

Universität Bielef

Max Planck Institute for Developmental Biology

Determination of genetic loci in the control network of grapevine flowering

<u>Anna Schwandner¹, Iris Ochßner¹, Ludger Hausmann¹, Nadia Kamal², Boas Pucker², Daniela Holtgräwe², Felix Bemm³, Detlef Weigel³, Bernd Weisshaar², Reinhard Töpfer¹</u>

Julius Kühn-Institut, Institute for Grapevine Breeding Geilweilerhof, Siebeldingen
² Bielefeld University, Faculty of Biology & Center for Biotechnology
³ Max Planck Institute, Institute for Developmental Biology, Tübingen

XII International Conference on Grapevine Breeding and Genetics 2018, 15-20 July Bordeaux

Motivation

- Temperature is the main environmental factor affecting grapevine development
- Climatic changes and global warming

- Timing of flowering participates in timing of ripening
- Knowledge-based breeding of new, adjusted grapevine varieties

Anna Schwandner - Determination of genetic loci in the control network of grapevine flowering

Aims

- Find genetic loci/genes contributing to the timing of grapevine development especially timing of flowering
 - o QTL analysis
 - Correlation of alleles/haplotypes and flowering time phenotype
 - o Differential gene expression studies over the whole developmental cycle

Anna Schwandner - Determination of genetic loci in the control network of grapevine flowering

Mapping population GF.GA-47-42 x 'Villard Blanc'

QTL analysis

- QTL on several chromosomes of GF.GA-47-42 x 'Villard Blanc'
- Some regions coincide with QTL detected in a second population (Fechter et al. 2014)
- Indicates general function of these regions in Vitis flowering
- Additive effects of detected QTL observed

Additive effects of flowering time QTL

- Only one "early" allele (in the QTL on chr. 4 or 14) doesn't lead to an early phenotype
- F1 individuals with both "early" alleles present tend to actually flower earlier
- Impact of further QTL possible

■ only "early" allele on chr. 14 ■ only "early" allele on chr. 4 ■ both "early" alleles

Main QTL on chr.14

- Consistently recurring QTL in all 10 years
- Appears to have the highest impact on time of full bloom
- Here only maternal (GF.GA-47-42, early flowering) influence on flowering time

Extension of the mapping population

- Validation of flowering time QTL on 6 chromosomes in the extended population
- QTL on chromosome 14 is again the most prominent
- No change in QTL positions

	2015	2016	2017	2018
F1 individuals with "mature" inflorescences	122	545	394	691

	Chromosome								
	1	4	8	14	17	18	19		
2015				x					
2016		x	x	x	x				
2017	x	x		x	x		x		
2018	x	x	x	x	x		x		

Season spanning RNA-Seq experiments

- Four years, two genotypes, buds and inflorescences
- Which genes show differential expression over time and between genotypes?
- Find FTC candidate genes involved in different developmental steps

Season spanning RNA-Seq experiments

- New FTC candidate genes revealed by their expression patterns
- Gene expression patterns of both genotypes support each other in the respective developmental stage
- Gene expression relatively stable over the rather long period before dormancy
- During and after dormancy genes cluster into two groups:
 - Genes up-regulated during bud dormancy
 - Genes up-regulated towards single flower development
- Some FTC homologs not expressed in grapevine buds/inflorescences

Further approaches

- Generation of whole genome sequences of the early and late parent of the mapping population
- Creation of a high resolution genetic map based on SNPs derived from RAD-Seq
- Association studies with amplicon sequences of selected candidate genes

showed a significant correlation with specific flowering time phenotypes

• Testing if genetic markers can be applied in MAS

Developmental Biology

Summary

• Several QTL for time of full bloom

- Proposing putative flowering time and developmental genes on the basis of:
 - Location within QTL regions
 - Association of specific alleles with a particular flowering time phenotype
 - Season-spanning RNA-Seq experiments

Thank you for your attention!

Acknowledgements

Reinhard Töpfer Ludger Hausmann Eva Zyprian Iris Ochßner Andreas Preiß Carina Moock Florian Schwander Daniel Zendler Franco Röckel Robert Richter Florian Rist

Felix Bemm Detlef Weigel

lius Kühn-Institu

And the DFG for funding the project.

Anna Schwandner - Determination of genetic loci in the control network of grapevine flowering

