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Abstract
Ahyperplane arrangement is called formal provided all linear dependencies among the
defining forms of the hyperplanes are generated by ones corresponding to intersections
of codimension two. The significance of this notion stems from the fact that complex
arrangements with aspherical complements are formal. The aim of this note is twofold.
While work of Yuzvinsky shows that formality is not combinatorial, in our first main
theorem we prove that the combinatorial property of factoredness of arrangements
does entail formality. Our second main theorem shows that formality is hereditary,
i.e., is passed to restrictions. This is rather counter-intuitive, as in contrast the known
sufficient conditions for formality, i.e., asphericity, freeness and factoredness (owed to
our first theorem), are not hereditary themselves.We also demonstrate that the stronger
property of k-formality, due to Brandt and Terao, is not hereditary.
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1 Introduction

In the study of hyperplane arrangements it is of central concern to connect algebraic or
topological properties (over C) with combinatorial invariants encoded by their inter-
section lattices. Yet another important theme is to investigate the behavior of a given
notion under the standard arrangement constructions of restriction and localization.
Following this philosophy, the aim of our note is to relate the combinatorial notion of
factoredness with the general concept of formality on the one hand and on the other
to complete the picture about the behavior of formality with respect to restriction and
localization, complementing previous results in the literature.

A hyperplane arrangementA is formal provided all linear dependencies among the
defining forms of the hyperplanes inA are generated by dependencies corresponding
to intersections of codimension 2 of the members of A (see Sect. 2.3). Over the
complexnumbers this property is impliedby K (π, 1)-arrangements (seeTheorem2.4).

A property for arrangements is said to be combinatorial if it only depends on the
intersection lattice of the underlying arrangement. Yuzvinsky [25, Ex. 2.2] demon-
strated that formality is not combinatorial, answering a question raised by Falk and
Randell [14] in the negative. Yuzvinsky’s insight motivates the following notion.
Suppose A is a formal arrangement. We say A is combinatorially formal if every
arrangement with an intersection lattice isomorphic to the one of A is also formal.
In view of Yuzvinsky’s result it is therefore startling that even this strong form of
formality is afforded by the combinatorial property of factoredness (see Sect. 2.8).
This is the content of our first main result.

Theorem 1.1 If A is factored, then it is combinatorially formal.

In [14], the authors raised the question whether freeness (see Sect. 2.7) also implies
formality. This was settled affirmatively by Yuzvinsky in [25, Cor. 2.5].

While both, freeness and asphericity, do imply formality, it is not known whether
the former are combinatorial or not (cf. [15, Prob. 3.8]). For the concept of freeness
this is a longstanding conjecture due to Terao (cf. [19, Conj. 4.138]).

A property for arrangements is said to be hereditary if it is inherited by every
restriction of the underlying arrangement. Freeness, asphericity, and factoredness are
known to not be hereditary in general (cf. [11], [2, Thm. 1.1], and Example 2.16,
respectively). It is thus rather surprising and counter-intuitive that formality on the
other hand, which is entailed by each of these properties, is hereditary. This is the
content of our second main theorem.

Theorem 1.2 Formality is hereditary.

The notion of formality was further refined to the concept of k-formality by Brandt
and Terao [5, Def. 4.4] (see Sect. 5). In the setting of [5], formality coincides with 2-
formality.Higher formality is stronger than formality, cf. [5, Ex. 5.1]. In [5, Thm. 4.15],
Brandt and Terao extended Yuzvinsky’s result [25, Cor. 2.5] by showing that free
arrangements are k-formal for al k. Extending [5, Thm. 4.15] further, in [10, Thm. 1.1],
DiPasquale employed homological methods based on those developed in [5] to char-
acterize freeness of a multiplicity of an arrangement and showed as a consequence that
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the latter implies k-formality for all k, [10, Cor. 4.10]. We emphasize that Theorem
1.2 does not extend to the stronger notion of k-formality, see Example 5.1.

A property for arrangements is said to be local if it is passed to every localization of
the ambient arrangement. Freeness, asphericity, and factoredness are all local (cf. [19,
Thm. 4.37], [20, Lem. 1.1], and the proof of [24, Cor. 2.11], respectively). In contrast,
this fails for formal arrangements of rank at least 4 (cf. the example following [25,
Def. 2.3]). However, as an application of Theorem 1.2, we in turn show that localiza-
tions at modular flats of formal arrangements are formal again, see Corollary 5.2.

Moreover, it is also known that if X is a modular flat of A of corank 1 and the
localization AX is free, K (π, 1), or factored, then so is A itself (cf. [22, Rem. 2.8],
[23], and [22, Rem. 2.25], respectively). In Corollary 5.3, we show that this property
also holds for formality.

Following Yuzvinsky [25, Def. 2.3], we say that A is locally formal provided that
each localization of A is formal. Since freeness, asphericity, and factoredness are
all local and each affords formality, each of these properties implies local formality.
Since formality is not passed to localizations in general, as noted above, the class of
formal arrangements properly encompasses the classes of free, factored and K (π, 1)-
arrangements. The following is immediate from Theorem 1.2.

Corollary 1.3 Local formality is hereditary.

The paper is organized as follows. In Sects. 2.1 and 2.2, we recall some standard
terminology and introduce further notation on hyperplane arrangements and record
some basic facts on modular elements in the lattice of intersections of an arrangement.
The notions of formality and k-formality are recapitulated from [5] in Sect. 2.3. This
is followed by a brief discussion of the concept of line closure of a subset of an
arrangement. Here we review Falk’s criterion that the presence of an lc-basis entails
combinatorial formality (Proposition 2.3). This in turn is the key ingredient in our
proof of Theorem 1.1. Short recollections on the fundamental notions of K (π, 1)-
arrangements (Sect. 2.5) and simplicial arrangements (Sect. 2.6) follow. In Sects. 2.7
and 2.8, the concepts of free and factored arrangements are recalled. Theorems 1.1
and 1.2 are proved in Sects. 3 and 4, respectively.

In our final section, we present some complements to our main developments. Here
we demonstrate in Example 5.1 that Theorem 1.2 does not extend to higher formality.
In addition, we present a family of combinatorially formal arrangements Kn of rank
n ≥ 3 which fail to be free, K (π, 1), and factored (Example 5.4). These are natural
subarrangements of the Coxeter arrangement of type Bn .

For general information about arrangements we refer the reader to [19].

2 Recollections and Preliminaries

2.1 Hyperplane Arrangements

Let K be a field and let V = K
� be an �-dimensional K-vector space. A hyperplane

arrangement A = (A , V ) in V is a finite collection of hyperplanes in V each con-
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taining the origin of V . We also use the term �-arrangement for A . We denote the
empty arrangement in V by ��.

The lattice L(A ) ofA is the set of subspaces of V of the form H1∩ . . .∩Hi where
{H1, . . . , Hi } is a subset ofA . For X ∈ L(A ), we have two associated arrangements,
firstly AX := {H ∈ A | X ⊆ H} ⊆ A , the localization of A at X , and secondly,
the restriction of A to X , (A X , X), where A X := {X ∩ H | H ∈ A \ AX }. Note
that V belongs to L(A ) as the intersection of the empty collection of hyperplanes and
A V = A . The lattice L(A ) is a partially ordered set by reverse inclusion: X ≤ Y
provided Y ⊆ X for X ,Y ∈ L(A ).

Throughout, we only consider arrangementsA such that 0 ∈ H for each H inA .
These are called central. In that case the center T (A ) := ⋂

H∈A H ofA is the unique
maximal element in L(A ) with respect to the partial order. A rank function on L(A )

is given by r(X) := codimV (X). The rank of A is defined as r(A ) := r(T (A )).
For 1 ≤ k ≤ r(A ) we write Lk(A ) for the collection of all X ∈ L(A ) of rank k.

2.2 Modular Elements in L(A )

We say that X ∈ L(A ) ismodular provided X+Y ∈ L(A ) for every Y ∈ L(A ), [19,
Cor. 2.26]. We require the following characterization of modular members of L(A )

of rank r − 1, see the proof of [4, Thm. 4.3].

Lemma 2.1 Let A be an arrangement of rank r . Suppose that X ∈ L(A ) is of rank
r − 1. Then X is modular if and only if for any two distinct H1, H2 ∈ A \AX there is
an H3 ∈ AX such that r (H1 ∩ H2 ∩ H3) = 2, i.e., H1, H2, H3 are linearly dependent.

Next, we record a refined geometric version of a standard fact about modular elements
in a geometric lattice, cf. [1, Prop. 2.42] or [19, Lem. 2.27].

Lemma 2.2 LetA be an arrangement of rank r . Suppose that X ∈ L(A ) is modular
of rank q. Then there is a complementary intersection Y ∈ L(A ) of rank r−q (i.e., X∩
Y = T (A )) such that the arrangements (AX/X , V /X) and (A Y /T (A ),Y/T (A ))

are linearly isomorphic.

Proof Let X = H1 ∩ . . . ∩ Hq . Then there are Hq+1, . . . , Hr ∈ A such that T (A ) =
H1∩ . . .∩Hr , i.e., Y = Hq+1∩ . . .∩Hr is complementary to X . Due to the modularity
of X for all K = H ′ ∩ Y ∈ A Y , we have H = X + K ∈ AX , H ′ ∩ Y = H ∩ Y = K ,
and furthermore, this correspondence is bijective. Consequently, the quotient map
Y/T (A ) → V /X , v+T (A ) 	→ v+ X , which is an isomorphism by the choice of Y ,
maps A Y /T (A ) to AX/X . 
�

2.3 Formality and k-Formality

The notion of formality is due to Falk and Randell [14]. Here we give the equivalent
definition by Brandt and Terao [5]. Let (eH | H ∈ A ) be the basis of aK-vector space
indexed by the hyperplanes in A . For each H ∈ A , choose a linear form αH ∈ V ∗
such that ker αH = H . Consider the map

⊕
KeH → V ∗ defined by eH 	→ αH
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and let F(A ) be the kernel of this map. Note that A is linearly isomorphic to the
arrangement {F(A )⊥∩ker xH | H ∈ A } in F(A )⊥, where (xH | H ∈ A ) is the dual
basis to (eH | H ∈ A ). We say an element x ∈ F(A ) has length p if x has exactly
p non-zero entries. Let F2(A ) be the subspace of F(A ) generated by all x ∈ F(A )

of length at most 3. Then, A is said to be formal if F2(A ) = F(A ). Note that if
r(A ) = 2, then F2(A ) = F(A ), so each rank 2 arrangement is formal. As indicated
in the introduction, a localization of a formal arrangement need not be formal again,
see the example after [25, Def. 2.3].

The following generalization of formality is due to Brandt and Terao [5]. If X ∈
L(A ), then there is a natural inclusion F2(AX ) ↪→ F2(A ). If x ∈ F(A ) is of
length 3, then there is an associated X ∈ L2(A ) with x ∈ F2(AX ) ⊂ F(A ). Thus,
A is formal if and only if the map

π2 :
⊕

X∈L2(A )

F(AX ) −→ F(A )

is a surjection. The definition of k-formality in [5] is recursive and does not require the
choice of linear forms as before. To emphasize the use of this alternative definition,
we follow the notation from [5], which differs from the one above.

Let R0(A ) = T (A )∗ be the dual space of the center ofA . For each X ∈ L(A ), we
have a surjective map i0(X) : R0(AX ) → R0(A ) defined by restricting the domain to
T (A ). Then, for 1 ≤ k ≤ r(A ), define Rk(A ) recursively as the kernel of the map

πk−1(A ) :
⊕

X∈Lk−1

Rk−1(AX ) −→ Rk−1(A ),

where themapsπk are defined as follows. (Note that
⊕

X∈L0
R0(AX ) = R0(��) = V ∗

and π0 : V ∗ → R0(A ) = T (A )∗ is just restriction.) For each k ≥ 1 and each
Y ∈ L(A ) with rk(Y ) ≥ k, there is a map

ik(Y ) := ik(A ,Y ) : Rk(AY ) → Rk(A ),

defined recursively via the commutative diagram

Rk(AY ) −−−−→ ⊕

X∈Lk−1
X≤Y

Rk−1((AY )X )
πk−1(AY )−−−−−→ Rk−1(AY )

⏐
⏐
�ik (Y )

⏐
⏐
� jk−1(Y )

⏐
⏐
�ik−1(Y )

Rk(A ) −−−−→ ⊕

X∈Lk−1

Rk−1(AX )
πk−1(A )−−−−−→ Rk−1(A )

In the diagram, Rk((AY )X ) = Rk(AX ) since X ≤ Y , so jk−1(Y ) is defined as the
direct sum of identity maps and zero maps. Then ik(Y ) is defined through the universal
property of the kernel Rk(A ). With this define πk as the sum of the ik(X) for X ∈
Lk(A ).
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If A is formal, we say it is 2-formal. For k ≥ 3, we say A is k-formal if A is
(k−1)-formal and the map πk is surjective. Note that an arrangement of rank r which
is (r − 1)-formal is trivially k-formal for all k ≥ r .

2.4 Line Closure and Combinatorial Formality

We want to establish further combinatorial properties of A that imply formality. The
following definitions are due to Falk [12] for matroids, but they can easily be applied
to arrangements as well. LetB ⊂ A be a subset of hyperplanes. We sayB is closed
if B = AY for Y = ⋂

H∈B H . We call B line-closed if for every pair H , H ′ ∈ B
of hyperplanes, we have AH∩H ′ ⊂ B. The line-closure lc(B) of B is defined as
the intersection of all line-closed subsets of A containing B. The arrangement A is
called line-closed if every line-closed subset of A is closed. With these notions, we
have the following criterion for combinatorial formality, see [12, Cor. 3.8]:

Proposition 2.3 Let A be an arrangement of rank r . Suppose B ⊆ A consists of r
hyperplanes such that r(B) = r and lc(B) = A . ThenA is combinatorially formal.

We call such a subset B ⊆ A as in Proposition 2.3 an lc-basis of A . Note that the
converse of Proposition 2.3 is false [12], i.e., a combinatorially formal A need not
admit an lc-basis.

Furthermore, the existence of an lc-basis does not imply higher formality. Brandt
and Terao give an example of an arrangement that is 2-formal but not 3-formal, see [5,
Ex. 5.1]. Here an lc-basis is easily calculated, e.g. take {H1, H2, H4, H5} in loc. cit.

Finally, we note that the presence of an lc-basis does not descend to localizations,
i.e., if B ⊆ A is as in Proposition 2.3 and X ∈ L(A ), then it need not be the case
that BX is an lc-basis of AX , see Example 5.1.

2.5 K(�, 1)-Arrangements

A complex �-arrangement A is called aspherical, or a K (π, 1)-arrangement (or that
A is K (π, 1) for short), provided the complement M(A ) of the union of the hyper-
planes inA inC� is aspherical, i.e., is a K (π, 1)-space. That is, the universal covering
space ofM(A ) is contractible and the fundamental group π1(M(A )) ofM(A ) is iso-
morphic to the group π . This is an important topological property, for the cohomology
ring H∗(X ,Z) of a K (π, 1)-space X coincides with the group cohomology H∗(π,Z)

of π . The crucial point here is that the intersections of codimension 2 determine the
fundamental group π1(M(A )) of M(A ).

By Deligne’s seminal result [9], complexified simplicial arrangements are K (π, 1).
Likewise for complex supersolvable arrangements, cf. [13] and [23] (cf. [19, Prop.
5.12, Thm. 5.113]). As restrictions of simplicial (resp. supersolvable) arrangements are
again simplicial (resp. supersolvable), the K (π, 1)-property of these kinds of arrange-
ments is inherited by their restrictions. However, we emphasize that in general, a
restriction of a K (π, 1)-arrangement need not be K (π, 1) again, see [2] for examples
of this kind.
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The following theorem due to Falk and Randell [14, Thm. 4.2] establishes formality
as a necessary condition for asphericity.

Theorem 2.4 If A is a K (π, 1)-arrangement, then it is formal.

Thanks to [7], simpliciality is a combinatorial property. Thus, as simplicial arrange-
ments are K (π, 1), it follows that all such are combinatorially formal, see also Sect.
2.6. It is not known whether this is true for aspherical arrangements in general.

Remark 2.5 Thanks to an observation by Oka, if the complex arrangement A is
K (π, 1), then so is every localization AX for X ∈ L(A ), e.g., see [20, Lem. 1.1].

The following is an immediate consequence of Terao’s work [23] (see also [19, Sect.
5.5]).

Lemma 2.6 Let A be a complex arrangement of rank r . Suppose that X ∈ L(A ) is
modular of rank r − 1. If AX is K (π, 1), then so is A .

2.6 Simplicial Arrangements

LetA be a real arrangement in V ∼= R
�. Then, the connected components of the com-

plementV \⋃H∈A H are called chambers and are denoted byC (A ). The arrangement
A is called simplicial if all C ∈ C (A ) are (open) simplicial cones. It was already
mentioned above that simplicial arrangements are aspherical and therefore formal. Fur-
thermore, simpliciality is actually a combinatorial property of the intersection lattice,
as was observed in [7]. Consequently, the formality of (real) simplicial arrangements
is combinatorial.

In Proposition 2.8 below, we demonstrate that a simplicial arrangement naturally
satisfies the stronger property of having an lc-basis. Explicitly, owing to Proposi-
tion 2.8, the walls of each chamber of a simplicial arrangement yield such a special
basis.

For a chamber C ∈ C (A ), we write W C := {H ∈ A | 〈C ∩ H〉 = H} for the
walls of C , where 〈A〉 denotes the linear span of a subset A ⊆ V . Two chambers
C, D ∈ C (A ) are adjacent provided 〈C ∩ D〉 ∈ A .

The following lemma, which is a special case of [8, Lem. 3.3], supplies the essential
argument for the proof of Proposition 2.8 below.

Lemma 2.7 Let C, D ∈ C (A ) be two adjacent and simplicial chambers with a com-
mon wall H ∈ W C ∩ W D, and let H ′ ∈ W D \ {H}. Then, H ′ ∈ W C if and only if
|AH∩H ′ | = 2.

We require a bit more notation, cf. [8, Sect. 2.2]. A sequence (C0,C1, . . . ,Cn−1,Cn)

of distinct chambers in C (A ) is called a gallery if for all 1 ≤ i ≤ n the cham-
bers Ci and Ci−1 are adjacent. The set of all galleries is denoted by G(A ). The
length l(G) of a gallery G ∈ G(A ) is one less than the number of chambers in G.
For a gallery G = (C0, . . . ,Cn), we denote by b(G) = C0 the first chamber and
by t(G) = Cn the last chamber in G. For two chambers C, D ∈ C (A ), we set
dist(C, D) := min {l(G) | G ∈ G(A ), b(G) = C, t(G) = D}, and for H ∈ A we
set dist(H ,C) := min {l(G) | b(G) = C, t(G) = D, H ∈ W D}.
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Proposition 2.8 Let A be a simplicial arrangement. Then for each C ∈ C (A ) we
have lc(W C ) = A .

Proof Let H ∈ A . We argue by induction on dist(H ,C). Firstly, we have
dist(H ,C) = 0 if and only if H ∈ W C . Hence, H ∈ lc(W C ) in this case.
Now suppose dist(H ,C) > 0. For the induction step, let D ∈ C (A ) be such
that dist(H ,C) = dist(C, D) and H ∈ W D . There is a chamber E ∈ C (A )

adjacent to D with dist(C, E) < dist(C, D). By the induction hypothesis, we see
that W E ⊆ lc(W C ). Now, set H ′ := 〈D ∩ E〉. By considering the distances, we
apparently have H ∈ W D \ W E and consequently, by Lemma 2.7, there is another
H ′′ ∈ W E \ {H ′} such that H ∈ AH ′∩H ′′ , i.e., H ∈ lc(W E ) ⊆ lc(W C ), which
concludes the induction. 
�

In viewof Proposition 2.3, Proposition 2.8 again shows that simplicial arrangements
are combinatorially formal.

Remark 2.9 Proposition 2.8 implies that an arrangement A over some field K with
L(A ) isomorphic to the intersection lattice of a real simplicial arrangement is com-
binatorially formal. For instance, if K is a finite field, the combinatorial formality of
A could previously not be deduced by the line of implications “real simplicial ⇒
K (π, 1) ⇒ formal” due to Deligne [9] and Falk and Randell [14].

2.7 Free Hyperplane Arrangements

Let S = S(V ∗) be the symmetric algebra of the dual space V ∗ of V . Let Der(S) be
the S-module of K-derivations of S. Since S is graded, Der(S) is a graded S-module.

Let A be an arrangement in V . For H ∈ A , we fix αH ∈ V ∗ with H = ker αH .
The defining polynomial Q(A ) of A is given by Q(A ) := ∏

H∈A αH ∈ S. The
module of A -derivations is defined by

D(A ) := {θ ∈ Der(S) | θ(Q(A )) ∈ Q(A )S}.

We say that A is free if D(A ) is a free S-module, cf. [19, Sect. 4].

Remark 2.10 Note that the class of free arrangements is closed with respect to taking
localizations, cf. [19, Thm. 4.37]. For X ∈ L(A ) modular of rank r − 1, also the
converse holds, e.g. see [22, Rem. 2.8].

In [25, Cor. 2.5], Yuzvinsky showed that freeness entails formality. This was extended
to k-formality by Brandt and Terao in [5, Thm. 4.15]:

Theorem 2.11 If A is free, then it is k-formal for each k.

Note that the converse of Theorem 2.11 is false, e.g. see Example 5.1.

Following DiPasquale [10, Def. 4.9], we say that A is totally formal provided A
is locally k-formal for all k. Thanks to [19, Thm. 4.37] and Theorem 2.11, if A is
free, it is totally formal. Using [10, Cor. 4.10], it is easy to see that this property of
A is passed to the restriction A H of A to a hyperplane H ∈ A . For, owing to [26,
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Thm. 11], the Ziegler multiplicity is free onA H and so [10, Cor. 4.10] shows thatA H

is totally formal. Note that Corollary 1.3 is valid without the freeness requirement on
A and gives local formality for any restriction A H .

2.8 Factored Arrangements

The notion of a factored arrangement is due to Terao [24]. It generalizes the concept
of a supersolvable arrangement, see [18, Thm. 5.3] and [19, Prop. 2.67, Thm. 3.81].
Factoredness is a combinatorial property and provides a general combinatorial frame-
work to deduce tensor factorizations of the underlying Orlik–Solomon algebra, see
also [19, Sect. 3.3]. We recall the relevant notions from [24] (cf. [19, Sect. 2.3]):

Definition 2.12 Let π = (π1, . . . , πs) be a partition of A .

(a) π is called independent, provided for any choice Hi ∈ πi for 1 ≤ i ≤ s, the
resulting s hyperplanes are linearly independent, i.e., r(H1 ∩ . . . ∩ Hs) = s.

(b) Let X ∈ L(A ). The induced partition πX ofAX is given by the non-empty blocks
of the form πi ∩ AX .

(c) π is a factorization of A provided

• π is independent, and
• for each X ∈ L(A ) \ {V }, the induced partition πX admits a block which is a
singleton.

If A admits a factorization, then we also say that A is factored.

We record some consequences of the main results from [24] (cf. [19, Sect. 3.3]). Here
A(A ) denotes the Orlik–Solomon algebra of A .

Corollary 2.13 Letπ = (π1, . . . , πs) be a factorization ofA . Then the following hold:

(i) s = r = r(A ) and

Poin(A(A ), t) =
r∏

i=1

(1 + |πi |t);

(ii) the multiset {|π1|, . . . , |πr |} only depends on A ;
(iii) for any X ∈ L(A ), we have

r(X) = |{i | πi ∩ AX �= ∅}|.

Remark 2.14 If A is non-empty and π is a factorization of A , then the non-empty
parts of the induced partition πX form a factorization ofAX for each X ∈ L(A )\{V };
cf. the proof of [24, Cor. 2.11]. For X in L(A )modular of rank r − 1, also the converse
holds, e.g. see [22, Rem. 2.25].

We record the following relation between factored and aspheric arrangements, due
to Paris, [21].

Theorem 2.15 IfA is a complexified, factored arrangement inC3, thenA is K (π, 1).
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Falk and Randell posed the question whether Theorem 2.15 does hold in arbitrary
dimensions [15, Probl. 3.12]. Theorem 1.1 is strong evidence for that.

We close this sectionwith an example illustrating that factoredness is not hereditary,
using Theorem 2.15.

Example 2.16 Let A be the ideal arrangement in the Weyl arrangement of type D4
where the associated ideal in the set of positive roots of the root system of type D4
consists of all roots of height at least 4.Owing to [22, Thm. 1.31 (ii)],A is (inductively)
factored. In [2, Ex. 3.2], a restriction A H of A is exhibited which is not aspherical.
It then follows from Theorem 2.15 that A H is not factored.

3 Proof of Theorem 1.1

Let π = (π1, . . . , π�) be a factorization of A . We call a subset {H1, . . . , H�} of A a
section of π if Hi ∈ πi for each i = 1, . . . , �. Note that because π is a factorization
ofA , every section of π consists of linearly independent hyperplanes. The following
lemma paves the way for our proof of Theorem 1.1.

Lemma 3.1 Let π be a factorization of A , S be a section of π and H ∈ A . Then
there exists a section T of π such that S ∪ {H} ⊂ lc(T ).

Proof Since π is a factorization of A , if we pick two hyperplanes H , H ′ in a block
of π , then the induced partition πH∩H ′ contains a singleton block. If H �= H ′ then
|AH∩H ′ | ≥ 3 and if H = H ′ then πH∩H ′ = ({H}); in either case the singleton block
of πH∩H ′ is uniquely determined by H , H ′. Define s(H , H ′) to be the hyperplane in
this singleton block. Note that s(H , H ′) = H if and only if H = H ′.

Let π = (π1, . . . , π�), and let ι : A → {1, . . . , �} be the indicator function of
each block, i.e., H ∈ πι(H) for each H ∈ A . Pick an arbitrary section S of π and an
arbitrary hyperplane H ∈ A and define the sequences

H : N0 → A , i 	→ Hi ,

:̄ N0 → {1, . . . , �}, ī := ι(Hi ), and

S : N0 → {sections of π}, i 	→ Si

inductively as follows: As starting parameters choose H0 := H , and S0 := S. In the
i th step writing Si = {Ki,1, . . . , Ki,�} such that Ki, j ∈ π j for j = 1, . . . , �, define

Hi+1 := s(Hi , Ki,ī ) and Ki+1, j :=
{
Hi if j = ī

Ki, j else
for j = 1, . . . , �.

This means Hi is swapped against Ki,ī in the new section Si+1 and Hi+1 becomes the
singleton hyperplane associated to Hi and Ki,ī . Note, both Hi , Ki,ī belong to πī and
so, by construction, Si+1 is again a section of π for every i ∈ N0.

The following property is easy to see. For all integers p, q with 0 ≤ p < q and
for every K ∈ {Hp, Kp,1, . . . , Kp,�}, either K ∈ Sq or there is a j ∈ {p, . . . , q − 1}
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such that K = K j, j̄ . Since A is a finite set, we can choose the smallest two integers
p < q such that Hp = Hq . We argue by (reverse) induction that K j, j̄ ∈ lc(Sq) for
every j = 0, . . . , q.

For j = q there is nothing to prove. Assume that 0 ≤ j < q and the hypothesis is
true for k with j < k ≤ q. If H j = K j, j̄ or H j+1 = K j, j̄ , then the sequence becomes
stationary and we have K j, j̄ = Kq,q̄ ∈ Sq .

Otherwise both H j and H j+1 are either in Sq or of the form Kk,k̄ for some j <

k ≤ q. Due to the induction hypothesis, we have H j ,H j+1 ∈ lc(Sq). Since H j+1 =
s(H j , K j, j̄ ), we have K j, j̄ ∈ AH j ∩H j+1 ⊂ lc(Sq), which completes the proof. 
�
Corollary 3.2 If π is a factorization of A , then there exists a section S of π such that
lc(S) = A .

Proof Let S be a section of π such that lc(S) is of maximal cardinality amongst all
sections of π . For H ∈ A , with Lemma 3.1, there is a section T such that {H} ∪
S ⊂ lc(T ). Thus, {H} ∪ lc(S) ⊂ lc(T ), and because S was chosen maximal, we get
lc(S) = lc(T ) and finally H ∈ lc(S). 
�
Armed with Proposition 2.3 and Corollary 3.2, we can now address Theorem 1.1.

Proof of Theorem 1.1 Let π be a factorization of A . With Corollary 3.2 there is a
section S of π such that lc(S) = A . Since π is independent, we have r(

⋂
S) = �.

Thus, by Proposition 2.3, A is combinatorially formal. 
�
We show the versatility of Theorem 1.1 by improving a result from [16]. In [16,
Thm. 3.5], the authors prove an addition-deletion theorem for factored arrangements.
For, let π be a partition ofA and let H0 ∈ π1 be fixed. Consider the induced partitions
π ′ ofA ′ by removing H0 and π ′′ ofA ′′ by intersecting the parts π2, . . . , π� with H0.
To ensure thatπ ′′ is a factorization, in addition, Hoge and Röhrle require the bijectivity
of the restriction map ρ : A \ π1 → A ′′ defined by ρ(H) = H ∩ H0.

Theorem 3.3 LetA be a non-empty arrangement of rank � and let π = (π1, . . . , π�)

be a partition ofA . For H0 ∈ π1, consider the arrangement triple (A ,A ′,A ′′). Two
of the following statements imply the third:

(i) π is a factorization of A ;
(ii) π ′ is a factorization of A ′;
(iii) ρ : A \ π1 → A ′′ is bijective and π ′′ is a factorization of A ′′.

Using Theorem 1.1, we can prove a stronger criterion for the deletion part of the
theorem. It turns out that the bijectivity of ρ : A \ π1 → A ′′ is a strong enough
requirement on its own.

Proposition 3.4 Let π = (π1, . . . , π�) be a factorization ofA . Let H0 ∈ π1. Suppose
that the restriction map

ρ : A \ π1 → A ′′, H 	→ H ∩ H0,

is bijective. Then π ′ is a factorization for A ′ and π ′′ is a factorization for A ′′.
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Proof Since ρ is bijective,π ′′ is an independent partition ofA ′′. LetY ∈ L(A ′′). Note
that Y can also be considered as an element of L(A ). Sinceπ is a factorization, there is
a singleton part in πY . If πi ∩AY is a singleton for some i > 1, then the bijectivity of ρ
implies that π ′′

i ∩A ′′
Y is a singleton as well. Therefore, π ′′ is not a factorization ofA ′′

if and only if for some Y ∈ L(A ′′), the only singleton part in πY is {H0} = π1 ∩AY .
Suppose that this is the case. Then, if H ∈ AY \ {H0}, the bijectivity of ρ implies that
AH∩H0 = {H , H0}, so there are no linear dependencies of rank 2 inAY involving H0.
With Remark 2.14, AY is factored, so by Theorem 1.1 it is formal. The formality of
AY implies that H0 is a separator insideAY , i.e., r (AY \{H0}) = r(AY )−1. Because
of this there exists X ∈ L(A ) with AX = AY \ {H0}. Again, by Remark 2.14,
AX is factored, so πX has a singleton part. Our assumption implies π1 ∩AX = ∅ and
|πi ∩ AX | = |πi ∩ AY | > 1 for 2 ≤ i ≤ �, a contradiction. It follows that π ′′ is a
factorization for A ′′. By the deletion part of Theorem 3.3, π ′ is also a factorization
for A ′. 
�
Remark 3.5 (a). The converse of Theorem 1.1 is false. In [17], Möller constructs a real
3-arrangement which is combinatorially formal whose characteristic polynomial does
not factor over the integers, thus in particular, it is not factored, cf. Corollary 2.13 (i). In
addition, Möller’s example also fails to be K (π, 1), as it satisfies the “simple triangle”
condition of Falk and Randell, [14, Cor. 3.3]. Note that this example is actually k-
formal for all k.
(b). In view of Theorem 2.4, Theorem 1.1 is strong support for an affirmative answer to
a question raised by Falk and Randell [15, Probl. 3.12], whether complexified factored
arrangements are always K (π, 1), extending Theorem 2.15.

4 Proof of Theorem 1.2

Let V be an �-dimensional vector space over some fieldK. For a subspace X ⊆ V we
denote by AnnV ∗(X) = { f ∈ V ∗ | f |X ≡ 0} the subspace of V ∗ of all forms which
vanish on X .

Recall from Sect. 2.3 that for an arrangementA in V , F(A ) is defined as the kernel
of the map π1 : K(A ) := ⊕

H∈A AnnV ∗(H) → V ∗, (αH | H ∈ A ) 	→ ∑
H∈A αH .

For a subarrangement B ⊆ A we clearly have a natural inclusion F(B) ↪→ F(A )

(induced by the natural inclusion K(B) ↪→ K(A )). If B = AX we denote this
inclusion by iX . Recall that an arrangement A is formal if and only if the map

π2 :=
∑

X∈L2(A )

iX :
⊕

X∈L2(A )

F(AX ) → F(A ),

(aX | X ∈ L2(A )) 	→
∑

X∈L2(A )

iX (aX ),

is surjective.
In the following, we fix an arrangement A and an intersection Z ∈ L(A ). The

subsequent propositions yield Theorem 1.2 step by step.
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Proposition 4.1 There exists a surjective map ψ1 : K(A ) → K(A Z ) such that the
diagram

K(A ) V ∗

K(A Z ) Z∗

π1

ψ1 res |Z
π Z
1

(4.2)

commutes, whereπ Z
1 denotes the correspondingmap forA Z . Furthermore, for Y ≥ Z

the induced diagram

K(AY ) K(A )

K(A Z
Y ) K(A Z )

ψ1,Y ψ1 (4.3)

also commutes.

Proof For K ∈ A Z set

ψK :
⊕

H∈AK \AZ

AnnV ∗(H) → AnnZ∗(K ),

(αH | H ∈ AK \ AZ ) 	→
∑

H∈AK \AZ

αH |Z ,

which is obviously surjective. Note that A \ AZ = ⊔
K∈A Z (AK \ AZ ). Then

K(A ) K(A Z )

K(A \ AZ )

proj

ψ1:=(
⊕

ψK )◦proj
⊕

ψK

does the job (since for H ∈ AZ and αH ∈ AnnV ∗(H) we have αH |Z = 0). The
commutativity of the diagram (4.3) is obvious. 
�
Proposition 4.2 The canonical map ψ̃1 : F(A ) → F(A Z ) between the kernels
induced by the diagram (4.2) is surjective.

Proof By Proposition 4.1 we have the following diagram with exact rows:

0 F(A ) K(A ) V ∗ 0

0 F(A Z ) K(A Z ) Z∗ 0

ψ̃1 ψ1

π1

res |Z
π Z
1

If we look at the map induced by π1 between the kernels of ψ1 and res |Z , we see that
under this map K(AZ ) ⊆ ker(ψ1) maps onto AnnV ∗(Z) = ker(res |Z ). Since ψ1 is
surjective, by Proposition 4.1, the snake lemma yields coker(ψ̃1) = 0. 
�
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Proposition 4.3 For the map ψ̃1 we have

ψ̃1(im(π2)) ⊆ im(π Z
2 ).

In particular, the induced map coker(π2) → coker(π Z
2 ) is surjective.

Proof Since, by definition, we have im(π2) = ∑
X∈L2(A ) iX (F(AX )), it suffices to

show that ψ̃1(iX (F(AX ))) ⊆ im(π Z
2 ) for each X ∈ L2(A ). For Y ≥ X , we have

iX (F(AX )) ⊆ iY (F(AY )). If X ∈ L2(A ) then there is a Y ∈ L2(A Z ) with Y ≥ X .
Since the diagram (4.3) commutes, the same holds for the inducedmaps on the kernels,
i.e., ψ̃1 ◦ iY = i ZY ◦ ψ̃1,Y , and we get

ψ̃1(iX (F(AX ))) ⊆ ψ̃1(iY (F(AY ))) ⊆ i ZY (F(A Z
Y )) ⊆ im(π Z

2 ),

which concludes the proof. 
�

Corollary 4.4 (Theorem1.2) LetA be a formal arrangement. Then for any Z ∈ L(A )

the restriction A Z is formal, too.

5 Complements and Examples

In this section, we provide some complements and applications to the main develop-
ments.

Thanks to Theorem 1.2, formality is inherited by restrictions. In view of the results
by DiPasquale [10] and due to a lack of examples of non-free k-formal arrangements
in dimensions at least 5, it is not clear whether Theorem 1.2 extends to higher formality
(i.e., k-formality for k ≥ 3). The fact that this is not the case is demonstrated by our
next example. This was found by means of an implementation of a modified “greedy
search” algorithm based on ideas presented by Cuntz in [6].

Example 5.1 Consider the 5-arrangement A consisting of 11 hyperplanes in K5 with
defining polynomial

Q(A ) = x1x2x3x4x5(x1 + x3)(x1 + x3 + x5)(x1 + x2 + x4)(x1 + x2 + x4 + x5)

· (x1 + x2 + x3 + x5)(x1 + x2 + x3 + x4 + x5).

We note that the underlying matroid ofA is regular, i.e., is realizable over any fieldK.
We proceed to show that A is 4-formal (and hence k-formal for all k). To see that A
is 2-formal, first observe that there are six relations of rank 2:

α1 + α3 − α6 = 0, α2 + α7 − α10 = 0,
α3 + α9 − α11 = 0, α4 + α10 − α11 = 0,
α5 + α6 − α7 = 0, α5 + α8 − α9 = 0,
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where αi is the i th linear form in the order as it appears in Q(A ) above. Thus, the
map π2 : ⊕

X∈L2

F2(AX ) → F(A ) is defined by the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1 0 0 −1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 −1 0
0 0 1 0 0 0 0 0 1 0 −1
0 0 0 1 0 0 0 0 0 1 −1
0 0 0 0 1 1 −1 0 0 0 0
0 0 0 0 1 0 0 1 −1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which is of rank 6. Since dim F(A ) = |A |−r(A ) = 11−5 = 6, it follows that π2 is
surjective, so A is 2-formal. We also see that ker(π2) = R3(A ) = {0} and therefore
R3(AX ) = {0} for any X ∈ L3(A ) as well. Thus, π3 : ⊕

R3(AX ) → R3(A ) is
surjective and its kernel is R4(A ) = {0}, so the map π4 : ⊕

R4(AX ) → R4(A ) is
surjective and A is 4-formal.

The five coordinate hyperplanes ker(x1), ker(x2), . . . , ker(x5) form an lc-basis of
A and thus the arrangement is combinatorially formal by Proposition 2.3. Yet, the
restriction A H to H = ker(x2) in K4, which has defining polynomial

Q(A H ) = x1x2x3x4(x1 + x3)(x1 + x3 + x4)(x1 + x2)(x1 + x2 + x4)

· (x1 + x2 + x3 + x4),

fails to be 3-formal. To see this, again consider the rank 2 relations of A H :

α1 + α2 − α7 = 0, α1 + α3 − α5 = 0,
α2 + α6 − α9 = 0, α3 + α8 − α9 = 0,
α4 + α5 − α6 = 0, α4 + α7 − α8 = 0,

where αi is the i th linear form in the order as it appears in Q(A H ) above. The matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0 0 −1 0 0
1 0 1 0 −1 0 0 0 0
0 1 0 0 0 1 0 0 −1
0 0 1 0 0 0 0 1 −1
0 0 0 1 1 −1 0 0 0
0 0 0 1 0 0 1 −1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

is of rank 5, so its kernel R3(A H ) is of dimension 1. Consider the following table of
the non-trivial rank 3 intersections in L(A H ) and the non-trivial rank 2 flats they are
contained in. For the set {Hi1, . . . , Hik } we write i1i2 . . . ik as a shorthand.

From the table it is obvious that the rank 2 relations in every rank 3 localization
of A H are linearly independent, so R3((A H )X ) = {0} for every X ∈ L3(A H ).
We conclude that the map π3 : ⊕

R3((A H )X ) → R3(A H ) is not surjective and
therefore A H is not 3-formal.
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Moreover, for X = ker(x1) ∩ ker(x2) ∩ ker(x4), the rank 3 localization AX is
obviously not formal. Consequently, AX fails to be factored, K (π, 1) (for K = C),
and free, owing to Theorems 1.1, 2.4, and 2.11, respectively, and thus also A fails to
be factored, K (π, 1) (for K = C), and free, thanks to Remarks 2.14, 2.5, and 2.10,
respectively.

Finally, the argument in the last paragraph also shows that the given lc-basis of A
does not descend to one for AX .

Non-trivial X ∈ L3(A
H ) Non-trivial Y ∈ L2(A

H ) with Y < X

1 2 3 5 7 1 2 5, 1 3 4
1 2 4 7 8 1 2 4, 3 4 5
1 2 6 7 9 1 2 4, 2 3 5
1 3 4 5 6 1 2 4, 3 4 5
1 3 5 8 9 1 2 3, 2 4 5
2 3 6 8 9 1 3 5, 2 4 5
2 4 5 6 9 1 4 5, 2 3 4
3 4 7 8 9 1 4 5, 2 3 4
4 5 6 7 8 1 2 3, 1 4 5

Owing to [25] or by the example above, formality is not inherited by arbitrary
localizations. The following consequence of Theorem 1.2 shows however that it is
passed to special localizations.

Corollary 5.2 Suppose X ∈ L(A ) is modular. If A is formal, then so is AX .

Proof Since X ∈ L(A ) is modular, it follows from Lemma 2.2 that AX/X ∼=
A Y /T (A ) for a Y ∈ L(A ) complementary to X . AsA is formal, so is the restriction
A Y , thanks to Theorem 1.2. 
�
The following consequence ofLemma2.1 gives a converse toCorollary 5.2 in corank 1.

Corollary 5.3 If X ∈ L(A ) is modular of corank 1, then AX is formal if and only if
A is formal.

In the following example, we present a family of real arrangementsKn of rank n ≥ 3,
none of which is free, K (π, 1), or factored. Nevertheless, each is combinatorially
formal. So that in particular, here formality is not a consequence of any of the other
sufficient properties.

Example 5.4 LetBn be the reflection arrangement of the hyperoctahedral groupof type
Bn and letAn−1 be the braid arrangement of type An−1, a subarrangement ofBn . Let

Kn := Bn \ An−1

be the complement of An−1 inBn . Thus Kn has defining polynomial

Q(Kn) =
n∏

i=1

xi
∏

1≤i< j≤n

(xi + x j ).
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It was shown in [3, Ex. 2.7] that Kn is not K (π, 1) and not free for n ≥ 3.

We next show by induction on n thatKn is also not factored either for n ≥ 3. Owing
to Theorem 2.15,K3 is not factored, as it is not K (π, 1). Now suppose that n > 3 and
that Kn−1 is not factored. Let X := ⋂n−1

i=1 ker(xi ). Then one readily checks that

(Kn)X ∼= Kn−1.

It follows from our induction hypothesis and Remark 2.14 that also Kn fails to be
factored.

Finally, we observe that Kn admits an lc-basis. For, let B ⊂ Kn be the Boolean
subarrangement, i.e., Q(B) = ∏n

i=1 xi . Then one easily checks that lc(B) = Kn .
It thus follows from Proposition 2.3 that Kn is combinatorially formal; formality for
K3 was already observed by Falk and Randell in [14, (3.12)].
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