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Abstract. We give a simple and constructive extension of Rait,ă’s result that every constant-rank operator
possesses an exact potential and an exact annihilator. Our construction is completely self-contained and
provides an improvement over the order of the operators constructed by Rait,ă and the order of the explicit
annihilators for elliptic operators due to Van Schaftingen. We also give an abstract construction of an optimal
annihilator for constant-rank operators, which extends the optimal construction of Van Schaftingen for
elliptic operators. Lastly, we discuss the homological properties of operators in relation to the homological
properties of their associated symbols. We establish that the constant-rank property is a sufficient and
necessary condition for the validity of a generalized Poincaré lemma on spaces of homogeneous maps over
Rd , and we prove that the existence of potentials on spaces of periodic maps requires a strictly weaker
condition than the constant-rank property.
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1. Introduction

Let V , W be R-vector or C-vector spaces of dimensions N , M . We consider a homogeneous
differential operator on Rd from V to W with constant (real or complex) coefficients, that is,

A (D) = ∑
|α|=k

Aα∂
α,
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where the coefficients Aα belong to Lin(V ,W ),α= (α1, . . . , αd ) ∈Nd
0 is a multi-index with modulus

|α| = α1 + ·· ·+αd = k, and ∂α is the composition of partial distributional derivatives ∂α1
1 · · ·∂αd

d .
As our main and only assumption, we require that A (D) satisfies the constant-rank property:
there exists a non-negative integer r such that

rank A(ξ) = r for all ξ ∈Rd − {0}, (1)

where

A(ξ) := ∑
|α|=k

Aαξ
α, ξα := ξα1

1 · · ·ξαd
d , ξ ∈Rd ,

is the principal symbol associated to the operator A (D). The symbol A(ξ) is precisely the
coefficient representation of A (D) in Fourier space, that is,

(A f )̂ (ξ) = (2πi )k A(ξ) f̂ (ξ)

for all Schwartz maps f ∈ S (Rd ;V ). Our setting thus covers all linear homogeneous systems of
real and complex constant coefficients acting on maps over Rd , although many of our results will
be stated in more generality for symbols overKd , whereK is any field.

In order to motivate this framework, let us briefly discuss its origins as well as some elements
of its more recent theory. Operators of constant rank were considered by Schulenberger &
Wilcox [27] to prove Hilbert-space coercive inequalities

‖Du‖L2 ≤C
(‖A u‖L2 +‖u‖L2

)
,

for non-elliptic first-order operators in full space (see also [20, 26, 33]). In [23], Murat built upon
these ideas to establish that (1) is a sufficient condition for the Lp -boundedness of the (extension
of the) canonical L2-projection P : C∞

c (Rd ) → C∞
c (Rd ) onto kerA (D), which he also showed

satisfied

‖u −Pu‖Lp ≤C (p, A)‖u‖Lp

for all 1 < p < ∞. Murat’s work nourished the development of the compensated compactness
theory for Sobolev spaces associated with anisotropic operators (see [23] and references therein).
These inequalities would later be improved by Fonseca and Müller [10] (see also [5] where
the trivial extension to higher order operators is established), who demonstrated that Murat’s
Lp -projection for constant-rank operators gives rise to a Korn-type estimate

‖Dk (u −Pu)‖Lp ≤C (p, A)‖A u‖Lp . (2)

Recently, Guerra and Rait, ă [13] showed that the constant-rank property is also a necessary
condition for the validity of (2).

Lastly, and crucial to the motivation for the content of this note, Rait, ă proved in [25, Theo-
rem 1] that the constant-rank property (1) is also a sufficient and necessary condition for the ex-
istence of potentials associated with real-coefficients constant-rank operators. More precisely, he
proved that a real-coefficient operator A (D) has constant rank if and only if there exists a homo-
geneous polynomial B :Rd → Lin(V ,V ) such that

imB(ξ) = ker A(ξ) for all non-zero ξ ∈Rd . (3)

He exploited this purely algebraic homological property to show that, when restricted to suffi-
ciently regular mean-value zero Zd -periodic maps v :Rd /Zd →V , the constant rank assumption
implies (but is not equivalent) with the following homological property:

A v = 0 =⇒ v =Bu for some u :Rd /Zd →W.

This homology-type result has proved to be a very useful tool to solve some longstanding
questions in the calculus of variations related to the study of oscillations and concentration
effects associated to sequences of PDE-constrained maps (see [4, 14, 15, 21]).
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1.1. Summary of the main results

The first goal of this note is to give an alternative, rather elementary and self-contained gener-
alization of (3) for symbol maps over arbitrary fields K, which avoids the computation via the
Moore–Penrose pseudo-inverse of the principal symbol map ξ 7→ A(ξ). Our construction (see
Lemma 1 and Theorem 10) is a potential B : Kd → Lin(U ,V ) of order r k, which conveys a sub-
stantial improvement on the degree of the potential B(D) associated to A (D) obtained by Rait, ă
for symbols over Rd (which has order 2r k). It should be remarked, however, that in some cases
our potential B(D) may convey more equations (dimU > dimV ). In practice, one can still ar-
gue this is a sensitive gain given that B(ξ) acts linearly on the U -variable, while the order k ′ of
B(D) considerably increases the non-linearity of the ξ-variable of the symbol B(ξ). Despite our
improvement on the order of B(D), our explicit construction may not attain the minimal pos-
sible order. Therefore, in Proposition 17 we give another (abstract) construction of an optimal
potential operator B(D), which extends the optimal construction for elliptic operators by Van
Schaftingen [32]. Finally, since most of our constructions are valid for symbols over Kd , we also
establish in Theorem 6 the existence of an exact homology for symbols over Rd with constant
complex-rank.

Further, we discuss the homological properties of differential complexes associated with
constant-rank operators for spaces of functions defined in the full space Rd . In particular, we
prove that a generalized Poincaré lemma holds for a class of zero mean-value Schwartz functions
v ∈ S (Rd ;V ). This and a simple duality argument, allows us to give a direct extension of the
Poincaré lemma for constant-rank operators on several spaces of homogeneous distributions (see
Theorems 10 and 11). Thus, extending the the Poincaré Lemma’s established in [16, Theorem 3.5]
and in [14, Proposition 3.16]. As a byproduct of this result, we show (see Corollary 12) that if
m ∈ Z, p ∈ (1,∞) and v is a (class) distribution in the homogeneous Sobolev space Ẇ m,p (Rd ;V )
satisfying

A v = 0 in the sense of distributions on Rd ,

then there exists a constant C =C (m, p, A) and a map u ∈ Ẇ m+k,p (Rd ;U ) such that

Bu = v and ‖u‖Ẇ m+k′ ,p ≤C‖v‖Ẇ m,k ,

where k ′ is the order of B(D).
Lastly, we make the observation (see Lemma 14) that the existence of potentials, when re-

stricted to spaces of periodic maps C∞(Td ;V ) in dimensions d ≥ 2, is equivalent to a strictly
weaker property than (3). Exploiting that our symbolic construction works for arbitrary fields, we
prove in Theorem 16 that the integer constant-rank property

rank A(m) = r for all m ∈Zd − {0},

is a sufficient condition for the existence of a potential B(D) when restricted to function spaces
of smooth periodic maps with zero mean-value.

2. Homological properties of polynomial symbols

The homological properties of differential operators that we study in this paper are defined
purely through their (principal) symbol, which is a homogeneous map depending polynomially
on ξ ∈ Rd . For this reason, we first focus on such maps. Applications of this to the theory of
differential operators will be discussed in Section 3. In this first section, we allow a little more
flexibility and, in particular, we will consider fields other than that of real numbers (cf. Remark 7).
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2.1. Notation

Let K be a field of characteristic 6= 2, and let V ,W be finite-dimensional K-vector spaces, of
dimensions dimK(V ) = N and dimK(W ) = M . A symbol

A(ξ) : V →W, ξ ∈Kd ,

is a Lin(V ,W )-valued polynomial on ξ so that each A(ξ) is a linear map from V to W . Let us choose
bases e1, . . . ,eN of V and f1, . . . , fM of W , respectively, so we can think of A(ξ) as the M ×N matrix

A(ξ) = ai
j (ξ), ξ ∈Kd ,

where the coordinates

ai
j ∈K[ξ1, . . . , ξd ], i = 1, . . . , M , j = 1, . . . , N ,

are homogeneous polynomials of the same order. We will denote the columns of the matrix A(ξ)
by a1(ξ), . . . , aN (ξ). Given that a symbol takes values in a space of matrices with K-coefficients,
the integer-valued quantity

rankK A(ξ) = dimK A(ξ)[V ]

is well-defined for all ξ ∈ Kd . We say that a symbol A(ξ) has constant rank if there exists a non-
negative integer r such that

rankK A(ξ) = r for all ξ ∈Kd − {0}. (4)

We shall often simply write rankK A = r .
Exterior products and exterior powers will appear throughout the article. We recall that, ifK is

a field of characteristic 6= 2, and W is an M-dimensional vector space then, for r ≤ M the r -fold
exterior product ∧r W

is the subspace of the r -fold tensor product W ⊗r that is spanned by elements of the form

m1 ∧·· ·∧mr := ∑
σ∈Sr

sign(σ)mσ(1) ⊗·· ·⊗mσ(r )

where σ ∈ Sr is a permutation of the set {1, . . . , r } with sign sign(σ) ∈ {±1}.1 It is known that
∧r W

is a vector space of dimension
(M

r

)
, with a basis given by

wi1 ∧·· ·∧wir

where i1 < ·· · < ir and where w1, . . . , wM is itself a basis of W . It is a classical linear-algebraic fact
that m1 ∧ ·· ·∧mr = 0 if and only if the set {m1, . . . , mr } is linearly dependent or, equivalently, if
dimK span{m1, . . . , mr } < r . We will use this fact repeatedly throughout this work.

2.2. Construction of an annihilator

We maintain the notation of the section above. In particular, A(ξ) : V → W is a homogeneous,
degree k symbol with constant rank rankK A = r . We introduce the vector space

X := (∧r+1 W
)(N

r

)
(5)

1If the characteristic of K is 2, then there are two distinct possible ways to define the exterior powers. To not go into
such matters, we avoid this.
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which has dimension
( M

r+1

)(N
r

)
.2 We are now in position to introduce our main explicit construc-

tion, which is a symbol Q(ξ) : W → X depending on ξ1, . . . , ξd ∈ K in a polynomial manner as
follows:

Q(ξ)(w) := (
ai1 (ξ)∧·· ·∧air (ξ)∧w

)
1≤ i1 <···< ir ≤N . (6)

The following result shows that Q(ξ) is an exact algebraic annihilator of the symbol A(ξ):

Lemma 1. Let A(ξ) : V →W be a homogeneous symbol of degree k onKd with constant rank

rankK A(ξ) = r for all ξ ∈Kd − {0}.

Then, Q(ξ) : W → X is a homogeneous symbol onKd satisfying the following properties:

(1) If r < dimW , then the order of Q(ξ) is r k.
(2) If r = M, then X = {0} and Q(ξ) is the zero operator.
(3) In either case,

im A(ξ) = kerQ(ξ) for all non-zero ξ ∈Kd ,

Proof. Properties (1) and (2) are immediate from the definition, so we only need to show
Property (3) for the non-trivial case when r < dimW . We separate this into proving two set
inclusions. Let ξ ∈Kd be non-zero.

First, we prove that if w ∈ im A(ξ), then Q(ξ)w = 0. By linearity, it suffices to show this
for w = ai (ξ), i = 1, . . . , M . Let I = {i1, · · · , ir } be a strictly ordered subset of {1, . . . , N }. Since
rank A(ξ) ≤ r , either there is a repeated element in {ai1 (ξ), . . . , air (ξ), ai (ξ)} or this set is linearly
dependent. We get

ai1 (ξ)∧·· ·∧air (ξ)∧ai (ξ) = 0 ∀ I =⇒ Q(ξ)ai (ξ) = 0.

This proves that im A(ξ) ⊂ kerQ(ξ) for all ξ ∈Kd − {0}.
Now take w ∈ kerQ(ξ). Since rank A(ξ) ≥ r , there exists a subset I = {i1 < ·· · < ir } ⊆ [1, N ] such

that the set {ai1 (ξ), . . . , air (ξ)} is linearly independent. But by our assumption on w , ai1 (ξ)∧·· ·∧
air (ξ)∧ w = 0, so {ai1 (ξ), . . . , air (ξ), w} is linearly dependent. This means that w belongs to the
span of ai1 (ξ), . . . , air (ξ), and thus to the image of A(ξ). This finishes the proof. �

2.3. The rank over the ring of polynomials

Following [9], we may consider a symbol A(ξ) as a map acting on vector-valued polynomials, that
is, we consider its lifting

K[ξ]V A(ξ) // K[ξ]W .

If we do not assume that rankK A is constant, we can still perform the same construction but now
taking the rank

rankK[ξ] A(ξ)

which is always well-defined. Note that, for every specialization of the variables ξ ∈Kd we have

rankK A(ξ) ≤ rankK[ξ] A(ξ)

and we obtain equality outside of an algebraic set V ⊆ Kn , given by the vanishing of the r × r -
minors of the matrix A(ξ). If ξ ∈Kn −V , then it still holds that im A(ξ) = kerQ(ξ). If, on the other
hand, ξ ∈ V , then Q(ξ) = 0 (cf. [18, Theorem 1.3]).

2For consistency, we convene that
( M

M+1

)= 0. This applies when r = dimW , in which case X = {0}.
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2.4. Homological properties of symbols

The following result says that, if we specialize to the case K = R,C, then the existence of an
annihilator Q(ξ) characterizes all homogeneous symbols of constant rank A(ξ). See Remark 3
below for a discussion on dependence of the result on the choice of fields R, C.

Theorem 2. Let K = R,C, and let A(ξ) : V → W be a homogeneous symbol on Kd . The following
are equivalent:

(1) rankK A = r .
(2) there exists a symbol complex

U
B(ξ) // V

A(ξ) //W
Q(ξ) // X ,

where both B(ξ) and Q(ξ) are homogeneous symbols and

imB(ξ) = ker A(ξ) and im A(ξ) = kerQ(ξ)

for all ξ ∈Kd − {0}.

Moreover, if (1) is satisfied then in (2) we can always take B(ξ) and Q(ξ) homogeneous of
order rk.

Remark 3. Even though for the applications we consider here it is enough to consider K= R or
C, the reader should be aware (cf. Lemma 1) that the proof of (1) ⇒ (2) in Theorem 2 is unchanged
if, instead, we take K to be any field of characteristic different from 2. Note that polynomial
differential operators make sense over any field: we have the algebra of polynomial differential
operators

D
(
Kn)

:=K〈x1, . . . , xn ,∂1, . . . , ∂n〉
/([

xi , x j
]= 0,

[
∂i ,∂ j

]= 0,
[
∂i , x j

]= δi j
)

.

The symbol map is defined using the so-called Bernstein filtration on this algebra, and D(Kn)
contains the subalgebra of constant-coefficient differential operators, which is generated by
∂1, . . . , ∂n and is known to be a polynomial algebra in n variables. See, e.g., [7, 19].

Proof. That (2) implies (1) follows directly from the rank-nullity theorem and the lower semi-
continuity of the rank as follows: Firstly, (2) implies that rankK A(ξ) is an integer-valued contin-
uous function of ξ ∈Kd − {0}. When d > 1 or K = C, Kd − {0} is connected, so rankK A(ξ) is con-
stant. When d = 1 andK=R, the set R− {0} is not connected. However, we can still conclude that
rankR A(ξ) is constant on R>0 and on R<0. Now note that, by homogeneity, A(−ξ) = (−1)k A(ξ).
Thus rankR A(ξ) is a fortiori constant on R− {0}.

To see that (1) implies (2), we shall appeal to the construction of the previous theorem so
that Q(ξ) is precisely the operator constructed there, i.e., X as in eq. (5) and Q as in eq. (6). To
construct B(ξ) we argue by duality, so we need to set-up some notation. For the rest of this proof,
if A : V → W is an operator, then A∗ : W ∗ → V ∗ is its dual map, where as usual V ∗ is the vector
space of linear functionals on V . Moreover, if Y ⊆ V is a subspace, we denote by Y ⊥ := {ϕ ∈ V ∗ |
ϕ(y) = 0 for every y ∈ Y }. It is easy to see that im A(ξ)∗ = ker A(ξ)⊥, and it follows that the dual
A(ξ)∗ is also a symbol of order k and constant rank r . Thus, we may apply the previous theorem
to A(ξ)∗ to find a symbol B(ξ)∗ of order r k and rank dim(V )−r satisfying im A(ξ)∗ = kerB(ξ)∗ for
all ξ ∈Rd − {0}. Dualizing this identity once more and writing B(ξ) := B(ξ)∗∗, we deduce that B(ξ)
is of order r k, of constant rank dim(V )− r and satisfies imB(ξ) = ker A(ξ). �

Remark 4. Note that (2) ⇒ (1) in Theorem 2 crucially uses that K = R or C, for otherwise we
cannot use a continuity argument to conclude that the rank of A(ξ) is constant (compare this
with Remark 7 below).
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2.5. Real symbols with constant rank over C

Since it has been the object of both classical and recent developments in computational com-
mutative algebra [17, 18] and PDE theory [1–3, 6, 8, 11, 28, 29], we also discuss the homological
properties of symbols over R with constant-rank over C. Recall that if V is a real vector space, its
complexification is defined to be

VC :=C⊗RV =V ⊕ iV

where the last decomposition is only as real vector spaces. If f : V → W is a linear map of real
vector spaces, its complexification is

fC := idC⊗R f : VC→WC.

In layperson’s terms, fC(v1 + iv2) = f (v1)+ i f (v2). Note that fC is clearly a linear map of complex
vector spaces.

Definition 5. Given a symbol A(ξ) : V →W on Rd , we define its complexification to be the symbol
A(ξ)C : VC→WC, where A(ξ)C is considered as a polynomial of complex variables.

We have the following:

Theorem 6. Let A(ξ) : V →W be a homogeneous symbol on Rd . The following are equivalent:

(1) rankC A(ξ)C is constant on Cd − {0}.
(2) There exists a symbol complex (on Rd )

U
B(ξ) // V

A(ξ) //W
Q(ξ) // X

where both B(ξ) and Q(ξ) are homogeneous (both have real coordinate coefficients) and
satisfy the exactness properties:

imB(ξ)C = ker A(ξ)C and im A(ξ)C = kerQ(ξ)C

for all ξ ∈Cd − {0}.

Proof. It is easy to see that the complexification of symbols commutes with the construction of
the operators Q(ξ) and B(ξ), from where the result follows. �

Remark 7. The constant-rank property is not an invariant across distinct fields. Take, for in-
stance the Cauchy–Riemann equations

A(D)u = (∂1u1 −∂2u2,∂1u2 +∂2u1) , u :R2 →R2.

Its associated principal symbol is the conformal matrix field A(ξ) = (ξ,ξ⊥). Evidently, A(ξ) is
invertible for all ξ ∈ R2 since its determinant is precisely |ξ|2. However, as a complex map it is
not always invertible. Indeed, its determinant is ξ2

1 + ξ2
2, which is a polynomial with non-trivial

zeroes in C2.

2.6. Regularity properties of the Moore–Penrose symbol

Throughout this section and unless otherwise explicitly stated, we assume K = R. The Moore–
Penrose inverse of M ∈ Lin(V ,W ) is the unique linear map M † : W → V defined by the funda-
mental property:

M †M = projker M⊥ . (7)

Here, the orthogonal space to the kernel (ker M)⊥ is taken with respect to the usual inner product
on V ∼= RN . Given a symbol A(ξ) : V → W on Rd , we may define the Moore–Penrose inverse of
A(ξ) as the unique map A(ξ)† : W →V satisfying

A(ξ)† ◦ A(ξ) = proj(ker A(ξ))⊥ for every ξ ∈Rd − {0}.
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Using the same ideas that motivated the construction of Q(ξ) in Theorem 1, we obtain an
immediate proof of the following fact, see e.g., [25]. (See Remark 9 below about the properties
of the Moore–Penrose pseudoinverse map for symbols on Cd .)

Proposition 8. Let A(ξ) : V → W be a homogeneous symbol on Rd satisfying the constant-rank
property

rank A(ξ) = r for all ξ ∈Rd − {0}.

Then, the projection
ξ 7→π(ξ) := projker A(ξ)⊥

is rational and homogeneous of degree zero onRd −{0}. In particular, the Moore–Penrose pseudoin-
verse map

ξ 7→ A(ξ)†

is rational and homogeneous of degree −k on Rd − {0}.

Proof. Upon taking adjoints, the first statement is equivalent to checking that the map ϕ :
Rd − {0} → Gr(r,W ) : ξ 7→ im A(ξ) is rational. Here, Gr(r,W ) is the Grassmannian of r -dimensional
subspaces in W , which is identified with an algebraic subvariety of the projective space P(

∧r W )
by means of the Plücker embedding [22, 24]. The case where A(ξ) is injective is clear, for the map
ϕ can be decomposed as ξ 7→ a1(ξ)∧·· ·∧ar (ξ) followed by the projection (

∧kW −{0}) →P(
∧kW ),

both of which are rational. For the general case, we work locally. Let ξ ∈ Rd − {0}. We know that
there exist i1, . . . , ik such that ai1 (ξ), . . . , air (ξ) are a basis for im A(ξ). But, since this is equivalent
to the nonvanishing of a minor of A(ξ), the same is true for every ξ′ in a neighborhood of ξ. We
can then run the same argument as in the injective case, with 1, . . . , k replaced by i1, . . . , ik , to see
that the mapϕ is rational in a neighborhood of ξ and is therefore rational everywhere on Rd −{0}.
Finally, since A(ξ) is homogeneous we have that ker A(ξ) = ker A(λξ) for every λ ∈ R and every
ξ ∈Rd , from where homogeneity of degree 0 follows immediately for π(ξ).

Let us now prove the statement on the Moore–Penrose inverse map. We have A(ξ)† A(ξ) =π(ξ).
We record that both A(ξ) and π(ξ) are matrices whose entries belong to the field of rational
functionsR(ξ1, . . . , ξd ). Expanding the product (7) keeping the entries of M † unknown, we see that
the entries of M † solve a linear system of equations over the field R(ξ1, . . . ,ξd ). Thus, its entries
also belong to the field R(ξ1, . . . , ξd ). The claim about the degree of A(ξ)† is clear. �

Remark 9. If, instead of taking K = R we take K = C, then the map ϕ : Cd − {0} → Gr(r,W ) is
still rational, with the same proof as in that of Proposition 8. However, the usual Hermitian form
on CN involves taking complex conjugates on one of its entries, so we obtain that ξ 7→ π(ξ) and
ξ 7→ A(ξ)† are are still rational when considered as functions of ξ and its conjugate ξ.

3. Homological properties of differential operators

3.1. Background theory

In order to lift the homological properties of the symbol complex (algebraic framework) to its
associated differential complex (functional setting), we need to introduce a suitable space of
functions. Let us recall that the space of Schwartz maps

S (Rd ) :=
{

f ∈C∞(Rd ) : sup
α,β

∥∥∥xα∂β f (x)
∥∥∥∞ <∞

}
is the space of smooth maps on Rd whose derivatives of all orders decay faster than any polyno-
mial rate at infinity. We consider its subspace

Ṡ (Rd ) :=
{

f ∈S (Rd ) :
(
∂α f̂

)
(0) = 0 for every multi-index α

}
,
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where

f̂ (ξ) =F f (ξ) :=
∫
Rd

e2πi(ξ·x) f (x)d x,

is the Fourier transform of f . The space Ṡ (Rd ) inherits the same topology of S (Rd ) and with this
topology it is a closed subspace. In particular, we have (see [31, p. 10])

Ṡ (Rd ) =
{
ϕ ∈S (Rd ) : ‖ϕ‖∗k <∞,k ∈N0

}
,

where (see [31, p. 10])

‖ϕ‖∗k = sup
ξ∈Rd ,

0≤|α|≤k

(
|ξ|k +|ξ|−k

)∣∣Dαϕ̂(ξ)
∣∣ , k ∈N0.

Note that if f ∈ Ṡ (Rd ), then ∫
Rd

p(x) f (x)d x = 0, (8)

for all polynomials p ∈ R[x1, . . . , xd ]. As usual we write S ′(Rd ) to denote space of tempered
distributions, which is the topological dual of S (Rd ). The Fourier transform is therefore extended
to S ′(Rd ) by duality. The space Ṡ ′(Rd ) of homogeneous tempered distributions is defined as the
continuous dual space of Ṡ (Rd ). Notice that (8) and the Hahn–Banach theorem allow one to
identify Ṡ ′(Rd ) with the quotient space S ′(Rd )/R[x1, . . . , xd ] of tempered distributions modulo
polynomials. In particular, Lp -spaces are subspaces of homogeneous distributions, that is,

Lp (Rd )∩ Ṡ ′(Rd ) = Lp (Rd ).

It is well-known that F defines a linear isomorphism from S (Rd ;C) into itself, which by
duality also extends to an isomorphism from S ′(Rd ;C) into itself. We write ( q)∨ to denote the
inverse of F . Appealing to the Taylor expansion of f̂ at 0, it is immediate to verify that for every
σ ∈R, the σ-Riesz potential convolution operator

Iσ f := (|ξ|σ f̂
)∨

,

defines an isomorphism from Ṡ (Rd ;C) into itself. Indeed, by the Leibniz rule it follows that if
|σ| ≤ m ∈N, then ∥∥Iσ f

∥∥∗
k ≤Cd ,k,σ‖ f ‖∗2k+m , k ∈N0

Once again, by duality, the σ-Riesz potential Iσ extends to an isomorphism from Ṡ ′(Rd ;C) into
itself. These considerations extend in a natural way to S (Rd ;V ) and S ′(Rd ;V ), the respective
spaces of V -valued Schwartz and tempered distribution spaces. We remind the reader that if
V is a C-space and f ∈ S (Rd ;V ), then f̂ ∈ S (Rd ;V ). If, on the other hand, V is only an R-
vector space, then S (Rd ;V ) ,→S (Rd ;VC), so in this case we naturally have the Fourier transform
f̂ ∈S (Rd ;VC).

3.2. Homology for homogeneous spaces

The following result is a full-space analog of [25, Lemma 2], where a similar result has been
established for functions defined over the flat torus Rd /Zd .

Theorem 10. Let A (D) be a constant coefficient kth order operator on Rd from V to W . The
following are equivalent:

(1) rank A(ξ) is constant on Rd − {0}
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(2) there exists a complex of differential operators

D′(Rd ;U )
B(D) // D′(Rd ;V )

A (D) // D′(Rd ;W )
Q(D) // D′(Rd ; X ) ,

which restricts to an exact differential complex

Ṡ (Rd ;U )
B(D) // Ṡ (Rd ;V )

A (D) // Ṡ (Rd ;W )
Q(D) // Ṡ (Rd ; X ) ,

that is,

imB(D)|Ṡ = kerA (D)|Ṡ and imA (D)|Ṡ = kerQ(D)|Ṡ .

In particular, it also restricts to an exact differential complex

Ṡ ′(Rd ;U )
B(D) // Ṡ ′(Rd ;V )

A (D) // Ṡ ′(Rd ;W )
Q(D) // Ṡ ′(Rd ; X ) ,

on spaces of homogeneous tempered distributions.

Proof. That (2) implies (1) follows from the last assertion in (2), a standard localization argument,
an application of the Fourier transform and Theorem 2. We now prove that (1) implies (2) .
Let B(ξ),Q(ξ) and U , X be the elements of the symbol complex given in Theorem 2. As before,
we write B(D),Q(D) to denote their associated operators, which are well defined on spaces of
distributions. A standard localization and mollification argument, together with an application of
the Fourier transform and (2) in Theorem 2, gives imB(D) ⊂ kerA (D) and imA (D) ⊂ kerQ(D).
This proves that the sequence composed by B(D),A (D),Q(D) defines a differential complex (for
all sub-spaces of distributions that are invariant under differentiation).

In light of a duality argument, to prove the second statement it suffices to explain how to prove
the statement for the differential complex over Ṡ -spaces of functions. We need to show that
kerA (D) ⊆ imB(D), for the inclusion kerQ(D) ⊆ imA (D) is obtained analogously. The proof
follows closely the some of the concepts already contained in [10, 16, 23, 25]. In the following, we
will use the simplified notation A(ξ)a to denote A(ξ)C[a] when V is an R-space and a ∈VC. Let us
fix v ∈ kerA (D). Applying the Fourier transform to v we find that

0 =F (A v)(ξ) = (2πi)k A(ξ)v̂(ξ),

which by construction implies that

v̂(ξ) ∈ imB(ξ)C for all ξ ∈Rd − {0}. (9)

Consider the tempered distribution u ∈S ′(Rd ;UC) defined by the Fourier transform

û(ξ) := (2πi)−r k B(ξ)†v̂(ξ) = (2πi)−r k |ξ|−k (M v̂)(ξ), (10)

where M is the zero-homogeneous profile of B †, which depends smoothly on ξ in the punctured
space Rd −{0}. Since v ∈ Ṡ (Rd ;V ), it follows that ũ = ((2πi)−r k M v̂)∨ belongs to Ṡ (Rd ;UC). Notice
that if V is anR-vector space, then û is a Hermitian function. Given that M is zero-homogenenous
(V ⊗W ∗)-valued map, in this case we also have that M v̂ is Hermitian. From this analysis, we infer
that ũ ∈ Ṡ (Rd ;U ), regardless of V being an R-space or C-space. By the discussion above on the
properties of the Riesz potential, we conclude that u = I−k ′ ũ ∈ Ṡ (Rd ;U ).

We are left only to verify that indeed Bu = v , or equivalently, that

(2πi)r k B(ξ)û(ξ) = v̂(ξ), for all ξ ∈Rd − {0}.

This follows easily from (9) and the fact that

B(ξ)◦B(ξ)† =
[

B(ξ)† ◦B(ξ)
]t = projimB(ξ)

for all nonzero ξ ∈Rd . This proves that kerA (D) ⊆ imB(D) as desired. �
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The fact that the homology of the differential complex is trivial conveys the validity of a
generalized Poincaré Lemma for homogeneous Besov and Triebel–Lizorkin spaces. For a precise
definition and properties of these spaces, we refer the reader to Triebel’s book [31, Ch. 2]. More
precisely, we obtain the following full-space generalized Poincaré lemma:

Theorem 11. Let s ∈ R and let p, q ∈ (0,∞). Let A (D) be a constant coefficient kth order operator
satisfying the constant-rank property

rank A(ξ) = r for all non-zero ξ ∈Rd .

Let X = {B ,F } and let v ∈ Ẋ s
p,q (Rd ;V ) be such that

A v = 0 in the sense of distributions.

Then, there exists a bounded linear map T : Ẋ s
p,q (Rd ;V ) → Ẋ s+k ′

p,q (Rd ;U ) satisfying

B(T v) = v as distributions on Rd ,

where k ′ is the order of B(D).
Moreover, the norm ‖T ‖ of T depends solely on d , s, p, q and A(ξ) : V →W .

Proof. In light of (10) and standard duality arguments, it suffices to verify that

‖I−k ′ (M v)‖
Ẋ s+k′

p,q
.d ,s,p,q,A ‖M v‖Ẋ s

p,q
.p,A ‖v‖Ẋ s

p,q

for all v ∈ Ṡ (Rd ;V ). The first inequality follows directly from [31, Proposition 2.8] (here, we are
using that k ′ depends intrinsically on A(ξ) : V → W ). The second one is a direct consequence of
Mihlin’s theorem [30, Theorem 5.2.2] for such spaces, using that M is a zero-order Lp -multiplier
depending solely on A(ξ) : V →W . �

Lastly, we record a generalized Poincaré lemma for homogeneous Sobolev spaces, which
extends the results contained in [16, Theorem 3.5] and [14, Proposition 3.16]. Let m be a non-
negative integer and let p ∈ (1,∞). The homogeneous Sobolev space Ẇ m,p (Rd ) is the collection
of all f ∈ Ṡ ′(Rd ) such that

‖ f ‖Ẇ m,p = ∑
|α|=m

∥∥∂α f
∥∥

Lp <∞.

Notice that Ẇ 0,p (Rd ) = Lp (Rd ). For negative m we set Ẇ −m,p (Rd ) = (Ẇ m,p (Rd ))′.

Corollary 12. Let m ∈Z. Let v ∈ Ẇ m,p (Rd ;V ) and further assume that

A v = 0 in the sense of distributions on Rd .

Then, there exists u ∈ Ẇ m+k ′,p (Rd ;V ) such that

Bu = v as measurable maps on Rd

and satisfying the Sobolev estimate

‖u‖Ẇ k′+m,p ≤C‖v‖Ẇ m,p ,

where k ′ is the order of B and C depends only on d ,m, p and A(ξ) : V →W .
Moreover, the assignment

Ẇ m,p (Rd ) → Ẇ k ′+m,p (Rd ) : v 7→ u

is linear.
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Proof. First, we address the case when m ≥ 0. By the the previous corollary we know that if
v ∈ Ḟ m

p,2(Rd ), then, with v = I−k ′ (Mu), it holds

‖u‖Ḟ s
m+k′ ,2

.d ,s,m,A ‖v‖Ḟ s
m,2

.

The assertion then follows directly from the facts that (see [30, Theorem 5.2.3/1(ii)] for the
nontrivial case m > 0)

Lp ⊂ Ḟ 0
m,2, Ḟ m

m,2 = Ẇ m,p for m > 0,

and that ‖v‖Ḟ 0
m,2

∼ ‖ q‖Lp on Lp and ‖v‖Ḟ s
m,2

∼ ‖ q‖Ẇ m,p for m > 0. The case for m < 0 is similar,

using that the topological dual of Ḟ s
p,q is isomorphic to Ḟ−s

p,q (this follows directly from the usual
Lp -duality and the way the norm is defined on these spaces, see, e.g., [31, Ch. 2]). �

3.3. The homology for Schwartz functions

Let us give an example that shows that, in general, the homology of an differential complex
(associated with an exact symbol complex)

S (Rd ;U )
B(D) // S (Rd ;V )

A (D) // S (Rd ;W )
Q(D) // S (Rd ; X ) ,

may be non-trivial over spaces of rapidly decaying maps.3 Note that this corrects a minor
oversight in the last assertion of [25, Lemma 2].

Example 13. Let A (∂) be the derivative operator acting on functions of one variable

A (∂)(u) = du

d t
, u :R→R.

This defines an operator on R, from R to R, of rank 1. In particular the symbol A(t ) is onto for
all non-zero t ∈ R and therefore any homogeneous annihilator Q(t ) of A(t ) must be the zero
polynomial. Note, however, that if we consider A (∂),Q(∂) as operators A (∂),Q(∂) : S (R) →S (R)
then kerQ(∂)/ imA (∂) 6= {0}. Indeed, the fundamental theorem of calculus implies that∫ ∞

−∞
du

d t
d t = lim

t →∞u(t )− lim
t →−∞u(t ) = 0 for all u ∈S (R).

However, kerQ(∂) ≡ S (R), which contains functions with non-zero average so that
kerQ(∂)/ imA (∂) is, in fact, infinite-dimensional. Thus, the conclusion of Theorem 10 is not
valid when Ṡ is replaced by S .

3.4. The homology for periodic maps

Instead of working on full space one may consider maps over the d-dimensional flat torus
Td =Rd /Zd . In practice, a map f ∈C∞(Td ) can be identified with a Zd -periodic map in C∞(Rd ).
Moreover, such maps can be decomposed in Fourier series as

f (x) = ∑
m∈Zd

(F f )(m)e2πim·x , x ∈Td ,

where
F f (m) =

∫
Td

f (y)e−2πim·y d y

denotes the Fourier coefficient at m ∈ Zd . Similarly to the properties of the Fourier transform, a
map f ∈C (Td ) is smooth if and only if its coefficients |F f (m)|decay faster than any polynomial as

3The observation that the homology is not trivial for spaces of Schwartz functions is due to André Guerra, who pointed
it out to the first author during a visit at Oxford University.
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|m| →∞ (see for instance [12, Corollary 3.2.10 and Proposition 3.2.12]). Given the identification
with periodic maps, it therefore makes sense to consider the action of A (D) on a map v ∈
D(Td ;V ). Notice that, in this case

F(A v)(m) = (2πi)kA A(m)Fv(m), m ∈Zd .

The corresponding space of homogeneous periodic maps is the space

D#(Td ) =
{

f ∈D(Td ) : F f (0) = 0
}

of periodic functions with zero mean on the unit cube.
The following result (and the example below) shows that there exist operators that possess

an exact potential when acting on spaces of periodic maps, which however possess no exact
potential when acting on functions of Rd :

Lemma 14. Let A (D) be a constant coefficient homogeneous operator on Rd from V to W . The
following are equivalent:

(1) There exists B(D) from U to V such that

imB(m) = ker A(m) for all m ∈Zd − {0}.

(2) There exists B(D) from U to V such that the sequence

D#
(
Td ;U

) B(D) // D#
(
Td ;V

) A (D) // D#
(
Td ;W

)
,

defines a complex of differential operators satisfying

imB(D) = kerA (D).

Proof. Let us prove that (1) implies (2). That B[D#(Td ;U )] ⊂ kerA ∩D#(Td ;V ) follows from
applying the Fourier coefficient decomposition and the set inclusion imB(m) ⊂ ker A(m) for all
nonzero m ∈Zd . That the homology is, in fact, trivial follows from the other inclusion as follows:
if v ∈D#(Td ;V ) satisfies A v = 0, then we may define a periodic U -valued map by setting

u(x) = ∑
Zd−{0}

ame2πim·x ,

where

am = (2πi)−kB B(m)†Fv(m) for all m ∈Zd − {0}.

First, we need to see that u is well-defined. Recall that v is smooth, so that its Fourier coefficients
decay faster than any polynomial (see [12, Corollary 3.2.10]). Since B( q)† is (at worst) negatively
homogeneous, it follows that the coefficients |am | also decay faster than any polynomial. The
trigonometric sum defining u is therefore well-defined, as it is uniformly convergent. In partic-
ular, u is a mean-value zero continuous map with Fu(m) = am . [12, Proposition 3.2.12] further
implies that u is smooth. Moreover, by assumption Fv(m) ∈ ker A(m) for all m ∈Zd . Therefore, by
the identity of the Moore–Penrose inverse we get

(2πi)kB B(m)Fu(m) = B(m)B(m)†Fv(m) = v(m) for all m ∈Zd − {0}.

This proves that Bu = v as desired.
To see that (2) implies (1) we argue as follows. First, we observe that if P ∈ ker A(m) for some

m ∈Zd − {0}, then any constant-polar smooth map of the form

Pϕ(x ·m), ϕ ∈D#(T)

is annihilated by A . By assumption there exists u ∈D#(Td ;U ) such that Bu = v . This gives

(2πi)kB B(m)Fu(m) = PFϕ(m) for all m ∈Zd − {0}.
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Since ϕ was arbitrary, this shows that P ∈ imB(m) for all m ∈ Zd − {0}. This proves the con-
tainment ker A(m) ⊂ imB(m) for all such points. The other containment follows from simi-
lar Fourier coefficient arguments using that the sequence defines a short differential complex:
B[D#(Td ;U )] ⊂ kerA ∩D#(Td ;V ). �

Let us give an example that shows property (1) in Lemma 14 is strictly weaker than the validity
of the constant-rank property for dimensions d ≥ 2.

Example 15. Consider the following operator on R2, from R2 to R2 (an analogous example can
be given for d ≥ 2):

A (D)(u1,u2) = (π∂2u2 −∂1u1,π∂1u2 −∂2u2) .

Its associated symbol is the polynomial matrix

A(ξ) =
(
πξ2 −ξ1 0

0 πξ1 −ξ2

)
, ξ ∈R2.

Notice that rank A = 2 on Z2 − {0} and therefore A (D) is truly elliptic on D#(Td ;R2), that is, its
kernel restricted to D#(Td ;R2) is trivial. It follows that the zero operator B(D) ≡ 0 is the unique
exact potential of A (D) on spaces of periodic maps. On the other hand, the rank of A non-
constant over R2 given that rank A(π,1) = 1. In light of Theorem 10, we conclude that A (D) has
no potential on full-space.

A direct consequence of the previous characterization and our constructions of annihilators
for arbitrary fields is the following sufficiency result:

Theorem 16. Let A (D) be a constant coefficient homogeneous operator on Rd from V to W .
Further assume that

rank A(ξ) is constant on Zd − {0}.

Then there exists an operator B(D) on Rd from U to V with the following propriety: for every
v ∈C ∞(Td ;V ) satisfying ∫

Td
v = 0 and A v = 0,

there exists u ∈C ∞(Td ;U ) satisfying∫
Td

u = 0 and Bu = v.

Proof. By homogeneity it follows that rank A is constant onQd −{0}. The conclusion follows from
the implication (1) ⇒ (2) in Theorem 2 and the previous lemma. Here, we are appealing to the
observation drawn in Remark 3. �

3.5. An optimal construction

We would like to end this section with some comments on the optimality of our construction and,
in particular, compare it to that of Van Schaftingen in the case where A (D) is an elliptic operator,
i.e., A(ξ) is injective for every non-zero ξ. In the elliptic case, our Q and X are simply given by

Q(ξ)(w) = a1(ξ)∧·· ·∧aN (ξ)∧w, X =∧N+1 W.

Where, as a reminder, N = r = dim(V ). The appearance of the
(N

r

)
exponent in the definition

of X for operators of rank r originates from the fact that, while we know that some collection
ai1 (ξ), . . . , air (ξ) forms a basis for im A(ξ), we do not know a priori which one (and this collection
may depend on ξ) so we need to test all of them. In [32, Remark 4.1], Van Schaftingen constructed
an explicit annihilator L from W to W given by the formula

L(ξ) = det(A(ξ)∗ ◦ A(ξ)) idW −A(ξ)◦adj(A(ξ)∗ ◦ A(ξ))◦ A(ξ)∗ ,
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where adj is the adjugate operator. Its associated operator L (D) satisfies an exactness property
analogous to (2) of Theorem 1, but it has order 2dim(V )k = 2r k. In fact, the construction of Rait, ă
in [25] is a generalization of this construction, and it also gives annihilators and potentials of
order 2r k. While the aforementioned constructions require a higher order than ours, its target
space is always W thus creating a system of dimW equations. The number of equations of our
construction, on the other hand, is

(dimV
rank A

)( dimW
rank A+1

)
. The first factor depends on how elliptic A (D)

is, and the second factor on how elliptic its formal adjoint A (D)∗ is. Observe that if A (D) is
elliptic and its image has co-dimension one, then we obtain only one equation

Q(D) = det(a1(D), . . . , aN (D),u) .

Regarding the existence of an optimal annihilator for elliptic operators, Van Schaftingen gave
(see [32, Lemma 4.4]) an abstract construction of an homogeneous operator J (D), which is
minimal in the following sense

K (D)◦ A(D) = 0 =⇒ K (D) =P (D)◦J (D)

for some linear operator P (D) and

ker J (ξ) = im A(ξ) for all ξ ∈Kd − {0}. (11)

Note that our operator Q(D), while improving on the order of those constructed in [25, 32]
may not be of minimal order as it can be seen by comparing our construction with De Rham’s
sequence for dimensions d ≥ 3.

The following result is an extension of Van Schaftingen’s optimal construction for elliptic
operators.

Proposition 17. Let A (D) be a homogeneous degree k operator on Rd from V to W . Further,
assume that

rank A(ξ) = r on Rd − {0}.

There exists a finite-dimensional space G and a homogeneous linear differential operator J (D)
on Rd , with symbol

W
J (ξ) // G

satisfying the following properties:

(i) J (D) is an exact annihilator of A (D), that is,

ker J (ξ) = im A(ξ) for all nonzero ξ ∈Rd .

(ii) If K (D) is an annihilator from W to X , then there exists P (D) from G to X such that

K (D) =P (D)◦J (D).

(iii) In particular, {
kerJ (D) ⊂ kerK (D)

deg J (ξ) ≤ degK (ξ)
for all K (D) ∈K .

If moreover K (D) is an exact annihilator of A (D) of minimal order, then also

dimG ≤ dim X .

Proof. If A : V → W is a map of vector spaces, we denote its adjoint by A? : W → V , defined by
the property (Av, w)W = (v, A?w)V , where the latter pairings are fixed inner products of V ,W .
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Let us first assume that r = 2m+1 is odd. In Theorem 2 we have constructed a potential B(D)
of order r k to A (D). On the other hand, we have the operator A (D)A ?(D) : V → V of order 2k.
We consider the operator

H (D) =H1(D)⊕H2(D)

:=B?(D)⊕A (D)
(
A ?(D)A (D)

)m
: V →U ⊕W

We claim that H is elliptic. Indeed, for a nonzero vector ξ ∈ Rd and every m ≥ 0, ker A(ξ) =
ker(A(ξ)[A?(ξ)A(ξ)]m), so it is enough to check that ker(B?(ξ)) ∩ ker(A(ξ)) = {0}. This follows
because B is a potential of A, and kerB?(ξ) = (imB(ξ)⊥)∗. Note also that H is homogeneous
of degree r k. In particular, we may apply Van Schaftingen’s construction to find a homogeneous
exact annihilator J̃ (D) =J1(D)⊕J2(D) of H (D), satisfying (ii) for H (D) instead of A (D).

We claim that J (D) :=J2(D) satisfies (i)- (iii).
First, we show that (i) holds. We fix ξ ∈ Rd a nonzero vector. By construction, we have that

ker J (ξ) = ker J̃ (ξ)∩W . On the other hand, by the exactness of J̃ (ξ), we deduce that

h ∈ ker J̃ (ξ)∩W ⇔ h ∈ im H(ξ)∩W

⇔ h = A(ξ)
(

A(ξ)?A(ξ)
)m

v, v ∈ kerB(ξ)?.

This shows that ker J (ξ) = A(ξ)(A(ξ)?A(ξ))m[kerB(ξ)?]. Since A(ξ) is an exact annihilator of B(ξ),
it further holds V = kerB(ξ)?⊕ker A(ξ). We thus conclude that

ker J (ξ) = A(ξ)
(

A(ξ)?A(ξ)
)m

[V ] = A(ξ)[V ] = im A(ξ).

This proves (i).
Next, we prove (ii). To this end, let K (D) be an annihilator of A (D) and consider the operator

K̃ (D) :=K (D)◦πW , where πW : U ⊕V →W is the canonical projection onto the W -coordinate.
Clearly, K̃ (D) is an annihilator of H (D) and hence, by construction, it factors through J̃ (D).
We may thus find P (D) such that K̃ (D) = P (D) ◦ J̃ (D). By construction, we get K (D) =
P (D)◦J (D). This shows that every annihilator of A (D) factors through J (D) which is precisely
the statement in (ii). As a side note, notice that it necessarily holds

G = ∑
ξ∈Rd

im J (ξ),

for otherwise the factorization property would fail.
Lastly, we claim that (iii) follows from (i)-(ii). The fist part of (iii) follows directly from (ii).

For the the second part, we notice that if K (D) is an exact annihilator of minimal order, then,
by minimality, the property (ii) guarantees the existence of a linear map L : G → X such that
K (D) = L ◦J (D). Moreover, since ker J (ξ) = kerK (ξ) for all nonzero ξ, we deduce that L is one-
to-one when restricted to G =∑

ξ∈Rd im J (ξ). In particular dimG = dimL[G] ≤ dim X , which is the
sought statement. This completes the proof of (i)-(iii) when r = 2m +1 for some m ≥ 0.

The case when r = 2m is even follows analogously by considering the exact potential Q(D) :
U →W of A ?(D) : W →V and set

H (D) :=Q?(D)⊕ (
A (D)A ?(D)

)m
: W →U ⊕W

we claim that H (D) is elliptic. Indeed, for any nonzero ξ ∈ Rd it holds ker(A(ξ)A?(ξ)) =
ker A?(ξ). It is therefore enough to check that kerQ?(ξ)∩ker A?(ξ) is trivial, and this follows since
kerQ?(ξ) = (ker A?(ξ)⊥)∗. Now we run a similar reasoning as in the odd r case. This completes
the proof of Proposition 17. �

4. Examples

Below we show how our construction can be used to find an optimal annihilator of two well-
known and relevant operators.
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4.1. Gradients

The gradient operator D acts on vector fields u :Rd →Rm as

Du =
(
∂ui

∂x j

)
i , j

, 1 ≤ i ≤ m, 1 ≤ j ≤ d .

An application of the Fourier transform shows that the columns of its symbol are precisely

e j ⊗ξ := e jξ
t , ξ ∈Rd , j ∈ {1, . . . , m}.

Note that we have

(ei ⊗ξ)∧·· ·∧ (em ⊗ξ) =
d∑

i1,...,im=1
P1,i1 ∧·· ·∧Pm,imξi1 · · ·ξim ,

where Pi , j is the m×n matrix defined by (Pi , j )a,b = δi ,aδ j ,b . It follows that the annihilator Q(ξ) is

Q(ξ)w = ∑
i1, ..., im ,q=1, ...,d

p=1, ...,m

(
P1i1 ∧·· ·∧Pm,im ∧Pp,q

)
ξi1 · · ·ξim wp,q

Let k ∈ I = {1, . . . , m} and let 1 ≤ i (1)
k < i (2)

k ≤ d . From the expression above it follows that the
coefficient of Q(ξ)w corresponding to the basis element P1,i1 ∧·· ·∧Pk,i (1)

k
∧Pk,i (2)

k
∧·· ·∧Pm,im is

given by

(−1)d−k−1
∏

j ∈ I−{k}
ξi j

(
ξi (1)

k
wk,i (2)

k
−ξi (2)

k
wk,i (1)

k

)
.

Thus, up to an isomorphism, we have:

Q(D) = Dm−1 Curl,

where “curl” is the row-wise curl operator on Rm×d -valued fields, that is,

curl M =

 curl M 1

...
curl M m

 , curl(v1, . . . , vd ) = (∂r vs −∂s vr )r,s=1, ...,d .

Since Dm−1 is elliptic, we observe that a minimal annihilator of the gradient is the row-wise curl,
as one would expect from de Rham’s sequence.

4.2. The equations in linear elasticity

Consider the symmetric gradient in three dimensions, given by

Eu = sym(Du) = 1

2

(
Du +Dut ) , u :R3 →R3.

This is an operator from R3 → R3×3
sym, the space of symmetric 3 × 3-matrices, that has a basis

{Si , j }i ≤ j , where Si , j is the symmetrization of Pi , j . We will also consider Si , j for j ≤ i , with the
understanding that Si , j = S j ,i . Notice that the columns of the symbol map L(ξ) are

l (ξ)i =
∑

j

(
1+δi j

)
ξ j Si j , i = 1,2,3.

Let w ∈R3×3
sym and consider

Q(ξ)w = l (ξ)1 ∧ l (ξ)2 ∧ l (ξ)3 ∧w. (12)

This is an element of
∧4R3×3

sym, that is a
(6

4

)= 15-dimensional space with basis Si1, j1 ∧Si2, j2 ∧Si3, j3 ∧
Si4, j4 , where (im , jm) ∈ {1,2,3}× {1,2,3} for m = 1, . . . , 4 and the obvious restrictions on (im , jm).
We will find the coefficient of each basis vector in the expression (12).
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Let us start with those basis vectors that, up to a reordering of the wedge factors, are of the
form S11 ∧S22 ∧S33 ∧Si j with i 6= j . There are 3 of them, and a quick computation shows that the
Si i ∧S j j ∧Skk ∧Si j coefficient of Q(ξ)w is given (up to a multiplicative constant) by

ξk

[
2ξiξ j wi j −ξ2

i w j j −ξ2
j wi i

]
. (13)

Moving on, we now look at the coefficient of an element of the form Si i ∧S j j ∧Si j ∧S j k , for
i 6= j and k 6∈ {i , j }. There are

(3
2

)×2 = 6 basis elements of this form, and it is straightforward to see
that the Si i ∧S j j ∧Si j ∧S j k coefficient is given (up to a sign) by

ξ j

[
2ξiξ j wi j −ξ2

i w j j −ξ2
j wi i

]
. (14)

In total, Equations (13) and (14) give us 9 equations of order 3, which can be presented as D◦F (D)
and since the gradient is elliptic, they may be reduced to 3 equations of order 2:

2ξiξ j wi j −ξ2
i w j j −ξ2

j wi i (i 6= j ). (15)

We still need to find the coefficients of 15−9 = 6 basis vectors. There are
(3

2

) = 3 basis vectors
of the form Si i ∧S j j ∧Si k ∧S j k and the coefficient of this basis vector is, up to a multiplicative
constant, given by

ξi
(
2ξiξ j w j k −ξiξk w j j

)−ξ j
(
2ξiξ j wi k −ξ jξk wi i

)
. (16)

The coefficients of the three remaining basis vectors Si i ∧ Si j ∧ Si k ∧ S j k are given (up to
multiplicative constant) by

ξi
[
ξ jξk wi i −ξiξk wi j −ξiξ j wi k +ξ2

i w j k
]

(17)

We would like to observe that, just as in (14), these equations can be simplified to a system
of equations of order 2. If ξ1ξ2ξ3 6= 0, then all right factors of (17) have to vanish. If, on the other
hand, ξi = 0 for some i then we need to show that for { j ,k} = {1,2,3}− {i }, ξ jξk wi i = 0. But thanks
to (16) we have that ξ jξk wi i = 0. In particular (17) vanishes if and only if so does

ξ jξk wi i −ξiξk wi j −ξiξ j wi k +ξ2
i w j k . (18)

Conversely, it is straightforward to verify that (16)-(17) vanish provided that (18) vanishes. It thus
follows from our construction that the operator

Q′(D) = (
∂ j k wi i −∂i k wi j −∂i j wi k +∂i i w j k

)
i , j ,k ,

(
i ∉ { j ,k}, 1 ≤ j ≤ k ≤ 3

)
,

is an exact annihilator of E(ξ).
Finally, we would like to observe that Q′(D) is equivalent to the St.-Venant compatibility

equations
3∑

i=1

(
∂ j i wi k +∂ki wi j −∂i j wi i −∂i i w j k

)
j ,k , j ,k = 1,2,3,

which is well-known to be an optimal exact annihilator of E(D). Note that the equations (15)
are precisely the diagonal equations of the St.-Venant system, and the equations (17) are the off-
diagonal equations of the St.-Venant system.
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