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Abstract

Resolving morphological chemical phase transforma-
tions at the nanoscale is of vital importance to many scien-
tific and industrial applications across various disciplines.
The TXM-XANES imaging technique, by combining full
field transmission X-ray microscopy (TXM) and X-ray ab-
sorption near edge structure (XANES), has been an emerg-
ing tool which operates by acquiring a series of microscopy
images with multi-energy X-rays and fitting to obtain the
chemical map. Its capability, however, is limited by the
poor signal-to-noise ratios due to the system errors and low
exposure illuminations for fast acquisition. In this work,
by exploiting the intrinsic properties and subspace model-
ing of the TXM-XANES imaging data, we introduce a sim-
ple and robust denoising approach to improve the image
quality, which enables fast and high-sensitivity chemical
imaging. Extensive experiments on both synthetic and real
datasets demonstrate the superior performance of the pro-
posed method.

1. Introduction
X-ray absorption spectroscopy (XAS) is a widely used

technique that determines the atomic local structure as well
as chemical states in a broad range of disciplines. The
conventional XAS lacks spatial resolution which is aug-
mented by the full-field transmission X-ray microscopy
(TXM) in recent years [28, 33, 44]. It offers both high spa-
tial resolution and chemical-specific information through
imaging at energy points across the absorption edge of
the element of interest. By combining TXM and X-
ray absorption near-edge structure (XANES) spectroscopy,
two-dimensional and three-dimensional morphological and
chemical changes in large volumes can be resolved with
sub-50-nm resolution by the TXM-XANES imaging in the
hard X-ray regime (5 to 12keV) [30]. An illustration of this
technique is shown in Fig. 1a. This technique has been suc-
cessfully applied to various aspects of materials research,
such as the cathode materials’ charge heterogeneity [44,47]
and mesoscale degradation [35].

Despite its wide applicability, TXM-XANES has a dis-
advantage of relatively slow acquisition process if images
at hundreds and thousands of energy points need to be
recorded for sufficient energy-resolvable resolution. The
fast TXM-XANES imaging is important to robustly resolve
the morphological chemical phase transformations, for in-
stance for in-situ/operando battery materials studies. In
addition, the long acquisition time may also increase the
risk of sample deformation, which in turn makes the data
processing and analysis even harder. The speed of TXM-
XANES imaging can be accelerated by reducing the en-
ergy points or minimizing the X-ray exposure time which
is actually more friendly to radiation sensitive samples, in
analogy to the low-dose medical X-ray imaging applica-
tions [36, 43]. However, the short exposure time eventually
yields measurements that are too noisy to be interpreted re-
liably in the downstream analysis steps. To date, the phys-
ical limits of TXM imaging systems are still difficult to be
overcome by simply optimizing the microscopy hardware.
To alleviate this barrier, computational algorithms could be
developed for improving the data quality of short-exposure
acquisition, thus pushing the limits of TXM-XANES for
fast and high-sensitivity chemical imaging. To the best of
our knowledge, this work presents the first attempt that uti-
lized from computational imaging community to address
the challenges of X-ray chemical imaging, which is widely
available at synchrotron facilities and laboratory-based sys-
tems all over the world.

There have been tremendous efforts over the years in
developing better (both traditional and machine-learning
based) image restoration algorithms in imaging science.
They have been demonstrated to be effective in natural cam-
era [3, 9, 26, 32, 50], fluorescence microscopy [7, 15, 18, 22,
45, 52], electron microscopy [2, 37], super-resolution mi-
croscopy [29] and synchrotron X-ray tomography [21], etc.
A specific requirement for its application in TXM-XANES
imaging is that the algorithm has to be effective and scal-
able to large datasets. Indeed, in a typical study with TXM-
XANES [35], two-dimensional XANES images can have
image size 1024 × 1024 pixels (after binning of 2) which
cover a field of view of about 16.4× 16.4 um. As reported,
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Figure 1. (a) Principles of the TXM-XANES imaging technique. A monochromatic X-ray beam is focused onto the sample using the
condenser and the image is projected onto the detector. One image is acquired in absorption contrast at each energy and the XANES
spectrum is reconstructed from a series of images with multiple energy points. The normalized XANES spectra are subsequently fitted to
create a chemical phase map, representing the chemical states transformation. (b) The proposed approach (SUM) significantly improves
the signal-to-noise ratio of the projection images, which enables much faster data acquisition. (c) It also preserves the spectrum information
for a single representative pixel, which is indicated as a blue dot in (b). (d) The fitted chemical phase map after denoising has a substantial
higher correlation with the ground truth in (a).

data was collected from 288 energy points across the ab-
sorption K-edge of Ni from 8100 eV to 9022 eV, which took
∼2.5 hours. The acquisition time of three-dimensional mea-
surements is even longer (∼60 hours) resulting in a dataset
with size over 500Gb.

In this work, we aim to explore the intrinsic low-
dimensional subspace of TXM-XANES data to improve its
image quality from low-exposure acquisition in an unsu-
pervised manner. The key idea of the proposed SUbspace
Modeling (SUM) algorithm is that the microscopy images
obtained from multiple X-ray energies are highly correlated
and all share similar content (sample not moving), which re-
flects the shape of the target object in the field of view. Their
differences are the chemical phases corresponding to illumi-
nations from different energy X-rays. Therefore, it is possi-
ble to decompose the noisy data into low-dimensional base
and their corresponding coefficients, and then the thresh-
olding can be performed on the coefficients so that the re-
construction becomes noise-free afterwards. This kind of
transform-domain approach has been demonstrated to be ef-
fective in various image denoising problems [3, 9, 38]. We
use the singular value decomposition (SVD) as the trans-
former in this work. Importantly, this intuitive idea can

be formulated into an optimization framework which fol-
lows the ideas of plug-and-play prior [42,46] and functional
approximation [3, 12, 18, 22]. Its parameters are automati-
cally determined through the statistical modeling of the data
and noise, which is implemented as the Stein’s unbiased
risk estimator [3, 39]. Extensive experiments confirm that
the proposed algorithm is able to obtain high quality data
from the low-exposure measurements, thus could dramat-
ically reduces the data acquisition time and increases the
chemical-resolvability of current TXM-XANES technique.

The main contributions are summarized as follows:

• We propose a simple and robust denoising algorithm
(SUM) for low-exposure measurements of TXM-
XANES data to accelerate the imaging speed and im-
prove the chemical-resolvability.

• The SUM algorithm is formulated into an optimization
framework. There are no hyperparameters that need to
be tuned.

• We quantitatively and qualitatively evaluate the pro-
posed algorithm on synthetic and real datasets and
show that it performs favorably against other ap-
proaches in terms of accuracy and processing speed.



2. Related Work
X-ray Chemical Imaging. Synchrotrons use electric-

ity to produce intense X-rays that span a broad spectrum.
When X-rays interact with an atom or molecule, a variety
of signals can result, depending on the type of atom and its
chemical environment [8]. The ability to tune the energy
of the incident photons with high resolution opens the vast
field of XAS imaging. The applications of X-ray chemical
XAS imaging includes dual-energy contrast imaging tech-
niques [13], in which images directly below and above the
absorption edge of a specific chemical element of interest
are recorded, as well as the full-field TXM-XANES imag-
ing [28,44], in which a stack of images is obtained at differ-
ent energies, generating an absorption spectrum (XANES
spectrum) for each pixel within the field of view. These
spectra are further fit with known reference compounds us-
ing a least-square fitting method to determine the edge en-
ergy position. The resulting chemical phases for each pixel
can be represented as a two-dimensional color map. The
concept of TXM-XANES imaging technique is illustrated
in Fig. 1. Together with the capability of rotating the sample
stage in TXM, the collection of multiple two-dimensional
chemical maps at different angles allows tomographic re-
construction with three-dimensional chemical speciation.
To handle the system imperfections and speed up the ac-
quisition time, 3D median filtering is often used to improve
the signal-to-noise ratio (SNR) of the TXM-XANES imag-
ing data [20, 28]. Clustering of spectra and then averaging
are also proposed to improve the SNR [35]. The improve-
ment of these approaches, however, is marginal especially
for high noise cases. The clustering approach also reduces
the spatial resolution of the chemical map, which is subop-
timal for high resolution analysis.

Video Denoising. Denoising has been a long-studied
research topic. Numerous works have been proposed in
the past [4, 19, 23, 24]. One of the representative ap-
proaches is VBM4D [24], that uses motion compensated
spatio-temporal patches for video denoising. More recently,
impressive results have been demonstrated by data-driven
methods [11, 37, 41]. In particular, the unsupervised video
denoising methods are mainly based on the Frame2Frame
framework [11] where a backbone convolutional neural net-
work pre-trained with supervision is fine-tuned on the video
to be processed. However, most of current methods are
designed for natural videos. Contrary to the normal set-
tings, TXM-XANES data is more challenging to apply ex-
isiting approaches since spectrum at each pixel spans across
hundreds and thousands of frames. It is beneficial to con-
sider all frames for denoising to avoid missing important
information. On the other hand, taking account of more
frames also allows reducing the exposure time for each sin-
gle frame thus further accelerating the overall data acquisi-
tion process.

Low-Dose X-Ray Imaging. Much research has been
conducted on improving the quality of noisy low-dose X-
ray images [21, 43, 48]. For instance, Liu et al. [21] present
a denoising technique based on generative adversarial net-
works to greatly improve the reconstructions of low-dose
and noisy synchrotron X-ray data. However, these ap-
proaches cannot be directly applied to TXM-XANES data
since they are considering a single static image reconstruc-
tion (either 2D projection image or 3D tomography).

Plug-and-Play Framework. Plug-and-play framework
that leverages the power of state-of-the-art denoiers has
been utilized in various inverse problems [1, 5, 6, 40, 42, 49,
50]. It builds on the optimization-based recovery model,
where the whole inverse problem is splitted into easier sub-
problems by handling the forward-model term and the prior
term separately, and alternating the solutions to subprob-
lems in an iterative manner. To the best of our knowledge,
however, there is no related approach that is well suited for
video denoising problem. Part of the reasons for this gap
lies in the missing of suitable transformations for specific
applications.

3. Proposed Algorithm

Problem Statement. Each TXM image is detected by a
sensor such as a CCD camera. The times for each X-ray ex-
posure and the energy switching predominantly determine
the data quality and overall acquisition time. Similar to vis-
ible light, longer exposure time increases photon flux to the
image receptor, reduces the noise and subsequently leads to
better images with higher signal-to-noise ratios. With the
additive noise assumption, the data formation model can be
expressed as

y = x+ b, (1)

where x ∈ RMN×T is the vectorized version of the un-
known data. Each column vector is obtained after lexico-
graphic ordering of the TXM image with size M × N and
T is the number of energy points. y ∈ RMN×T is the noisy
measurement and b ∼ N (0;σ2I) ∈ RMN×T , σ is the stan-
dard deviation of noise. The objective of this work is to es-
timate the underlying true signal x from the observed noisy
data y that is resulting from low exposure time measure-
ment.

The SUM Algorithm. We introduce a novel algorithm
for this task via subspace modeling (SUM). Inspired by
the fact that the TXM images with different X-ray energies
live in low-dimensional subspace, we can decompose the
ground truth data x into K-dimensional pairs of spatial and
“temporal” components, as x = uv, where the columns of
u ∈ RMN×K can be thought as the basis and v ∈ RK×T

represents the corresponding coefficients. This decomposi-
tion can be simply performed through SVD of y under the
assumption of the data formation model in Eq. (1).
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Figure 2. Illustration of the proposed algorithm. The raw noisy
data is firstly decomposed by SVD. The coefficients correspond-
ing to different base are thresholded using state-of-the-art image
denoising method (e.g. BM3D or DnCNN), and then the denoised
data is reconstructed.

Following the idea of transformation-based denoising
methods [9, 38], particularly the SURE-LET approach [3],
we can fix the basis and try to remove the noise components
from the coefficients. The noise-free data can be recon-
structed afterwards. That is to say, the denoising problem is
formulated as solving the following optimization problem

argmin
v

1

2
‖uv − y‖2 + λR(v), (2)

where R(v) represents some regularization term enforcing
prior knowledge of v. Since uTu = I, Eq. (2) is equivalent
to

argmin
v

1

2
‖v − uTy‖2 + λR(v). (3)

The regularization term R(v) in Eq. (3) may be difficult
to be chosen properly, but it can be well approximated by a
linear combination of elementary functions Rk(v

k) [3,18],
that is

R(v) =

K∑
k=1

ckRk(v
k), (4)

where vk is the k-th coefficient vector of the basis u and
ck is the corresponding weight which is simply set to be 1 to
reduce the degrees of freedom. Thus Eq. (3) can be solved
by decoupling each vk and its solution has a general form
as

v̂ = [v̂1; ...v̂k; ...v̂K ], v̂k = Dkλ
(
uTk y

)
, (5)

and Dkλ (w) is the coefficient thresholding operator, which
is defined as

Dkλ (w) = argmin
v

1

2
‖v −w‖2 + λRk(v). (6)

Equation (6) can be then regarded as a typical im-
age denoising step, and state-of-the-art image denoising
algorithms for additive Gaussian noise, either traditional
BM3D [9] or convolutional neural network algorithm [51],
can be directly applied here. Relevant discussions on which
kind of method works best for the TXM-XANES data
in Sec. 4.2 and we chose DnCNN [51] for the experiments
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Figure 3. Automatic hyperparameter determination. (a) The
optimal thresholding singular value (δ) is determined by mini-
mizing the mean squared error (MSE) and its unbiased estimate
(SURE). (b) Demonstration of the effect of different δ’s in (a)
on the obtained spectrum by the proposed denoising algorithm.
Over-estimated δ leads to over-smoothed spectrum, while under-
estimated δ gives noisy spectrum.

in this work. The final output can be then reconstructed by
x̂ = uv̂. An illustration of the proposed algorithm is shown
in Fig. 2.

The central idea of this approach is from the typi-
cal transformation-based image restoration method, where
SVD serves as the transformer and the inner image denois-
ing algorithm is used to threshold the coefficients. Note
that the noise associated to the coefficients is still following
Gaussian distribution with the same variance as y. On the
other hand, the overall algorithmic workflow is in align with
the recent trend of plug-and-play image restoration meth-
ods [42, 46], in which the off-the-shelf Gaussian denoiser
is utilized to solve various inverse problems instead of us-
ing hand-crafted image priors in the optimization. Most
notably, instead of dealing with a high-dimensional video
data, the dimension of the restoration problem is effectively
reduced to 2D image denoising problem by the proposed
approach.

SURE-based Parameter Selection. The proposed al-
gorithm is simple and effective to improve the quality of
TXM-XANES imaging data. However, the size of the low-
dimensional subspace K is a critical parameter to achieve
the optimal performance. Too many components result in
poor representations while too few lead to large variances.
To find the correct trade-off K for the proposed algorithm
x̂ = FK(y), we revisit that our essential goal is to mini-
mize the mean squared error (MSE) between the estimate
x̂ and ground truth x, that is to minimize MSE(x̂,x) =

1
MNT E

{
‖FK(y)− x‖2

}
. In practice, x is unknown but

MSE can be well approximated by the Stein’s unbiased risk
estimate (SURE) [39], which is only related to the obser-
vation y. Thus instead of optimizing the MSE, in which
the ground truth is unknown, we can directly minimize the
SURE to determine the optimal parameter. The formula and
derivation procedure of SURE is similar to those of other
works [3, 18, 23], thus omit here. As shown in Fig. 3, the



ba
Particle

Energy (eV)

Ni valence 
state

N
or

m
al

iz
ed

 µ
(E

) 

Electrode

Catalyst Wedge

Round Brine

Spectrum

8330 8340 8350 8360
0.0

0.5

1.0

1.5 𝑥 = 0.00
𝑥 = 0.13
𝑥 = 0.29
𝑥 = 0.51
𝑥 = 0.67

Experiments setting

Comparison with others, video denoising approaches

Baseline Traditional Supervised CNN Unsupervised CNN
Medfil3, SVD VBM4D DVDNet/FastDV

DNet
UDVD/MF2F

1. Noise levels –
acquisition time
2. Robust to jitter –
helpful to motion 
correction

Evaluation metrics

1. Frame PSNR
2. Spectrum PSNR
3. Correlation to chemical map
4. Running time

Tab 1-3 Figure 7-8

Edge point

Figure 4. Experimental settings. (a) Typical examples of the
test datasets: projections (left) and reconstructed slices (right). (b)
Normalized spectra under different Ni valence states of hard X-
ray XANES in a battery cathode NixCoyMn1-x-yO2. x and y =
0.1 represent the percentage of elements Ni and Co in the sample,
respectively.

optimal thresholding values obtained by MSE and SURE
minimization are identical.

4. Experiments and Results

4.1. Experimental Settings and Evaluation Metrics

We perform experiments over six different datasets, as
shown in Fig. 4a, which consist of three X-ray projection
images (Particle, Catalyst and Round) and three recon-
structed slices (Electrode, Wedge and Brine). Image details
can be found in Suppl. A. They are used to simulate the sce-
narios of 2D and 3D TXM-XANES imaging, respectively.
In total, there are 642 images for the testing. The simulated
movie data is generated by randomly assigning five spectra
(Fig. 4b) to the pixels in the image. These spectra corre-
spond to different Ni valence states of hard X-ray XANES
in a battery cathode NixCoyMn1-x-yO2 (NCM). x and y
represent the percentage of elements Ni and Co in the sam-
ple, respectively. The edge point (energy at 0.5 spectrum
position) is an important parameter to probe the chemical
state transformation during battery cycling.

Each movie is further corrupted with additive Gaussion
noise at different noise levels σ ∈ [10, 150]. The perfor-
mance of the denoising algorithms is assessed in terms of
three criteria:

• FPSNR: Frame peak-signal-to-noise ratio (PSNR),
which is calculated by the average of the PSNRs of
each frame.

• SPSNR: Spectrum PSNR, which is the average of the
PSNRs of each spectrum in the image pixels.

• Correlation: The correlation coefficient between the
obtained and ground truth chemical maps.
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Figure 6. Denoising helps reduce the sampling percentage. The
correlation of the chemical maps obtained from the proposed algo-
rithm SUM and the ground truth with respect to different sampling
percentages. SUM has the potential to reduce the number of en-
ergy points.

All experiments are carried out on a workstation with
Intel Core i9 and Nvidia Titan V GPU.

4.2. Analysis of the proposed algorithm

Selection of the Off-the-shelf Gaussian Denoiser. The
flexibility of the proposed algorithm allows us to plug-in
any kinds of state-of-the-art image denoising approaches.
Here we focus on two representative algorithms: BM3D [9]
and DnCNN [51]. As shown in Fig. 5, both methods can
significantly improve the PSNRs and correlations under dif-
ferent conditions, while SUM with BM3D obtains slightly
better results. However, the running time of SUM with
DnCNN is much smaller than the other, especially when
the data size is large. The part of reasons is that DnCNN



Baseline Traditional Unsupervised CNN This work

Test set σ Noisy MedFilt3 SVD ReLD VBM4D UDVD (5 frames) RFR SUM

Particle
10 28.13 / 0.76 35.19 / 0.85 46.69 / 0.99 43.88 / 0.99 43.52 / 0.97 32.90 / 0.75 18.07 / 0.40 43.19 / 0.98
60 12.57 / 0.14 24.60 / 0.31 29.98 /0.84 29.81 / 0.63 32.14 / 0.51 21.73 / 0.40 16.94 / 0.17 39.07 / 0.96
150 4.61 / 0.05 16.91 / 0.11 23.64 / 0.45 21.03 / 0.14 28.08 / 0.21 14.08 / 0.12 15.14 / 0.05 35.23 / 0.91

Wedge
10 28.13 / 0.64 33.32 / 0.86 46.80 / 0.99 43.68 / 0.98 40.47 / 0.95 20.68 / 0.69 16.23 / 0.40 44.76 / 0.99
60 12.57 / 0.10 24.33 / 0.21 30.75 / 0.76 29.71 / 0.54 29.54 / 0.56 18.07 / 0.34 15.24 / 0.07 39.31 / 0.96
150 4.61 / 0.03 16.89 / 0.08 21.82 / 0.30 20.95 / 0.12 25.35 / 0.23 14.84 / 0.23 13.97 / 0.03 34.40 / 0.89

Table 1. Denoising results of different approaches. Performance values are averaged FPSNR (in dB) and the correlation coefficient with
the ground truth chemical map, respectively.
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benefits from GPU computation while the implementation
of BM3D is on CPU only. We adopt the DnCNN for the fol-
lowing experiments. Note that naively applying these meth-
ods to individual frame is undesirable (Suppl. B).

Effect on the data sampling-rate. Even if the proposed
denoising approach is initially aiming at reducing the ex-
posure time, it turns out that it also helps minimize the
number of energy points for a reasonably good chemical
map. As shown in Fig. 6, we apply the SUM algorithm to
the reduced-sampling-rate data and calculate the correlation
with the ground truth under different noise conditions. The
energy points are randomly selected. The results show that
in order to get over 0.8 correlation, only 10% data is needed
if the noise is small, and 40% data is needed if the noise is
large, with the help of denoising.

4.3. Comparison with others
As benchmarks for comparisons, we evaluate our

method against six denoising techniques. They are cate-
gorized into three groups: Baseline (MedFilt3 - 3D median
filtering, SVD), Traditional (ReLD [14], VBM4D [24]), and

σ = 10 σ = 150

Small Medium Large Small Medium Large

Noisy 0.63 0.58 0.54 0.04 0.04 0.04
MedFilt3 0.69 0.65 0.67 0.07 0.04 0.04

SVD 0.77 0.71 0.67 0.31 0.31 0.22
ReLD 0.79 0.75 0.72 0.06 0.08 0.07

VBM4D 0.77 0.71 0.70 0.15 0.17 0.16
SUM 0.84 0.78 0.78 0.76 0.72 0.72

Table 2. Demonstration of robustness to jitter motion. The
correlation coefficients between the ground truth and calculated
chemical maps obtained from various algorithms under differ-
ent noise levels (σ = 10 and 150) and jitter amplitudes (small,
medium and large). The best results within a 0.3 margin are shown
in boldface.

Unsupervised CNN (UDVD [37], RFR [17]). The optimal
thresholding value of SVD is determined through the sim-
ilar procedure as in Sec. 3. Supervised CNN approaches
such as FastDVDnet [41] are not included here since the
training dataset is limited and the pre-trained model on nat-
ural videos performs poorly in our case.
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MedFilt3 SVD ReLD VBM4D SUM

Particle 1.48 6.97 227.39 650.26 3.36

Wedge 15.47 11.88 1620.44 4196.10 14.40

Table 3. Comparison of the computational time (units: sec-
onds). Particle and Wedge have the image size of 379×520×969
and 1193× 1193× 969, respectively.

Different Noise Levels. Table 1 reports the FPSNR and
correlation results of two typical images we have obtained
from various algorithms. The best results are shown in bold-
face. More results can be found in Suppl. C. We observe
that SVD achieves the best results for the condition σ = 10.
This is not entirely surprising since SVD provides the opti-
mal energy compaction in the least square sense. When the
noise is small, SVD can effectively filtering out noise. As
the noise level increases, SVD fails to preserve useful tem-
poral information thus the performance drops significantly.
The proposed SUM algorithm consistently achieves better
results than other approaches and is very robust to a wide
range of noise levels. In particular, significant improve-
ments are observed at σ = 150, where the chemical map
is still well reconstructed.

Figures 7 and 8 show the visual comparison of the pro-
jection images and the chemical maps from various ap-
proaches under different noise conditions, respectively. We
observe that our method preserves various image details,
while introducing very few artifacts. The spectrum of a sin-
gle pixel matches the ground truth. The chemical phase map
obtained from the proposed algorithm has also the highest
correlation with the ground truth. It is worth mentioning
that when the noise level is high, it is almost impossible
to retrieve the image from a single noisy frame. However,
the spectrum information is spanned across multiple frames,
which makes the restoration possible by the proposed ap-
proach.

a bSUMNoisy
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 1
5
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Figure 9. SUM helps jitter correction. The averaged images
of the motion-corrected noisy input and denoised output by SUM
across energies under low noise (a) and high noise (b) conditions,
respectively. Structural details are clearly preserved after denois-
ing, which indicates the image sequences are well-aligned.

Motion Robustness. It should be note that, because
zone plate focusing is energy dependent, zone plate refo-
cusing is performed for each energy and may result in jitter
motion owing to poor motor precision. To evaluate the ro-
bustness of denoising algorithms to jitter motion, we simu-
late the data with random motion at different levels (Small,
Medium and Large), which are corresponding to jitter am-
plitudes 2, 4 and 6 pixels respectively. The motion correc-
tion is performed by NoRMCorre [34] before calculating
the chemical phase map. As shown in Tab. 2, the SUM al-
gorithm consistently outperforms other approaches often by
a significant margin, which demonstrates the robustness of
the proposed denoising approach.

Moreover, as shown in Fig. 9, compared with the motion
correction on raw noisy data, the denoising helps correct the
jitter motion as well. The averaged images after denoising
show clearer structural details. This is another important
application of the proposed denoising algorithm for X-ray
imaging in practice.

Running Time. Table 3 reports the comparison of com-
putational time. It can be seen that our method is substan-
tially faster than ReLD and VBM4D, and comparable with
the simple approaches MedFilt3 and SVD. As observed,
the proposed SUM algorithm is roughly 200 and 300 times
faster than VBM4D for small and large images, respec-
tively. It is worth mentioning that SUM is by nature highly



parallelizable for even faster processing because each coef-
ficient can be processed independently of the others.

4.4. Results of real dataset

We now apply the SUM algorithm to the restoration
of real TXM-XANES data, which is the image of multi-
ple NCM particles from a charged cathode. The exposure
time for single frame is 0.5 seconds and data from in total
117 energy points spanning from 8180 eV to 8562 eV are
recorded.

As shown in Fig. 10a, each projection image is very
noisy and the resulting chemical map does not contain
meaningful information. After applying the proposed SUM
algorithm to the raw data, we can clearly see the morpholog-
ical structure of NCM particles. In addition, the chemical
map from the denoised data shows the inhomogeneous re-
actions of battery electrodes. The Ni valence states of some
NCM particles are relatively high while those of others are
low. The denoising by SUM provides the possibilities of
deeper insights into spatiotemporally electrochemical reac-
tions and ultimately helps optimize the design of the com-
posite electrodes.

We plot the spectra of four single pixels at different loca-
tions before and after denoising in Fig. 10c. The raw data is
too noisy to be analysed reliably. With the help of SUM, the
transition of the chemical states at four different locations is
revealed with high fidelity, which shows the inter- and intra-
particle differences during battery charging and discharging
process.

5. Limitations
Memory Issue. The standard SVD calculation in the

proposed approach may be not efficient for extremely large
matrix (e.g. full resolution TXM images and thousands
of energy points) that cannot fit into the computer’s main
memory. This limitation can be addressed by applying ran-
domized numerical linear algebra [10, 27].

Noise Assumption. We assume the noise distribution of
X-ray images is Gaussian and additive in Eq. (1). Though
well approximated by Gaussian noise in many cases, more
complicated noise types, such as mixed Poisson-Gaussian
noise, should be considered in the extremely low-dosage
situations. The variance stabilization transformation [25] or
a new unbiased estimate considering the noise statistics [22]
could be vital to addressing this limitation.

6. Conclusion
We propose a new denoising algorithm for the funda-

mental and widely-used X-ray imaging technique. The pro-
posed SUM approach outperforms related state-of-the-art
techniques, both qualitatively and computationally. The
effectiveness and low computational cost of the SUM al-
gorithm offers the possibilities of fast and high-sensitivity

② ③① ④

0 5
0

1
0
0

1
5
0

2
0
0

2
5
0Ni valence state

Low High

a

b

c

Noisy SUM

①

④

Noisy

②

③

Pr
oj

ec
tio

n 
im

ag
e

C
he

m
ic

al
 m

ap

SUM

Energy (eV)

N
or

m
al

iz
ed

 µ
(E

) 

8200 8400 8600
0.0

0.6

1.2

1.8

8340.50 8340.75 8341.00 8341.25

0.499

0.500

0.501

①
②

③
④

Figure 10. SUM improves the interpretability of real data. (a)
Low SNR projection image of TXM-XANES recording (left) and
its corresponding denoised image by SUM (right). (b) The fit-
ted chemical state maps from the noisy and denoised data, respec-
tively. Colors represent the level of Ni valence state. (c) Spectra of
selected four single pixels in (a) from the noisy (top) and denoised
data (bottom), respectively. The region of edge energy position
(0.5 edge position) is amplified for better illustration. The inter-
and intra- particle state differences are revealed with the help of
SUM.

chemical imaging. One of the major advantages is to iden-
tify unknown chemical phases with high precision in the
sample since this is only possible if an accurate XANES
spectrum is provided for each individual pixel. The pro-
posed approach can be easily extended to 3D chemical
imaging by rotating the sample [16]. Another direction of
our future work is to adaptively select the energy points to
further reduce the acquisition time and enable efficient au-
tonomous experiments [31]. Moreover, the proposed algo-
rithm is not limited to X-ray imaging. Multispectral image
restoration could be another suitable application.
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