 2 

4 p det ( λ) 2 

(
d th −μ

σ 2 + � 2 

)2 
. (33) 

.1 Solution from the population Fisher matrix 

hile in this simple setting, the direct e v aluation of the Fisher Matrix
s expectation value is much simpler, we wish to now evaluate it using
quation ( 21 ) as an important sanity check of that general formula.
or ( � λ) μμ , we notice that the ( � II ) μμ , ( � III ) μμ , and ( � IV ) μμ vanish.
he second and third terms vanish because � + H does not depend
n μ, while the fourth term vanishes because P is only linear in μ and
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2 The integral over θ can be e v aluated by parts to obtain ∫ 
( θ − μ) 2 P det ( θ) 

P det ( � λ) 
p( θ | � λ) dθ = � 

2 + 

( d th −μ) � 4 

( σ 2 + � 2 ) 
p( d th | � λ) 
P det ( � λ) 

, (42) 

using ( 31 ) and ( 40 ) with vanishing boundary terms. 
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wo deri v ati ves with respect to it are needed for ( � λ) μμ . The only
erms contributing are therefore ( � I ) μμ and ( � V ) μμ , which lead to 

 � λ) μμ = −
∫ 

∂ 2 ln ( p( θ | � λ) /P det ( � λ) 

∂μ2 

P det ( θ ) 

P det ( � λ) 
p( θ | � λ) dθ

−1 

2 

∫ 
∂ 2 

∂μ2 

[
P 

2 ( � + H ) −1 
] P det ( θ ) 

P det ( � λ) 
p( θ | � λ) dθ

= 

∂ 2 ln P det ( � λ) 

∂μ2 
+ 

1 

( σ 2 + � 

2 ) 
, (34) 

here we have used P , �, and H given in equations ( 25 ), ( 27 ), and
 28 ), as well as the normalization 

∫ 
P det ( θ ) 

P det ( � λ) 
p( θ | � λ) dθ = 1 . (35) 

he result matches the prediction of equation ( 30 ) as expected. 
In the case of ( � λ) μ� 2 , the second and third terms, ( � II ) μ� 2 and

 � III ) μ� 2 , vanish for the same reason as abo v e, but now the fourth
erm ( � IV ) μ� 2 does contribute. Overall, we have that 

 � λ) μ� 2 = −
∫ 

∂ 2 ln ( p( θ | � λ) /P det ( � λ) 

∂ μ∂ � 

2 

P det ( θ ) 

P det ( � λ) 
p( θ | � λ) dθ

−
∫ 

∂ 2 

∂ μ∂ � 

2 

[
P ( � + H ) −1 

]
D l 

P det ( θ ) 

P det ( � λ) 
p( θ | � λ) dθ

−1 

2 

∫ 
∂ 2 

∂ μ∂ � 

2 

[
P 

2 ( � + H ) −1 
] P det ( θ ) 

P det ( � λ) 
p( θ | � λ) dθ

= 

∂ 2 ln P det ( � λ) 

∂ μ∂ � 

2 
+ 

∫ 
( θ − μ) 

� 

4 

P det ( θ ) 

P det ( � λ) 
p( θ | � λ) dθ

+ 

∫ [
σ 2 

( σ 2 + � 

2 ) 2 

]
∂P det ( θ ) 

∂θ

p( θ | � λ) 

P det ( � λ) 
dθ

−σ 2 ( σ 2 + 2 � 

2 ) 

� 

4 ( σ 2 + � 

2 ) 2 
1 

P det ( � λ) 

∫ 
( θ − μ) P det ( θ ) p( θ | � λ) dθ, 

here we have used the definition of D i in equation ( 20 ) and ( 35 ).
e also notice that, from the definition 

 det ( θ ) = 

∫ ∞ 

d th 

p( d | θ ) d d 

= 

∫ ∞ 

d th 

1 √ 

2 πσ 2 
exp 

[
− ( d − θ ) 2 

2 σ 2 

]
d d = 

1 

2 
erfc 

(
d th − θ√ 

2 σ 2 

)
,(36)

t follows that 

∂P det ( θ ) 

∂θ
= 

∫ ∞ 

d th 

( d − θ ) 

σ 2 
p( d | θ ) d d 

= 

1 √ 

2 πσ 2 
exp 

[
− ( d th − θ ) 2 

2 σ 2 

]
≡ p( d th | θ ) , (37) 

hich can be rearranged to give 

∫ 
( θ − μ) 

∂P det ( θ ) 

∂θ
p( θ | � λ) dθ

= � 

2 ∂ 

∂μ

∫ 
p ( d th | θ ) p ( θ | � λ) dθ

= � 

2 ∂p( d th | � λ) 

∂μ
= 

� 

2 

( σ 2 + � 

2 ) 
( d th − μ) p( d th | � λ) . (38) 
rom equation ( 31 ), it also follows that ∂ P det ( � λ) /∂ μ = p( d th | � λ).
sing this constraint, and the fact that 

∂p( d th | � λ) 

∂μ
= 

∫ 
∂ 

∂μ

[
P det ( θ ) p( θ | � λ) 

]
dθ

= 

1 

� 

2 

∫ 
( θ − μ) P det ( θ ) p( θ | � λ) dθ, (39) 

e immediately get ∫ 
( θ − μ) P det ( θ ) p( θ | � λ) dθ = � 

2 p( d th | � λ) , (40) 

nd, together with ( 35 ) and ( 38 ), that 

 � λ) μ� 2 = 

∂ 2 ln P det ( � λ) 

∂ μ∂ � 

2 
+ 

1 

( σ 2 + � 

2 ) 

p( d th | � λ) 

P det ( � λ) 
. (41) 

his agrees with equation ( 30 ) as expected. 
Finally, we consider the case of ( � λ) � 2 � 2 , in which no term in ( 21 )

anishes. The first term can be rearranged to give 2 

 � I ) � 2 � 2 = 

∂ 2 ln P det ( � λ) 

( ∂� 

2 ) 2 
− 1 

2 � 

4 

+ 

1 

� 

6 

∫ 
( θ − μ) 2 

P det ( θ ) 

P det ( � λ) 
p( θ | � λ) dθ

= 

∂ 2 ln P det ( � λ) 

( ∂� 

2 ) 2 
+ 

1 

2 � 

4 
+ 

( d th − μ) 

� 

2 ( σ 2 + � 

2 ) 

p( d th | � λ) 

P det ( � λ) 
. (43) 

sing equation ( 35 ), the second term ( � II ) � 2 � 2 is easily found to be 

 � II ) � 2 � 2 = 

σ 2 

2 � 

4 

( σ 2 + 2 � 

2 ) 

( σ 2 + � 

2 ) 2 
. (44) 

he third term ( � III ) � 2 � 2 contains D ij from equation( 20 ), which can
e rearranged to give 

 θθ = 

1 √ 

2 πσ 3 

∫ ∞ 

d th 

( d − θ ) 2 exp 

[
− ( d − θ ) 2 

2 σ 2 

]
d d 

= 

( d th − θ ) √ 

2 πσ 3 
exp 

[
− ( d th − θ ) 2 

2 σ 2 

]
+ 

1 

2 σ 2 
erfc 

(
d th − θ√ 

2 σ 2 

)
. 

he complementary error function can be replaced by P det ( θ ) using
 36 ). With this in mind, we have 

 � III ) � 2 � 2 = 

σ 4 

( σ 2 + � 

2 ) 4 
( d th − μ) 

p( d th | � λ) 

P det ( � λ) 
+ 

σ 2 

( σ 2 + � 

2 ) 3 
. (45) 

he results follow from rearranging equations ( 37 ) and ( 32 ) into ∫ 
( d th − θ ) exp 

[
− ( d th − μ) 2 

2 σ 2 

]
p( θ | � λ) 

P det ( � λ) 
dθ

= −σ 3 
√ 

2 π
∫ 

∂p( d th | θ ) 

∂ d th 

p( θ | � λ) 

P det ( � λ) 
dθ

= −σ 3 
√ 

2 π

P det ( � λ) 

∫ 
∂ 

∂ d th 

[
p ( d th | θ ) p ( θ | � λ) 

]
dθ

= 

σ 3 
√ 

2 π

( σ 2 + � 

2 ) 
( d th − μ) 

p( d th | � λ) 

P det ( � λ) 
. 
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Figure 1. Normally-distributed data with (red) and without (black) 
selection effects. 
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Figure 2. Fisher and MCMC predictions for the toy Gaussian case with 
(red) and without (black) selection effects. 
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he fourth term ( � IV ) � 2 � 2 is found using ( 40 ), and reads 

 � IV ) � 2 � 2 −
∫ 

∂ 2 

( ∂� 2 ) 2 

[
P ( � + H ) −1 

]
D θ

P det ( θ ) 
P det ( � λ) 

p( θ | � λ) dθ

= 

2 σ 2 � 2 

( σ 2 + � 2 ) 4 
( d th − μ) p( d th | � λ) 

P det ( � λ) 
. (46) 

inally, the final term ( � V ) � 2 � 2 is found through ( 42 ) to be 

 � V ) � 2 � 2 = −1 

2 

∫ 
∂ 2 

( ∂� 

2 ) 2 
[
P 

2 ( � + H ) −1 
] P det ( θ ) 

P det ( � λ) 
p( θ | � λ) dθ

= − σ 2 

� 

4 

( σ 4 + 3 σ 2 � 

2 + 3 � 

4 ) 

( σ 2 + � 

2 ) 3 [ 

1 + 

� 

2 

( σ 2 + � 

2 ) 
( d th − μ) 

p( d th | � λ) 

P det ( � λ) 

] 

. (47) 

dding up ( 43 ) to ( 47 ), we find 

 � 2 � 2 = 

∂ 2 ln P det ( � λ) 

( ∂� 

2 ) 2 
+ 

1 

2( σ 2 + � 

2 ) 2 
+ 

( d th − μ) 

( σ 2 + � 

2 ) 2 
p( d th | � λ) 

P det ( � λ) 
, (48) 

hich matches ( 30 ) as expected. This concludes the analytic check.
quation ( 21 ) can be used to reproduce the predictions ( 30 ) obtained

rom the more general definition of the Fisher matrix as an expecta-
ion value o v er data realizations. 

.2 MCMC analysis 

he Fisher predictions for the Gaussian–Gaussian model can be
ompared with MCMC simulations as a further check of the
ormalism. While this example is arguably textbook material, see
or instance section (6) in Vitale et al. 2020 , we report a few details
elow for completeness. The results of the present section can be fully
eproduced with the codes accompanying this paper. We simulate
ynthetic data including N tot = 10 5 observations from the observation
odel ( 26 ), choosing true mean μtr = 0.5, true variance � 

2 
tr = 1 . 0.

nd noise variance σ = 0.1. The latter two indicate that each event is
aken with a high SNR. We then apply an arbitrary cutoff, imposing
hat only positive data are observed. That is, d th = 0, resulting in
round N det ∼ 70 000 detected events. Fig. 1 shows the total (black)
nd detected (red) populations under our specified assumptions. We
erform the MCMC analyses in both cases in which we do and do not
ave selection effects using EMCEE (Foreman-Mackey et al. 2013 ).
s log likelihood, we take the sum of individual log likelihoods, 

log p( d| λ) = −N log p det ( λ) + 

N ∑ 

i 

log p( d i | λ) , (49) 
NRAS 519, 2736–2753 (2023) 
here N = N tot in the case in which we do not include selection
ffects, and N = N det in the case in which we do. We choose flat
yperpriors o v er a v ery broad range that includes the true values.
he selection function is defined and integrated as in equation ( 31 ),
nd is non-trivial only in the latter case. The MCMC posteriors for
and � 

2 , in both the cases considered, can be found in Fig. 2 . 
We can then compare the predictions from the population Fisher
atrix with what we obtain numerically. To this end, we invert the
atrix 

 � λ) ij = 

(
� μμ � μ� 2 

� μ� 2 � � 2 � 2 

)
(50) 

ith entries given in equation ( 30 ) and below. The errors are
ormalized by the number of events, 

 μ = 

√ 

( � 

−1 
λ ) μμ/N , 
� 

2 = 

√ 

( � 

−1 
λ ) � 2 � 2 /N . 

n Fig. 2 , the Fisher predictions are shown (in black) to reproduce
he widths from the MCMC runs. 

The same widths can be well approximated by the inverse of the
atrix 

 � λ) ij = 

(
( � I ) μμ ( � I ) μ� 2 

( � I ) μ� 2 ( � I ) � 2 � 2 , 

)
(51) 

n which only the first terms in equation ( 21 ) are retained. The
redictions are shown in red in Fig. 2 , and they overlap well with the
ull Fisher matrix predictions. As discussed earlier, this corresponds
o taking the limit of equation ( 50 ) in which σ = 0, i.e. the parameters
f the individual events are measured perfectly. The reason that this is
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 good approximation here is because we have chosen 0.1 = σ �� =
 for this example. We would expect the other terms contributing to
quation ( 21 ) to become increasingly important as the measurement 
rrors become larger. If we consider for simplicity the case without 
election effects, we see that the ratio of the uncertainties in the
opulation parameters computed using only � I to that computed 
sing the full Fisher matrix, equation ( 50 ), are 


μI 


μfull 
= 

1 
1 + σ 2 /� 2 


� 2 I 

� 2 full 

= 

1 

1 + ( σ 2 /� 2 ) 2 
. (52) 

or σ 2 � � 

2 , these ratios are approximately 1, as expected, but 
s σ 2 / � 

2 → ∞ , both ratios tend to 0, implying that � I would
ignificantly o v erestimate the precision with which the population 
arameters can be determined. So, it is not al w ays possible to use � I 

o estimate the population parameter uncertainties. Ho we v er, in man y
pplications, indi vidual e vents are constrained to a small region of the
uch larger parameter space of the population, and so equation ( 51 )
ill often be a good approximation to the full Fisher matrix. This

ncludes the GW-like illustrations we will consider in the next section. 

 ILLUSTRATION  I I :  A N  EXAMPLE  F RO M  

R A  VITATIONA L-WA  V E  ASTROPHYSICS  

he spaceborne LISA mission is expected to detect extreme-mass- 
atio inspirals (EMRIs), namely binary systems in which one compact 
bject, typically a stellar remnant, has a mass that is much smaller
han the companion, typically a supermassive black hole (SMBH) 
n the centre of a galaxy (Amaro-Seoane et al. 2007 ; Barack 2009 ;
abak et al. 2017 ). Inference of the parameters that characterize 
MRI systems is expected to provide accurate constraints on the 

heory of gravity (Gair et al. 2013 ), as well as an insight into the
strophysical population of and stellar environments surrounding 
MBHs (Barausse, Cardoso & Pani 2014 ). LISA might also detect 
 foreground generated by individually unresolved EMRIs, which 
ould porvide information about the properties of the population of 

hese systems (Gair et al. 2010 , 2011 ; Sesana et al. 2011 ; Bonetti &
esana 2020 ). The use of LISA observations of EMRIs to provide
easurements of the BH mass function in the range probed by LISA

as previously been investigated in Gair et al. 2010 , henceforth 
GTV’. GTV assumed that the mass function was described by a 
ower law p ( θ | λ) ≡ p ( M | λ) ∝ M 

α − 1 , with a true value that is
lose to flat in the log of the masses, i.e. α ≈ 0. GTV explored
he ability of LISA to constrain the parameters of this mass function,
sing MCMC techniques to carry out hierarchical analyses on an 
 xtensiv e set of populations of simulated ev ents. The y found that
ith 10(1000) events, the spectral index α could be constrained at a 

evel of precision 
α = 0.3(0.03). Here, we will use the population 
isher Matrix formalism described abo v e to predict the precision 
ith which a set of EMRI observations might be able to constrain a
ower-law mass function. We do not expect to get exactly the same
nswer here, as the two analyses make a few different simplifying
ssumptions. In GTV, the raw data was taken to be counts of events
n a binned analysis, provided by point estimates of the parameters. 
election effects were included in the rate of events in each bin, by
ccounting for the length of time, a source with the given parameters
ould be observable. This ignores the fact that the time remaining 

o plunge is constrained by the gravitational wave data. In this
nalysis, we again approximate the observation process, assuming 
hat the data can be reduced to a measurement of a single parameter,
ut we handle selection effects more carefully. GTV’s results was 
omputed ignoring measurement uncertainties in the model used 
n the analysis, although they did demonstrate consistency between 
esults obtained on simulated data with and without measurement 
ncertainties. Here, we will include measurement uncertainties, but 
e will approximate these as Gaussian. We will see that despite these
ifferences in assumptions, the population Fisher matrix is able to 
redict qualitatively the results observed in GTV without the need for
ostly computational sampling of many posterior distributions. For a 
ore direct comparison with numerical results, we also perform our 

wn MCMC analysis, under identical assumptions to those used to 
ompute the population Fisher matrix, and find very good agreement. 
ll the results in this section can be reproduced with the codes made

vailable with this publication. 

.1 Simple scenario: mass measurement only 

n the first scenario we consider, we will assume that events in
he population are characterized by a single parameter, the mass, 
hich we measure with our detector with a Gaussian uncertainty 

hat has a fixed variance, independent of the parameters of the
ource. We note that this choice of a constant variance is made
or convenience, but is not required by the formalism. If errors vary
orm event to event, these are characterized by a � θ0 dependence of
, which just changes the integrands of the various components 
f the population Fisher matrix. Due to the integration over � θ0 ,
he population Fisher matrix ef fecti vely depends on the average

easurement precision o v er the population. In the final example,
escribed in Section 4.2 , we will consider a case in which the errors
 ary from e vent to e v ent. We dra w N = 100 masses from a power-law
istribution, 

( M | α) = 

α

M 

α
max − M 

α
min 

M 

α−1 , (53) 

ith maximal and minimal observable masses M min = 10 4 M � and
 max = 10 7 M � and a true value for the spectral index that is

xactly flat in the log of the masses, α = 0. The observed data is
ssumed to be a point estimate of the log of the mass, which is
qual to the true value plus a normally-distributed uncertainty that 
as a variance σ = 0.1. An arbitrary hard cutoff d th corresponding
o masses M ∼ 5 × 10 5 M � is imposed, and only events with
bserv ed values abo v e this threshold are included in the analysis.
his introduces a large selection effect, and leads to only N det = 39
f the original 100 sources being observed. The true (underlying) and
bserved populations of events are represented in the top panel of 
ig. 4 . 
The Fisher-matrix prediction can again be obtained from equa- 

ion ( 21 ), this time with θ = M and λ = α. For sufficiently simple
odels, the integrals are analytically tractable. With the power-law 

istribution considered here, and in the presence of selection effects, 
his is already not possible. Because of this, we obtain the Fisher
rediction in a semi-analytical fashion by solving the integrals with 
onte-Carlo methods, i.e. by generating a sufficiently large set of 
 s samples, { M i } , from a distribution p ( M | α), we can approximate

he integral of an arbitrary function X ( M ) via ∫ 
X ( M) p ( M| α) dM ≈ 1 

N s 

∑ 

i 

X ( M i ) . (54) 

n this case, we can draw samples from the distribution ( 53 ) directly
sing the method of inversion. The various terms entering the 
rguments of equation ( 21 ) – D i , D ij , P i , and H ij – can be computed
nalytically. A MA THEMA TICA notebook that solves for the arguments
f the Fisher-matrix integrals can be found in the accompanying 
odes. Following this procedure, we find that the Fisher matrix 
redicts an error 
α = 

√ 

( N det � α) −1 ≈ 0 . 19. When rescaled to 10
MNRAS 519, 2736–2753 (2023) 
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M

Figure 3. Fractional error in the estimate of the precision on the population 
slope, α, obtained from using only the first term in the Fisher matrix, � I , 
instead of the full Fisher matrix, as a function of the assumed uncertainty on 
the measurement of individual event parameters, σ . 
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bservations by multiplying by 
√ 

39 / 10 , the inferred error is 
α ≈
.37, which is in good agreement with what was obtained in GTV,
espite the differences in the assumptions used in each case. 
As in the Gaussian–Gaussian example, we find that the dominant

ontribution comes from the first term of the Fisher matrix, � I . In
his example, this term can be directly computed 

 α ≈ N tot 

(
1 

α2 
− M 

α
max M 

α
min ( ln M max − ln M min ) 2 

( M 

α
max − M 

α
min ) 

2 

)
. (55) 

s argued abo v e, the dominance of this term is driven by the assumed
recision of measurement on the indi vidual e vents. If the noise in
he individual measurements, σ , is increased, the other terms make
 larger contribution, although al w ays a sub-dominant contribution
or the range of values we have tried. This is illustrated in Fig. 3 ,
hich shows how the error in the prediction for the precision on

he slope from using only the first term of the Fisher matrix varies
ith σ . Even for σ = 1, the fractional error from this approximation

s only 0.014. This fact suggests that, when individual events are
xpected to be characterized with a precision better than the typical
engthscale o v er which the population prior varies, keeping only the
rst term in the sum will provide a good estimate for the expected
recision of population inference, regardless of the population model
hosen. This observation and the fact that the first term is typically
elatively easy to evaluate, could help to reduce the complexity of
sing our formalism. One obvious application would be to forecast
tudies for future detectors, where this formalism for the precision
f population inference can nicely complement estimates for the
recision of individual event parameter inference, estimated with
tate-of-the-art Fisher codes (Borhanian 2021 ; Harms et al. 2022 ). 

We validate the Fisher predictions with an MCMC analysis for
he same data set. The MCMC set-up is similar to the one used
n the first illustrativ e e xample. The likelihood is modified, and the
election function is no longer known analytically, but is approx-
mated by a Monte Carlo integral, p det ( α) = (1 /N s ) 

∑ 

erfc [( d th −
 i ) / 

√ 

2 σ 2 ] / 2, with { M i } drawn from the power-law distribution
 ( M | α). The posterior, KDE and 2 σ percentile for the estimate
f α are shown in the bottom panel of Fig.( 4 ). These are com-
ared with the Fisher predictions abo v e, and once again show
ery good agreement. We have also repeated the calculation in
he absence of selection effects, d th → −∞ , and find a similar
NRAS 519, 2736–2753 (2023) 
evel of agreement between the Fisher predictions and the MCMC
nalysis. 

We expect that the accuracy of the population Fisher matrix
rediction should impro v e as the number of observations included in
he analysis, N tot , increases. We assess this by comparing the result of

CMC analyses of data sets with increasing numbers of observations
o the population Fisher matrix. We do this first for the case without
election effects, so that we can make use of the analytical prediction
iv en abo v e. These results are shown in Fig. 5 as N tot is varied
rom 2 to 30 ev ents. F or each N tot , we repeat the MCMC analysis
everal times to allow us to estimate the variance in the posterior
idth between different runs. This variance is larger when there

re fe wer e v ents, as e xpected, and so more MCMC analyses were
erformed for lower N tot ’s to ensure the variance was accurately
haracterized. We find that for N tot � 10, the (simplified) Fisher
idths agree well with the numerical simulations. For N tot < 10, the
ifferences are progressively more pronounced, but the variance in
he MCMC widths also increases, and the Fisher matrix prediction is
sually within the range spanned by the MCMC runs. The agreement
ecomes worse for very small numbers of observations, consistent
ith the expectation that this is an approximation valid in the limit
f large N tot . Finally, we check whether a similar level of agreement
s seen in the case when the observations are subject to selection
ffects. For this, we obtain the population Fisher matrix prediction
dashed orange line) by rescaling the 
α prediction in Fig. 4 by a
actor N 

−1 / 2 
det . These results are also shown in Fig. 4 . We see a similar

rend – the population Fisher matrix is very accurate for N tot > 10,
ut the accuracy diminishes for very small numbers of observations,
s expected. 

.2 Mor e r ealistic scenario: SNR distribution in the population 

s a final example, we will now make the previous scenario slightly
ore realistic by adding an additional property to each source, the
NR. This example demonstrates how to compute the population
isher matrix in a more realistic setting in which the measurement
ncertainties depend on the source parameters, and with a more
ealistic model of selection effects. 

F or this e xample, we assume that individual events are char-
cterized by two parameters – a mass, M , drawn from the same
ower-law population used in the previous example, and an SNR,
. We assume that ρ scales with the inverse of distance and that
istances are uniform in Euclidean volume, so we have p ( ρ) ∝ ρ−4 .
e additionally assume that the SNR of a source at a particular

istance is proportional to the mass. These assumptions are encoded
n the SNR distribution 

 ( ρ < P ) = 

{ 

1 −
(

M 

d max P 

)3 
P > 

M 

d max 

0 otherwise 
. (56) 

he parameter d max represents a maximum distance for sources
n the population and sets a lower limit on the SNR distribution
hich a v oids divergences. In practice, we choose d max � M max / ρ th ,
here ρ th is the SNR threshold for detection, so that the exact

hoice of d max does not influence parameter estimation. We note
hat the assumption that the SNR distribution is biased toward higher
alues for higher mass systems is not a particularly good model
or EMRIs. It would be more appropriate for massive black hole
inary systems, but even then the shape of the LISA sensitivity curve
s such that this would only apply in a certain range of masses.

e choose to make this assumption since we want to demonstrate
hat the population Fisher matrix works even when there are more
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Figure 4. Top panel: distribution of masses for the underlying true population of Section 4 (red) and for the observed population (dark gray). The true population 
is composed of N = 100 ev ents dra wn from a power-law model that is flat in the logarithm of the masses. The threshold has been arbitrarily set at ∼5 × 10 5 M �, 
leading to 39 events actually being observed. Bottom panel: MCMC posterior distribution for the spectral index describing the mass distribution. The histogram 

and KDE are compared against the Fisher estimate obtained as described in the text, demonstrating very good agreement between the two. 

Figure 5. Fisher predictions for the width of the spectral index α as a function 
of the number of observed events N , compared to the range of measured 
uncertainties obtained o v er a set of MCMC runs (red and black points with 
error bars). The Fisher matrix prediction is approximated with equation ( 55 ). 
The agreement between the Fisher matrix predictions and the MCMC results 
is very good, especially if the number of events is increased beyond N ∼ 10. 
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3 We could hav e achiev ed the same result by assuming that the GW data 
comprises a measurement of ρ and of M , with independent Gaussian errors 
with variances σρ = 1 and σM 

/ ρ, respecti vely. Ho we ver, this model cannot 
be put into the standard GW likelihood form, equation ( 3 ), which assumes the 
noise variances are parameter independent. This alternative form of the model 
can be analysed using the generalized formalism described in Appendix C , 
but we wanted the model to be of the standard GW form. The analysed model 
is equi v alent to setting h = ( ρ, ρM) and S h ( f ) = ( σ 2 

ρ , σ 2 ) in equation ( 3 ). 
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omplicated interactions between the source parameters, including 
arameters whose distribution is independent of the population 
arameters. 
We assume that a GW observation consists of a noisy measure- 
ent, ˆ ρ, of ρ, and a noisy measurement, ˆ ρM , of ρM , so that the GW

ikelihood is 

( d = ( ̂  ρ, ˆ ρM ) | � θ ) = 

1 
2 πσρσM 

exp 
[ 
− ( ̂ ρ−ρ) 2 

2 σ 2 
ρ

] 
× exp 

[ 
− ( ˆ ρM −ρM) 2 

2 σ 2 
M 

] 
. (57) 

e fix σρ = 1, which follows from the definition of ρ. We assume that
election is based on ˆ ρ only, with events with ˆ ρ > ρth being deemed 
etectable. We use ρ th = 10 in this example. With this likelihood, 
he individual source Fisher matrix is 

 ij = 

(
1 + M 

2 / σ 2 
M 

ρM / σ 2 
M 

ρM / σ 2 
M 

ρ2 / σ 2 
M 

)
. (58) 

e see that the measurement uncertainties vary from event to event,
ith uncertainties in mass scaling like 1/ ρ, as desired 3 

We simulate observations of a population of events with true slope
= 0 and N obs = 499 observ ed ev ents, by dra wing 500/ P det ( α)
28370 trial systems from the underlying population. We analyse 

hese events using MCMC and compare to the predictions of the
opulation Fisher matrix. Details of how the latter is calculated can
e found in Appendix D . For this example, in the limit σ M 

→ 0,
he matrices � X for X = II, ···, V do not vanish, because we have
xed σρ = 1. Ho we ver, for a reasonable choice of σ M 

= 10 M �,
e find that the contributions from these matrices are again sub-
ominant to the contribution from � I , making only a ∼ 5% change
o the prediction for the uncertainty on α. This is true for a wide
ange of choices of σ M 

up to at least 10 4 M �. A comparison of the
CMC results and the population Fisher matrix prediction is shown 

n Fig. 6 , demonstrating once again very precise agreement. 
This example has demonstrated that the population Fisher matrix 

ives accurate predictions even when using a more complicated 
odel that includes non-trivial selection effects and heteroscedastic 
easurement errors. This model is a more realistic representation 

o a GW observation scenario, but the result cannot be directly
MNRAS 519, 2736–2753 (2023) 
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M

Figure 6. As Fig. 4 but for the slightly more realistic GW-like population model. Top panel: distribution of masses for the underlying true population of 
Section 4 (red) and for the observed population (dark gray). Bottom panel: MCMC posterior distribution for the spectral index describing the mass distribution. 
The histogram and KDE are compared against the Fisher estimate obtained as described in the text. 
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Figure 7. Precision of measurement of the slope of the black hole population 
distribution obtained in a fixed observation time, as a function of the threshold 
needed for detection, ρth . The blue curve shows results using the full 
population Fisher matrix, while the yellow curve shows results based on � I 

only. Both curves are expressed as ratios relative to the precision estimated 
from the full Fisher matrix with ρth = 10. 
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ompared to the results presented in GTV, because the assumed
NR distribution is different. Here, we have assumed that sources
re distributed uniformly in Euclidean space, following an ρ−4 

istribution, with SNRs additionally increased in proportion to M .
n GTV, sources were distributed based on a computation of SNR
hat included the impact of other parameters, in particular time to
oalescence. Nearby sources generate enough SNR that they can be
bserv ed sev eral years before merger, which enhances the rate of
earby events and partially compensates for the fact that there are
 larger number of systems further a way. F or this reason, the fact
hat we find a distribution that is approximately a factor of 3 broader
han GTV is not a cause of concern. Indeed, it is remarkable that
he agreement was so close for the simpler example considered in
ection 4.1 . 
We conclude this section by using the population Fisher matrix to

xplore the impact of the detection threshold, ρ th , on the precision
f inference of the population parameters for this simple model.
here are two effects of changing the threshold. One effect is that

he population Fisher matrix changes. This represents the average
ncertainty o v er detected ev ents and so the elements of � λ tend
o become smaller as the threshold is decreased, corresponding to
 worse constraint per event. This is because lower SNR events
end to provide less precise parameter estimates. The second effect
s that the detection probability, P det ( � λ = { α} ), changes, increasing
s ρ th decreases. It is therefore useful to consider the quantity
 

−1 
αα / 

√ 

P det ( α) , where � 

−1 
αα is the diagonal element of the inverse

f the population Fisher matrix. This quantity is a measure of the
recision on α that could be obtained in a fixed amount of observation
ime. We show this quantity, relative to its value for the reference
hreshold, ρ th = 10, in Fig. 7 . We see that the precision impro v es as
he threshold is lowered, indicating that the increase in the number
f events outweighs the decrease in the average precision per event.
n practice, there will be some limit to how much we can lower
he threshold, beyond which we can no longer confidently identify
NRAS 519, 2736–2753 (2023) 
vents, or run into limitations on computational power, but within
hose constraints these results suggest we should lower the threshold
s much as possible. In general, it is at low thresholds that the
pproximation that the indi vidual e vents can be well represented
y the Fisher matrix will become less valid. This is not fully
aptured here because of the simplified assumption of the Gaussian
ikelihood. Moreo v er, a lot of the trend is captured by � I , which is
ndependent of that approximation. The yellow line in Fig. 7 shows
he precision estimated from � I alone, again expressed relative to the
alue estimated from the full Fisher matrix with ρ th = 10. We see
hat the trend is similar. There is a slightly bigger difference between
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he full and approximate Fisher matrices for the lowest values of ρ th ,
ut for all thresholds considered the approximate Fisher matrix gives 
 good indication of the achie v able precision. 

The trend in Fig. 7 is specific to the simple model considered here
nd the behaviour will be different in other conte xts. Howev er, this
 x ercise illustrates the usefulness of using the population Fisher
atrix to quickly assess the impact of different assumptions on 

he accuracy of inference. We note, ho we ver, that when using it
o assess the contribution from lo w-SNR e vents, it is important to
heck the accuracy of the approximation in that regime, as discussed
n Section 2.1 , to ensure that the conclusions are robust. 

 C O N C L U S I O N S  

he Fisher information matrix is a valuable tool for estimating the 
recision attainable in parameter inference, especially in contexts 
here the cost of doing full posterior estimation via Bayesian 

ampling is highly e xpensiv e (Vallisneri 2008 ). The Fisher matrix
as been widely used in GW analyses to make forecasts for the
recision with which the source parameters describing individual 
W signals can be estimated by current and future detectors. In this
aper, we hav e e xtended the Fisher matrix concept to the estimation
f the parameters characterizing the population from which a set of
bserved sources is drawn. Our result was derived from equation ( 1 ),
hich is the most general definition for the population Fisher matrix. 
e obtained equation ( 21 ), which is valid under the assumption

hat individual events are observed with high enough SNR that the 
easurement uncertainties can be well approximated by the linear 

ignal approximation. We also identified the part of population 
isher matrix that is independent of measurement uncertainties, 
iven by � I , which is even simpler to e v aluate and provides a good
pproximation when the indi vidual e vent measurement uncertainties 
re much smaller than the scale on which the population varies. 
e have tested this result both analytically and against numerical 
onte Carlo results for a reference Gaussian model (Section 3 ) and

or a more GW-like scenario (Section 4 ), in which, we have used
W events to estimate the slope of a power-law population. We 
nd that equation ( 21 ) is generally in very good agreement with the
umerical results, for a sufficiently large number of observations. In 
his case, sufficiently large was only O (10). Results for the power-law
opulation case can be compared to previous results in the literature 
Gair et al. 2010 ), and are found to be in very good agreement, despite
ery different assumptions. We conclude that we can reproduce 
he results of e xtensiv e sets of computationally e xpensiv e MCMC
imulations much more cheaply, while also correctly including 
election effects. In addition, we found that in the GW-like example 
he measurement-error-independent part of the population Fisher 

atrix, ( � I ) ij in equation ( 21 ), is sufficient to accurately reproduce
he precision estimated from the full Fisher matrix. This is because 
he noise-induced uncertainty in the parameter measurements of 
ach individual event, σ , is sufficiently smaller than the scale on 
hich the population model varies, that measurement errors are 

ssentially ignorable. This result could be useful to further reduce 
he computational cost of computing the population Fisher matrix in 
ther contexts. 
We note that these results are based on the approximation that 

ndi vidual e vent measurements are well represented by the individual 
vent Fisher matrix. There will be contexts in which this is not true,
ut measurement uncertainties are important so � I is not dominant. 
e provided a criterion in Section 2.1 that can be used to e v aluate

he validity of the approximation. When the approximation is not 
alid, equation ( 21 ) should still provide a rough estimate of the
recision of inference, or the threshold can be increased such that 
he approximations are valid and a conservative estimate of precision 
btained in this way. 
The results presented in this paper represent the first attempt at

escribing population inference within a Fisher formalism for generic 
opulation models, and with a likelihood that takes into account 
election effects in the way of Mandel et al. ( 2019 ). The formalism
eveloped here can be used to obtain forecasts for the precision
f population analyses with future ground-based and spaceborne 
etectors, which are expected to detect many thousands (or even 
illions) of signals. Obtaining such population inference forecasts in 

pecific contexts of rele v ance to current and future observations is one
ossible future direction for the present project. Finally, it would be
nteresting to generalize the results of Cutler & Vallisneri (2007 ) and
ntonelli, Burke & Gair ( 2021 ) to assess inference biases on popula-

ion parameters from waveform modelling errors or confusion noise. 
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PPENDIX  A :  D E A L I N G  WITH  RATES  

he likelihood in equation ( 6 ) assumes that the number of events that
re detected conv e ys no information about the population. Relaxing
his assumption the joint likelihood takes the alternative form 

( { d i }| � λ, R) ∝ 

[ 

n ∏ 

i= 1 

p full ( d i | � λ) 

] 

R 

n exp [ −RP det ( � λ)] , (A1) 

n which R is the rate of events occurring in the Universe over the
otal time data has been collected, and all other terms are as before.
he deri v ation of this expression can be found in Mandel et al.
 2019 ). Imposing an (improper) scale-invariant prior on the total
ate, p ( R ) ∝ 1/ R , and marginalizing o v er R , we obtain the form of
he joint likelihood used in equation ( 6 ) and ( 8 ). 

We denote the rate-dependent terms by 

 rate ( n | R, � λ) ≡ R 

n exp [ −RP det ( � λ)] . (A2) 

he contribution of these terms to the joint log likelihood is 

ln p rate ( n | R, � λ) = n ln R − RP det ( � λ) , (A3) 

hich is maximized when R = n/P det ( � λ). Expanding about this
aximum-likelihood point we can write R = n / P det + δR and obtain 

ln p rate ( n | R, � λ) = n ln n − n ln P det ( � λ) + n ln (1 + δR P det /n ) 

−n − δR P det 

= ( n ln n − n ) − n ln P det ( � λ) − δR 2 P 2 det 
2 n + · · · . (A4) 

he second term here, −n ln P det ( � λ), is what is needed to change
 full ( d i | � λ) into p( d i | � λ) in the product term in equation ( A1 ), reducing

hat to the form analysed in the main body of the paper. We deduce
hat the asymptotic Fisher matrix for the joint estimation of R and � λ
s block diagonal 

 = 

(
� λ 0 
0 � R 

)
(A5) 

ith the shape parameter block, � λ, as before and the rate precision
iven by the inverse of � R = P 

2 
det / 2 n , where this result can be

btained directly from the coefficient of δR 

2 in equation ( A4 ). We
onclude that the precision with which the shape parameters can
e determined does not depend on which particular form of the
ikelihood is being used. This makes sense since we know that the
wo forms are equi v alent for a particular choice of rate prior, and we
xpect results to be asymptotically independent of the initial prior
hoice. We note also that the precision with which the rate of observed
vents, RP det , can be measured is 

√ 

n , consistent with the expected
ncertainty in the estimation of the rate of a Poisson process. 
To conclude this section, we note that in the abo v e we hav e been

ssuming that the rate parameter R is an additional parameter of the
NRAS 519, 2736–2753 (2023) 
odel, separate to the parameters � λ that characterize the shape of
he population distribution. If instead, both R and � λ are functions of
nother set of population parameters, � μ, we can use the linear signal
pproximation to change variables and obtain the usual result that
he Fisher matrix for the � μ parameters is 

 � μ) cd = ( � λ) ab 

∂λa 

∂μc 

∂λb 

∂μd 
+ � R 

∂R 

∂μc 

∂R 

∂μd 
. (A6) 

n this case, the result is different to what would be obtained by
ransforming the Fisher matrix that ignores the rate, which would be
he first term only. This reflects the fact that if R also depends on � μ,
he measurement of R provides additional information that can help
o impro v e the estimation of the � μ parameters. 

PPENDI X  B:  T H E  ASYMPTOTIC  B E H AV I O U R  

F  T H E  FISHER  MATRI X  

n this section, we will rederive the expression for the Fisher matrix
iven in the main body of the paper by directly expanding the
osterior distribution. In doing so, we will derive the form and scaling
f the leading corrections to the Fisher matrix approximation. We will
roceed by computing the posterior mode, mean, and variance in the
imit n � 1. These are all random variables, since they depend on the
articular realization of the data that is being analysed, and so we can
haracterize them by their expectation value and variance. We will
ho w ho w to compute the first two terms in a large- n expansion of
oth the mean and variance for all three posterior summary statistics,
nd give the result explicitly for the posterior mode. We note that
imilar results for corrections to the individual event Fisher matrix
ere given in Vallisneri ( 2008 ), but those relied on the assumption of
 Gaussian likelihood which permits simplifications. The expansion
resented here is valid for any population-level likelihood, p( d | � λ).
e write 

ˆ ( n, { d i } , � λ) = − 1 

n 

n ∑ 

i= 1 

ln p( d i | � λ) . (B1) 

uch that the posterior distribution is proportional to
xp [ −n ̂  μ( n, { d i } , � λ) + ln π ( � λ)]. We use � β( n, { d i } , � λt ) to denote the
olution to 

 i + U 

π
i + ( V ij + V 

π
ij ) β

j = 0 (B2) 

here 

U i = 

(
∂ ̂  μ

∂λi 

)
| � λt 

, U 

π
i = − 1 

n 

(
∂ ln π

∂λi 

)
| � λt 

 ij = 

(
∂ 2 ˆ μ

∂ λi ∂ λj 

)
| � λt 

, V 

π
ij = − 1 

n 

(
∂ 2 ln π

∂ λi ∂ λj 

)
| � λt 

. (B3) 

he quantity ˆ μ, and its deri v ati v es, are av erages of a set of inde-
endent identically distributed (IID) random variables and so have
redictable scalings. The expectation value is O (1), covariances are
 (1/ n ), three and four point functions are O (1/ n 2 ), and so on. In this

ase E | [ U ] = 0, as shown in equation ( 12 ) in the main body of the
aper. This facilitates obtaining a solution for � β perturbatively 

� β = 

� β 1 
2 

+ 

� β1 + 

� β 3 
2 

+ · · ·
here � β 1 

2 
= ( E [ V ]) −1 U 

� β1 = ( E [ V ]) −1 
[ 
( V − E [ V ]) � β 1 

2 
+ U 

π
] 

� β 3 
2 

= ( E [ V ]) −1 
[ 
( V − E [ V ]) � β1 + V 

π � β 1 
2 

] 
, (B4) 

n which � βk ∼ n −k . 
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The � βk ’s are random variables, but we can compute their means 

 

[ 
� β 1 

2 

] 
= 0 

E 

[
βi 

1 

] = ( E [ V ]) −1 
ij 

[
( E [ V ]) −1 

kl � 

V U 
jkl + U 

π
j 

]
 

[ 
βi 

3 
2 

] 
= ( E [ V ]) −1 

ij ( E [ V ]) −1 
kl ( E [ V ]) −1 

mn � 

V V U 
jklmn 

� 

V U 
ijk = E 

[
( V ij − E [ V ij ]) U k 

]
= 

1 

n 

∫ 
l ,ij ( d ) l ,k ( d ) p( d | � λt )d d 

� 

V V U 
ijklm 

= E 

[
( V ij − E [ V ij ])( V kl − E [ V kl ]) U m 

]
= 

1 

n 2 

∫ 
l ,ij ( d ) l ,kl ( d ) l ,m 

( d ) p( d | � λt )d d 

−E [ V ij ] � 

V U 
klm 

− E [ V kl ] � 

V U 
ijm 

(B5) 

here we are using the notation l ,i ( d ) to denote the deri v ati ve
 ln p( d | � λ) /∂λi e v aluated at � λ = 

� λt . Additional indices after the
omma indicate further partial deri v ati ves as usual. The fact that
he first expectation v alue v anishes is why we have continued the
xpansion to three terms, allowing us to obtain the first two terms in
n expansion of the mean. 

We can also compute their covariances, using the usual notation 
ov( a i , b j ) = E [( a i − E [ a i ])( b j − E [ b j ])]. 

ov ( βi 
1 
2 
, β

j 
1 
2 
) = ( E [ V ]) −1 

ik ( E [ V ]) −1 
j l � 

UU 
kl 

cov ( βi 
1 
2 
, β

j 

1 ) = ( E [ V ]) −1 
im 

( E [ V ]) −1 
jk ( E [ V ]) −1 

ln � 

V UU 
klmn 

cov ( βi 
1 , β

j 

1 ) = ( E [ V ]) −1 
ik ( E [ V ]) −1 

lm 

( E [ V ]) −1 
jp ( E [ V ]) −1 

qr � 

V V UU 
klpqmr 

− ( E [ V ]) −1 
ik ( E [ V ]) −1 

lm 

� 

V U 
klm 

� 

V U 
pqr 

ov ( βi 
3 
2 
, β

j 
1 
2 
) = ( E [ V ]) −1 

ik ( E [ V ]) −1 
jq ( E [ V ]) −1 

lm 

× [
( E [ V ]) −1 

np � 

V V UU 
klmnpq + U 

π
m 

� 

V U 
klq + V 

π
kl � 

V UU 
klmq 

]
� 

UU 
ij = E 

[
U i U j 

]
= 

1 

n 

∫ 
l ,i ( d ) l ,j ( d ) p( d | � λt )d d 

� 

V UU 
ijkl = E 

[
( V ij − E [ V ij ]) U k U l 

]
= 

1 

n 2 

∫ 
l ,ij ( d ) l ,k ( d ) l ,l ( d ) p( d | � λt )d d 

−E [ V ij ] � 

UU 
kl 

� 

V V UU 
ijklmn = E 

[
( V ij − E [ V ij ])( V kl − E [ V kl ]) U m 

U n 

]
= 

n ( n − 1) 

n 4 

[ ∫ 
l ,ij ( d ) l ,kl ( d ) p( d | � λt )d d 

×
∫ 

l ,m 

( d ) l ,n ( d ) p( d | � λt )d d 

+ 

∫ 
l ,ij ( d ) l ,m 

( d ) p( d | � λt )d d 

×
∫ 

l ,kl ( d ) l ,n ( d ) p( d | � λt )d d 

+ m ↔ n 

]

+ 

1 

n 3 

∫ 
l ,ij ( d ) l ,kl ( d ) l ,m 

( d ) l ,n ( d ) p( d | � λt )d d 

− E [ V ij ] � 

V UU 
klmn − E [ V kl ] � 

V UU 
ijmn 

− E [ V ij ] E [ V kl ] � 

UU 
mn (B6) 

ll four of these terms are needed to obtain the first two terms in the
ovariance of � β. We need only retain terms of O (1/ n 2 ) in the final
xpression, which means the last term in � 

V V UU 
ijklmn can be ignored and

 ( n − 1)/ n 4 replaced by n −2 . The final result, keeping the first two
rders is 

ov 
(
βi , βj 

) = cov 
(
βi 

1 
2 
, β

j 
1 
2 

)
+ cov 

(
βi 

1 
2 
, β

j 

1 

)
+ cov 

(
β

j 
1 
2 
, βi 

1 

)
+ cov 

(
βi 

1 , β
j 

1 

)
+ cov 

(
βi 

3 
2 
, β

j 
1 
2 

)
+ cov 

(
β

j 
3 
2 
, βi 

1 
2 

)
(B7) 

The posterior mode is at � λ = 

� λt + 

� β + 

� δ. The random variable �δ
beys the equation 

0 = δj V ij + 

1 

2 
( βj + δj )( βk + δk ) W ijk + V 

π
ij δ

j 

+ 

1 

2 
( βj + δj )( βk + δk ) W 

π
ijk 

 ijk = 

(
∂ 3 ˆ μ

∂ λi ∂ λj ∂ λk 

)
| � λt 

 

π
ijk = − 1 

n 

(
∂ 3 ln π

∂ λi ∂ λj ∂ λk 

)
| � λt 

. (B8) 

e can find a perturbative solution as we did for � β

� δ = 

� δ1 + 

� δ 3 
2 

+ · · ·

here δi 
1 = 

1 

2 
( E [ V ] ) −1 

ij E [ W jkl ] β
k 
1 
2 
βl 

1 
2 

δi 
3 
2 

= ( E [ V ] ) −1 
ij 

[ 
βk 

1 
2 
βl 

1 E [ W jkl ] + βk 
1 
2 
δl 

1 E [ W jkl ] 

+ 

(
V jk − E [ V jk ] 

)
δk 

1 

+ 

1 

2 
( W jkl − E [ W jkl ]) β

k 
1 
2 
βl 

1 
2 

]
(B9) 

he means and rele v ant cov ariances are 

E 

[
δi 

1 

] = 

1 

2 
( E [ V ] ) −1 

ij E [ W jkl ] cov 
(
βk 

1 
2 
, βl 

1 
2 

)
E 

[ 
δi 

3 
2 

] 
= ( E [ V ] ) −1 

ij 

[ 
E [ W jkl ] cov 

(
βk 

1 
2 
, βl 

1 

)
+ E [ W jkl ] cov 

(
βk 

1 
2 
, δl 

1 

)
+ 

1 

2 
( E [ V ] ) −1 

kn E [ W npq ] ( E [ V ] ) −1 
pl ( E [ V ] ) −1 

qm 

� 

V UU 
jklm 

+ 

1 

2 
( E [ V ] ) −1 

km 

( E [ V ] ) −1 
ln � 

WUU 
jklmn 

]

cov 
(
δi 

1 , δ
j 

1 

)
= 

1 

2 
( E [ V ] ) −1 

ik ( E [ V ] ) −1 
j l ( E [ V ] ) −1 

mx ( E [ V ] ) −1 
ny 

( E [ V ] ) −1 
pr ( E [ V ] ) −1 

qs E [ W kmn ] E [ W lpq ] � 

U U U U 
xyrs 

−E [ δi 
1 ] E [ δi 

1 ] 

ov 
(
δi 

1 , β
j 
1 
2 

)
= 

1 

2 
( E [ V ] ) −1 

ik ( E [ V ] ) −1 
jp ( E [ V ] ) −1 

lq ( E [ V ] ) −1 
mr 

E [ W klm 

] � 

U U U 
pqr 

cov 
(
δi 

1 , β
j 

1 

)
= 

1 

2 
( E [ V ] ) −1 

ik ( E [ V ] ) −1 
lp ( E [ V ] ) −1 

mq ( E [ V ] ) −1 
jr 

E [ W klm 

] 
(
( E [ V ] ) −1 

sx � 

V U U U 
rsxpq + U 

π
r � 

UU 
pq 

)
−E [ δi 

1 ] E [ βj 

1 ] 
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ov 
(
δi 

3 
2 
, β

j 
1 
2 

)
= ( E [ V ] ) −1 

ik ( E [ V ] ) −1 
jp 

[
E [ W klm 

] ( E [ V ] ) −1 
lq (

( E [ V ] ) −1 
mx ( E [ V ] ) −1 

yz � 

V U U U 
xyzpq + U 

π
x � 

UU 
pq 

)
+ 

1 
2 E [ W klm 

] E [ W xyz ] ( E [ V ] ) −1 
lq ( E [ V ] ) −1 

mx 

( E [ V ] ) −1 
yu ( E [ V ] ) −1 

zv � 

U U U U 
pquv 

+ 

1 
2 ( E [ V ] ) −1 

lq ( E [ V ] ) −1 
xr ( E [ V ] ) −1 

ys 

E [ W qxy ] � 

V U U U 
klrsp 

+ 

1 
2 ( E [ V ] ) −1 

ln ( E [ V ] ) −1 
mq � 

WU U U 
klmnpq 

]
(B10) 

here 

� 

WUU 
ijklm 

= E 

[
( W ijk − E [ W ijk ]) U l U m 

]
= 

1 

n 2 

∫ 
l ,ijk ( d ) l ,l ( d ) l ,m 

( d ) p( d | � λt )d d 

− E [ W ijk ] � 

UU 
lm 

� 

U U U 
ijk = E 

[
U i U j U k 

]
= 

1 

n 2 

∫ 
l ,i ( d ) l ,j ( d ) l ,k ( d ) p( d | � λt )d d 

� 

U U U U 
ijkl = E 

[
U i U j U k U l 

]
= 

n ( n − 1) 

n 4 

[∫ 
l ,i ( d ) l ,j ( d ) p( d | � λt )d d 

×
∫ 

l ,k ( d ) l ,l ( d ) p( d | � λt )d d 

]

+ 

1 

n 3 

∫ 
l ,i ( d ) l ,j ( d ) l ,k ( d ) l ,l ( d ) p( d | � λt )d d 

� 

V U U U 
ijklm 

= E 

[
( V ij − E [ V ij ]) U k U l U m 

]
= 

n ( n − 1) 

n 4 

[∫ 
l ,ij ( d ) l ,k ( d ) p( d | � λt )d d 

×
∫ 

l ,l ( d ) l ,m 

( d ) p( d | � λt )d d 

+ k ↔ l + k ↔ m 

]

+ 

1 

n 3 

∫ 
l ,ij ( d ) l ,k ( d ) l ,l ( d ) l ,m 

( d ) p( d | � λt )d d 

− E [ V ij ] � 

U U U 
klm 

 

WU U U 
ijklmn = E 

[
( W ijk − E [ W ijk ]) U l U m 

U n 

]
= 

n ( n − 1) 

n 4 

[∫ 
l ,ijk ( d ) l ,l ( d ) p( d | � λt )d d 

×
∫ 

l ,m 

( d ) l ,n ( d ) p( d | � λt )d d 

+ l ↔ m + l ↔ n 

]

+ 

1 

n 3 

∫ 
l ,ijk ( d ) l ,l ( d ) l ,m 

( d ) l ,n ( d ) p( d | � λt )d d 

− E [ W ijk ] � 

U U U 
lmn . (B11) 

rom these we can construct the leading order covariances 

ov 
(
βi , δj 

) = cov 
(
βi 

1 
2 
, δ

j 

1 

)
+ cov 

(
βi 

1 , δ
j 

1 

)
+ cov 

(
βi 

1 
2 
, δ

j 
3 
2 

)
cov 

(
δi , δj 

) = cov 
(
δi 

1 , δ
j 

1 

)
. (B12) 

utting these together, we can obtain the mean and covariance of the
osterior mode, ̂  λi − λi 

t = βi + δi , expressed as a deviation from the
NRAS 519, 2736–2753 (2023) 
rue population parameters. 

E [ ̂ λi − λi 
t ] = E [ βi ] + E [ δi ] 

cov 
(

ˆ λi − λi 
t , ̂

 λj − λ
j 
t 

)
= cov 

(
βi , βj 

) + cov 
(
δi , δj 

)
+ cov 

(
βi , δj 

) + cov 
(
βj , δi 

)
. (B13) 

e now turn our attention to the posterior mean and variance. These
re averages over the posterior. The definition of � β was moti v ated
o ensure the leading terms of the log posterior can be written as
 quadratic in � λ − � β − � λt . Denoting � B = 

� λt + 

� β, averages of a
unction f ( � λ) o v er the posterior then take the form 

〈 f 〉 = 

∫ 
f ( � λ) g( � λ) exp 

[− n 
2 ( λ

i − B 

i )( V ij + V 

π
ij )( λ

j − B 

j ) 
]

d � λ∫ 
g( � λ) exp 

[− n 
2 ( λ

i − B 

i )( V ij + V 

π
ij )( λj − B 

j ) 
]

d � λ
n g( � λ) = −n 

6 
W ijk ( λ

i − λi 
t )( λ

j − λ
j 
t )( λ

k − λk 
t ) 

− n 

24 
X ijkl ( λ

i − λi 
t )( λ

j − λ
j 
t )( λ

k − λk 
t )( λ

l − λl 
t ) 

X ijkl = 

(
∂ 4 ˆ μ

∂ λi ∂ λj ∂ λk ∂ λl 

)
| � λt 

(B14) 

here are further corrections in g( � λ) from higher deri v ates in the
xpansion, and from the prior terms, W 

π
ijk , X 

π
ijkl , etc. Ho we ver, the

ontributions from the included terms can be seen to be 1/ n down
elative to the leading terms in the integral, and these other corrections
re at least 1 /n 

3 
2 down from leading and are hence sub-dominant. 

Integrals of these form are standard and we will make use of the
ollowing results 

 0 ( �) = 

∫ 
exp 

[− 1 
2 x 

T � 

−1 x 
]

d x = (2 π ) 
N 
2 
√ | �| (B15) 

 ij ( �) = 

∫ 
x i x j exp 

[
−1 

2 
x T � 

−1 x 
]

d x 

= (2 π ) 
N 
2 
√ 

| �| � ij (B16) 

 ijkl ( �) = 

∫ 
x i x j x k x l exp 

[
−1 

2 
x T � 

−1 x 
]

d x 

= (2 π ) 
N 
2 
√ 

| �| (� ij � kl + � ik � j l + � il � jk 

)
(B17) 

 ijklmn ( �) = 

∫ 
x i x j x k x l x m 

x n exp 

[
−1 

2 
x T � 

−1 x 
]

d x 

= (2 π ) 
N 
2 
√ 

| �| (� ij � kl � mn + � ij � km 

� ln 

+ � ij � kn � lm 

+ � ik � j l � mn + � ik � jm 

� ln 

+ � ik � jn � lm 

+ � il � jk � mn + � il � jm 

� kn 

+ � il � jn � km 

+ � im 

� jk � ln + � im 

� j l � kn 

+ � im 

� jn � kl + � in � jk � lm 

+ � in � j l � km 

+ � in � jm 

� kl 

)
(B18) 

here | �| denotes the determinant of �. We will also use the notation
˜ 
 ij ( �) ≡ I ij ( �) /I 0 ( �) and similarly for other terms. In this case, the
ovariance matrix � = ( V + V 

π ) −1 /n . Every additional factor of � 

herefore introduces an extra negative power of n . This allows us to
dentify the dominant terms. To e v aluate the abo v e e xpressions, we
eed to be able to compute �, which can be done perturbatively by
oting 

�( E [ V ] + ( V − E [ V ]) + V 

π ) = I (B19) 
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rom which 

� = 

1 

n 

(
� 0 + � 1 

2 
+ � 1 + · · ·

)
� 0 = ( E [ V ]) −1 

 1 
2 

= −( E [ V ]) −1 ( V − E [ V ] ) 

� 1 = −( E [ V ]) −1 
[ 
� 1 

2 
( V − E [ V ] ) + V 

π
] 
. (B20) 

o obtain the posterior mean, we first compute 

 g〉 = 

∫ 
g( � λ) exp 

[ 
−n 

2 
( λi − B 

i )( V ij + V 

π
ij )( λ

j − B 

j ) 
] 

d � λ

= I 0 ( � ) − n 

6 
W ijk 

[
βi I jk ( � ) + βj I kl ( � ) + βl I ij ( � ) 

]
− n 

6 
W ijk β

i βj βk I 0 ( �) + 

n 2 

72 
W ijk W lmn I ijklmn ( �) 

− n 

24 
X ijkl I ijkl ( �) . (B21) 

sing similar notation to before we can write 

 g〉 = I 0 ( �) 
(

1 + g 1 
2 

+ g 1 + · · ·
)

g 1 
2 

= −1 

6 
E [ W ijk ] 

(
βi 

1 
2 
( � 0 ) jk + β

j 
1 
2 
( � 0 ) kl + βl 

1 
2 
( � 0 ) ij 

)
− n 

6 
E [ W ijk ] β

i 
1 
2 
β

j 
1 
2 
βk 

1 
2 

g 1 = − 1 

6 
( W ijk − E [ W ijk ]) 

×
(
βi 

1 
2 
( � 0 ) jk + β

j 
1 
2 
( � 0 ) kl + βl 

1 
2 
( � 0 ) ij ) 

)
− 1 

6 
E [ W ijk ] 

(
βi 

1 
2 
( � 1 

2 
) jk + β

j 
1 
2 
( � 1 

2 
) kl + βl 

1 
2 
( � 1 

2 
) ij 

+ βi 
1 ( � 0 ) jk + β

j 

1 ( � 0 ) kl + βl 
1 ( � 0 ) ij 

)
− n 

6 
( W ijk − E [ W ijk ]) β

i 
1 
2 
β

j 
1 
2 
βk 

1 
2 

− n 

6 
E [ W ijk ] 

(
βi 

1 β
j 
1 
2 
βk 

1 
2 

+ βi 
1 
2 
β

j 

1 β
k 
1 
2 

+ βi 
1 
2 
β

j 
1 
2 
βk 

1 

)
+ 

1 

72 
E [ W ijk ] E [ W lmn ] 

1 

n 
˜ I ijklmn ( � 0 ) 

− 1 

24 

1 

n 
E [ X ijkl ] ̃  I ijkl ( � 0 ) (B22) 

Now, we compute the posterior mean, expressed as a distance from
he true population parameters 

¯ i − λi 
t ≡ 〈 ( λi − λi 

t ) 〉 = βi + 〈 ( λi − B 

i ) 〉 
= βi + 

1 

〈 g〉 
[ 
−n 

6 
W jkl 

(
I ijkl ( �) + 3 βj βk I il ( �) 

)
− n 

6 
X jklm 

(
βj I iklm 

( �) + βj βk βl I im 

( �) 
)

+ 

n 2 

36 
W jkl W mnp 

(
3 βj I iklmnp ( �) 

+ βj βk βl I imnp ( �) + 3 βj βk βm I ilnp ( �) 

+ 3 βj βk βl βm βn I ip ( �) 
)

] . (B23) 

e note that the leading order correction in the bracketed term is 1/ n .
o obtain the posterior mean to the same order as β, we therefore
nly need to retain terms up to g 1 
2 

in 〈 g 〉 . Specifically, we can write 

¯ i − λi 
t = λ̄i 

1 
2 

+ ̄λi 
1 + ̄λ 3 

2 
+ · · ·

λ̄i 
1 
2 

= βi 
1 
2 

λ̄i 
1 = βi 

1 −
1 

6 
E [ W jkl ] 

(
1 

n 
˜ I ijkl ( � 0 ) + 3 βj 

1 
2 
βk 

1 
2 
( � 0 ) il 

)

λ̄i 
3 
2 

= βi 
3 
2 

+ 

(
g 1 

2 

6 
E [ W jkl ] − 1 

6 
( W jkl − E [ W jkl ]) 

)

×
(

1 

n 
˜ I ijkl ( � 0 ) + 3 βj 

1 
2 
βk 

1 
2 
( � 0 ) il 

)

− 1 

6 
E [ W jkl ] 

(
2 

n 

(
( � 0 ) ij ( � 1 

2 
) kl + ( � 0 ) ik ( � 1 

2 
) j l 

+ ( � 0 ) il ( � 1 
2 
) jk 

)
+ 3( βj 

1 β
k 
1 
2 

+ β
j 
1 
2 
βk 

1 )( � 0 ) il 

+ 3 βj 
1 
2 
βk 

1 
2 
( � 1 

2 
) il 
)

− 1 

6 
E [ X jklm 

] 

(
β

j 
1 
2 

1 

n 
˜ I iklm 

+ β
j 
1 
2 
βk 

1 
2 
βl 

1 
2 
( � 0 ) im 

)

+ 

1 

36 
E [ W jkl ] E [ W mnp ] 

(
3 

n 
β

j 
1 
2 

˜ I iklmnp ( � 0 ) 

+ β
j 
1 
2 
βk 

1 
2 
βl 

1 
2 

˜ I imnp ( � 0 ) + 3 βj 
1 
2 
βk 

1 
2 
βm 

1 
2 

˜ I ilnp ( � 0 ) 

+ 3 nβ
j 
1 
2 
βk 

1 
2 
βl 

1 
2 
βm 

1 
2 
βn 

1 
2 
( � 0 ) ip 

)
(B24) 

inally, we consider the posterior covariance 

ˆ 
 ij ≡ 〈 ( λi − λ̄i )( λj − λ̄j ) 〉 

= 〈 ( λi − B 

i )( λj − B 

j ) 〉 
+ ( B 

i − λ̄i ) 〈 ( λj − B 

j ) 〉 + i ↔ j 

+ ( B 

i − λ̄i )( B 

j − λ̄j ) . (B25) 

he term on the first line has a leading order dependence of 1/ n ,
lus corrections of 1 /n 

3 
2 . The terms on the second and third lines are

 (1/ n 2 ) and so are sub-dominant. We deduce 

ˆ 
 ij = 

1 
〈 g〉 

[
I ij ( � ) − n 

6 W klm 

(
3 βk I ij lm 

( � ) + βk βl βm I ij ( � ) 
)]

(B26) 

nd expand 

ˆ � ij = ( ̂  � 1 ) ij + 

(
ˆ � 3 

2 

)
ij 

+ · · ·

( ̂  � 1 ) ij = 

1 

n 
( � 0 ) ij 

ˆ � 3 
2 

)
ij 

= 

1 

n 

(
� 1 

2 

)
ij 

−
g 1 

2 

n 
( � 0 ) ij 

−1 

6 
E [ W klm 

] 

(
3 

n 
βk 

1 
2 

˜ I ij lm 

( � 0 ) + βk 
1 
2 
βl 

1 
2 
βm 

1 
2 

( � 0 ) ij 

)
(B27) 

sing the preceding expressions, we could now compute the mean 
nd variance of the posterior mean and covariance as we did for the
hift in the posterior mode. Ho we ver, this calculation is very similar
o the calculations carried out abo v e and is tedious, so we leave it
ut. Instead, we note a number of features. 

(i) The leading order posterior covariance is constant and equal to 
 E [ V ]) −1 /n , which is the expression we used to derive the population
isher matrix in the body of the paper. 
(ii) The leading order difference between either the posterior mode 

r mean and the true parameter value has expectation value that scales
ike 1/ n and variance that also scales like 1/ n . Thus, the posterior
MNRAS 519, 2736–2753 (2023) 
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ias is noise dominated, i.e. fluctuations due to the particular random
ealization of the population that was observed dominate over the
xed bias. If multiple sets of observations of n events were repeated
nd averaged, then this bias would eventually be significant. In
ractice, we would never do this since it weakens the precision
f inference. This means that computing corrections to the posterior
ean is unnecessary. 

(iii) Similarly, the expectation value of 
(

ˆ � 3 
2 

)
ij 

is zero, so the

eading order correction to the expected value of the posterior
ovariance scales like n −2 , while the variance in the posterior
ovariance scales like n −3 . So, fluctuations in the posterior covariance
ue to randomness in the observed population are larger than the size
f corrections from the finite number of observations. 

PPENDIX  C :  GENERALIZATION  TO  OTH ER  

I K E L I H O O D S  

xpression 21 was derived for the GW likelihood defined by
quation ( 3 ), but it can be extended to more general likelihoods,
( d | � θ). The likelihood enters the result through the definitions of �,
 i , D i , and D ij . F or a more general likelihood, we hav e 

 ij = − ∂ 2 ln p( d | � θ) 
∂ θi ∂ θj 

N i = 

∂ ln p( d | � θ) 
∂θi , (C1) 

here deri v ati ves are e v aluated at � θ0 . In the gra vitational wa ve case,
hese become 

 ij = 

(
∂h 

∂θ i 

∣∣∣∣ ∂h 

∂θj 

)
−

(
d − h ( � θ0 ) 

∣∣∣∣ ∂ 2 h 

∂ θ i ∂ θj 

)

N i = 

(
d − h ( � θ0 ) 

∣∣∣∣ ∂ 2 h 

∂ θ i ∂ θj 

)
. (C2) 

ropping the second term in the expressions for � on the grounds
hat it is smaller by a factor of ρ−1 than the first, we reco v er the
xpressions used in the earlier deri v ation. In particular, we note that
ith this simplification, � ij does not depend on d and hence, we

an take the terms that depend on � outside of the integral over
ata, simplifying the final form of the population Fisher matrix.
or a more general likelihood, we can not assume this is the case,
 ut ha ve � ij ( d , � θ0 ) and N i ( d , � θ0 ). The first contributions to the
opulation lik elihood, � I tak es the same form as before, but the
ther contributions are modified to 

( � II ) ij = 

1 

2 

∫ ∫ 
∂ 2 ln det ( � + H ) 

∂ λi ∂ λj 

×p ( d | � θ0 ) 
p ( � θ0 | � λ) 

P det ( � λ) 
d d d � θ0 , 

( � III ) ij = −1 

2 

∫ ∫ 
∂ 2 

∂ λi ∂ λj 

[
( � + H ) −1 

kl 

]
N k N l 

×p ( d | � θ0 ) 
p ( � θ0 | � λ) 

P det ( � λ) 
d d d � θ0 , 

 � IV ) ij = −
∫ ∫ 

∂ 2 

∂ λi ∂ λj 

[
P k ( � + H ) −1 

kl 

]
N l 

×p ( d | � θ0 ) 
p ( � θ0 | � λ) 

P det ( � λ) 
d d d � θ0 , 

( � V ) ij = −1 

2 

∫ ∫ 
∂ 2 

∂ λi ∂ λj 

[
P k ( � + H ) −1 

kl P l 

]
×p ( d | � θ0 ) 

p ( � θ0 | � λ) 

P det ( � λ) 
d d d � θ0 , 
NRAS 519, 2736–2753 (2023) 
here the integrals over d are over detectable data sets. A further
implification can be obtained if we assume that the variance of � ij 

 v er realizations of the data, p( d | � θ0 ), is small. This allows us to use
he fact that the expectation value of any function, f ( X , Y ), of two
andom variables X and Y , can be expanded 

 [ f ( X, Y ) ] = f ( E [ X ] , E [ Y ]) + 

1 
2 Var ( X ) 

(
∂ 2 f 

∂X 2 

)
( E ( X) , E ( Y )) 

+ Cov ( X, Y ) 
(

∂ 2 f 

∂ X∂ Y 

)
( E ( X) , E ( Y )) 

+ 

1 
2 Var ( Y ) 

(
∂ 2 f 

∂Y 2 

)
( E ( X) , E ( Y )) 

+ · · · (C3) 

gnoring all but the leading term allows us to replace � by its
xpectation value. With this additional assumption, the population
isher matrix for the general case takes the sane form as before, with

he substitutions � ij → �̄ ij , D i → D̄ i and D ij → D̄ ij , where 

�̄ ij = 

∫ [ 

−∂ 2 ln p( d | � θ) 

∂ θ i ∂ θj 

] 

p( d | � θ0 )d d 

D̄ i = 

∫ [ 

∂ ln p( d | � θ) 

∂θ i 

] 

p( d | � θ0 )d d = 

∂P det ( � θ) 

∂θ i 

D̄ ij = 

∫ [ 

∂ ln p( d | � θ) 

∂θ i 

∂ ln p( d | � θ) 

∂θj 

] 

p( d | � θ0 )d d (C4) 

PPENDI X  D :  C A L C U L AT I O N  O F  T H E  FISHER  

ATRI X  F O R  T H E  POWER-LAW  POPULATIO N  

I TH  SNR  DI STRI BU TI ON  

ere, we provide a guide to computing the Fisher matrix for the
ore realistic GW-like example described in Section 4.2 . The source

arameters are � θ = ( ρ, M) and the population parameter is � λ = ( α).
The full population model is 

( � θ | � λ) = 

3 M 

3 

d 3 max 

1 

ρ4 

αM 

α−1 

M 

α
max − M 

α
min 

= 

3 α

d 3 max ( M 

α
max − M 

α
min ) 

1 

ρ4 
M 

2 + α (D1) 

rom which we can deduce 

 ij = 

(− 4 
ρ2 0 

0 (2 + α) 
M 

2 

)
. (D2) 

he single event Fisher matrix, �, was given in equation ( 58 ). The
etection probability is 

 det ( � θ ) = 

1 

2 
erfc 

[
− ( ρth − ρ) √ 

2 

]
. (D3) 

The determinant of � + H is 

et ( � + H ) = 

rho 2 

σ 2 
M 

− 4 

σ 2 
M 

+ 

(2 + α) 

M 

2 
− 4(2 + α) 

ρ2 M 

2 
+ 

(2 + α) 

σ 2 
M 

(D4) 

hich has first deri v ati ve 

∂ 

∂α
det ( � + H ) = 

1 

M 

2 
+ 

1 

σ 2 
M 

− 4 

ρ2 M 

2 
(D5) 

nd the second deri v ati ve v anishes. The integrals required for the
atrices � III , � IV , and � V all take the form 

 X = −
∫ 

∂ 2 

∂α2 

(
A X 

det ( � + H ) 

)
p( � θ0 | α) 

P det ( α) 
d � θ0 , (D6) 
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ρ2 
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(2 + α) 

M 

2 

)
( ρth − ρ) √ 

2 π
exp 

[
− ( ρth − ρ) 2 
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]

+ 

(
ρ2 

σ 2 
M 

− (2 + α) 

2 σ 2 
M 

+ 

(2 + α) 

2 M 

2 

)
P det ( θ0 ) 

A IV = −
(

(6 + α) ρ

σ 2 
M 

+ 

4(2 + α) 

ρM 

2 

)
1 √ 

2 π
exp 

[
− ( ρth − ρ) 2 

2 

]

A V = 
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8 

σ 2 
M 

− 8(2 + α) 

ρ2 M 
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+ 

4(2 + α) 

σ 2 
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− 2( a + α) 2 

ρ2 M 

2 

+ 

(2 + α) 2 

2 M 

2 
+ 
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2 σ 2 
M 

)
P det ( � θ0 ) . (D7) 

hese terms have first deri v ati ves 
∂A I I I 

∂α
= 

( ρth −ρ) √ 

2 πM 

2 exp 
[ 
− ( ρth −ρ) 2 

2 

] 
+ 

1 
2 

(
1 

σ 2 
M 

+ 

1 
M 

2 

)
P det ( � θ0 ) (D8) 

∂A IV 

∂α
= −

(
4 

ρ2 M 

2 
+ 

ρ

σ 2 
M 

)
1 √ 

2 π
exp 

[
− ( ρth − ρ) 2 

2 

]
∂A V 

∂α
= 

(
(2 + α) 

M 

2 
+ 

(6 + α) 

σ 2 
M 

− 4 α

ρ2 M 

2 

)
P det ( � θ0 ) (D9) 

nd all second deri v ati ves v anish except 
∂ A V 

∂α2 
= − 4 

ρ2 M 

2 + 

1 
M 

2 + 

1 
σ 2 
M 

P det ( � θ0 ) . (D10) 

hese expressions allow all of the integrands that determine the 
ifferent parts of the population Fisher matrix to be evaluated. 
he final stage of computing the Fisher matrix is to carry out

he integrals over the population distribution p( � θ0 | � λ). This must
e done numerically, but it is facilitated by doing a coordinate
ransformation 

( � θ0 ) = 

M 

α−M 

α
min 

M 

α
max −M 

α
min 

(D11) 

 ( � θ0 ) = 1 −
(

M 

d max ρ

)3 
, (D12) 

hich reduces the population integral ∫ 
p( � θ0 | λ)d � θ0 → 

∫ 
d u d v. (D13) 

urther computational efficiencies can be obtained by restricting the 
ange of u considered for each v so that only SNRs ρ > ρ th − 5 are
ncluded. Codes to compute the Fisher matrix using this procedure 
re available at https:// github.com/aantonelli94/ PopFisher. 
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