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ABSTRACT

We derive a Fisher matrix for the parameters characterizing a population of gravitational-wave events. This provides a guide
to the precision with which population parameters can be estimated with multiple observations, which becomes increasingly
accurate as the number of events and the signal-to-noise ratio of the sampled events increase. The formalism takes into account
individual event measurement uncertainties and selection effects, and can be applied to arbitrary population models. We illustrate
the framework with two examples: an analytical calculation of the Fisher matrix for the mean and variance of a Gaussian model
describing a population affected by selection effects, and an estimation of the precision with which the slope of a power-law
distribution of supermassive black hole masses can be measured using extreme-mass-ratio inspiral observations. We compare

the Fisher predictions to results from Monte Carlo analyses, finding very good agreement.
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1 INTRODUCTION

Population analyses aim at inferring the parameters that describe
the distribution of the properties of a set of observed events drawn
from a common population. In the context of gravitational-wave
(GW) astrophysics, such analyses have been carried out for the 90
coalescing compact-object binaries that have so far been observed
by ground-based gravitational wave detectors, and reported in the
third gravitational wave transient catalogue, GWTC-3 (Abbott et al.
2021a, b, c). Together with simulation-based studies (Taylor &
Gerosa 2018), these population analyses aimed at understanding
the astrophysical processes that lead to the formation of the bi-
naries (Abbott et al. 2019; Rodriguez et al. 2020), their evolution
(Fishbach et al. 2021; Mould et al. 2022) and at measuring the
current parameters describing their population (Vitale, Biscoveanu &
Talbot 2022). Furthermore, population analyses are also used to
constrain cosmic expansion history by estimating parameters like the
Hubble constant (Mastrogiovanni et al. 2021; Abbott et al. 2021d;
Mancarella, Genoud-Prachex & Maggiore 2022; Mukherjee et al.
2022).

Given a set of observed events, the usual approach to estimate
distribution parameters is to complete a Bayesian hierarchical anal-
ysis using techniques such as Markov Chain Monte Carlo (MCMC).
While these are the most reliable way to obtain posterior samples
from actual data, they are typically computationally expensive and so
it can become impractical to use these approaches to make forecasts
for future observations that include surveys over parameter space.
However, such surveys are crucial for scoping out the science cases
of future detectors, such as the Einstein Telescope (Punturo et al.
2010), Cosmic Explorer (Reitze et al. 2019), and the spaceborne
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LISA mission (Amaro-Seoane et al. 2017), all of which are expected
to detect thousands of sources from multiple populations. For
explorations of this nature, one can trade off accuracy in the estimates
of parameter-measurement precision for computational speed by
using approximations that are valid in the limit of high signal-to-
noise ratio (SNR). In the context of source parameters for individual
signals, the Fisher matrix is commonly used to cheaply assess the
measurement precision of a parameter (Vallisneri 2008). Within the
linear-signal approximation, valid for high SNR sources, the inverse
of the Fisher matrix is an approximation to the covariance matrix and
therefore the width of the likelihood function. Under the assumption
of flat priors, it also approximates the shape of the Bayesian posterior
probability distribution we would expect to obtain in an MCMC
analyses. For a parameter set X, the Fisher matrix can be written
in general terms as the expectation value over the data generating
process of derivatives of the log likelihood p(d|3\),

ey

(T3 =E [_E)zlnp(dﬁ)]
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A A

While this provides a guide to measurement uncertainties for individ-
ual events, the Fisher matrix does not directly provide an indication
of how well the properties of the population can be inferred when
those events are subsequently combined in a hierarchical model. In
this paper, we address this shortcoming by deriving a Fisher Matrix
for the population parameters assuming Gaussian noise and using
the likelihood for population inference in the presence of selection
effects from Mandel, Farr & Gair (2019). The expression we obtain
is valid for high SNRs and small biases in the individual events’
parameters. We illustrate our formalism with two examples. First,
we consider a ‘Gaussian—Gaussian’ case, in which both noise and
the data generation processes are normally distributed, and check
our expressions against the direct calculation of the Fisher matrix as
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an expectation value over data realizations. We also perform MCMC
analyses with and without selection effects, as a cross-check to verify
our results. Secondly, we consider the more astrophysically relevant
case of a power-law distributed population (while still assuming
Gaussian noise) and again validate our results against MCMC
analyses with and without selection effects. We generally find an
excellent agreement between the Fisher and MCMC estimates, while
confirming results in Gair, Tang & Volonteri (2010) for the latter
scenario.

The paper is organized as follows. In Section 2, we describe
our population Fisher Matrix formalism, highlighting the main
assumptions and steps to obtain the result. A derivation of corrections
to this formula and their scalings is found in Appendix B. In
Section 3, we consider the Gaussian population model, checking
our formula against a direct calculation of the Fisher Matrix and an
MCMC analysis. In Section 4, we consider the case of inference of
a power-law massive black hole mass distribution using extreme-
mass-ratio inspiral (EMRI) observations, once again comparing
the result against MCMC. Finally, in Section 5, we discuss our
results and prospects for future work. The framework we develop
here could be applied in a wide variety of contexts. The focus
on gravitational wave detectors and the choice of the examples
provided here are driven purely by the authors’ areas of expertise. The
results can be fully reproduced with codes made publicly available
at https://github.com/aantonelli94/PopFisher.

2 THE FISHER MATRIX FOR POPULATION
DISTRIBUTIONS

The standard model used to represent the data stream, d, of a
gravitational wave detector is as a linear combination of a signal,
h(é), dependent on some parameters 6, and noise, n, that is usually
assumed to be a realization of a stationary and Gaussian stochastic
process described by a power spectral density Sj(f),

d=h@) +n, @ (HRCf)) = S(HSCf — 1. ()
In this model, the likelihood is

- 1 - -
p(d|f) o exp {—5 (a-n@ia- h(e))} :

a*(f)b(f)
Su(f)

To understand the precision with which gravitational wave obser-
vations can determine the parameters of a source, it is common to
compute the Fisher information matrix, defined by

31n p(d|6) 3 1n p(d|d)
30! 30/ ’

where (alb) = 4Re /00 df. 3)
0

@
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where the expectation value is taken over realizations of the data
drawn from the data generating process, d. For the gravitational wave
detector likelihood in equation (3), the Fisher information matrix can
be seen to reduce to

oh | oh
(To)ij = (ﬁ %) ; (%)

where we are using the inner product introduced in equation (3).
The Fisher matrix provides a leading order approximation to the
shape of the likelihood and hence also the Bayesian posterior when
using priors that are approximately flat over the support of the
likelihood. It becomes an increasingly good guide to the precision of
parameter estimation as the SNR with which the source is observed
increases.
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In population inference, we are no longer primarily interested in
the parameters of the individual events, but in the parameters that
characterize the population from which the individual events are
drawn. We assume that we have some population model, p(é |X),
that describes the probability distribution of the parameters, 6, of
individual events drawn randomly from a population characterized
by parameters, *. We want to infer the parameters of the population
by combining the information from many observed events. For a
given choice of population parameters, the distribution of observed
data sets is characterized by

7y — prn(d]R)
p(dlr) = Py (6)

where pri(d|%) = [ p(d|6)p(@|i)do
Pi(R) = [ Pau(6)p(@15) d6
Pde‘(é) = fd>lhresh p(dlé) dd. (7)

Here and elsewhere, we will use lowercase p(x) to denote probability
density functions, which have units of 1/x, and uppercase P(x) to
denote cumulative density functions, which are dimensionless. This
expression accounts for the fact that not all events that occur in
the Universe are detected. Detection is a property of the observed
data, d, and the last integral is over all data sets that would pass the
threshold to be counted as a detected event and hence included in the
population inference. The normalization term, Pdc‘(i), depends only
on the population parameters and represents the fraction of events
in the Universe that are detectable. We refer the reader to Mandel
et al. 2019 for further details. This form of the likelihood assumes
that the number of events observed in a fixed time period does not
convey any information about the population parameters. However,
the precision with which the population parameters are estimated
asymptotically is independent of that assumption. This is discussed
in more detail in Appendix A.

Equation (1) is the equivalent of equation (4) for this population
likelihood, and so it should give a guide to the precision with which
the population parameters can be measured. Note that the two forms
of the expression are slightly different, but it is straightforward to
show that the two results are equivalent by integrating by parts
and using conservation of probability. This will be a good guide
for a ‘high SNR’, which for populations means a large number of
observed events. The fact that equation (1) is a good approximation
to the precision of population inference can be seen as follows. In
a general population inference problem, we have observed a set of
events, indexed by i, with corresponding data sets {d; }. The posterior
distribution on the population parameters from this set of events can
be found from Bayes’ theorem and takes the form

pOHdD) o) [ ] p@i 1), ®)

i=1

where n is the total number of events observed, H(X) is the prior
on the population parameters, and p(d;|}) is the likelihood of the
population parameters A for data set d;. The log posterior is

In p(X] {di}) oc Inr (X) + > In p(dy| ). )

i=1

The latter quantity is a sum of independent random variables
(assuming that all observations are independent). In the limit that
n — 00, we can use the central limit theorem to deduce

1< - -~ 02(h)
;Ejlnmd,«mwv G, == ) (10)
i=1
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where

G =E [Inp@] . o*Gli) = E [n p@id) — 2] (1)
and the expectation value is taken over the data generating process,
which we assume to be consistent with the likelihood we are using,
evaluated for the true values of the population parameters 2.

Since

o / 1 aph)
AN p(dlx) 9
B ap(d|r) 3
.= = dd = d|%)dd
= i / i o | PAm
= (1)—0 (12)

Al

we deduce that the population likelihood is peaked at the true
parameters asymptotically (this is not true on average for a finite
number of observations, as discussed in Appendix B). Note that this
happens by virtue of the assumed consistency between the likelihood
and the data-generating process, and would not be the case if the
likelihood was only an approximation to the true population. As n
— 00, the log posterior converges to the function n,u(X), and so the
posterior becomes increasingly concentrated around X,. Expanding
the function M(Xﬁ»,) near X[ we have

Gz = (%1%

Lo (E O R =D (13)
2 drida ! ' '
We deduce that the asymptotic covariance matrix is I'; ' /n, where

d? 3%1n p(d|x
(T = — ( e ) —E {—".p(_l)] . (14)
At

drrda/ aA NI

In the last equality, we use equation (12). This justifies the use of
equation (1) to characterize the precision of parameter estimation in
the limit n — oo. It becomes increasingly reliable as n — oo, as
corrections to this formula scale like n~!/2 relative to leading order.
This is justified in more detail in Appendix B.

This result can be evaluated at various levels of approximation.
The full asymptotic posterior is described by the function M(X|X[),
which can be evaluated through Monte Carlo integration. This is
computationally expensive as it requires evaluation over different
choices of % and ,. The next level of approximation is to evaluate
equation (1) directly. This makes a linear signal approximation in
the population parameters, but no approximation to the evaluation
of p(d|)i). This is less complex because evaluation is only needed
in the vicinity of A:. A final level of approximation is to simplify
p(d|X) by using the linear signal approximation for the individual
event parameters as well. This is the approach we will now describe.

We consider a single observation of a source with parameters 50,
and data d = h(éo) + n. Taking the expectation value over the true
data distribution then reduces to taking the expectation value over the
distribution of the noise n and the distribution of the parameters 50,
which is p(§0|7\,). Under the linear signal approximation, we expand

- )
h(®) = h(6) + o A6 (15)
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where A9 = 0" — 6. The gravitational wave likelihood can then be
written

- 1 - -
p({d}|0) o exp [_E(d —h@)ld - h(9))]

1 | . )
~ exp [_5 (n|n) + N; AG" — E(I‘g),-jAG’AQ-’}

n> (16)

and (I'y);; is the single source Fisher matrix defined in equation (5).
This is to be evaluated at 6 and therefore has a dependence on those
parameters. We similarly expand the source prior term

oh

where N; = ( —
<39’

oo - o . 1 . .
In p(@15) = In p(@old) + PO — 5 H; A0 86T + -
31n p(@|x 3%1n p(6|x
where p, = PO 9T InpOR) (17
06! 001007

in which the derivatives are evaluated at the parameter space point
0. Substituting the preceding two expressions into equation (7) and
integrating over g , which is equivalent to integrating over A6 in the
linear signal approximation, we obtain

exp[—(n|n)/2]
Paei(2)

1 ) ) ) .
exp {_E(F” + Hij )(AO — A (AGT — NG

A ~ dad [ p@h

|
+*(Ni + P)(T + H);'(N; + Pj)}]

)N/2 p(QOM) exp[—(n|n)/2]
Poec(3)y/det(T + H)

X exp {E(Ni + P)(T + H);;'(N; + Pj)] , (18)

=2

where we have written
A6l = (T + H);' (N + Po).

This is the point at which the likelihood is maximized and hence
is the ‘best-fit’ point in parameter space. We can now evaluate the
population Fisher matrix using the expression

[ #InpX) >
— [y = / <8)J8M : pd|2;)dd

921n p(d|%) L
//< YN XP(Golkt)P(nIGO)dndGO. (19)

In the above, the integral over the noise distribution is conditioned
on 6y because of selection effects. This integral is over all noise real-
izations that ensure d = h(éo) + n is above the detection threshold.
Substituting equation (18) into the above, we obtain a sequence of
terms. To simplify these, we carry out the integral over the noise,
n. The only terms in equation (18) that depend on n are N; and the
prefactor exp[—(n|n)/2]. The latter enters In p additively and has no
dependence on the population parameters, so it does not contribute
to the final result. The former term also has no explicit dependence
on the population parameters, but it appears multiplied by terms that
do. There are thus three distinct types of term that appear in the
argument of the integral — terms that have no explicit dependence on
n, terms that are linear in ;, and terms that are quadratic in N;. We
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define these integrals as follows

Poao) = / p(@ldo)dn
_ oh _ 3Pl
D; =/<n a(91,>p(n)dn_ YT
dh oh
D, = / (;.’aei) ( 891) p(n)dn. (20)

Using these expressions to carry out the integrals over n, we obtain
the final result

T)ij = Tpij + Tw)ij + Tmij + (Tv)ij + (Tv)ij, (21)
with
321 9 x P A P 9
Ty = _/ n(p(0olA)/ Paer(A)) Paer(60) (Qol)»)dﬁ’o,
AN Paei(R)
32 Indet(T" + H) Pe(e)
Ty = 5 / CE2 p(BolA)dbo,
dA 9N Pae(R)
1 92 pBol%) =
'mii=—= —— (' + H),; | Dy ———=—d0y,
(T 2/8)&8}»/ [( + )k[] ki Pdel()») o
0 p@l%) -
)i = — —__ [P(T + H);'| D ——d6,
(T'rv)ij /B)JBAJ [P + H),'| Dy Py 0
1 a2 _ Pei(6p)
Ty)ij=—= [P+ H);'P Go)3)d6,
Oy =5 [ ggas [P0+ 0 P T

This is an approximate expression for the population Fisher matrix
which can be used to estimate the precision with which observations
will be able to determine the population parameters. In deriving
the above expressions, we have made use of the standard form of
the likelihood for the gravitational wave detection problem, which
permits some simplifications. In Appendix C, we describe how the
result is changed for a generic likelihood, p(d|6p).

We note that when measurement errors for the source parameters
are small, only the first of these terms is required. This limit
corresponds to I' — oo, sothat ' + H~ I' and (' + H)™! —
0. In this limit, it is clear that (I'yp);;, (I'tv)y, and (I'y);; immediately
vanish. The matrix (I'y);; also vanishes because I" does not depend on
the population parameters A. Therefore, we expect (I'y);; to dominate
and provide a good approximation to the population Fisher matrix.
This will be true whenever individual measurement errors are small
relative to the scale over which the population parameters change the
source parameter distribution. The approximation holds in the three
examples we describe below, but this will not always be the case.

2.1 Validity of approximations

To derive the population Fisher matrix, we have made two ap-
proximations. First, we have used expression (14) to define the
population Fisher matrix. Corrections to this expression are derived
in Appendix B and are shown to scale with inverse powers of the
number of observed events, n. This assumption will therefore always
be valid once we have made sufficiently many observations, and
this is the limit in which we want to use this result. The second
approximation was to use the linear signal approximation to represent
the posteriors for individual events in equation (16) and equation (17).
This approximation will not necessarily be valid in all circumstances,
or across the whole of parameter space. In Vallisneri 2008, a criterion
is provided for the validity of the individual event Fisher matrix at
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o
1 - R
5 (AhLsA(80)| AbLsA(40)) < 1
VAO, T A6 A6l =1
where - Ahisa(A9) = A6, — [0 + 8610) — n@)| . @2

If this criterion holds throughout the parameter space of observed
events, then the approximations used to derive the population Fisher
matrix will definitely be valid. However, this condition is more
stringent than is strictly required since the population Fisher matrix is
determined by derivatives with respect to the population parameters
of the average of the individual event Fisher matrix over the parameter
space.

An alternative criterion can be obtained by identifying the next
higher order terms in equation (16) and equation (17). These
contribute a multiplicative correction to the integral (18) of the form

exp [(Aijk + Tj) A0 AGTAG* + N;; A0 AGT]
13%1n p(6|2) 1 ( 9%h

oh
Ti‘ - o itk — < " | T
KT 6 0010607 96* "= 2\ 9000 aak)

N, o’ 23

11_(89,891 n)' ( )
Approximating the exponential as exp(x) &~ 1 + x, these terms
contribute additively to the integral over Af an amount 6/. The
contribution to In p(dli) is then an additive In (1 + §1/1y) ~ 81/,
where [ is the value of the leading order integral. We deduce that
the next order correction to the population Fisher matrix is

9281 /1) L
//( PYYETY >L P(6o|2;) p(n|6o)dndby,
81

— = (A +Tin) (3A9gf(r + HY + Aenge,{,.Aegf)
0

where

+ Ny (A6 865 + @ + 1)) (24)

This expression can be simplified further, but as we will not use it
elsewhere in this paper, we will leave it in this form, but we will
make a few observations

(1) This expression can be used to assess the validity of the
approximations used to build the population Fisher matrix. If the
predicted errors computed including this correction are similar to
those computed without then we can trust the population Fisher
matrix.

(i) The correction depends on derivatives with respect to the
population parameters. If higher order corrections are only significant
for parameters that are weakly coupled to those described by the
population model, then this correction is still likely to be small,
and the predictions of the population Fisher matrix are likely to be
trustworthy.

(iii) In the examples discussed later, the dominant contribution
to the Fisher matrix comes from I'j, which is independent of the
individual event uncertainties. Thus, even if I'yy is of comparable
size to 'y, it might still be negligible relative to I';. In that case,
I'y can continue to be used to estimate the population parameter
uncertainties.

(iv) In general, the Fisher Matrix approximation will be better
for events of higher SNR, and so the population Fisher matrix will
tend to be a better approximation if we use a higher threshold for
including events in the analysis. By adjusting the detection threshold
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to be high enough that the individual events are well characterized
by the Fisher matrix, we will be able to obtain a reliable estimate
from the population Fisher matrix for any analysis. This will provide
a conservative estimate to the precision that could be achieved using
all events.

In summary, when using the population Fisher matrix to scope
out the potential of future GW observations, it is important to
monitor the validity of the approximations by using equation (24).
In some contexts, the individual event Fisher matrix will be valid
throughout the parameter space of observable events and so the
full population Fisher matrix can be used directly. For example,
in the context of extreme-mass-ratio inspirals, on which the GW-like
example in Section 4.1 is based, it is expected that an SNR of at
least 20 will be required for the confident detection of an event in
the data (Babak et al. 2017), and so the Fisher matrix is likely to
be a good approximation for all observed events. In other contexts,
the individual event Fisher matrix might be a poor approximation
for some parameters, but if it is valid for the parameters for which
the population model has been written down, and these are weakly
correlated with the other parameters, then the population Fisher
matrix is still likely to provide a good estimate of measurement
precision. There will be situations in which the approximation will
not be valid, but even there, the population Fisher matrix might be
accurate if it is dominated by the measurement-error independent
part, I';. In any scenario, it can be used to obtain a conservative
estimate of accuracy by raising the detection threshold sufficiently.
It will thus always provide a valuable tool for quickly scoping out
the potential of future observations without the need for expensive
simulations.

3 ILLUSTRATION I: A GAUSSIAN-GAUSSIAN
MODEL

We will now consider several examples, which will demonstrate that
the population Fisher matrix works and show how to compute it
in practice. The first application of equation (21) we will consider
is to a ‘Gaussian—-Gaussian’ model in which both observations and
noise are normally distributed. We simplify the setting by assuming
a waveform dependent on a single parameter 6. The distribution of
the parameter is

pOIX) = N(u, £2) =

_ 2
0 — ) ] ’ 25)

1
7|
with population parameters (henceforth, hyperparameters) A=
{11, £?}. Noise is also a Gaussian with zero mean and variance
o. Since the data stream is a sum of Gaussians, it is modelled
by M (u, o2 + £?), with mean and variance given by the sums of
individual means and variances,

p|}) = (26)

1 (d — p)?
exp | —5— = -
V2 (02 + X2) 2(0* + E7)
Given the implicit simple choice for the signals, the Fisher matrix of
source parameters reduces to

oo (OR[ORN _ 1 (9| _ 1 o)
"7 \o0lo0) " o2 |o6| o
while from equation (25), we have that P and H in (17) are
(D) 1
P=- 5P and H = Sk (28)

The example reported in this section does not have an immediate
analogy in GW astrophysics, but it can be thought of as a more
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general application of the population Fisher matrix. The advantage
of choosing such a simple setting is that the matrix entries can be
directly integrated as expectation values over data realizations. In the
presence of selection effects, the integrals to be solved are

9 die, i
o9 Pua(3)
o d| d|x
= —/ g Py A CL R N i (29)
dy OAONI Pyee(X) Pyer(1)
We only select realizations of the data d > dy, that are above a

certain threshold. The predictions for the various components of the
population Fisher matrix are'

(= n Paar(R) 1
A 3H2 (0-2 + 22)’
oy PP Pa) 1 p(dali)
( A)MEZ BEEETTE 24 32 Ty
W (G + ) Pdel()‘-)
(oo — 92 In Pyer(R) 1
A)x2y: — (822)2 2(0.2 + 22)2

(dn— 1) p(dnlh)

+ =,
(024 222 Pi(V)

(30)

where we have used equations (26) and (29), the fact that the integral
is normalized through

> < 1 (din — 1)
Pao(R) = dMdd = —erfc | ——— |, 31
det(A) /dm p(d|2) 2er0< 2(02+22)> (B

and the definition

> 1 (dn — 1)’
pdpld) = ————=exp {_ﬁ . (32)
V21 (0?2 + X2?) 2(0* + %2)
Finally, from equation (31), it follows that
Pnpae®) _ ((dn—p | pdnl) _ pdwnlh)’
(02 02432 ) paa(d) Paa()?
PInpe® _ pdnlh) [ dp=p?® 1
WIX? T pga) | 2A02+3HT T 202432
_ paln? [ dp—p
2pae@? \ 02437 )
I paer(n) _ plnld) | @dn—w?® _ 3@dw—p)
@) T paa() |[40+3)} 40+32)?
2
_ pWw? [ dan—p
4pda(1)? (02+22) ) (33)

3.1 Solution from the population Fisher matrix

While in this simple setting, the direct evaluation of the Fisher Matrix
as expectation value is much simpler, we wish to now evaluate it using
equation (21) as an important sanity check of that general formula.
For (I')) . u» we notice that the (I't) ., (i) s and (v )y vanish.
The second and third terms vanish because I' + H does not depend
on p, while the fourth term vanishes because P is only linear in 1 and

For the last integral, it is useful to notice that

p(dwlh)
PaaM) |

/ d — w?*pdndd = (6> + T2 |1+ dn — p)
dnh

which follows from (d — u)p(le) =—(c2+ Ez)Bp(d\X)/Bd, integrat-
ing by parts, and using equation(31).
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two derivatives with respect to it are needed for (I'y)y,.. The only
terms contributing are therefore (I't),,,, and (I'v),,,., which lead to

p(012)do

/ 32 In(p(O11)/ Paer() Paer(6)

2

(T i Paer(R)

2
—1/ e+ ) 21D o pa

au? Paet(R)

_ 9%In Py (R N 1 34)
o (02 +3%2)

where we have used P, I', and H given in equations (25), (27), and
(28), as well as the normalization

Pyer(0)
pO12)do = 1. (35)
/ ) |

det

The result matches the prediction of equation (30) as expected.

In the case of (I'y), x2, the second and third terms, (I'rr), 52 and
(T'mp), 2, vanish for the same reason as above, but now the fourth
term (I'y),, x2 does contribute. Overall, we have that

(T2

2

aMaEZ Pdel()“)

-/372 P+ 1] Dy 2 g 7yae
8“822 Pdel(}‘)

—1/782 [PA(T + H)™] Paa®) | 017)d0
2) opox? Pyer(R)

_ 9In PeuR) /(9 — 1) Poa(®)
EPEDE 4 Paa(X)

+/{ o’ } 0 Pger(0) p(9lk)
(02 + x2)? a6 Pdm()»)

o2(c?+2%%) 1 )
B0+ 2 Pl / (6 — 1) Pac0) p(613)d6,

p(612)do

where we have used the definition of D; in equation (20) and (35).
We also notice that, from the definition

Paa6) = / p(d|6)dd
d

th

© [ (d—e)z}
exp |—

dn V2mo? P 202

dd = Lerf (“’“‘—_9(3)5)
= —€eriIc
2 V20?2

it follows that

p(d|0)dd

3 Poer(0) / (d— 9)
0 Ja,

1 { (dy — 0
exp |—

)2}
= p(dy|0), 37
N pdun|0) (37)

202

which can be rearranged to give

0Pu(®) -
/ @ = "= p(ofiyde

9 -
= 22@ / p(dw0)p(©]1)do

_ e dpuln) ¥

= gy Pl (38)
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From equation (31), it also follows that 8 Pe(1)/dp = p(din|h).
Using this constraint, and the fact that

I p(di|X 3 -
pduld) _ / 2 Pa®)p(@1)] do
o o
1 -
=32 /(9 — W) Paer(8) p(02)d0, (39)
we immediately get
/(9 — 1) Pae(0) p(O13)dO = 22 p(dp| ), (40)
and, together with (35) and (38), that
32 1n Py (1) 1 (dulh)
(T)us2 = = — P wld) 1)
puax (02 +2%) Paar(R)

This agrees with equation (30) as expected.
Finally, we consider the case of (I'} ) 5252, in which no term in (21)
vanishes. The first term can be rearranged to give?

321In P (h) 1
(a x2)2 234

/( del( ) (0| )d9

I Py() 1 (dth—u) pdalh)
= L e 43
G2 ot TRt Ey PGy

(TDsg2x2 =

Using equation (35), the second term (I'j)s252 is easily found to be
o? (62 +2X%?)

Tms2s2 = 257 02 S (44)
The third term (I'jy)s252 contains Dj; from equation(20), which can

be rearranged to give

1 =) ( 9)2:|
Dgg = —— d—0)%ex dd
o6 Po? »/dm ( )" exp [
_@a—0) T o= 0P] L (dn 6
T 2no? P 202 202 %2 )

The complementary error function can be replaced by Pge(6) using
(36). With this in mind, we have

ot p(dul%) o’
r e — = . 4
Twee = ey @ = 0% & Torrmy @

The results follow from rearranging equations (37) and (32) into

— 2
/(dm —6) exp {_("m D) } PO

262 Pdel()\)
o2 [ el PO
ddn Pdet()‘)
3 3
= Pg [P(dmle)P(Ql)»)}
det
Lo
@ +32) " Paa(X)

The integral over # can be evaluated by parts to obtain

2 Pdu(e) _ y2 4 @dp—=t pdplh)
/(9 1) p@Ide = 2 + ©2120) Pe() ’ (42)

using (31) and (40) with vanishing boundary terms.
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Figure 1. Normally-distributed data with (red) and without (black)
selection effects.

The fourth term (FIV)Zzzz is found using (40), and reads

- Paer(0)
(CW)pxe — [ G [P0+ HY'] Dy 29D p(913)do
523%2
= ZZ(dy — ) Bl (46)

Finally, the final term (I'y)x252 is found through (42) to be

L 1y Paa®)
s | s [P 7] Paul)
o2 (cr +30222+3E4)
24 (0-2 + 22)3

1
(I'v)zes2 = —5 (9|A)d9

%2 p(dnlh)
+ d. — - 47
(02 T 22)( th — M) Paa() 47)
Adding up (43) to (47), we find
o, — 8210 Pua) ! o =) p@uld) o
) (9x2)2 20024 222 | (024 x2)2 Pdet(X) ’

which matches (30) as expected. This concludes the analytic check.
Equation (21) can be used to reproduce the predictions (30) obtained
from the more general definition of the Fisher matrix as an expecta-
tion value over data realizations.

3.2 MCMC analysis

The Fisher predictions for the Gaussian—Gaussian model can be
compared with MCMC simulations as a further check of the
formalism. While this example is arguably textbook material, see
for instance section (6) in Vitale et al. 2020, we report a few details
below for completeness. The results of the present section can be fully
reproduced with the codes accompanying this paper. We simulate
synthetic data including Ny, = 10° observations from the observation
model (26), choosing true mean w, = 0.5, true variance thr =1.0.
and noise variance o = 0.1. The latter two indicate that each event is
taken with a high SNR. We then apply an arbitrary cutoff, imposing
that only positive data are observed. That is, dg, = 0, resulting in
around Ny ~ 70000 detected events. Fig. 1 shows the total (black)
and detected (red) populations under our specified assumptions. We
perform the MCMC analyses in both cases in which we do and do not
have selection effects using EMCEE (Foreman-Mackey et al. 2013).
As log likelihood, we take the sum of individual log likelihoods,

N
—N log paa(h) + Y _ log p(d;|1), (49)

i

log p(d|1) =
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Figure 2. Fisher and MCMC predictions for the toy Gaussian case with
(red) and without (black) selection effects.

where N = Ny, in the case in which we do not include selection
effects, and N = Ny in the case in which we do. We choose flat
hyperpriors over a very broad range that includes the true values.
The selection function is defined and integrated as in equation (31),
and is non-trivial only in the latter case. The MCMC posteriors for
wand X2, in both the cases considered, can be found in Fig. 2.

We can then compare the predictions from the population Fisher
matrix with what we obtain numerically. To this end, we invert the
matrix

Ty = (F““ F“Zz) (50)

FHZZ FEZZZ

with entries given in equation (30) and below. The errors are
normalized by the number of events,

Apn=/(T7Huu/N, AZ? = /(T D552 /N.

In Fig. 2, the Fisher predictions are shown (in black) to reproduce
the widths from the MCMC runs.

The same widths can be well approximated by the inverse of the
matrix

I (Fl)p.p. (FI)uEZ )
(P = ((Fl)pﬁ (T)g2pe, ©1

in which only the first terms in equation (21) are retained. The
predictions are shown in red in Fig. 2, and they overlap well with the
full Fisher matrix predictions. As discussed earlier, this corresponds
to taking the limit of equation (50) in which o = 0, i.e. the parameters
of the individual events are measured perfectly. The reason that this is
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a good approximation here is because we have chosen 0.1 =0 K £ =
1 for this example. We would expect the other terms contributing to
equation (21) to become increasingly important as the measurement
errors become larger. If we consider for simplicity the case without
selection effects, we see that the ratio of the uncertainties in the
population parameters computed using only I'y to that computed
using the full Fisher matrix, equation (50), are

Ay 1 Ax? 1

= — = —5. 2
N 1+02/%2 > l+(a2/22)2 (52)

For 02 « X2, these ratios are approximately 1, as expected, but
as 02/X% — oo, both ratios tend to 0, implying that I'; would
significantly overestimate the precision with which the population
parameters can be determined. So, it is not always possible to use I'y
to estimate the population parameter uncertainties. However, in many
applications, individual events are constrained to a small region of the
much larger parameter space of the population, and so equation (51)
will often be a good approximation to the full Fisher matrix. This
includes the GW-like illustrations we will consider in the next section.

4 ILLUSTRATION II: AN EXAMPLE FROM
GRAVITATIONAL-WAVE ASTROPHYSICS

The spaceborne LISA mission is expected to detect extreme-mass-
ratio inspirals (EMRIs), namely binary systems in which one compact
object, typically a stellar remnant, has a mass that is much smaller
than the companion, typically a supermassive black hole (SMBH)
in the centre of a galaxy (Amaro-Seoane et al. 2007; Barack 2009;
Babak et al. 2017). Inference of the parameters that characterize
EMRI systems is expected to provide accurate constraints on the
theory of gravity (Gair et al. 2013), as well as an insight into the
astrophysical population of and stellar environments surrounding
SMBHs (Barausse, Cardoso & Pani 2014). LISA might also detect
a foreground generated by individually unresolved EMRIs, which
would porvide information about the properties of the population of
these systems (Gair et al. 2010, 2011; Sesana et al. 2011; Bonetti &
Sesana 2020). The use of LISA observations of EMRIs to provide
measurements of the BH mass function in the range probed by LISA
has previously been investigated in Gair et al. 2010, henceforth
‘GTV’. GTV assumed that the mass function was described by a
power law p(6|A) = p(M|A) oc M®~ !, with a true value that is
close to flat in the log of the masses, i.e. « & 0. GTV explored
the ability of LISA to constrain the parameters of this mass function,
using MCMC techniques to carry out hierarchical analyses on an
extensive set of populations of simulated events. They found that
with 10(1000) events, the spectral index « could be constrained at a
level of precision Ao = 0.3(0.03). Here, we will use the population
Fisher Matrix formalism described above to predict the precision
with which a set of EMRI observations might be able to constrain a
power-law mass function. We do not expect to get exactly the same
answer here, as the two analyses make a few different simplifying
assumptions. In GTV, the raw data was taken to be counts of events
in a binned analysis, provided by point estimates of the parameters.
Selection effects were included in the rate of events in each bin, by
accounting for the length of time, a source with the given parameters
would be observable. This ignores the fact that the time remaining
to plunge is constrained by the gravitational wave data. In this
analysis, we again approximate the observation process, assuming
that the data can be reduced to a measurement of a single parameter,
but we handle selection effects more carefully. GTV’s results was
computed ignoring measurement uncertainties in the model used
in the analysis, although they did demonstrate consistency between
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results obtained on simulated data with and without measurement
uncertainties. Here, we will include measurement uncertainties, but
we will approximate these as Gaussian. We will see that despite these
differences in assumptions, the population Fisher matrix is able to
predict qualitatively the results observed in GTV without the need for
costly computational sampling of many posterior distributions. For a
more direct comparison with numerical results, we also perform our
own MCMC analysis, under identical assumptions to those used to
compute the population Fisher matrix, and find very good agreement.
All the results in this section can be reproduced with the codes made
available with this publication.

4.1 Simple scenario: mass measurement only

In the first scenario we consider, we will assume that events in
the population are characterized by a single parameter, the mass,
which we measure with our detector with a Gaussian uncertainty
that has a fixed variance, independent of the parameters of the
source. We note that this choice of a constant variance is made
for convenience, but is not required by the formalism. If errors vary
form event to event, these are characterized by a 50 dependence of
I', which just changes the integrands of the various components
of the population Fisher matrix. Due to the integration over 6o,
the population Fisher matrix effectively depends on the average
measurement precision over the population. In the final example,
described in Section 4.2, we will consider a case in which the errors
vary from event to event. We draw N = 100 masses from a power-law
distribution,
o

Mg, — Mg\in

max

p(M|a) = M (53)
with maximal and minimal observable masses My, = 10* Mg and
Mp = 107Mg and a true value for the spectral index that is
exactly flat in the log of the masses, « = 0. The observed data is
assumed to be a point estimate of the log of the mass, which is
equal to the true value plus a normally-distributed uncertainty that
has a variance o = 0.1. An arbitrary hard cutoff dy, corresponding
to masses M ~ 5 x 10°Mg, is imposed, and only events with
observed values above this threshold are included in the analysis.
This introduces a large selection effect, and leads to only Ngeq = 39
of the original 100 sources being observed. The true (underlying) and
observed populations of events are represented in the top panel of
Fig. 4.

The Fisher-matrix prediction can again be obtained from equa-
tion (21), this time with & = M and A = «. For sufficiently simple
models, the integrals are analytically tractable. With the power-law
distribution considered here, and in the presence of selection effects,
this is already not possible. Because of this, we obtain the Fisher
prediction in a semi-analytical fashion by solving the integrals with
Monte-Carlo methods, i.e. by generating a sufficiently large set of
Ny samples, {M;}, from a distribution p(M|«), we can approximate
the integral of an arbitrary function X(M) via

1
/X(M)p(M|ot)dM ~ I IZX(M,-). (54)

In this case, we can draw samples from the distribution (53) directly
using the method of inversion. The various terms entering the
arguments of equation (21) — D;, Dj;, P;, and H;; — can be computed
analytically. A MATHEMATICA notebook that solves for the arguments
of the Fisher-matrix integrals can be found in the accompanying
codes. Following this procedure, we find that the Fisher matrix
predicts an error Ao = /(NgeI'y)~! = 0.19. When rescaled to 10
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Figure 3. Fractional error in the estimate of the precision on the population
slope, o, obtained from using only the first term in the Fisher matrix, Iy,
instead of the full Fisher matrix, as a function of the assumed uncertainty on
the measurement of individual event parameters, o.

observations by multiplying by +/39/10, the inferred error is Aa ~
0.37, which is in good agreement with what was obtained in GTV,
despite the differences in the assumptions used in each case.

As in the Gaussian—Gaussian example, we find that the dominant
contribution comes from the first term of the Fisher matrix, I'}. In
this example, this term can be directly computed

Mg M2 Mmax_l ]Mmin2
min( 11 0 Moin) ) (55)

1
I~ N, - max
o (a2 (M2, — M2, )?

ax min

As argued above, the dominance of this term is driven by the assumed
precision of measurement on the individual events. If the noise in
the individual measurements, o, is increased, the other terms make
a larger contribution, although always a sub-dominant contribution
for the range of values we have tried. This is illustrated in Fig. 3,
which shows how the error in the prediction for the precision on
the slope from using only the first term of the Fisher matrix varies
with 0. Even for o = 1, the fractional error from this approximation
is only 0.014. This fact suggests that, when individual events are
expected to be characterized with a precision better than the typical
lengthscale over which the population prior varies, keeping only the
first term in the sum will provide a good estimate for the expected
precision of population inference, regardless of the population model
chosen. This observation and the fact that the first term is typically
relatively easy to evaluate, could help to reduce the complexity of
using our formalism. One obvious application would be to forecast
studies for future detectors, where this formalism for the precision
of population inference can nicely complement estimates for the
precision of individual event parameter inference, estimated with
state-of-the-art Fisher codes (Borhanian 2021; Harms et al. 2022).
We validate the Fisher predictions with an MCMC analysis for
the same data set. The MCMC set-up is similar to the one used
in the first illustrative example. The likelihood is modified, and the
selection function is no longer known analytically, but is approx-
imated by a Monte Carlo integral, pye(e) = (1/Ny) > erfe[(dy, —
M;)/ V2072] /2, with {M;} drawn from the power-law distribution
p(M|a). The posterior, KDE and 20 percentile for the estimate
of o are shown in the bottom panel of Fig.(4). These are com-
pared with the Fisher predictions above, and once again show
very good agreement. We have also repeated the calculation in
the absence of selection effects, d, — —oo, and find a similar
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level of agreement between the Fisher predictions and the MCMC
analysis.

We expect that the accuracy of the population Fisher matrix
prediction should improve as the number of observations included in
the analysis, Ny, increases. We assess this by comparing the result of
MCMC analyses of data sets with increasing numbers of observations
to the population Fisher matrix. We do this first for the case without
selection effects, so that we can make use of the analytical prediction
given above. These results are shown in Fig. 5 as Ny is varied
from 2 to 30 events. For each N, we repeat the MCMC analysis
several times to allow us to estimate the variance in the posterior
width between different runs. This variance is larger when there
are fewer events, as expected, and so more MCMC analyses were
performed for lower Ny,’s to ensure the variance was accurately
characterized. We find that for N[erV 10, the (simplified) Fisher
widths agree well with the numerical simulations. For Ny, < 10, the
differences are progressively more pronounced, but the variance in
the MCMC widths also increases, and the Fisher matrix prediction is
usually within the range spanned by the MCMC runs. The agreement
becomes worse for very small numbers of observations, consistent
with the expectation that this is an approximation valid in the limit
of large N,o. Finally, we check whether a similar level of agreement
is seen in the case when the observations are subject to selection
effects. For this, we obtain the population Fisher matrix prediction
(dashed orange line) by rescaling the A« prediction in Fig. 4 by a
factor N(;ll/z. These results are also shown in Fig. 4. We see a similar
trend — the population Fisher matrix is very accurate for Ny, > 10,
but the accuracy diminishes for very small numbers of observations,
as expected.

4.2 More realistic scenario: SNR distribution in the population

As a final example, we will now make the previous scenario slightly
more realistic by adding an additional property to each source, the
SNR. This example demonstrates how to compute the population
Fisher matrix in a more realistic setting in which the measurement
uncertainties depend on the source parameters, and with a more
realistic model of selection effects.

For this example, we assume that individual events are char-
acterized by two parameters — a mass, M, drawn from the same
power-law population used in the previous example, and an SNR,
p. We assume that p scales with the inverse of distance and that
distances are uniform in Euclidean volume, so we have p(p) o p~*.
We additionally assume that the SNR of a source at a particular
distance is proportional to the mass. These assumptions are encoded
in the SNR distribution

M 3 M
P(p < P) = { L= (dme) P> G . (56)
0

otherwise

The parameter dy,.x represents a maximum distance for sources
in the population and sets a lower limit on the SNR distribution
which avoids divergences. In practice, we choose dmax > Mmax/ P,
where py, is the SNR threshold for detection, so that the exact
choice of dy, does not influence parameter estimation. We note
that the assumption that the SNR distribution is biased toward higher
values for higher mass systems is not a particularly good model
for EMRIs. It would be more appropriate for massive black hole
binary systems, but even then the shape of the LISA sensitivity curve
is such that this would only apply in a certain range of masses.
We choose to make this assumption since we want to demonstrate
that the population Fisher matrix works even when there are more
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Figure 4. Top panel: distribution of masses for the underlying true population of Section 4 (red) and for the observed population (dark gray). The true population
is composed of N = 100 events drawn from a power-law model that is flat in the logarithm of the masses. The threshold has been arbitrarily set at ~5 x 10° M,
leading to 39 events actually being observed. Bottom panel: MCMC posterior distribution for the spectral index describing the mass distribution. The histogram
and KDE are compared against the Fisher estimate obtained as described in the text, demonstrating very good agreement between the two.
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Figure 5. Fisher predictions for the width of the spectral index « as a function
of the number of observed events N, compared to the range of measured
uncertainties obtained over a set of MCMC runs (red and black points with
error bars). The Fisher matrix prediction is approximated with equation (55).
The agreement between the Fisher matrix predictions and the MCMC results
is very good, especially if the number of events is increased beyond N ~ 10.

complicated interactions between the source parameters, including
parameters whose distribution is independent of the population
parameters.

We assume that a GW observation consists of a noisy measure-
ment, p, of p, and a noisy measurement, p M, of pM, so that the GW
likelihood is

- RS
pd=(p, pM)|0) = ZJZOLUM CXp [_(pzog) ]

X exp [—M] . (57)

2
20}

We fix o , = 1, which follows from the definition of p. We assume that
selection is based on p only, with events with p > py, being deemed
detectable. We use py, = 10 in this example. With this likelihood,

the individual source Fisher matrix is

. 1+ M?*/a} pM /o,
Iij _< oMo oot ) (58)

We see that the measurement uncertainties vary from event to event,
with uncertainties in mass scaling like 1/p, as desired 3

We simulate observations of a population of events with true slope
o = 0 and Nys = 499 observed events, by drawing 500/Pge(r)
~ 28370 trial systems from the underlying population. We analyse
these events using MCMC and compare to the predictions of the
population Fisher matrix. Details of how the latter is calculated can
be found in Appendix D. For this example, in the limit o), — 0,
the matrices I'y for X = II, ---, V do not vanish, because we have
fixed o, = 1. However, for a reasonable choice of o = 10Mg,
we find that the contributions from these matrices are again sub-
dominant to the contribution from I'y, making only a ~ 5% change
to the prediction for the uncertainty on «. This is true for a wide
range of choices of o up to at least 10*Mg. A comparison of the
MCMC results and the population Fisher matrix prediction is shown
in Fig. 6, demonstrating once again very precise agreement.

This example has demonstrated that the population Fisher matrix
gives accurate predictions even when using a more complicated
model that includes non-trivial selection effects and heteroscedastic
measurement errors. This model is a more realistic representation
to a GW observation scenario, but the result cannot be directly

3We could have achieved the same result by assuming that the GW data
comprises a measurement of p and of M, with independent Gaussian errors
with variances o, = 1 and o /p, respectively. However, this model cannot
be put into the standard GW likelihood form, equation (3), which assumes the
noise variances are parameter independent. This alternative form of the model
can be analysed using the generalized formalism described in Appendix C,
but we wanted the model to be of the standard GW form. The analysed model
is equivalent to setting h = (p, pM) and S,(f) = ((r/f, (71%,1) in equation (3).
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Figure 6. As Fig. 4 but for the slightly more realistic GW-like population model. Top panel: distribution of masses for the underlying true population of
Section 4 (red) and for the observed population (dark gray). Bottom panel: MCMC posterior distribution for the spectral index describing the mass distribution.

The histogram and KDE are compared against the Fisher estimate obtained as described in the text.

compared to the results presented in GTV, because the assumed
SNR distribution is different. Here, we have assumed that sources
are distributed uniformly in Euclidean space, following an p~*
distribution, with SNRs additionally increased in proportion to M.
In GTV, sources were distributed based on a computation of SNR
that included the impact of other parameters, in particular time to
coalescence. Nearby sources generate enough SNR that they can be
observed several years before merger, which enhances the rate of
nearby events and partially compensates for the fact that there are
a larger number of systems further away. For this reason, the fact
that we find a distribution that is approximately a factor of 3 broader
than GTV is not a cause of concern. Indeed, it is remarkable that
the agreement was so close for the simpler example considered in
Section 4.1.

We conclude this section by using the population Fisher matrix to
explore the impact of the detection threshold, py,, on the precision
of inference of the population parameters for this simple model.
There are two effects of changing the threshold. One effect is that
the population Fisher matrix changes. This represents the average
uncertainty over detected events and so the elements of I'; tend
to become smaller as the threshold is decreased, corresponding to
a worse constraint per event. This is because lower SNR events
tend to provide less precise parameter estimates. The second effect
is that the detection probability, Pdet(i = {a}), changes, increasing
as pg decreases. It is therefore useful to consider the quantity
Il //Paa(@), where T, is the diagonal element of the inverse
of the population Fisher matrix. This quantity is a measure of the
precision on « that could be obtained in a fixed amount of observation
time. We show this quantity, relative to its value for the reference
threshold, pg = 10, in Fig. 7. We see that the precision improves as
the threshold is lowered, indicating that the increase in the number
of events outweighs the decrease in the average precision per event.
In practice, there will be some limit to how much we can lower
the threshold, beyond which we can no longer confidently identify
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Figure 7. Precision of measurement of the slope of the black hole population
distribution obtained in a fixed observation time, as a function of the threshold
needed for detection, pw. The blue curve shows results using the full
population Fisher matrix, while the yellow curve shows results based on I'y
only. Both curves are expressed as ratios relative to the precision estimated
from the full Fisher matrix with pg = 10.

events, or run into limitations on computational power, but within
those constraints these results suggest we should lower the threshold
as much as possible. In general, it is at low thresholds that the
approximation that the individual events can be well represented
by the Fisher matrix will become less valid. This is not fully
captured here because of the simplified assumption of the Gaussian
likelihood. Moreover, a lot of the trend is captured by I'j, which is
independent of that approximation. The yellow line in Fig. 7 shows
the precision estimated from I' alone, again expressed relative to the
value estimated from the full Fisher matrix with py, = 10. We see
that the trend is similar. There is a slightly bigger difference between
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the full and approximate Fisher matrices for the lowest values of py,,
but for all thresholds considered the approximate Fisher matrix gives
a good indication of the achievable precision.

The trend in Fig. 7 is specific to the simple model considered here
and the behaviour will be different in other contexts. However, this
exercise illustrates the usefulness of using the population Fisher
matrix to quickly assess the impact of different assumptions on
the accuracy of inference. We note, however, that when using it
to assess the contribution from low-SNR events, it is important to
check the accuracy of the approximation in that regime, as discussed
in Section 2.1, to ensure that the conclusions are robust.

5 CONCLUSIONS

The Fisher information matrix is a valuable tool for estimating the
precision attainable in parameter inference, especially in contexts
where the cost of doing full posterior estimation via Bayesian
sampling is highly expensive (Vallisneri 2008). The Fisher matrix
has been widely used in GW analyses to make forecasts for the
precision with which the source parameters describing individual
GW signals can be estimated by current and future detectors. In this
paper, we have extended the Fisher matrix concept to the estimation
of the parameters characterizing the population from which a set of
observed sources is drawn. Our result was derived from equation (1),
which is the most general definition for the population Fisher matrix.
We obtained equation (21), which is valid under the assumption
that individual events are observed with high enough SNR that the
measurement uncertainties can be well approximated by the linear
signal approximation. We also identified the part of population
Fisher matrix that is independent of measurement uncertainties,
given by I'j, which is even simpler to evaluate and provides a good
approximation when the individual event measurement uncertainties
are much smaller than the scale on which the population varies.
We have tested this result both analytically and against numerical
Monte Carlo results for a reference Gaussian model (Section 3) and
for a more GW-like scenario (Section 4), in which, we have used
GW events to estimate the slope of a power-law population. We
find that equation (21) is generally in very good agreement with the
numerical results, for a sufficiently large number of observations. In
this case, sufficiently large was only O(10). Results for the power-law
population case can be compared to previous results in the literature
(Gairetal. 2010), and are found to be in very good agreement, despite
very different assumptions. We conclude that we can reproduce
the results of extensive sets of computationally expensive MCMC
simulations much more cheaply, while also correctly including
selection effects. In addition, we found that in the GW-like example
the measurement-error-independent part of the population Fisher
matrix, (I'y); in equation (21), is sufficient to accurately reproduce
the precision estimated from the full Fisher matrix. This is because
the noise-induced uncertainty in the parameter measurements of
each individual event, o, is sufficiently smaller than the scale on
which the population model varies, that measurement errors are
essentially ignorable. This result could be useful to further reduce
the computational cost of computing the population Fisher matrix in
other contexts.

We note that these results are based on the approximation that
individual event measurements are well represented by the individual
event Fisher matrix. There will be contexts in which this is not true,
but measurement uncertainties are important so I'; is not dominant.
We provided a criterion in Section 2.1 that can be used to evaluate
the validity of the approximation. When the approximation is not
valid, equation (21) should still provide a rough estimate of the
precision of inference, or the threshold can be increased such that
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the approximations are valid and a conservative estimate of precision
obtained in this way.

The results presented in this paper represent the first attempt at
describing population inference within a Fisher formalism for generic
population models, and with a likelihood that takes into account
selection effects in the way of Mandel et al. (2019). The formalism
developed here can be used to obtain forecasts for the precision
of population analyses with future ground-based and spaceborne
detectors, which are expected to detect many thousands (or even
millions) of signals. Obtaining such population inference forecasts in
specific contexts of relevance to current and future observations is one
possible future direction for the present project. Finally, it would be
interesting to generalize the results of Cutler & Vallisneri (2007) and
Antonelli, Burke & Gair (2021) to assess inference biases on popula-
tion parameters from waveform modelling errors or confusion noise.
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APPENDIX A: DEALING WITH RATES

The likelihood in equation (6) assumes that the number of events that
are detected conveys no information about the population. Relaxing
this assumption the joint likelihood takes the alternative form

n

prun(diﬁ)} R" expl—R Paa(M)], (A1)

i=1

p({di}|%, R)

in which R is the rate of events occurring in the Universe over the
total time data has been collected, and all other terms are as before.
The derivation of this expression can be found in Mandel et al.
(2019). Imposing an (improper) scale-invariant prior on the total
rate, p(R) o« 1/R, and marginalizing over R, we obtain the form of
the joint likelihood used in equation (6) and (8).

We denote the rate-dependent terms by

Prae(n|R.3) = R" exp[— R Paa(R)]. (A2)
The contribution of these terms to the joint log likelihood is
In prae(n| R, 2) = nIn R — R Paec(R), (A3)

which is maximized when R =n/ Pdel(i). Expanding about this
maximum-likelihood point we can write R = n/Pge + SR and obtain

I prae(n|R, ) = nInn — nn Pee() + nIn(1 + 8 R Paet/n)
—n — SR Py,

=mlnn —n)—nln Pe(h) — "“ +---. (A4

The second term here —nln Pdet(k) is what is needed to change
Pran(d; |A) into p(d; |A) in the product term in equation (A1), reducing
that to the form analysed in the main body of the paper. We deduce
that the asymptotic Fisher matrix for the joint estimation of R and s
is block diagonal

r, o

= ( 0 FR) (AS)
with the shape parameter block, I';, as before and the rate precision
given by the inverse of I'x = P2 /2n, where this result can be
obtained directly from the coefficient of §R” in equation (A4). We
conclude that the precision with which the shape parameters can
be determined does not depend on which particular form of the
likelihood is being used. This makes sense since we know that the
two forms are equivalent for a particular choice of rate prior, and we
expect results to be asymptotically independent of the initial prior
choice. We note also that the precision with which the rate of observed
events, RPg, can be measured is /7, consistent with the expected
uncertainty in the estimation of the rate of a Poisson process.

To conclude this section, we note that in the above we have been
assuming that the rate parameter R is an additional parameter of the
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model, separate to the parameters X that characterize the shape of
the population distribution. If instead, both R and X are functions of
another set of population parameters, (i, we can use the linear signal
approximation to change variables and obtain the usual result that
the Fisher matrix for the /i parameters is

axe arb N dR OR

apc apd T Mapc aud”
In this case, the result is different to what would be obtained by
transforming the Fisher matrix that ignores the rate, which would be
the first term only. This reflects the fact that if R also depends on [,

the measurement of R provides additional information that can help
to improve the estimation of the ji parameters.

(Tea = T)ab 75— (A6)

APPENDIX B: THE ASYMPTOTIC BEHAVIOUR
OF THE FISHER MATRIX

In this section, we will rederive the expression for the Fisher matrix
given in the main body of the paper by directly expanding the
posterior distribution. In doing so, we will derive the form and scaling
of the leading corrections to the Fisher matrix approximation. We will
proceed by computing the posterior mode, mean, and variance in the
limit n 3> 1. These are all random variables, since they depend on the
particular realization of the data that is being analysed, and so we can
characterize them by their expectation value and variance. We will
show how to compute the first two terms in a large-n expansion of
both the mean and variance for all three posterior summary statistics,
and give the result explicitly for the posterior mode. We note that
similar results for corrections to the individual event Fisher matrix
were given in Vallisneri (2008), but those relied on the assumption of
a Gaussian likelihood which permits simplifications. The expansion
presented here is valid for any population-level likelihood, p(d|X).
We write
- 1 <& -
f(n, {d;}, 1) = == > " In p(d;[2). (B1)
naa

such that the posterior distribution is proportional to
expl—nj(n, {d;}, %) + In T (1)]. We use B(n, {d;}, A,) to denote the
solution to

Ui +U" + (Vi + V,f)ﬁj =0 (B2)
where
U,»=(m> - <aln_ﬂ)
I\ B n oA! i
%[ 1 /3%1
Vo= () . v (22T (B3)
’ IAONS B J n \OA A B

The quantity /i, and its derivatives, are averages of a set of inde-
pendent identically distributed (IID) random variables and so have
predictable scalings. The expectation value is O(1), covariances are
O(1/n), three and four point functions are O(1/n%), and so on. In this
case E|[U] = 0, as shown in equation (12) in the main body of the
paper. This facilitates obtaining a solution for ,5 perturbatively

5=5%+51+/§%+

where B% = (E[V)~'u
Bi = EV) [V - EIVDE, + U7
By = @V)' [V —EIVDA + V5], (B4)

in which g ~ n*.
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The Ek’s are random variables, but we can compute their means
E[A] =0
E [8]] = ELVD;' [(ELVDL' =5 +U7]
E[84] = EVD; @VDL EVD,E,
=il = E[(Viy — BV DU
% / Lij (@)l ((d)p(d|A,)dd

SIHY = E[(Viy — ELVy D (Ve — EVaDUn

ijklm

1 -
;/l,ij(d)l,kl(d)l,m(d) p(d|2,)dd

—E[Vi; 1250 — E[VuIZ/Y (B5)

ijm
where we are using the notation /;(d) to denote the derivative
31n p(d|1)/dA’ evaluated at A = A,. Additional indices after the
comma indicate further partial derivatives as usual. The fact that
the first expectation value vanishes is why we have continued the
expansion to three terms, allowing us to obtain the first two terms in
an expansion of the mean.

We can also compute their covariances, using the usual notation
cov(al, b)) = E[(a’ — E[a’])(b) — E[b/])].
cov(By, BY) = (ELVD (EIVD;/ 2"
cov(By, A1) = (EIV), (E[VD (EIVD, 3y,

klmn

cov(Bi, B]) = (E[VD; (EIVD, (ELVD;, (E[V],, Byv by

m klpgmr
— (E[VDy (ELVD,, BhL =Y
cov(By. 1) = (ELVD (ELVD), (E[VD),
x [(EIVI),) Sy + Un Y + Vi zg Y]
E [U;U)]
1 -
= - / (@) ;(d) p(d|x,)dd

Ei‘;ZU = E [(V; — E[V;;DULUI]

uvu
=Y

1 .
- / L (@1 ()L, (d) p(d|3,)dd
—E[V;1zfY
sVVuU _ [(Vu —E[Vi DV — [E[Vkl])UmUn]

ijklmn
nn—1)

=T 4 |:/l.ij(d)l,kl(d) p(d]i,)dd

x / L(@)L,(d) p(d|%,)dd
+ / 1ij(@)(d) p(d|Z,)dd
x / L ()l ,(d) p(d|A,)dd
+m < ]

1 >
+3 / Lij(@) () ()] n(d) p(d]A;)dd

—EVij] S5, — BVl Z )

kimn ijmn

— E[V1E[Vi1ZZY (B6)

All four of these terms are needed to obtain the first two terms in the
covariance of 8. We need only retain terms of O(1/n?) in the final
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expression, which means the last term in 2 l‘j/,f;%fl/ can be ignored and

n(n — 1)/n* replaced by n~2. The final result, keeping the first two
orders is

B 8] ) +cov (8. 8) (B7)

The posterior mode is at A= X, + B + 5. The random variable &
obeys the equation

, 1o ~
0= 8'Vij + 5 (B +8))(B" +89Wiju + Vjo!

1 ) .
+56+ 8B+ HwW,

3
Wi = (b
OA QAT QAR B

WE — 1 33 Inm (B8)
R \anaaionk ) 5

We can find a perturbative solution as we did for B

§ =08, +85 +---
1

N1

where 8! = 3 (ELVD;,! [E[ijl]ﬂ’i ﬁl%

ELVD;" (85 BIEIW ] + B 8L ELWu]
+ (Vi — ELVii) &

8

ralw =

1
+5 Wi = [E[ijl]w’; ﬂg ] (B9)

The means and relevant covariances are

. 1 _
E[s8] = 5([E[V]),—,-' E[Wju] cov ﬂk],ﬂ’%)
E[s,] = @Vt [Eiwi cov (8. 81)
+ E[W;u] cov (5; , 51)

1
+ = (E[VDy, ElWapg ] (ELVD,) (ELVD),, =/

2 gm < jklm

+1 (E[VDs (ELVD), EWUU}

2 Jjklmn

S 1
cov (81.8]) = 5 (ELVD! @D EVI,, (EIVD,
(ELVD),,! (ELVD,, ELWinn JELWipg 12077V

xyrs
— E[8]1E[5]]
S 1
cov (81. 8] ) = 5 EIVD EIVD},) EIVD; EVD;)
ElWim1Z 50"

i gi 1 —1 -1 -l o
cov (31, ﬂl) = 5 (EIVD VD, (EIVD, (EIVD);
[E[Wklm] (([E[V]);rl Exi/pléu + Urﬂ qul/)

— E[8]1E[B]]
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cov (8. 8] ) = ELVDR' (ELVD}, [EWian] ELVD,
((ELVD,L EIVD, ] SYUUY + Uz sly)

xyzpq

+ 3 ELWiam JE[ Wy 1 (ELVD);, (E[VD);,,
(ELVD);, (ELV]Z, HL0Y

pquv
+5 (ELVD, (VDL (EIVD]

(W 12075,

+5 (ELVD,, (EVD,, ShooY] (B10)

mq “klmnpq
where

o = E (Wi — EIW,: DU U,

1 -

— / Lij(d) (), (d) p(d|A,)dd
n

—E[Wii 12!

Y = E[UiU;U]
1 -
= ﬁ/l,i(d)l,]’(d)l,k(d) p(d|A,)dd

Eil;/ZUU = E [U;U;U U]

1 -
=100 @@ par

x / L@ (@) p<d|i,)dd}

1 >
+E/lA,i(d)l.j(d)l,k(d)l,l(d) p(df2,)dd

VOOV = E[(Viy — EIVy DUUU,)
n(n —1) -
= (T {/l,ij(d)l.k(d) p(d|i,)dd
x [ L@@ pari,
+k<l+k< m]
1 -
o5 [ L @L@L@L@ pr)dd
A
ool = E [((Wij — EIWiu DU U,y U, ]
nn —1)

=— [ / Lije(@)1;(d) p(d|3,)dd
x / Ln(@),(d) p(d|%,)dd
+loem+l < n]

1 >
+nf3/l,ijk(d)l,l(d)l‘m(d)l‘n(d) p(d|2,)dd

—E[WiilZ,0 " (B11)

Imn

From these we can construct the leading order covariances
cov (B',87) = cov (ﬂﬂ,S{) + cov (ﬂ{, 5{) + cov (ﬂi, 8’3)
2 2 2
cov (8, 8) = cov (55, 5{) . (B12)

Putting these together, we can obtain the mean and covariance of the
posterior mode, A’ — Al = B + &', expressed as a deviation from the
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true population parameters.
LA — A1 = E[B'] + E[8]
cov ()A\" — )»ﬁ, - A{) = cov (ﬁi, ﬂj) + cov (Si, J-f)
+cov (B, 87) 4 cov (B, 8")(B13)
‘We now turn our attention to the posterior mean and variance. These
are averages over the posterior. The definition of 8 was motivated
to ensure the leading terms of the log posterior can be written as

a quadratic in A— B — A;. Denoting B = X, + 8, averages of a
function f(X) over the posterior then take the form

(f) = ff(}»)g(x)exp [—%(Ai — Bi)(\/i.]. 4 V/]r)()\/ _ Bj)} ax
[ e@exp [~50¢ = BOVy + V)0 — B)] &
Ing(h) = _% k(A = A = AHk — 1k

n . . . ; .
= 57 i =A@ — ADOF = 2aH =4

*p
Xij = | =77 B14
o (awawaxkaxl)ir (B14)

There are further corrections in g(i) from higher derivates in the

expansion, and from the prior terms, W, X7, etc. However, the

contributions from the included terms can be seen to be 1/n down
relative to the leading terms in the integral, and these other corrections
3 . .
are at least 1 /n2 down from leading and are hence sub-dominant.
Integrals of these form are standard and we will make use of the
following results

() = [exp [-1x"T~'x] dx = 27) > ITT (B15)

1
1;;(T) = /xix,- exp [—EXTF"x} dx

= en) /Iy, (B16)
1 Tpr—1
Liju(T) = | xpx;x0x, €Xp —3X x| dx
N
= Q20) 7 /IT (T T + Ty + Tl ) (B17)
1
Lijtmn(D) = /xiijkxzxmxn exp {—EXTF’Ix} dx

= @m) /I (T4 Tl + Tij o T
+ i Tinlim + TitL ji Dy + Tik U T
+ ikl L + Tl i T + Tt T T
+ Tl Cim + Tin Ul + Ui T ji Ui
+Tin T jn Ui + TinUjk i + Ui Ui Ui
+ il jThr) (B18)

where |I"| denotes the determinant of I'. We will also use the notation
fij(F) = I;;(I")/Io(I") and similarly for other terms. In this case, the
covariance matrix I' = (V 4+ V*)~!/n. Every additional factor of T’
therefore introduces an extra negative power of n. This allows us to
identify the dominant terms. To evaluate the above expressions, we
need to be able to compute I, which can be done perturbatively by
noting

n(E[V]I+(V—-E[VD+ V") =1 (B19)
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from which

I
P=(To+T +Ti+)
n 2

(EfVD™!
—(E[VD ™" (V = E[V])

Lo
r

=

Iy =—EVD™! [F% (V- [E[V])+V”] ) (B20)

To obtain the posterior mean, we first compute

(0) = [ eGrexp [~ 507 = B, + V)G - B)] 0

n . ,
= Ip(T) — 3 Wi [B'1ix(T) + B/ Iy () + ﬂllij(r)]
n i njpk n?
- gwijkﬂ BB Ip(I') + ivvi_jkwlmnlijklmn(r)

n
— —XijkLiji ().

5 (B21)

Using similar notation to before we can write

>
I

1) (148, +g1+++)

1 ) .
—SEWie] (B4 (To)je + B} (Tols + By (To)y)

— ZEIW, 18} 6| B}

1
g1 =- E(Wijk — E[WiirD

x (B} o) + B} Tol + B} To)y))

1 . .
— SEWed (BT + BT + BTy
+ BT + Bl (Tou + BL(To) )

— Z(Wije — EIW B 8] B

— SEW;) (BiBLBL + B, BIB, + B B1BY)

1
+ ﬁE[mjk]lE[Wlmn]

11
24 n

Iijklmn(r())

S| =

ELX,ju17ij:(To) (B22)

Now, we compute the posterior mean, expressed as a distance from
the true population parameters

A=A = (= Ay =B+ (0 = BY)

. 1 .
= '+ 1 | Won () + 36784 1a(0)
= Z Xt (B Laan(T) + BB 11 (D)
2

+ ;l76 ijl Wmnp (3ﬂ] Iiklmnp(r)
+ ﬂjﬁkﬂllimnp(r) + Sﬁjﬂkﬁm]ilnp(r)
+3B7B°B' " B" 11, (D)) 1. (B23)

We note that the leading order correction in the bracketed term is 1/n.
To obtain the posterior mean to the same order as 8, we therefore
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only need to retain terms up to g 1 in (g). Specifically, we can write

A== AR Ay

[

Xi i

1 1
2 2

_. . 1 1. ;
=B — —ElWul [ = Lju(To) + 381 B (To)u
6 n 2 2

. g1 1
= ﬁl% + <€2[E[ijz] - E(ijl - [E[ijl])>

Nl =

1. .
x (; iui(Co) + 381 By (Fo)u)
1 2
— CEIW,u] (; (o) s + Ty
+ o))
+3(81 B} + B BTl
+38] B4 (T n )
2 2 2
1 1. ;
— —E[X juim] | B1 = Titim + B1BY BY (To)im
6 2n 2 2 2
1 3 s
+ %[E[ijl][E[Wmnp] ;ﬁ% Iiklmnp(FO)
+ B1 B4 B T (T0) + 381 B B Ty (Do)
+3n8] B B BB} (Toky )
2 2 2 2 2
Finally, we consider the posterior covariance
Ly = (W =)0 = 1))
= (' = BHG/ = B))

+(B'=A)W —B)) +i<ej
+ (B = X\ (B = 1)).

(B24)

(B25)

The term on the first line has a leading order dependence of 1/n,

plus corrections of 1/ n? . The terms on the second and third lines are
O(1/n?) and so are sub-dominant. We deduce

I = é [1;(T) — 2 Wiam (38 Lijim () + BrBIB" ()]

and expand

(B26)

—~
o
-
=
|

/N
=
wIw
—
<
Il
S| = 3
~
=
o=
~—
Pl
|
E
—~
—
o
~
<

_1 E k7 k pl pm B
6 [E[Wklm] ,81 Ix_/lm(r()) + ﬁl ﬂl ﬂl (FO)I_] (B27)
n 2 27202

Using the preceding expressions, we could now compute the mean
and variance of the posterior mean and covariance as we did for the
shift in the posterior mode. However, this calculation is very similar
to the calculations carried out above and is tedious, so we leave it
out. Instead, we note a number of features.

(1) The leading order posterior covariance is constant and equal to
(E[V])~!/n, which is the expression we used to derive the population
Fisher matrix in the body of the paper.

(i1) The leading order difference between either the posterior mode
or mean and the true parameter value has expectation value that scales
like 1/n and variance that also scales like 1/n. Thus, the posterior

MNRAS 519, 2736-2753 (2023)
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bias is noise dominated, i.e. fluctuations due to the particular random
realization of the population that was observed dominate over the
fixed bias. If multiple sets of observations of n events were repeated
and averaged, then this bias would eventually be significant. In
practice, we would never do this since it weakens the precision
of inference. This means that computing corrections to the posterior
mean is unnecessary.

(iii) Similarly, the expectation value of (IA‘%)A_ is zero, so the

i
leading order correction to the expected value of the posterior
covariance scales like n72, while the variance in the posterior
covariance scales like n73. So, fluctuations in the posterior covariance
due to randomness in the observed population are larger than the size

of corrections from the finite number of observations.

APPENDIX C: GENERALIZATION TO OTHER
LIKELIHOODS

Expression 21 was derived for the GW likelihood defined by
equation (3), but it can be extended to more general likelihoods,
p(dlé ). The likelihood enters the result through the definitions of I,
N, D;, and Dj;. For a more general likelihood, we have

__ 3%InpWld)
Ly = 967007
N; = e, (el

90!

where derivatives are evaluated at 6. In the gravitational wave case,

these become
oh > 9h
— | — | d—h( —
307 ) ( @) 367007 >

_— oh

EERNFT'T
3%h
). (C2)
90196

N; = (d — h(6h)

Dropping the second term in the expressions for I' on the grounds
that it is smaller by a factor of o~ ! than the first, we recover the
expressions used in the earlier derivation. In particular, we note that
with this simplification, T';; does not depend on d and hence, we
can take the terms that depend on I' outside of the integral over
data, simplifying the final form of the population Fisher matrix.
For a more general likelihood, we can not assume this is the case,
but have I';;(d, 50) and N;(d, 50). The first contributions to the
population likelihood, I'; takes the same form as before, but the
other contributions are modified to

// 32 Indet(T" + H)
OATOAS
p(Bol %)
x p(d|6 " ddd6 ,
p(d|6h) Pa) o

det

1 92 .
Tmij = ) // EYVETE [(F + H)y, ] NiN;
p( 0| )

Tmi; =

x p(d|fo) dddé,
det
92 1
(M) = —// S P+ ' N
i PO gz,
det
1 9> .
Tv)ij = 5 YN [Pk(r + H)y Pl]
p(Bol %)

% p(d|fo) o ddddp,

det
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where the integrals over d are over detectable data sets. A further
simplification can be obtained if we assume that the variance of I';
over realizations of the data, p(dl@o) is small. This allows us to use
the fact that the expectation value of any function, f(X, Y), of two
random variables X and Y, can be expanded

ELA(X, V)] = f(EIX], E[YD + Var(X)(aXZ)([gm E()

+Cov(X,Y ( )
( ) (axir (EX),E(Y)

+ Svar(r) (54 (€3)

ors )<[E<X>.[E(Y)>
Ignoring all but the leading term allows us to replace I' by its
expectation value. With this additional assumption, the population
Fisher matrix for the general case takes the sane form as before, with
the substitutions I';; — I i» Di — D; and D;; — D;:, where

ijs
.
r=/ {_3‘“”“'”] p(dif)dd

90196
i 31n p(d|f) . 3 Paer(6)
/ [ Z }p( 1Bo) -
B} 31n p(d|6) 3 In p(d|f) -
Di; = . : d|dy)dd C4
=/ [ I (©4)

APPENDIX D: CALCULATION OF THE FISHER
MATRIX FOR THE POWER-LAW POPULATION
WITH SNR DISTRIBUTION

Here, we provide a guide to computing the Fisher matrix for the

more realistic GW-like example described in Section 4.2. The source

parameters are 6 = (p, M) and the population parameter is A= ().
The full population model is

(5 | X) 3M3 1 aMe!
14 = P
dl"3[121X p4 lelxl'lx Mr‘:un
Y (D1)
de( maX mlll) p
from which we can deduce
-4 0
Hij = (f 2+a) | - (D2)
M’l

The single event Fisher matrix, I', was given in equation (58). The
detection probability is

1 (ot — p)
Poet(6) = Serfe { “‘T . (D3)
The determinant of I + H is
rho? 24+« 12+« 24«
det(' + H) = — ——2—1-( 2) (2 2) ( 2)(D4)
iy Oy M p-M Oy
which has first derivative
9 det(I' + H) = ! + ! 4 (D5)
da M2 ol pPM?

and the second derivative vanishes. The integrals required for the
matrices 'y, Iy, and 'y all take the form

R Ax ) pléole)
Px=- / da? <det(l" T H)) Par() do, (D6)
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where
Ao L2 (2 + a) (ow—p) [ (ow—p)
111 2 U]l2/1 P p B
2
o QC+a) C+a)
— P (6
+ <Uf4 2072 M2 det(60)
Ao +a)p 42+ 1 (ew—p)?
e pM? V2 P 2
8 8(2 +a) 42+a) 2a+a)’
Ay = T T oM + 2 T T o
M Oy pM
(24—0{)2 Q2+a2 >
Paet(0p). D7
+ M2 2072 det(B0) (D7)
These terms have first derivatives
0A
8;” = at) exp [_(mn;n)z]
+1 (3 + ) Poa) (D8)
aA]v _ 4 + £ 1% 1 ex _(pth _10)2
b \pM2 o) Sam 2
0Ay Q2+a) (b6+a) 4o >
— = — Pyet (6 D9
o ( 78 -y ooz ) e «(6o) (D9)

and all second derivatives vanish except

A Fisher matrix for GW population inference ~ 2753
9’A B,
= (i ) Pl (D10)

These expressions allow all of the integrands that determine the
different parts of the population Fisher matrix to be evaluated.
The final stage of computing the Fisher matrix is to carry out
the integrals over the population distribution p(éoli). This must
be done numerically, but it is facilitated by doing a coordinate
transformation

M*—M

U(GO) - mex*A}nn:n (Dll)
- v \3

w @) =1~ (54) (D12)

which reduces the population integral

/ p(GolM)dby — / dudv. (D13)

Further computational efficiencies can be obtained by restricting the
range of u considered for each v so that only SNRs p > py — 5 are
included. Codes to compute the Fisher matrix using this procedure
are available at https://github.com/aantonelli94/PopFisher.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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