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Abstract

Image deblurring aims to recover the latent sharp im-
age from its blurry counterpart and has a wide range of
applications in computer vision. The Convolution Neu-
ral Networks (CNNs) have performed well in this domain
for many years, and until recently an alternative network
architecture, namely Transformer, has demonstrated even
stronger performance. One can attribute its superiority to
the multi-head self-attention (MHSA) mechanism, which of-
fers a larger receptive field and better input content adapt-
ability than CNNs. However, as MHSA demands high com-
putational costs that grow quadratically with respect to the
input resolution, it becomes impractical for high-resolution
image deblurring tasks. In this work, we propose a uni-
fied lightweight CNN network that features a large effec-
tive receptive field (ERF) and demonstrates comparable or
even better performance than Transformers while bearing
less computational costs. Our key design is an efficient
CNN block dubbed LaKD, equipped with a large kernel
depth-wise convolution and spatial-channel mixing struc-
ture, attaining comparable or larger ERF than Transform-
ers but with a smaller parameter scale. Specifically, we
achieve +0.17dB / +0.43dB PSNR over the state-of-the-
art Restormer on defocus / motion deblurring benchmark
datasets with 32% fewer parameters and 39% fewer MACs.
Extensive experiments demonstrate the superior perfor-
mance of our network and the effectiveness of each module.
Furthermore, we propose a compact and intuitive ERFMe-
ter metric that quantitatively characterizes ERF, and shows
a high correlation to the network performance. We hope this
work can inspire the research community to further explore
the pros and cons of CNN and Transformer architectures
beyond image deblurring tasks.

∗ denotes corresponding author.
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Figure 1. Motion and defocus deblurring results (PSNR) vs. pa-
rameters (M, disk size) vs. computational cost (MACs). Our
method achieves the SOTA performance while maintaining effi-
ciency.

1. Introduction

Image deblurring plays a major role in the low-level vi-
sion realm, especially in the digital age where the camera,
as one of the essential parts, has been integrated into almost
all types of personal electronic devices. Recovering the la-
tent sharp image from its blurred counterpart has immedi-
ate applications on consumer-level electronics and potential
benefits to a wide range of vision tasks like object detec-
tion [50], image classification [33], text recognition [42],
as well as surveillance [67] and autonomous driving sys-
tems [20]. Traditional algorithms depend on blur kernel
estimation and blind deconvolution with priors or regular-
izers to restore sharp images from the observed blurry ver-
sion [55]. Even though significant progress has been made,
the deblurring performance is still limited and tends to in-
troduce unwanted artifacts [83]. In the last two decades,
CNNs have become a promising tool for image deblurring
tasks. Given a large dataset, CNNs have the ability to learn
the corresponding priors, which then can be used for image
deblurring at inference [2,11,28,32,43,53,63,85,86], show-
ing high efficiency and generalization ability [57]. While on
the one hand, the inherent inductive biases contribute to the
efficiency of the network; on the other hand, it limits the
network’s ability to model long-range spatial dependencies.

Recently, Transformer, an alternative structure, appears
to alleviate the constraints of CNN, and shows compelling
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performance on several tasks in natural language process-
ing [4,5,16,72] and computer vision [6,19,69,82,90]. While
the MHSA module in the Transformer solves the long-range
spatial dependencies problem, it increases computational
complexity. This situation worsens on high-resolution im-
ages, where the computational complexity grows quadrat-
ically. Although there have been some attempts to relieve
the computational burden by bringing back the inductive
bias of CNNs [14, 37, 71], the computational expense is
still considerable. Until recently, Restormer [84], in con-
trast to [37, 75], applied self-attention (SA) across the fea-
ture dimension instead of the spatial dimension, reducing
the computational loads to some extent. Nevertheless, all
the Transformer-based approaches benefit from the MHSA
mechanism, which is believed to be mainly responsible for
creating the large receptive field [49]. A question naturally
raises: is it possible to design a pure CNN module capa-
ble of approaching a large receptive field with comparable
performance to Transformers? Recent works [38, 68, 70]
resort to the existing network structures, e.g. ResNet [22],
or MobileNet V2 [55], with several modifications, such as
group convolution [12], inverted bottleneck [55], or large
kernel [17, 36], demonstrating competitive performance on
par with Transformers on a similar model scale. Particu-
larly, RepLKNet [17] and SLaK [36] build pure CNN mod-
els with a focus on increasing ERF using kernel sizes as
large as 31 × 31 and 51 × 51, respectively. While they
achieve comparable performance to the Transformer, such
explorations of large kernel CNNs are limited to the im-
age classification task. Unlike image classification, which
tends to address images with relatively low resolution, im-
age deblurring usually deals with high-resolution inputs,
thus imposing further challenges on network architecture
design. Whether increasing ERF or equipping CNNs with
a large kernel size impacts image deblurring quality has yet
to be determined. In this paper, we explore in depth the
effect of ERF and large kernel convolution on image de-
blurring and devise a pure CNN architecture with a block
called LaKD, consisting of a large kernel depth-wise convo-
lution and a spatial-channel mixing mechanism. Moreover,
to quantify ERF’s influence, we suggest an ERF evaluation
method dubbed ERFMeter, presenting a close correlation to
the network performance with Pearson correlation coeffi-
cient r = 0.8 when evaluating a large number of networks.
Overall, our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to investi-
gate the ERF of existing U-Net shape works for motion
and defocus debluring and associate their network per-
formance with the ERF. We then present a quantified
metric of the ERF, suggesting a more intuitive way to
interpret their relationship across different structures.

• We propose a pure CNN structure being able to
reach a large ERF, outperforming transformer strucutre

(Restormer / Uformer) on high-resolution image de-
blurring at a small computational cost, specifically
sparing up to 66.4% / 34.6% parameters and 47.5%
/ 43.3% MACs.

• Extensive experimental and ablation results demon-
strate the effectiveness of our method on various
benchmark datasets in terms of motion and defocus de-
blurring.

2. Related Work

Image Deblurring Image deblurring is a long-standing
research issue aiming to recover the latent fine textures
from its observed version being corrupted by motion [43]
or defocus [2] blur. Conventional blind image deblurring
algorithms often start with kernel estimation, followed by
non-blind deconvolution algorithms [10, 26, 58, 78]. How-
ever, these two-step strategies are less effective in terms of
quality and computational cost due to the error propagation
occurring in their iterative optimization procedure. Later,
CNN-based methods predominate in the image deblurring
task by offering end-to-end solutions [2, 11, 28, 32, 43, 48,
53, 63, 85, 86], and efficiently achieving remarkable results,
most of which are tailored to a specific type of blur - mo-
tion or defocus. Transformer-based structures (e.g. Uformer
[75], Restormer [84]) demonstrate strong ability on various
image restoration tasks, including motion and defocus de-
blurring. However, these unified structures require multi-
head self-attention [72], resulting in a heavy computational
load despite some efforts (e.g. narrow down the attention
window [37, 75] or divide the image into patches [8] for
MHSA) to reduce the costs. In this paper, we explore a
pure CNN structure, in contrast to SA, to attain competitive
performance on par with or better than the Transformer on
a much smaller computation budget.

Transformer The Transformer architecture first took the
natural language processing (NLP) community [4,5,16,72]
by storm. Later, Dosovitskiy et al. introduced Vision Trans-
formers (ViTs), allowing applications of Transformers on
image data [19]. Since then, it has gained a dominant po-
sition in a very short time on a broad range of computer
vision tasks [6, 19, 34, 69, 75, 77, 79, 82, 84, 89, 90]. Un-
like the conventional CNN that has an inherent inductive
bias to the local receptive field, Transformer architectures
with a self-attention mechanism allow each pixel to inter-
act with all other pixels in a given patch, yielding a global
receptive field and long-range feature dependencies [72].
Moreover, the convolution filters in self-attention modules
are estimated on-the-fly according to the input content, out-
performing conventional CNNs, especially at the inference
stage [27]. However, the intensive computational cost re-
stricts applications of the Transformer on high-resolution
image data. Thus giving way to the rising trend of new ar-
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Figure 2. Our U-shape network architecture consists of 4-level symmetric encoder-decoder modules, with each level composed of N LaKD
blocks. The LaKD block (top right) contains a feature mixing module and a feature fusion module, where the feature mixing module has
depth-wise and point-wise convolution repeated twice, whereas the feature fusion module has only a depth-wise convolution layer with
3× 3 kernel in a gating mechanism [15]. The details are better viewed when zooming in.

chitectures that borrow useful properties from CNNs, and at
the same time, avoid their shortcomings [37, 74, 81]. Swin
Transformer [37] re-introduces the inductive bias of CNNs
to Transformers using a sliding window in a hierarchical
architecture to reduce the parameter count and computa-
tional cost. This structure has been successfully used as
a general-purpose backbone on multiple computer vision
tasks [34, 37, 64].
Large Kernels Following a similar spirit, some works
explore the inverse approach, introducing the merits of
Transformer to CNN. Attributing the superiority of ViTs
to their large receptive field, researchers resorted back to
pure CNNs equipped with larger kernels. This is a well-
known older technique; some early works have used large
kernel convolution neural networks [29] for image classifi-
cation, such as 11 × 11 or 5 × 5 , but since the advent of
VGG [62], they were overtaken by multiple stacked small
kernels (3×3), which have fewer parameters and enable ef-
ficient training. Recent works, influenced by the global at-
tention property of Transformers and MLPs, re-investigate
the large convolutional kernels. ConvNeXt [38] adapts the
existing ResNet architecture with 7× 7 kernels, RepLKNet
[17] and SLaKNet [36] scale up their kernels to 31 × 31
and 51 × 51, both of which are purely convolutional neu-
ral networks, while achieving performance on par with or
even better than Transformers [37] on image classification
and a few downstream vision tasks. However, little effort
has been made to explore the impact of large kernels in im-
age restoration tasks. We investigate the ERF of existing
works and propose a unified full CNN structure with large
kernels aiming for a large ERF that achieves competitive
performance while maintaining efficiency with much fewer
parameters and lower computational cost.

3. Methodology
Our method aims to develop an efficient pure CNN

model to restore sharp, high-resolution image Ŷ from their
blurry version I. To maintain efficiency while attaining a

large ERF, we resort to depth-wise convolution with uncom-
monly large kernels, in contrast to self-attention, to model
long-range pixel dependencies. In this section, we introduce
the overall structure dubbed LaKDNet and then provide the
details of the proposed basic LaKD block.

3.1. Overall architecture

The overall architecture is a U-shape hierarchical net-
work [52]. It consists of 4-level symmetric encoder-decoder
modules, with each level composed of N LaKD blocks,
where N ∈ {N1, N2, N3, N4}. Given an input image
I ∈ RH×W×3 with height (H) and width (W ), our net-
work first extracts low-level features Iin ∈ RH×W×C with
C channels using a convolutional layer. Then, it is fed
into our encoder-decoder structure for blur removal, fol-
lowed by another convolution layer to recover the features
Iout ∈ RH×W×C . We apply pixel unshuffle/shuffle for
downsampling and upsampling respectively [61, 84]. Fi-
nally, we skip-connect I to Iout and produce the sharp im-
age Ŷ, forming a global residual structure that is expressed
as Ŷ = I + LaKDNet(I).

3.2. LaKD Block

The motivation behind the LaKD block design is to ex-
plore the local and global dependency, as well as a large
ERF, in a fully convolutional manner. It has two submod-
ules – feature mixer and feature fusion indicated in Fig. 2.
The feature mixer module is similar in spirit to depth-wise
separable convolution, but at initial stages employs unusu-
ally large kernel sizes (e.g. 9 × 9) followed by point-wise
convolution with a kernel size of 1 × 1, along with the
inner shortcut between them. Unlike the standard convo-
lution layers, which mix spatial and channel dimensions
simultaneously through 3D filters, our feature mixer acts
separately on spatial intra-channel and depth-wise inter-
channel features. This allows distant spatial location mix-
ture, which combined with large kernel sizes, leads to large
ERF (Sec. 4.2). Our design is inspired by MLP-mixer [68]



and ConvMixer [70] which also separately mix spatial and
channel dimensions. The former advocates the significance
of multi-layer perceptrons (MLPs) and the latter focuses on
the effectiveness of patch embedding for vision tasks, while
we aim for correlating the feature mixer module to the ERF
and the restoration performance. Our feature fusion module
consists of depth-wise convolution layers with 3×3 kernels
for efficient local information encoding. Similar to [84], we
employ the gating mechanism [15] that specifically adds an
extra path followed by GELU activation function [23] as the
gate, in order to effectively propagate and fuse features. We
first introduce our feature mixing module that outputs the
feature Mn in the nth LaKD block as follows:

Mn = Fn−1 + zn4 , (1)

where Fn−1 is the output of the feature fusion module in
the n− 1th LaKD block and 1 < n ≤ N . The intermediate
feature zk is recursively calculated as:

znk+1 = zn0 +g(znk ), g =

{
depthwise, if k = 1, 3

pointwise, if k = 2, 4
(2)

where the depthwise and pointwise notations represent the
depth-wise and point-wise convolutions, respectively and
zn0 = LN(Fn−1), where LN is a layer normalization as
shown in Fig. 2.

Next, we formulate the output feature Fn from our fea-
ture fusion process as:

Fn = Fn−1 + LN{α[g(W1(tn))]� g(W2(tn))}, (3)

where tn = LN(Mn), W1 and W2 are two separate 1 × 1
convolution layers which are then combined as shown in
Fig. 2 using an element-wise multiplication denoted as �
and followed by a GELU activation α. Here, g only applies
depth-wise convolution with 3× 3 kernel. Our network in-
cludes LaKD blocks distributed in a hierarchical manner,
allowing a large ERF, and contributing significantly to the
fine details restoration. Note that our design shares a similar
U-Net structure with Uformer [75] and Restormer [84] but
is composed of different specialized blocks. We ablate the
effectiveness of each component in Sec. 4.2.

3.3. ERFMeter

In this section, we aim to quantify the influence of ERF.
Previous works [17, 36] mainly focus on enlarging the size
of the receptive field through structural re-parameterization
[18] or sparse large kernel. We claim that the size of a re-
ceptive field is not the determining factor that accounts for
the word “effective” while the shape of the receptive field
pattern also matters. We specifically find that the distribu-
tion of an ERF can be represented by the Probability Den-
sity Function (PDF) of the Generalized Normal Distribution
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(GND) family. Assuming that the averaged ERF pattern
does not depend on the input content, we consider only a
symmetric GND that can be derived as:

f(x) =
c1β

2σΓ (1/β)
exp

(
−
∣∣∣∣x− µσ

∣∣∣∣β
)

+ c2 (4)

where x is the raw ERF values, µ ∈ R represents the cen-
ter of the distribution, and σ ∈ R>0 is the scaling factor
that characterizes the variation of distribution: the larger
σ indicates a more dispersed distribution. The parameter
β ∈ R>0 controls the shape of the distribution, e.g. β = 1,
β = 2, and β → ∞ would correspond to the PDF of the
Laplace, Gaussian, and Uniform distribution, respectively.
The auxiliary parameters c1 and c2 are used to stabilize the
curve fitting process and Γ is the gamma function that can
be calculated as Γ(z) =

∫∞
0
xz−1e−xdx. Fig. 3 shows

the ERF patterns for existing defocus deblurring networks,
along with the fit of f(x) to their central horizontal scanline
and the corresponding parameter values. Please refer to the
supplementary for more ERFs examples and fitted curves.

Our mission is to design a network that fully utilizes
the information from the entire patch with a large recep-
tive field, and at the same time, focuses more on the adja-
cent area which has a stronger influence than the peripheral
area. These two properties can potentially be quantified us-
ing the estimated parameters of our fitted f(x). Specifically,
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Figure 5. The visual comparison between ours and the recent defocus deblurring methods: IFAN [32], KPAC [63], GKM [48], Restormer
[84], MDP [1], DRBNet [53]. Note that DRBNet in this case is trained using only the DPDD dataset. All the methods are evaluated using
the code provided by their respective authors. The image samples are taken from the DPDD [2] and RealDOF [32] datasets, respectively.

the scaling factor σ is used to evaluate the breadth of ERF,
where larger σ indicates better global attention ability of the
network. Moreover, we opt the shape parameter β to eval-
uate the concentration of ERF in which smaller β produces
sharper distribution in the center and indicates better con-
centration ability of the network. In summary, we formulate
our ERF evaluation method called ERFMeter as follows:

ERFM =
σ√
2β

log(max(x) + 1), (5)

Note we also consider the impact of maximum mag-
nitude of the raw ERF response using the scale factor
log(max(x) + 1). We tested our ERFMeter on several ex-
isting defocus deblurring networks and different variants of
our own network that were trained and tested on DPDD
dataset. As shown in Fig. 4, the Pearson Correlation co-
efficient r = 0.80 indicates the strong correlation between
the ERFM score and network performance (PSNR). While
the Eq. 5 is just an empirical formula to correlate the net-
work performance with ERF in the image deblurring tasks,
we believe that our suggested metric can provide some in-
sights into network structure design and also inspire the re-
search community to investigate similar ERF measures that
are suitable for other image-processing tasks. Besides, we
only consider a 1D signal (horizontal scanline that crosses
the ERF center) for demonstration purposes, the 2D version
could be easily deduced.

4. Experimental Results
We evaluate our proposed method on the defocus deblur-

ring with single or dual-view images as the input [2], as
well as single-image motion deblurring task. To evaluate
our method in the defocus deblurring task, we train our net-
work on the DPDD dataset, and evaluate it on its own test
set and the RealDOF dataset. For motion deblurring, we
train our network on the GoPro dataset [43], and evaluate it

on its own test set, as well as the HIDE [59], RealBlur-J and
RealBlur-R [51] datasets. We additionally train two other
models on RealBlur-J and RealBlur-R, respectively. Some
recent works, e.g. Restormer-TLC, MPRNet-TLC [13] and
NAFNet-TLC [9], have been further refined by the test-
time improvement tool dubbed TLC [13] aiming to narrow
the performance gap between the cropped patches and full-
resolution images during training and inference. Here we
present all the methods without any test time improvement
for a fairer comparison. Note that we use the code and
trained weights as provided by the respective authors.
Implementation Details We adopt AdamW optimizer
[40] with momentum β1 = 0.9, β2 = 0.999, weight de-
cay 1e-4, learning rate starting from 3e-4 and gradually ap-
proach to 1e-6 (cosine annealing [39]). We follow a similar
training strategy as proposed in [84] where the patch size
progressively increases [192, 256, 288, 368, 448] and the
batch size decreases [5, 4, 3, 2, 1] at iterations [60k, 120k,
180k, 240k, 300k] and [180k, 360k, 540k, 720k, 900k]
for the defocus and motion deblurring tasks, respectively.
For defocus deblurring, we use the charbonnier loss [7] and
perceptual loss [25] sequentially for 310K iterations in to-
tal, and the charbonnier loss alone for 900k iterations for
motion deblurring. More training details regarding specific
datasets are included in the supplementary.

4.1. Comparison to the State-of-the-Art Methods

Defocus Deblurring We evaluate our method in the defo-
cus deblurring task for the single-image (Tab. 1) and dual-
pixel (Tab. 2) input. We perform the single-image evalua-
tion on the DPDD [2] and RealDOF [32] datasets, respec-
tively. Specifically, in the former dataset, the defocus and
all-in-focus image pairs are captured with wide and nar-
row apertures individually, while in the latter one by one
shot through a customized dual-camera setup with a beam
splitter. Note that all compared methods are trained on the



DPDD dataset except the AIFNet [54] and MDP [1] meth-
ods, which use their own training set. IFANet [32] adopts
extra dual views during the training. Table 1 demonstrates
that our method substantially outperforms existing CNN-
based methods, improving over the state-of-the-art method
DRBNet [53] by 0.68dB (+2.7%) PSNR, and slightly out-
performs Transformer-based methods, yielding +0.17dB
improvement over Restormer [84]. Notably, our method re-
quires much less computational effort, saving up to 32.2%
parameters and 39% MACs. Figure 5 further shows that
our method is more effective than other approaches qual-
itatively, particularly, in handling severe defocus (the iron
railings) and restoring fine texture (the fence and balcony)
in Fig. 5. The performance of our dual-pixel image de-
focus deblurring (Tab. 2) is similar to its counterpart for
the single-image input (Tab. 1), where only for Restormer
[84] the SSIM metric shows slightly better results than our
method. Additionally, we follow the training strategy that
initiates the training on the LFDOF dataset [54] followed
by the DPDD dataset, showing a better generalization abil-
ity than the existing state-of-the-art DRBNet [53], as illus-
trated in Tab. 3 and Fig. 6. Our method offers a strong
restoration ability with sharper details and clearer text.

Table 1. Single-image defocus deblurring task: Quantitative image
quality and computational cost comparison.

Method
DPDD RealDOF Params.

(M))
MACs

(G)PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DPDNet [2] 24.39 0.749 0.277 22.87 0.670 0.425 31.03 770
AIFNet [54] 24.21 0.742 0.309 23.09 0.680 0.413 41.55 1747
IFANet [32] 25.37 0.789 0.217 24.71 0.749 0.306 10.48 363
KPAC [63] 25.22 0.774 0.226 23.98 0.716 0.336 2.06 113
GKMNet [48] 25.47 0.786 0.217 24.15 0.728 0.316 1.41 296
MDP [1] 25.35 0.763 0.303 23.73 0.685 0.435 46.86 1898
DRBNet [53] 25.47 0.787 0.246 24.70 0.744 0.337 11.69 693
Restormer [84] 25.98 0.811 0.178 25.08 0.769 0.289 26.13 1983

Ours 26.15 0.810 0.155 25.08 0.762 0.267 17.7 1208

Table 2. Dual-pixel-image defocus deblurring task: Quantitative
image quality comparison. Suffix D denotes that the network takes
dual-pixel images as the input.

Method
DPDD Params.

(M)PSNR↑ SSIM↑ LPIPS↓

DPDNetD [2] 25.13 0.786 0.223 31.03
IFAND [32] 25.99 0.804 0.207 10.48
KPACD [63] 25.82 0.800 0.185 2.06
RDPDD [3] 25.41 0.771 0.255 1.41
DRBNetD [53] 26.33 0.811 0.154 11.69
RestormerD [84] 26.66 0.833 0.155 26.13

OursD 26.72 0.826 0.140 17.7

Input DPDNet* GTOurs*KPAC* DRBNet*

Figure 6. The visual comparison between DPDNet [2], KPAC
[63], DRBNet [53] and ours when adopting the training strategy
in DRBNet [53]. The former three methods are evaluated with the
weights and code as provided in [53]. The sample images are from
the DPDD [2] and RealDOF [32] datasets, respectively.

Table 3. The performance comparison among DPDNet [2], KPAC
[63], DRBNet [53] and our method when trained on LFDOF &
DPDD. * denotes that each respective network is trained with the
strategy as proposed in [53].

Method
DPDD RealDOF

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DPDNet* 24.90 0.761 0.278 24.16 0.712 0.377
KPAC* 25.47 0.780 0.220 24.64 0.735 0.319
DRBNet* 25.73 0.791 0.183 25.75 0.771 0.257
Ours* 25.89 0.792 0.154 25.83 0.769 0.245

Motion deblurring We evaluate the performance of
our network for single-image motion deblurring using four
benchmark datasets with synthetic blur (GoPro [43], HIDE
[59]) and real-world blur (RealBlur-J and RealBlur-R [51]).
We compare our network performance with the following
state-of-the-art learning-based techniques: CNNs ( [43],
[86], [66], [59], [21], [86], [65], [21], [47], [11]), GANs
( [30], [31], [88]), RNNs ( [45]), and Transformers ( [75],
[84]). First, following [75, 84] we evaluate our method
on all four datasets while training on the GoPro dataset
alone. Table 4 shows that we achieve a competitive per-
formance on the GoPro and HIDE datasets, significantly
surpassing the existing CNN, GAN, and RNN solutions.
For instance, we outperform the latest MSSNet [28] and
NAFNet [9] (CNN) by +0.34dB / +0.27dB on the GoPro in
terms of PSNR. Our method also outperforms Transformer-
based Uformer / Restormer by +0.30dB / +0.43dB on the
GoPro dataset, while sparing up to 66.4% / 34.6% param-
eters and 47.5% / 43.3% MACs. We use gray background
to indicate the top two competitors and extra bold font for
the champion. Second, we additionally evaluate our net-
work on the datasets with real-world blur [51] as shown in
Tab. 5. The upper part presents the outcome of training on
the GoPro dataset with synthetic blur. Two Transformer-
based solutions perform slightly better than ours when it
comes to generalizing from synthetic to real blur. This is
expected due to our compact structure, while we still ob-
tain comparable or even better results than the remaining



competitors, for example, requiring 89.7% and 47.9% fewer
MACs compared to MPRNet and MSSNet. The lower part
of Tab. 5 refers to respective training on the RealBlur-J and
RealBlur-R datasets in which case our network performs the
best with +0.60dB / +0.15dB and +0.57dB /+ 0.23dB gain
over MPRNet / MSSNet. Figure 7 demonstrates how our
method can restore challenging examples with a plausible
visual quality when compared to others (e.g. text and face).

Table 4. Motion deblurring comparison on the GoPro dataset.
Please note the reported NAFNet is without TLC for fair network
structure benchmark comparison. Please refer to its TLC version
in [9].

Method
GoPro HIDE Params.

(M)
MACs

(G)PSNR↑ SSIM↑ PSNR↑ SSIM↑

DeblurGAN [30] 28.70 0.858 24.51 0.871 6.06 809
DeepDeblur [43] 29.08 0.914 25.73 0.874 11.72 4729
Zhang et al. [87] 29.19 0.931 N/A N/A 37.1 N/A
DeblurGAN-v2 [31] 29.55 0.934 26.61 0.875 5.08 411
SRN [66] 30.26 0.934 28.36 0.915 8.06 20134
Shen et al. [59] 30.26 0.940 28.89 0.930 N/A N/A
Gao et al. [21] 30.90 0.935 29.11 0.913 2.84 3255
DBGAN [88] 31.10 0.942 28.94 0.915 11.59 10685
MTRNN [45] 31.15 0.945 29.15 0.918 2.6 2315
DMPHN [86] 31.20 0.940 29.09 0.924 7.23 1100
Suin et al. [65] 31.85 0.948 29.98 0.930 N/A N/A
SPAIR [47] 32.06 0.953 30.29 0.931 N/A N/A
MIMO-UNet+ [11] 32.45 0.957 29.99 0.930 16.1 2171
MPRNet [85] 32.66 0.959 30.96 0.939 20.1 10927
Uformer [75] 33.05 0.962 30.89 0.940 50.88 2143
Restormer [84] 32.92 0.961 31.22 0.942 26.13 1983
MSSNet [28] 33.01 0.961 30.79 0.938 15.59 2159
NAFNet [9] 33.08 0.963 31.22 0.943 67.89 890

Ours 33.35 0.964 31.21 0.943 17.1 1125

4.2. Ablation study

We conduct our ablation study on the DPDD dataset for
defocus debluring and the GoPro dataset for motion deblur-
ring. We start by explaining the effectiveness of our pro-
posed LaKD block compared to the existing UNet baseline
(pure convolution and residual blocks) and then compare it
to an equivalent block with dilated convolution. We further
discuss the key design decisions concerning the shortcuts,
kernel size, and block number. The relevant network struc-
ture could be found in the supplementary.
Effectiveness of LaKD block We adopt two UNet-like
CNNs composed of pure convolution layers [52] and Res-
block [35], denoted as UNet-conv and UNet-res. Table
6 demonstrates that our proposed block largely outper-
forms these two baselines by 3.2% (+0.82dB) and 1.3%
(+0.33dB). This demonstrates the superiority of our cus-
tomized CNN block.
Large kernel vs. Dilated convolution We replace our
large kernel depth-wise convolution with dilated (atrous)
convolutions [80], which could also expand the receptive
field [56] or capture long-range information [76] through

Table 5. Motion deblurring comparison on the RealBlur-R and
RealBlur-J datasets. The upper part refers to training restricted to
the GoPro dataset with synthesized blur, while in the lower part
training is performed using the individual datasets with real-world
blur. Please note the reported NAFNet is without TLC for fair
network structure benchmark comparison. Please refer to its TLC
version in [9].

Method
RealBlur-R RealBlur-J Params.

(M)
MACs

(G)PSNR↑ SSIM↑ PSNR↑ SSIM↑

Hu et al. [24] 33.67 0.916 26.41 0.803 N/A N/A
DeepDeblur [43] 32.51 0.841 27.87 0.827 11.72 4279
DeblurGAN [30] 33.79 0.903 27.97 0.834 6.06 809
Pan et al. [44] 34.01 0.916 27.22 0.790 N/A N/A
DeblurGAN-v2 [31] 35.26 0.944 28.70 0.866 5.08 411
Zhang et al. [87] 35.48 0.947 27.80 0.866 37.1 N/A
SRN [66] 35.66 0.947 28.56 0.867 8.06 20134
DMPHN [86] 35.70 0.948 28.42 0.860 7.23 1100
MPRNet [85] 35.99 0.952 28.70 0.873 20.1 10927
MSSNet [28] 35.93 0.953 28.79 0.879 15.6 2159
Uformer [75] 36.22 0.957 29.06 0.884 50.88 2143
Restormer [84] 36.19 0.957 28.96 0.879 26.13 1983
NAFNet [9] 36.14 0.955 28.43 0.860 67.89 890

Ours 35.91 0.954 28.78 0.878 17.1 1125

DeblurGAN-v2 [31] 36.44 0.935 29.69 0.870 5.08 411
SRN [66] 38.65 0.965 31.38 0.909 8.06 20134
MPRNet [85] 39.31 0.972 31.76 0.922 20.1 10927
MIMO-UNet++ [11] N/A N/A 32.05 0.921 16.1 8683
MSSNet [28] 39.76 0.972 32.10 0.928 15.6 2159

Ours 39.91 0.974 32.33 0.929 17.1 1125

Table 6. Quantitative performance of three UNet-like structures.

Method
DPDD

PSNR↑ SSIM↑ LPIPS↓

UNet-conv [52] 25.33 0.775 0.216
UNet-res [35] 25.82 0.797 0.178
Ours 26.15 0.810 0.155

defining spacing between the convolutional filters with var-
ious dilation rates. We adopt the hybrid dilated convolution
(HDC) to avoid gridding artifacts inherited from a serialized
convolution with a fixed dilation rate [73]. Here we specify
the dilation rates of 1, 2, 3 in the three cascaded convolution
layers accordingly inside the block and preserve the equiv-
alent inner and middle shortcuts. Table 7 shows that our
LaKD block equipped with large depth-wise convolution
significantly outperforms dilated convolution in both defo-
cus and motion deblurring tasks. This can be explained by
the nature of dilated convolution, where the local or neigh-
boring information is lost due to the sparsity in their convo-
lution kernels.

Importance of mixing The shortcut in our LaKD module
offers considerable improvement to network performance.
As shown in Tab. 8, we ablate three variants of the shortcuts:
(1) removing the inner shortcut inside the feature mixing
module (labeled in red in Fig. 2); (2) removing the middle
shortcut starting from the beginning of the LaKD block till
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Figure 7. The visual comparison between our method and the recent motion deblurring techniques including DBGAN [88], MTRNN [45],
DMPHN [86], MIMO [11], MPRNet [85], MSSNet [28], NAFNet [9], Uformer [75], and Restormer [84]. All the methods are evaluated
using the code provided by their respective authors without any test-time refinement (e.g. TLC [13]) for fairer comparisons. The upper and
bottom row images are taken from the GOPRO [43] and HIDE [59] datasets, respectively.

Table 7. Quantitative performance comparison between the model
with dilated convolution and our LaKDNet.

Method
Defocus Params.

(M)

Motion Params.
(M)PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑

Dilated 25.67 0.785 0.195 21.9 32.82 0.960 21.9
Ours 26.15 0.810 0.155 17.7 33.35 0.962 17.1

the end of feature mixing module (labeled in blue in Fig.
2); (3) removing the inner and middle shortcuts. Note that
we always keep the initial shortcut from the beginning to
the end of the LaKD block (labeled in black in Fig. 2) as
it is helpful for the final performance as demonstrated in
UNet-res (Tab. 6). Table 8 shows that the performance will
drop significantly without inner and middle shortcuts, even
slightly worse than the baseline UNet-res (Tab. 6). This is
expected since we use unusually large kernels for training,
where shortcuts could potentially benefit the gradient flow
and feature propagation.

Table 8. The effectiveness of shortcuts inside the LaKD block.

Method
DPDD

PSNR↑ SSIM↑ LPIPS↓

w/o inner 26.01 0.807 0.156
w/o middle 26.09 0.810 0.159
w/o inner & middle 25.78 0.795 0.175
Ours 26.15 0.810 0.155

Small or large kernel size? Table 9 shows the influence
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Figure 8. ERF patterns (DPDD dataset) when using different ker-
nel sizes in our network.

of various kernel sizes on the performance. Similar as [38],
we find the performance saturated on kernel size of 9 × 9
for defocus and 7 × 7 for motion deblurring. Tricks like
structural reparameterization [18], kernel decomposition or
dynamic sparsity [36] could possibility be applied to fur-
ther enlarge the ERF without performance dropping in the
future. Besides, it is worth noting that our LaKD is able
to achieve a relatively larger ERF, despite using a common
small kernel size of 3 × 3, as shown in Fig. 3 and Fig. 12.
When applying the kernel size larger than 5× 5, the recep-
tive field is covering the whole 512× 512 patch.

Table 9. Quantitative performance with respect to kernel size.

Method
Defocus Params.

(M)

Motion Params.
(M)PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑

3× 3 25.99 0.809 0.162 16.4 33.21 0.964 16.4
5× 5 26.00 0.809 0.163 16.7 33.26 0.964 16.7
7× 7 26.02 0.805 0.155 17.1 33.35 0.964 17.1
9× 9 26.15 0.810 0.155 17.7 33.30 0.964 17.7

11× 11 26.11 0.806 0.154 18.5 N/A N/A N/A

Effect of block number Table 10 shows that the perfor-
mance increases with the network scale, where the first col-
umn indicates the block number [N1, N2, N3, N4] in the



4-level symmetric encoder-decoder. A larger scale network
generally results in better performance but comes at an ex-
tra cost. For defocus deblurring, [10, 14, 14, 18] achieves
0.2% (+0.05 dB) PSNR improvement with 12.9% (+2.2 M)
parameter increase than [8, 12, 12, 16], while for motion de-
blurring, we get 0.14dB PSNR drop. We, therefore, choose
[8, 12, 12, 16] as our final setting considering the trade-off
on scale and performance.

Table 10. Quantitative performance with respect to block numbers.

Method
Defocus Params.

(M)

Motion Params.
(M)PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑

[4, 6, 6, 8] 25.84 0.795 0.166 9.7 32.86 0.961 9.4
[6, 8, 8, 10] 25.90 0.788 0.162 12 33.09 0.962 11.6
[8, 12, 12, 16] 26.15 0.810 0.155 17.7 33.35 0.964 17.1
[10, 14, 14, 18] 26.20 0.812 0.151 20 33.21 0.964 19.3

5. Conclusion
We present a lightweight CNN architecture that we con-

trast to computationally demanding Transformers that are
recently a dominating approach in high-end motion and de-
focus image deblurring. Our core component LaKD block
equipped with large kernels leads to a large ERF, result-
ing in state-of-the-art performance while maintaining sim-
plicity and efficiency. Extensive experiments and ablation
studies demonstrate the effectiveness of our method. We
additionally propose ERFMeter to quantitatively character-
ize ERF, which is highly correlated to the network perfor-
mance. However, ERFMeter is an empirical metric of net-
work performance that strongly relies on the ERF paradigm,
while ignoring the multitude of other factors. Still, we hope
it can inspire the community to explore more holistic met-
rics that could guide efforts toward network performance
improvement. In this paper, we only test our network in the
image deblurring tasks, while other low-level vision appli-
cations like dehazing, deraining, or denoising, etc. could be
considered, which we leave as future work.
Limitations Our network has a slightly weaker general-
ization ability than Transformer-based structures as shown
in Tab. 5, despite being partially explained by the com-
pact structure, we still have room for enhancing the gener-
alization ability. Besides, we limit our work to evaluating
network performance from the ERF point of view. Future
works may further explore other aspects like network rep-
resentation structure [49], loss landscape [46], etc.
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Revisiting Image Deblurring with an Efficient ConvNet
- Supplementary Material

In this supplementary material, we provide more details
on the following topics: (1) all datasets that we employed in
the network training (Sec.5.1), (2) the dilated structure that
we consider in the ablation study (Sec.5.2), (3) the quantita-
tive comparison on the LFDOF dataset [54] (Sec. 5.3), (4)
the effective receptive field (ERF) and its evolution during
the training (Sec. 6), and (5) additional qualitative com-
parisons of motion deblurring evaluated on the GoPro [43],
HIDE [59], and RealBlur [51] datasets, as well as defocus
deblurring evaluated on the DPDD [2], RealDOF [32], and
CUHK [60] datasets (Sec. 7).

We will make our code and weights publicly available.

5.1. Training

Here we provide more details on all the training and
evaluation datasets for image motion and defocus deblur-
ring tasks we use in this work.

Defocus deblurring We consider four defocus-related
datasets. The most popular one is DPDD [2], which col-
lects blurry-sharp pairs separately with different aperture
sizes using a DSLR camera. It has 350 training samples,
and 76 testing samples for single-image defocus deblurring,
as well as the dual-pixel version for dual-pixel defocus de-
blurring. RealDOF captures the data pairs in a single shot
with a dual-camera setup, offering 50 high-resolution test
samples. CUHK is collected for blur detection and provides
706 evaluated low-resolution samples acquired from the In-
ternet. Note that RealDOF and CUHK have only testing
samples and, thereby, are good for evaluating the general-
ization ability. LFDOF is a synthetic defocus blur dataset
(11261 training samples and 725 testing samples) generated
using a set of light field images, which in our experiment
is adopted for the two-stage training strategy as proposed
in [53].
Motion deblurring We consider three benchmark datasets
– GoPro [43], HIDE [59], and RealBlur [51]. The Go-
Pro dataset features a synthetic blur that integrates adja-
cent frames from high-framerate videos to produce motion
blur and contains 2013 blurry-sharp training pairs and 1111

testing samples. The HIDE dataset is synthesized follow-
ing a similar method as the GoPro dataset but emphasizes
human-aware deblurring, including large amounts of walk-
ing pedestrians, resulting in 6397 training and 2025 testing
pairs. Here we follow [75, 84, 85] and train our network on
the GoPro dataset alone and directly evaluate the HIDE test
set for demonstrating the generalization ability. The Re-
alBlur dataset captures real motion blur and sharp images
with a dual DSLR camera (Sony A7RM3) setup, which can
be obtained simultaneously with different shutter speeds. It
offers two subsets sharing the same content, one is output
as JPEG images through a camera ISP, and the other is gen-
erated as raw images with white balance, demosaicing, de-
noising, geometric alignment, etc., resulting in 3758 train-
ing samples and 980 testing samples for each set dubbed
Real-J and Real-R. In our experiment, we train our network
on the GoPro dataset and directly test it on the RealBlur
dataset. We also train it on each RealBlur set for extra 450k
iterations from the pre-trained weight using GoPro dataset
as suggested in [51] and evaluate their associated testing
sets.

In Tab. S11 we summarize the training and testing
datasets used in the main manuscript.

5.2. Ablation of network structure

Here we ablate our network with respect to its structure
and layer number.

Version with dilated convolution layers As opposed to the
LaKD block described in the main paper, here, we present
its alternative version with dilated convolution layers (Fig.
S9). Note that both versions aim to expand the effective re-
ceptive field. The dilated version adopts the same structure
except for the feature mixing module that consists of three
dilated convolution layers with increasing dilation rates.
The results in Tab. 7 (refer to the main manuscript) fur-
ther indicate the superiority of LaKD block.

Layer number We ablate the layer number required in the
feature mixing module, specifically on depthwise and point-
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Table 11. Summary of training and testing datasets for motion and
defocus deblurring tasks.

Datasets Training Testing

Motion GoPro [43] 2103 1111
HIDE [59] 0 2025

RealBlur-J [51] 3758 980
RealBlur-R [51] 3758 980

Defocus DPDD [2] 350 76
RealDOF [32] 0 50
LFDOF [54] 11261 725
CUHK [60] 0 704

Tab. / Fig. Training Testing

Motion Tab. 1, Tab. 2 (upper), Fig. 6, [43] [43] & [59] & [51]
Tab. 7, 9, 10 [43] [43]

Tab. 2 (lower), Fig. S17, S18 [51] [51]
Fig. S15, S16 [43] [43] [59]

DefocusTab. 3, 4, 6 – 10, S12, Fig. 5, S19, S20 [2] [2] & [32]
Tab. 5, Fig. 7, S21, S22,S23, S24 [2] &[54] [2], [32], [60]

Tab. S13 [54] [54]
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Figure 9. The structure of dilated convolution layers that can be
compared with the corresponding structure in the LaKD block (re-
fer to Fig. 2 in the main manuscript).

wise convolution. For example, the label “one” in Tab. S12
denotes that the feature mixing module has one depthwise
and one pointwise convolution layer. Table S12 shows that
feature mixing equipped with two sequential depthwise and
pointwise layers can reach the best performance.

Table 12. Layer number ablation in the feature mixing module.

Number
DPDD Params.

(M)
MACs

(G)PSNR↑ SSIM↑ LPIPS↓
one 26.10 0.808 0.155 15.4 1004

two (ours) 26.15 0.810 0.155 17.7 1208
three 26.09 0.806 0.156 20.1 1413

5.3. Performance on the LFDOF dataset

Following [53], we additionally investigate our network
performance on the LFDOF dataset. AIFNet [54] has two
subnets, sharing a similar spirit to the conventional methods
that explicitly estimate the defocus map and then perform
non-blind deconvolution. DRBNet [53] adopts an end-to-
end solution and resorts to per-pixel kernel estimation to
account for the spatially-varying blur. Our method is also
an end-to-end solution that employs the LaKD block with
a large effective receptive field, which leads to much better
performance, as shown in Tab. S13.

Table 13. Quantitative comparison between AIFNet [54], DRBNet
[53], and our network evaluated on 725 images from the LFDOF
test set.

Method
LFDOF

PSNR↑ SSIM↑ LPIPS↓
AIFNet [54] 29.69 0.880 0.151
DRBNet [53] 30.40 0.891 0.145
Ours 31.87 0.912 0.115

6. ERF fitting details
In this section, we provide more details of our ERF vi-

sualization, GND-PDF fitting, and ERFMeter. We visual-
ize all the ERFs and GND-PDF fittings of defocus deblur-
ring networks [1, 2, 53, 63, 84] in Fig. S10, variants of our
networks that used for ablation study in Fig. S11, and our
network with different kernel sizes in Fig. S12, correspond-
ingly, all the parameters of GND-PDF fitting could be find
in Tab. S14, Tab. S15, and Tab. S16. Besides, we also se-
lect several representative networks for motion deblurring
[11, 21, 30, 84] and visualize their ERFs in Fig. S13. Note
that the network structures are highly diverse, especially for
networks on motion deblurring e.g. multi-patch [86], multi-
scale [43], recurrent scheme [45]. In this paper, we intend
to reduce the diversity and only select networks with overall
U-Net architecture so that the visualized ERFs are compa-
rable.

We investigate the ERF [41] on the feature extracted
from their bottleneck layer (the layer right before the first
up-sampling in the decoder), which could potentially reveal
the largest ERF they can achieve. The layer names cor-
responding to the bottleneck layer in each method are list
in Tab. S14 to Tab. S17. The ERFs of networks for de-
focus deblurring are averaged from 912 image patches in
size 512 × 512, which are augmented from 76 testing im-
ages in DPDD dataset [2] to further eliminate the depen-
dence on input content, while ERFs of networks for motion
deblurring are averaged from 1111 image patches in size
512×512 from GoPro dataset [43]. When doing GND-PDF
curve fitting, the x-axis is empirically scaled from [1, 512]
to [−30, 30] for higher fitting accuracy. We show the good-
ness of fitting R2 for each network in Tab. S14 to Tab. S17.
ERF evolution during training We additionally demon-
strate the ERF evolution during training for the motion and
defocus deblurring tasks, as shown in Fig. S14. The ERF
expands progressively with the training iterations and be-
comes much larger than at the initial stages. This observa-
tion is aligned with [41].

7. Additional qualitative results
In this section we show more qualitative results on

motion and defocus deblurring. Note that we mainly
compare our method with Restormer [84] as it achieves
state-of-art performance.



Motion deblurring We include additional visual results
that are obtained using image samples from the GoPro (Fig.
S15), HIDE (Fig. S16), Real-J (Fig. S17), and Real-R (Fig.
S18) datasets. Those results complement Tabs. 1 and 2 in
the main manuscript.
Defocus deblurring We include visual results for single-
image defocus deblurring for image samples from the
DPDD (Fig. S19) and RealDOF (Fig. S20) datasets. Those
results complement Tab. 3. We also provide visual results
for dual-pixel defocus deblurring for image samples from
the DPDD (Fig. S25) dataset, which complement Tab. 4.
We further compare our method with DRBNet [53] adopt-
ing the two-stage training strategy proposed in [53], and we
evaluate both methods using image samples from the DPDD
(Fig. S21), RealDOF (Fig. S22), and CUHK (Fig. S23,
S24) datasets, which complement Tab. 5.
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Figure 10. Demonstration of ERF patterns and the fitted GND-PDF curves: Here, different defocus deblurring networks are considered.
Note that, the ERF patterns are in log scale for better visualization, while the GND-PDF curves are in linear scale.

Table 14. ERF fitting parameters and statistics for defocus deblurring networks.

Method Layer Name σ β µ c1 c2 (e-5) R2 PSNR ERFM

DPDNet [2] conv5 2 5.2054 2.6054 0.9550 0.1188 -2.61 0.9978 24.39 0.1469
KPAC [63] conv4 4 1.8945 1.0838 0.8993 0.0923 41.47 0.9774 25.22 0.9737
MDP [1] conv15 4.0575 4.9008 0.9371 0.1174 -0.32 0.9956 25.35 0.3658
IFANet [32] conv res 5.6632 0.9690 0.4738 0.1291 -18.31 0.9885 25.37 1.8221
DRBNet [53] conv4 4 3.8936 1.5960 0.4254 0.1183 -1.79 0.9942 25.47 0.3615
Restormer [84] latent 1.9964 1.2687 0.5252 0.1057 19.14 0.9953 25.98 4.7581
Ours bt neck 1.9138 1.0812 0.5105 0.1044 21.27 0.9914 26.15 7.2870
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Figure 11. Demonstration of ERF patterns and the fitted GND-PDF curves: Here, different variants of our network are considered.

Table 15. ERF fitting parameters and statistics for variants of our network.

Method Layer Name σ β µ c1 c2 (e-5) R2 PSNR ERFM

UNet-conv bt neck 6.2515 1.6787 0.7357 0.1224 -8.73 0.9841 25.33 0.5774
UNet-res bt neck 3.6274 1.0466 0.4065 0.1048 20.60 0.9873 25.82 1.9244
Ours-dilated bt neck 1.8397 1.1123 0.5869 0.1170 0.30 0.9812 25.67 4.9839
Ours w/o both bt neck 1.6120 2.1925 0.5965 0.1067 17.43 0.9047 25.78 0.7989
Ours w/o inner bt neck 1.8337 1.1069 0.5574 0.1089 13.79 0.9916 26.01 6.7925
Ours w/o middle bt neck 1.9742 0.9474 0.4418 0.1025 24.41 0.9845 26.09 8.5311
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Figure 12. Demonstration of ERF patterns and the fitted GND-PDF curves: Here, we consider our network with different kernel sizes.

Table 16. ERF fitting parameters and statistics for our network with different kernel sizes.

Method Layer Name σ β µ c1 c2 (e-5) R2 PSNR ERFM

ours (3× 3) bt neck 2.3390 1.2508 0.4832 0.1032 23.31 0.9928 25.99 7.2201
ours (5× 5) bt neck 2.0966 1.1722 0.5941 0.1024 24.59 0.9912 26.00 6.9847
ours (7× 7) bt neck 1.6297 1.0267 0.5398 0.1071 16.86 0.9863 26.02 5.9340
ours (9× 9) bt neck 1.9138 1.0812 0.5105 0.1044 21.27 0.9914 26.15 7.2870
ours (11× 11) bt neck 1.7744 1.1446 0.4124 0.1067 17.42 0.9924 26.11 5.8027
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Figure 13. Demonstration of ERF patterns and the fitted GND-PDF curves: Here, different motion deblurring networks are considered.

Table 17. ERF fitting parameters and statistics for motion deblurring networks.

Method Layer Name σ β µ c1 c2 (e-5) R2 PSNR ERFM

DeblurGAN [30] ResnetBlock 18 1.1834 1.6237 0.0865 0.1145 4.44 0.9563 28.70 2.4235
Gao et al. [21] level3 deconv3 1 2.2912 1.2337 0.4046 0.1142 5.00 0.9967 30.90 5.3920
MIMO-UNet+ [11] DB3 2.4514 1.0489 0.2753 0.1077 15.78 0.9902 32.45 5.3514
Restormer [84] latent 1.9640 1.5154 0.5592 0.1054 19.63 0.9952 32.92 3.8813
Ours bt neck 1.7278 1.1311 0.5805 0.0977 32.52 0.9863 33.35 6.3704
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Figure 14. ERF evolution for increasing number of training cycles (from left to right) on defocus deblurring (up) and motion deblurring
(down).
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Figure 15. Qualitative comparison between Restormer [84] and our method evaluated on GoPro dataset.
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Figure 16. Qualitative comparison between Restormer [84] and our method evaluated on HIDE dataset.
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Figure 17. Qualitative comparison between MSSNet [28] and our method evaluated on RealBlur-J dataset.
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Figure 18. Qualitative comparison between MSSNet [28] and our method evaluated on RealBlur-R dataset.
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Figure 19. Qualitative comparison between Restormer [84] and our method evaluated on DPDD dataset.
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Figure 20. Qualitative comparison between Restormer [84] and our method evaluated on RealDOF dataset.
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Figure 21. Qualitative comparison between DRBNet [53] and our method adopting the two-stage training strategy as proposed in [53]
when evaluated on the DPDD dataset.
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Figure 22. Qualitative comparison between DRBNet [53] and our method adopting the two-stage training strategy as proposed in [53]
when evaluated on RealDOF dataset.
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Figure 23. Qualitative comparison between DRBNet [53] and our method evaluated on CUHK dataset when adopting the training strategy
proposed in [53]. Note no all-in-focus ground truth in CUHK dataset.
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Figure 24. Qualitative comparison between DRBNet [53] and our method evaluated on CUHK dataset when adopting the training strategy
proposed in [53]. Note no all-in-focus ground truth in the CUHK dataset.

Figure 25. Dual-pixel defocus deblurring: Qualitative comparison between Restormer [84] and our method evaluated on DPDD dataset.
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