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Abstract (140/150 words) 

Emotions are fundamental to our experience and behavior, affecting and motivating all aspects of our lives. 

Scientists of various disciplines have been fascinated by emotions for centuries, yet until today vigorous debates 

abound about how to define emotions and how to best study their neural underpinnings. Defining emotions from 

an evolutionary perspective and acknowledging their important functional roles in supporting survival allows the 

study of emotion states in diverse species. This approach enables taking advantage of modern tools in 

behavioral, systems and circuit neurosciences, allowing the precise dissection of neural mechanisms and 

behavior underlying emotion processes in model organisms. Here we review findings about the neural circuit 

mechanisms underlying emotion processing across species and try to identify points of convergence as well as 

important next steps that remain to be taken in the pursuit of understanding how emotions emerge from neural 

activity.  
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INTRODUCTION  

What is an emotion? Everyone has an intuitive sense of what an emotion is, however, amongst scientists, the 

definition of emotions remains vigorously debated (Adolphs 2017; Adolphs & Anderson 2018; Adolphs & Andler 

2018; Adolphs et al. 2019; Anderson & Adolphs 2014; Berridge 2018; Bliss-Moreau 2017; De Waal 2011; de Waal 

& Andrews 2022; Feldman Barrett 2006; James 1884; LeDoux 2012, 2021; LeDoux et al. 2016; Panksepp 2005, 

2011a). This controversy may be partly due to attempts at explaining different phenomena. From a human 

psychological perspective, emotions are often defined as consciously perceived feelings of emotions (LeDoux & 

Hofmann 2018; Russell 1980). However, emotions can also be defined by their assumed function in supporting 

survival (Adolphs & Andler 2018; Ekman & Oster 1979; Shariff & Tracy 2011; Zych & Gogolla 2021). In this view, 

emotions are hidden internal states that can be inferred from knowledge about their causes and consequences 

and are conserved across species (Adolphs & Andler 2018; Anderson & Adolphs 2014; Darwin 1872; Kryklywy et 

al. 2020; Panksepp 2005).  

In our view, the struggle to define emotions should not prevent scientists across disciplines and with 

different viewpoints to jointly tackle some of the most burning questions in affective neurosciences: how are 

different aspects of emotions (conscious experience and functional states) implemented in the brain? How do 

functional emotion states relate to conscious, subjective feelings? Do animals have emotions, and if yes, to what 

extent do they experience them? Gaining insights into these questions may also inform us about the mechanisms 

underlying emotional disorders and thus is of clinical relevance. 

We want to advocate for collaboration amongst scientists from multiple disciplines, studying diverse 

species; as well as for the formulation of specific and testable hypotheses that may help to resolve points of 

dissent. Towards this goal, we will here first review a few general insights into the neural circuits underlying 

selected, discrete functional emotion states that have been most studied in animal models. We will then highlight 

a few emerging principles common to the neuronal circuits underlying these discrete functional emotion states. 

We will further attempt to extract what has been learned from animal studies about the encoding of valence 

versus discrete emotion states, and finally conclude with suggestions for future directions in the field of emotion 

research. 

 

DEFINING AND INVESTIGATING EMOTIONS ACROSS SPECIES 

In this review, we will consider emotions as functional states (‘functional emotion states’ or ‘emotion states’ for 

short) that are adaptive for the organism, and differentiate these functional emotion states from the conscious 
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percepts of emotions (‘feelings of emotion’) which can only be assessed in humans. For now, we remain agnostic 

about how these two concepts relate, albeit we believe that they are oftentimes (but likely not always) linked.  

Recognizing emotions as evolutionarily conserved functional states allows us to consider scientific evidence 

collected from different species, including human and nonhuman animals. Functional emotion states can be 

conceptualized as central brain states arising from a multitude of external and internal inputs and affecting a 

multitude of variables in behavior, body and brain (Adolphs 2017; Adolphs & Anderson 2018; Adolphs & Andler 

2018; Anderson & Adolphs 2014; Damasio & Carvalho 2013; Panksepp 2011a). In this view, the presence of an 

emotion state can be inferred from observations of its causes and consequences, and feelings of emotion may, or 

may not accompany it. Furthermore, emotion states have been proposed to be characterized by certain ‘features’ 

that may help to distinguish emotion states from other behavioral states or reflexes, and to identify these states 

across diverse species (Figure 1) (Adolphs 2017; Adolphs & Anderson 2018; Anderson & Adolphs 2014). 

Amongst these features are: Global coordination and pleiotropy: emotion states coordinate multiple (‘pleiotropic’) 

behavioral, bodily, biochemical (i.e. hormonal, neurochemical) and cognitive changes and thus globally affect the 

entire organism. Valence: emotion states can usually be characterized as positive or negative (Berridge 2019; 

Namburi et al. 2015; Tye 2018).  Intensity: emotions occur in a graded manner, ranging from weak to strong. 

Priority: emotion states gain priority over many ongoing processes, such as volitional or other ongoing behaviors. 

Generalization: emotion states may be elicited by stimuli or contexts that were associated with the initial trigger 

stimulus. Persistence: emotion states usually outlast the initial trigger stimulus. 

Emotion states have also been referred to as ‘action programs’, to underline that they are causing 

pleiotropic changes and to distinguish them from feelings of emotion (Damasio & Carvalho 2013). It is important 

to note that the term ‘action programs’ also implies automaticity. However, while emotion states trigger recurrent 

patterns of coordinated organismal changes, they are also flexible and adapt to the circumstances and nature of 

the emotion trigger. Emotion expressions can thus be thought of as ‘semi-flexible’, situated between stereotypic 

reflexes and volitional behavior (Adolphs & Anderson 2018; Anderson & Adolphs 2014).Taken together, 

assessing whether behavioral, physiological, and neural activity patterns adhere to at least some of these 

properties may help to identify them as emotion states across species. Furthermore, dissecting the complexity of 

emotion states into separable features and studying their underlying neural mechanisms in isolation may yield 

insights into possibly conserved neural circuit ‘motifs’.  
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Figure 1. Experimentally inferring emotion states across species. Evolutionary conserved functional emotion states 

(black box) are hidden internal states that can be inferred from knowledge about their causes (input or trigger, left) and 

consequences (emotion expression, right). Diverse triggers and contexts can cause similar emotion states (fan-in), which can 

elicit a multitude of organismal changes (fan-out). This arrangement allows to experimentally control and manipulate diverse 

features and contexts of ethological emotion triggers, quantify the resulting expression of the emotion state, and test whether 

the expressions adhere to emotion-characteristic features. The relationship between changes in stimulus input and the 

response of the organism can help to infer the presence of an emotion state.  

 

NEURAL CIRCUITS UNDERLYING FUNCTIONAL EMOTION STATES 

The majority of past research has addressed emotions as distinct states, considering either a clear function (in 

animal models) or feeling of emotion (in humans). Here we will first focus on insights gained from studying 

emotions as separate states. However, it should be noted that whether emotion states are represented in 

categories of discrete states, or rather are decoded from variables along continuous dimensions remains an 

unresolved question in affective neurosciences. 

 

Neural circuits for fear and anxiety 

Conceptually, fear is elicited by a realistic and acute threat, whereas anxiety is evoked by potential, inferred or 

anticipated threat (Blanchard & Blanchard 2008; Davis et al. 2010; Grupe & Nitschke 2013). These closely related 

concepts are the most studied and currently best understood emotion states for several reasons: expressions of 

fear and anxiety are well conserved, easily detected and quantified across animal species. Similarly, ethologically 
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relevant trigger stimuli are easily identified and experimentally applied. Consequently, nonhuman animal research 

has delivered a wealth of mechanistic insights into the neural circuits underlying fear and anxiety. We refer the 

reader to reviews providing in depth discussions of the neural underpinning of fear and anxiety (Calhoon & Tye 

2015; Tovote et al. 2015) and focus here on summarizing a few emerging principles.  

Fear and anxiety engage overlapping but also distinct circuit mechanisms (Tovote et al. 2015). While fear 

stimuli are generally sensory and therefore processed through the thalamus as well as primary and associative 

sensory cortices, anxiety triggers are more difficult to localize to specific input structures but likely emerge through 

sensory, interoceptive (i.e. related to sensory information derived from the body), and/or cognitive paths (Calhoon 

& Tye 2015; Tovote et al. 2015). Commonly, coordinated activity in the amygdala, the bed nucleus of the stria 

terminalis (BNST), the ventral hippocampus (vHPC) and medial the prefrontal cortex (mPFC) is thought to 

evaluate the presence or absence of threat. These brain regions are strongly and reciprocally interconnected and 

thus threat stimuli are evaluated by multiple circuit elements. These ‘macrocircuits’ include both feedforward and 

feedback signaling from amygdala to BNST, mPFC and vHPC, as well as from mPFC and vHPC towards BNST 

and amygdala (Calhoon & Tye 2015). Circuit computations underlying fear and anxiety seem to overlap most at 

this macroscopic level, although only few studies have explicitly addressed the interactions between both states 

(but see Gründemann et al. 2019; Tovote et al. 2015). 

Once a threat is detected and a threshold is passed, pathways to trigger expressions of fear (or anxiety) 

are recruited. Amongst these are circuits in the periaqueductal gray (PAG), central amygdala (CeA), 

hypothalamus, lateral septum (LS) and the dorsal vagal complex (Calhoon & Tye 2015; Tovote et al. 2015). 

Depending on the nature and characteristics of the threat, different adaptive defensive behaviors are elicited 

(Perusini & Fanselow 2015; Zych & Gogolla 2021). Interestingly, diverse modes of fear and anxiety expressions 

and their underlying neural correlates are remarkably conserved across species (Blanchard et al. 2001; Fanselow 

1994; Roelofs 2017; Roelofs & Dayan 2022; Zych & Gogolla 2021).  

Fear and anxiety induce states of different persistence and can occur across multiple timescales. 

Interestingly, in mice, neurons in the insular cortex exhibit long-lasting activity increases in states of heightened 

anxiety and this activity is necessary for the persistence of the defensive state (Gehrlach et al. 2019). Similarly, a 

neuronal subpopulation in the mouse ventromedial hypothalamus exhibits activity that lasts for many tens of 

seconds after exposure to predator threat, and this activity is required for persistent defensive behaviors 

(Kennedy et al. 2020). Similar persistent activity changes related to anxiety were found in the basolateral 

amygdala (BLA) (Gründemann et al. 2019; Lee et al. 2017).  
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A recurrent theme emerging from the study of fear and anxiety circuits is that of functional antagonism. 

Indeed, individual nodes, including but not limited to BLA, CeA and mPFC, are comprised of closely intermingled 

or neighboring circuit elements that have opposite influences on fear and anxiety (Calhoon & Tye 2015; Tovote et 

al. 2015). This functional opposition can be mediated in several ways. One implementation involves projection-

specific neuronal populations, which originate within the same brain region, are able to interact, yet mediate 

opposite effects. For instance, while selective activation of excitatory axonal projection from the BLA to the CeA is 

anxiolytic, the activation of BLA projections to the vHPC is anxiogenic (Tovote et al. 2015). Another way to 

mediate opposition is observed in subregions of single brain structures. In the BNST, two neighboring subregions 

were shown to either promote or impede anxiety (Kim et al. 2013). Similarly, the two main subregions of the 

mouse PFC influence fear learning in opposing manner: while the input that the amygdala receives from the 

prelimbic cortex facilitates threat responses, input from the infralimbic cortex suppresses them (Calhoon & Tye 

2015). This close apposition of functionally antagonistic circuits is not restricted to fear and anxiety and will be 

discussed further below when we extract recurrent schemes in emotion coding.  

Another lesson learned from the study of fear and anxiety is that discrete emotion states cannot be 

explained by the activity in a single brain region or neuronal circuit. For a long time, the amygdala seemed a 

prime candidate to be both sufficient and necessary to produce fear. Indeed, the famous case study patient S.M. 

suffering from bilateral amygdala damage showed extreme deficits in processing and experiencing fear triggered 

by external factors or by observing other people’s fearful faces (Feinstein et al. 2011). However, later studies 

showed that patient S.M., as well as other patients with similar lesions, still experienced fear and even panic when 

exposed to high concentrations of CO2 (Feinstein et al. 2013). These data suggest that the amygdala is not an 

essential neural substrate for the experience of fear. Possible interpretations of these striking findings include that 

there may be amygdala-dependent but also -independent states of fear; that the amygdala is only part of the 

processing stream and may be dispensable for fear triggers originating within the body; or that there are no fixed 

neural correlates of fear and the subjective experience of fear is constructed through inference from diverse 

neural signals (Barrett 2017).  

Given that fear and anxiety circuits have been extensively studied – do we know whether neuronal 

mechanism underlying fear processing are shared between human and nonhuman animals? A few recent studies 

highlighted strong similarities in the processing of fear across species. One human neuroimaging study 

discovered a human colliculus-pulvinar-amygdala circuit to encode negative emotions, that is highly similar to a 

previously described visual threat pathway in rodents (Kragel et al. 2021). Another study by Terburg et al. 



8 
 

identified a conserved circuit mechanism in the BLA to regulate escape behavior in rodents and humans (Terburg 

et al. 2018). The identification of conserved circuit motifs fills a critical gap between rapidly emerging data on 

precise neural circuit mechanisms obtained in model organism and human studies.  

 

Neural circuits for anger and aggression 

‘Anger’ can be described as a negative functional emotion state triggered by diverse aversive 

circumstances, such as not receiving an expected reward, not achieving the goal of an action, or actions by 

others that impact the individual’s own goals or needs (Richard et al. 2022). One way to express anger is via 

aggression; however, it is not clear whether all aggressive behaviors are motivated by anger, or a separate 

‘aggressive’ emotion state. Similarly, anger, as any functional emotion state, is expressed in pleiotropic manner 

including bodily, cognitive and diverse behavioral changes. Strikingly, while anger seems by definition to be a 

negative state, the valence of aggression can, at least under certain circumstances, be positive. For example, it 

has been shown that mice exhibit preference for aggressive behaviors via dopaminergic signaling in striatal 

circuits (Golden et al. 2019; Goodwin et al.; Nelson & Trainor 2007). 

Most of our knowledge concerning the neural circuit underlying the potentially related ‘anger’ and 

‘aggressive’ states comes from animal models, where most work has focused on aggressive behavior in social 

contexts (Anderson 2016; Lischinsky & Lin 2020; Nelson & Trainor 2007; Richard et al. 2022). As already seen in 

the case of fear, current models of the neural basis for aggression involve several processing steps. First, diverse 

sensory inputs are detected, processed and evaluated. The threshold to express aggressive actions is modulated 

by other internal state variables, such as stress, reproductive, circadian or energy status. The necessary 

processing is thought to occur in what has been referred to as the ‘core aggressive circuit’, encompassing several 

strongly interconnected nuclei, such as the medial amygdala, the BNST, the ventromedial hypothalamus and the 

ventral part of the premammilary nucleus (Lischinsky & Lin 2020; Nelson & Trainor 2007). Evidence collected 

across species and phyla including mice, birds and primates has found neural activity correlates upon aggression 

in all of these centers, and furthermore, manipulations within these brain regions either support or abolish 

aggression in mice (for details see Anderson 2016; Lischinsky & Lin 2020). Finally, as a last step, species specific 

aggressive behaviors are exhibited, which are usually scaled in intensity from threat display to overt attack. 

Aggressive motor output is either triggered through direct projections to the midbrain premotor areas or by 

indirectly impinging on striatal motor circuits and midbrain neuromodulatory systems (Lischinsky & Lin 2020). One 

key site for aggressive action is the PAG. For example, the PAG is involved in threatening calls in rodents and 
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primates (Jürgens & Ploog 1970; Tschida et al. 2019) and studies in mice revealed that PAG neurons project to 

jaw muscles and are necessary for aggressive biting (Falkner et al. 2020),  

While processing of aggression is hypothesized to occur mostly in subcortical regions, these circuits are 

under tight forebrain control. Early experiments by Phillip Bard reported that cats with removed cerebral 

hemispheres exhibited spontaneous aggression, or ‘sham rage’ (Bard 1928). Walter Hess corroborated these 

results by direct electrical stimulation of distinct sites in the hypothalamus. Current evidence suggests that the 

mPFC and the LS in particular tonically suppress the hypothalamus to block aggression. Indeed, humans with 

lesions in their forebrain exhibit increased aggression levels and, inversely, stimulation of the PFC may reduce 

aggression (Best et al. 2002; Choy et al. 2018). Optogenetic activation of the mPFC reduces - but its activation 

promotes - aggressive behavior in mice. However, one discrete subpopulation of mPFC neurons inversely 

promotes aggressive behavior (Biro et al. 2018; Takahashi et al. 2014). Similarly, evidence from mice, rats and 

songbirds suggests that lesions of the LS also result in increased aggression, termed ‘septal rage’ (Lischinsky & 

Lin 2020). These results reveal an interesting motif were aggression seems to be tonically promoted and has to 

be actively inhibited to be contained.  

A further striking feature of the circuits involved in aggression is that they are situated in very close 

proximity, or even overlap with circuits mediating sexual behaviors and defensive behaviors elicited by fear 

(Anderson 2016). This overlap in brain regions and neural circuits involved in different emotions is a recurrent 

scheme that we will further discuss below. 

Neural circuits for pleasure 

Animals, including humans, actively seek appetitive stimuli. Upon attainment of appetitive goals (e.g. consumption 

of food, relief from adversity, or achievement of social goals) a positive emotion state is elicited. This state (or 

states) of ‘pleasure’ probably evolved to reinforce behaviors that are beneficial for survival and motivate the 

individual to pursue rewards, care for themselves and for others (Berridge 2018; Berridge & Kringelbach 2015; 

Burgdorf & Panksepp 2006). 

Positive affective states have been shown to consist of two separable processes: (i) the pursuit of, and (ii) 

the acute exposure to pleasant (‘hedonic’) stimuli. These two processes have been coined as ‘wanting’ and 

‘liking’, respectively (Berridge & Dayan 2021; Berridge & Kringelbach 2015; Berridge & Robinson 2003; Burgdorf 

& Panksepp 2006). While ‘wanting’ and ‘liking’ often co-occur, their underlying neural correlates are separable 

and the two processes can be temporarily dissociated (Berridge 2018; Berridge & Kringelbach 2015). The state of 
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‘wanting’ is mediated by a large collection of brain areas and usually involves dopamine signaling. While 

dopamine suppression decreases appetitive seeking (Wise 2006), taste-evoked ‘liking’ or ‘pleasure’ reactions are 

not diminished by the same manipulation (Peciña et al. 1997). This evidence refutes a long-held hypothesis 

suggesting that the mesolimbic dopamine system is integral to the state of ‘pleasure’. Indeed, evidence in rats 

and humans clearly argues that dopamine is neither necessary nor sufficient for pleasure to be expressed or 

experienced (Berridge & Robinson 1998; Brauer & De Wit 1997; Liggins et al. 2012; Peciña et al. 2003; 

Sienkiewicz-Jarosz et al. 2013).  

How does one assess ‘liking’ or the emotion state of ‘pleasure’ in nonhuman animals? While human 

studies usually involve conscious, subjective ratings of ‘pleasure’, objectively quantifiable hedonic reactions have 

also been identified across species. Orofacial expressions of ‘liking’ as well as ‘disliking’ (or ‘disgust’) occur in 

newborn infants, apes, monkeys, as well as in rats and mice (Dolensek et al. 2020; Ganchrow et al. 1983; Grill & 

Norgren 1978a,b; Steiner et al. 2001). While the brainstem controls these behavioral expressions (Grill & Norgren 

1978b; Steiner 1973), their initiation and regulation are tightly controlled by forebrain structures. 

Indeed, consistent with the notion that orofacial expressions represent expressions of emotion states and 

not simple reflexes, they are modulated by internal states such as hunger and thirst (Dolensek et al. 2020; Kaplan 

et al. 2000), associative learning (Delamater et al. 1986; Dolensek et al. 2020), and are subject to hedonic 

enhancement through neurochemicals (Berridge & Kringelbach 2015; Castro & Berridge 2017; Mahler et al. 

2007). Further, they exhibit emotion features including scalability, valence, flexibility and persistence (Dolensek et 

al. 2020; Grill & Norgren 1978a). Apart from orofacial movements, vocalizations displayed during pro-social 

interactions or anticipation of rewards have been characterized as behavioral expressions of positive emotions in 

primates and rodents (Jürgens 1979; Knutson et al. 2002; Panksepp & Burgdorf 2000).   

Using orofacial movements as readouts of pleasure, research in rodents has shown that activation of 

‘hedonic hotspots’ in the brain can enhance the ‘liking’ reactions to sweetness (Berridge & Kringelbach 2015). 

These hotspots have been found in rats within the orbitofrontal cortex, insular cortex, medial shell of the nucleus 

accumbens (NAc), and the ventral pallidum (VP) (Berridge 2003; Berridge & Kringelbach 2015; Castro & Berridge 

2017). Interestingly, hedonic hotspots are functionally connected so that blocking opioid function in one prevents 

the ‘liking’ enhancement in the other (Smith & Berridge 2007). 

Intriguingly, while prefrontal cortex and NAc stimulation are sufficient to enhance ‘liking’, neither of them is 

necessary, i.e. damage does not cause loss of hedonic function (Berridge & Kringelbach 2015). So far only one 
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region was identified as necessary for ‘liking’: the ventral pallidum. Lesions in this brain area produce reversal 

from liking to disliking, causing sweetness to elicit excessive disgust reactions (Cromwell & Berridge 1993, 1994).  

Finally, even though humans make clear distinctions in their feelings of pleasure, it is currently unknown 

whether only one or different brain states of ‘pleasure’ exist. In humans, many diverse rewards including food, sex 

or addictive drugs activate a largely overlapping set of brain regions that has also been highlighted by studies in 

animal models. These regions include orbitofrontal, insular, and anterior cingulate cortices, as well as the NAc, 

the VP and the amygdala (Berridge & Kringelbach 2015).  

 

Neural circuits for disgust 

Disgust is a strong functional emotion state aimed at avoiding potential sources of disease (Chapman & Anderson 

2012; Curtis 2011, 2014; Kavaliers et al. 2019; Stevenson et al. 2019). Through human evolution, disgust may 

have been extended to more abstract stimuli such as social stimuli or moral transgressions (Chapman & 

Anderson 2012). Disgust evokes characteristic behavioral patterns that are scaled in intensity. Orofacial 

expressions of disgust, such as mouth gapes and headshakes, can be triggered by bitter or exuberantly salty 

tastants in mammals including humans, rats and mice (Berridge 2018; Dolensek et al. 2020; Grill & Norgren 

1978b,a). While emotion states of disgust and fear are both considered defensive states, the behavioral 

expressions of these states as well as their neural correlates are clearly separable. Indeed, studies in humans 

suggest that fear and disgust regulate sensory acquisition in opposing directions: when experiencing fear, human 

subjects cover larger visual fields, exhibit faster eye movements, and increase the nasal volume and air velocity 

during breathing, whereas disgust induces opposite changes (Susskind et al. 2008). 

The neuronal correlates of disgust only started to emerge recently and were reviewed elsewhere 

(Berridge 2018; Berridge & Kringelbach 2015). In short, neuroimaging studies found activity in insular cortex and 

subcortical striatal circuitry to be correlated to the experience of disgust in humans (Chapman & Anderson 2012). 

Findings in mice demonstrating neuronal activity in insular cortex neurons that correlates with expressions of 

disgust corroborate these results (Dolensek et al. 2020). Furthermore, mouse facial expressions of disgust can be 

evoked by optogenetic stimulation of the posterior insula (Dolensek et al. 2020; Wang et al. 2018). Intriguingly, 

studies from the Berridge lab have revealed that small lesions in an otherwise hedonic hotspot of the VP can 

cause sweetness to elicit excessive ‘disgust’ reactions (Ho & Berridge 2014). Similar observations had been 

made earlier when large ablations of the entire telencephalon that included the VP and other forebrain structures 

were shown to cause disgust and other aversive emotions (Bard 1928; Grill & Norgren 1978b). These surprising 
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findings hint at a disinhibition of a negative-valenced circuitry in the remaining forebrain and resembles the 

disinhibition of aggressive behavior by forebrain lesions discussed above. 

Taken together, while the sensory triggers and behavioral expressions of disgust are clearly distinct from 

other emotion states such as pleasure or fear, they engage partially overlapping brain areas, such as the VP, the 

NAc or the insular cortex.  

 

Neural circuits for social emotions  

An important and well-conserved function of emotion is to motivate social behaviors, including mating, 

pair bonding, coherence of social groups, infant attachment and prosocial behaviors. Social emotions exhibit 

emotion features such as scalability, persistence and valence across species, and are strongly modulated by 

need and context (Anderson 2016; Lee et al. 2021; Lischinsky & Lin 2020; Padilla-Coreano et al. 2022). Whether 

social emotions represent a distinct category of separable states, or can be explained as part of other emotion 

states (e.g. pleasure, aggression or disgust), or are defined as continuous variables is not known. While social 

emotions are often studied as separate phenomena, the brain regions and large-scale circuits of social emotions 

resemble those underlying self-centered emotions. For instance, aggressive, mating, and parental behaviors are 

all mediated by distinct circuit elements in the hypothalamus (Anderson 2016; Kohl et al. 2018; Lischinsky & Lin 

2020). Studies in mice revealed that observational learning relies on structures such as the ACC and the 

amygdala (Allsop et al. 2018). Empathy and prosocial behavior are thought to rely on prefrontal, cingulate and 

insular cortices as well as the amygdala across species (De Waal & Preston 2017; Paradiso et al. 2021). 

 

Neural circuits for physiological need states, or ‘homeostatic emotions’ 

Bodily alarm and physiological need states, such as pain, hunger, thirst, or fatigue have also been referred to as 

‘homeostatic emotions’ (Craig 2003a; Denton 2012). Whether considered as functional emotion states or internal 

states related to body physiology, they clearly exhibit certain emotion features, such as scalability, valence and 

global coordination of complex behavioral patterns, oftentimes aimed at restoring homeostasis.  

Recent studies in rodents have demonstrated that the neural substrates underlying fear, anger, or 

pleasure, and those serving ‘homeostatic’ emotions are oftentimes intertwined and sometimes even overlapping. 

For example, neuronal populations in the mouse insular cortex encode thirst and hunger (Livneh et al. 2020), fear 

and anxiety (Gehrlach et al. 2019; Klein et al.), pain (Gehrlach et al. 2019) and even precise information about 

bodily sickness (Koren et al. 2021). Interestingly, single neurons whose activity strongly correlated to emotion 
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states such as disgust or pleasure (as assessed through facial expressions), were found in the same insular 

regions that responds to sensory stimuli such as sweet and bitter tastants, pain but also freezing (Dolensek et al. 

2020; Gehrlach et al. 2019). Similarly, human imaging studies have shown that emotions such as pain or disgust 

perceived in the self or observed in others are encoded nearby and even partially overlappingly in the insular 

cortex (Singer et al. 2004; Wicker et al. 2003). Similar overlap has been observed in other brain regions. For 

instance, in the central amygdala, the same population of genetically identified neurons expressing PKC-δ 

mediates the influence of anorexigenic signals, gates conditioned fear expression and amplifies pain responses 

(Cai et al. 2014; Haubensak et al. 2010; Wilson et al. 2019), while an antagonistic, yet interconnected, cell 

population expressing serotonin receptor 2a promotes food consumption (Douglass et al. 2017). A similar 

proximity of emotion and bodily physiology is observed in the hypothalamus, which is implicated in controlling 

various basic survival functions including feeding, metabolic control, drinking and excretion, thermoregulation, 

fever induction, fear and aggression, mating and maternal care (Saper & Lowell 2014).  

The close proximity or overlap of neuronal populations processing ‘classical emotions’, ‘social emotions’, 

and ‘homeostatic emotions’ may be advantageous to compare and align actions in response to diverse 

simultaneously arising survival needs.  

 

Neural circuits linking interoception and emotion  

Interoception refers to the sensing and experiencing of the physiological state of the body (Chen et al. 2021; Craig 

2002), as well as the regulation of bodily functions by the brain (Furman 2021). The links between interoception 

and emotion constitute the basis of several theories of emotion, such as the early theories of James-Lange or 

Cannon-Bard (Cannon 1927; James 1884; Wallon 1972) as well as more recent emotion theories (Barrett 2017; 

Craig 2002; Critchley & Garfinkel 2017; Damasio & Carvalho 2013; Seth & Friston 2016). Feelings of emotion are 

especially hypothesized to rely strongly on interoception (Barrett & Simmons 2015; Seth 2013; Seth & Friston 

2016).  

One of the main routes of information exchange between the body and the brain is the vagus nerve. 

Signals transmitted via the vagus nerve have been shown to play important roles in motivational and emotional 

states (Critchley & Garfinkel 2017; Critchley et al. 2013; Mayer 2011). Studies in rodents have revealed multi-

synaptic ascending vagal pathways that mediate reward seeking and sugar preference (Bai et al. 2019; Buchanan 

et al. 2022; Fernandes et al. 2020; Han et al. 2018). Furthermore, interfering with vagal transmission reduces 

innate anxiety and is associated with lowered noradrenaline levels in the PFC and NAc core (Klarer et al. 2014). A 
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recent study found that freezing related heart-rate decreases are transmitted to the insular cortex via the vagus 

nerve and gate fear extinction, suggesting interoceptive modulation of insular cortex activity during freezing as a 

mechanism to cope with excessive fear (Klein et al. 2021). In humans, cardiovascular signals intensify feelings of 

fear and anxiety and influence fear processing and emotional learning (Garfinkel & Critchley 2016). A link 

between interoception, anxiety disorders and depression, as well as a prominent role for the processing of 

interoceptive signals in the insular cortex has been suggested since long (Paulus & Stein 2006, 2010; Wiebking et 

al. 2010). Vagus nerve stimulation has been approved in treatment-resistant depression (Nemeroff et al. 2006) 

and the potential benefit of vagus nerve stimulation in the treatment of anxiety disorders is currently considered 

(McIntyre 2018). Central sensation of breathing, another interoceptive signal, has also a strong influence on fear. 

Indeed, breathing signals transmitted from the olfactory bulb to the dorsomedial prefrontal cortex are necessary to 

maintain freezing in mice (Bagur et al. 2021).  

Emotion states are not only influenced by or emerging from bodily sensations: they also prominently elicit 

changes in the body. Emotion expressions affect all systems and organs of the body, including the 

gastrointestinal tract, the heart, the lung, the immune system, and the vascular system (Ashhad et al. 2022; 

Critchley & Garfinkel 2017; Critchley et al. 2013; D’Acquisto 2017; Kreibig 2010; Mayer 2011). Indeed, 

multivariate pattern classification was able to extract emotion-specific changes in simultaneously acquired 

autonomic nervous system parameters including measures of cardiovascular, electrodermal, respiratory, 

thermoregulatory and gastric activity (Kragel & LaBar 2014). 

Thus, bodily signals influence different aspects of emotion, such as feelings of emotion, emotion 

expression and persistence. Emotion states and feelings in turn adaptively regulate body functions. This circular 

arrangement allows for an intriguing feedback loop that remains poorly understood. 

 

RECURRENT SCHEMES IN NEURAL CIRCUITS FOR EMOTION 

The evidence reviewed above summarizes insights we have gained from studying distinct functional emotion 

states separately. In the following section, we will highlight a few common schemes that appear in the neural 

circuits underlying emotion states.  

 

Overlap in brain regions involved in emotion 

It becomes obvious from the evidence reviewed above that diverse functional emotion states engage a largely 

overlapping set of brain regions. Indeed, there seem to be a few ‘emotion hub’ regions that play a role in most, if 
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not all, emotion states. Amongst these are subcortical regions such as hypothalamus, amygdala, NAc; cortical 

regions such as the insular, anterior cingulate and medial prefrontal cortices; and brainstem regions, such as the 

PAG. Figure 2 highlights how distinct functional emotion states overlappingly engage brain regions across the 

entire brain (Figure 2).  

 

Figure 2. Largely overlapping and conserved brain regions involved in emotions. (a) Brain regions involved in emotions 

in rodents. Evidence from the involvement of these brain regions are coming from studies cited in the present review. 

Additionally, we included information from the following studies; for fear: (Correia et al. 2016; Rajasethupathy et al. 2015; 

Rizzi-Wise & Wang 2021; Venkatraman et al. 2017; Yoshida et al. 2014; Zimmerman & Maren 2011); for anger: (Haller 2018); 

for pleasure: (Richard et al. 2013); for social emotions: (Ko 2017; Wu & Hong 2022); for disgust: (Khan et al. 2020) and for 

homeostatic emotions: (Eiselt et al. 2021). (b) Brain regions involved in emotions in humans. Evidence from the involvement of 
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these brain regions are coming from studies cited in the present review. Additionally, we included information from the 

following studies; for fear: (Critchley & Garfinkel 2014; Wager et al. 2015); for anxiety: (Avery et al. 2016; Critchley & Garfinkel 

2014; Duval et al. 2015; Shin & Liberzon 2010); for anger: (Murphy et al. 2003); for pleasure: (Wager et al. 2015); for social 

emotions: (Timmers et al. 2018; Vekaria et al. 2020; Wu & Hong 2022); for disgust: (Murphy et al. 2003; Wager et al. 2015).  

For clarity, we chose not to display the anatomical and functional connections between these regions. However, it should be 

noted that most of these regions are heavily interconnected and form functional networks that are crucial for the emergence 

and control of emotions. Abbreviations: medial prefrontal cortex (mPFC); orbitofrontal cortex (OFC); anterior cingulate cortex 

(ACC); lateral septum (LS); ventral pallidum (VP); ventral hippocampus (vHPC); ventral tegmental area (VTA); bed nucleus of 

the stria terminalis (BNST); nucleus accumbens (NAc); central amygdala (CeA); basolateral amygdala (BLA); medial 

amygdala (MeA); hypothalamus (HPT); periaqueductal gray (PAG).   

 

Hierarchical, parallel processing streams and feedback loops 

The idea that distinct emotion states engage distributed but overlapping brain regions is not new. Brain wide 

circuit models for emotion were already proposed by Papez (Papez 1937) and MacLean (MacLean 1949). In 

more recent years, Panksepp proposed that emotion states are processed on three different levels defined by 

nested anatomical hierarchies (Panksepp 2011b). According to Panksepp, primitive features of emotion are 

processed in deep subcortical structures, such as the brainstem, basal ganglia, thalamus, hypothalamus and 

amygdala, which are conserved across many species (Cannon 1927; Kryklywy et al. 2020; Panksepp 2005). In 

support of this view, emotion expressions are exhibited in human and nonhuman animals even in the total 

absence of neocortex (Bard 1934; Damasio et al. 2013; Panksepp et al. 1994; Shewmon et al. 1999). 

Furthermore, activity manipulations of specific hypothalamic (and other subcortical) neurons drive diverse emotion 

expressions across species, including invertebrates (Anderson 2016; Kunwar et al.; Lee et al. 2014). Secondary 

processes, localized in the ‘limbic system’, a brain network comprising the hippocampus, hypothalamus, thalamus 

and amygdala, may support emotional learning and the evaluation and integration of multifaceted stimuli 

(Panksepp 2011a). Indeed, the vast literature on fear conditioning highlights the important role of the limbic 

system in emotional learning (LeDoux 2000, 2003). Finally, tertiary process, including cognition and the subjective 

appraisal of feelings are posited to be mediated by neocortical areas (Panksepp 2011b).  

Despite the general plausibility of this hierarchical model, recent evidence suggests that emotions are not 

only processed along a one-way stream, but rather that information flows in multiple feedforward and feedback 

loops connecting different processing levels with each other (Anderson & Adolphs 2014; Damasio 1998; De Waal 

2011; Panksepp 2011a). This complex arrangement may allow for the integration of various sensory, cognitive, 

bodily and external information components. It has been suggested that different hierarchical levels may reflect 
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evolutionarily history, where primary emotion processes may already exist in very simple organisms and the 

emotion processing steps diversified with increasing brain complexity.   

 

Neural circuits for emotion are organized at multiple scales 

Functional emotion states engage both large-scale as well as local microcircuits. Large-scale circuits connect 

different regions across the entire brain and form networks with strong reciprocal connectivity. Microcircuits act 

within subnuclei and consist of subpopulations of neurons that are defined by distinct in- or outputs and have 

surprisingly distinct roles, oftentimes mediating conflicting emotion states. Microcircuits operate as switch boards 

to select the next step in a line of decisions towards valence assignment and an appropriate emotion response 

pattern. We will discuss the neural circuit elements decoding valence or driving distinct emotions in the next 

sections.  

 

Neural circuit for valence decoding  

One core computation suggested to underlie functional emotion states is the evaluation of whether something is 

good or bad (Anderson & Adolphs 2014; Berridge 2019; Tye 2018). Decoding positive versus negative valence 

may occur via dedicated neuronal subpopulations or projections, also referred to as ‘labelled lines’ (Tye 2018). 

For instance, innate valence is attributed to separate sets of touch and tastant receptors in the periphery (Craig 

2003b; Liljencrantz & Olausson 2014; Marshall et al. 2019) which engage separate information streams towards 

the insular cortex. Furthermore, innately appetitive or aversive tastants activate topographically distinct 

subregions of the insular cortex and are transmitted via segregated projections to distinct amygdala subnuclei 

(Liljencrantz & Olausson 2014; Wang et al. 2018). Distinct projection streams dedicated to valenced versus non-

valenced information exist for all external sensory modalities. Valenced sensory information often bypasses the 

primary sensory thalamic and cortical areas to directly target higher order cortical structures, such as vmPFC, 

insular, orbitofrontal and anterior cingulate cortices. Thus, it has been hypothesized that supramodal 

representations of valence may have evolved from modally organized sensory signals in simpler organisms 

(Kryklywy et al. 2020). 

However, such strict separation between opposing valences does not provide flexibility, which is an 

essential feature of emotion states. Flexibility in valence might be implemented by different circuit motifs that 

enable valence decisions. One such potential motif was coined ‘divergent paths’ (Tye 2018). Here, incoming 

stimuli are evaluated as positive or negative at a switch point which then activates either appetitive or aversive 
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projections depending on an internal evaluation. Alternatively, via the ‘opposing components’ motif (Tye 2018) 

differently valenced inputs arrive at a single neuron, which integrates the information and computes valence from 

these diverse inputs. Finally, valence may also be attributed through ‘neuromodulatory gain’ (Tye 2018). This 

motif is meant as complementary to the other circuit motifs and may act on longer time scales.  

 

Neural circuits driving distinct emotion states 

It remains unknown whether emotions are defined by simple variables such as valence and arousal, or whether 

distinct categories of emotions are laid down in specific neuronal circuits. One way to think about emotion states 

is to define them as decision processes. In this framework, the brain uses a range of partially pre-programmed 

algorithms that provide ‘optimal solutions’, namely specific behavioral expression patterns of emotion (Bach & 

Dayan 2017). These decisions may not be restricted to decoding whether something is positive or negative as 

seen above, but rather may include decisions about valence and category.  

Evidence supporting this notion comes from several recent studies. For instance, the rodent insula has 

been shown to be segregated into distinct valence domains (Gehrlach et al. 2019; Wang et al. 2018). When 

globally activated, subregions of the insular cortex drive either aversive or appetitive behaviors. However, the 

triggered aversive behaviors are diverse and span fear-, disgust- and pain-like reactions. Specific efferent 

projections were found to mediate different aspects of aversive experiences, such as promoting fear expressions 

or inhibiting feeding (Dolensek et al. 2020; Gehrlach et al. 2019). Similar findings were made in the BNST, where 

distinct subnuclei mediate opposite effects on anxiety, but different features of anxiolysis are implemented by 

segregated efferent projections (Kim et al. 2013). Taken together, these findings highlight a hierarchical 

implementation where valence is assessed in distinct subregions of global brain regions (Berridge & Kringelbach 

2015; Gehrlach et al. 2019; Kim et al. 2016; Wang et al. 2018), while fine-tuned decisions towards emotion-

specific action patterns are computed in projection-defined neuronal subpopulations within these subregions.  

Finally, in line with the idea of a decision process, it may be advantageous that an intense emotion state 

gains priority over other competing states. Such ‘winner-takes-all’ or ‘attractor model’ of emotions would be ideally 

implemented through circuits in which the neural elements processing diverse emotion states are closely 

intermingled and able to interact, for example through similar circuit motifs as discussed above for valence 

attribution. 

 

FUTURE DIRECTIONS 
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An inclusive yet accurate terminology 

We have used words that refer to human emotions throughout this review when addressing findings in all animals. 

This choice was not made to highlight that nonhuman animals necessarily have conscious feelings that resemble 

human experiences, but to acknowledge that there are links between human and nonhuman emotion. We believe 

that the conscious perception of emotion is a small aspect of the emotion state underlying it, and that there is 

clear overlap between emotion triggers, adaptive functions, emotion expressions and their underlying brain 

correlates in humans and nonhuman animals.  

While we advocate for an inclusive usage of the term emotion, we believe that parts of the vigorous 

debates about the right definition and taxonomy may be helped by a more precise language. The evidence 

reviewed here shows that emotions likely consist of many processing steps that have distinct neural 

underpinnings. Emotion processes may include events that have to undergo ‘feature extraction’ (e.g. decoding of 

valence, proximity, intensity), ‘trigger interpretation ‘(comparison to learned valence and value), ‘contextual 

evaluation’ (assessment of competing needs, environmental factors), ‘decision’ for adaptive expression patterns 

(bodily, behaviorally, cognitively), and sometimes ‘emotion learning’, ‘conscious feelings of emotion’ and many 

more. Studies of emotion could thus be helped by clearer definitions of the actual processing steps under 

investigation. 

 

A need for multidimensional behavioral and physiological readouts of emotion 

Emotion research critically relies on precise ‘readouts’ of emotion. However, readouts that span multiple emotion 

states and are sensitive enough to reveal properties of emotion, including intensity, valence or persistence are 

scarce. Interestingly, a recent study using machine vision approaches demonstrated that facial expressions may 

be a promising avenue to precisely quantify diverse emotion states in mice (Dolensek et al. 2020). Correlating 

facial expression readouts to high-resolution interrogation of neural circuits may be an exciting future avenue to 

investigate how different emotion states are represented in the brain of model organisms. Similarly, the field of 

behavioral tracking and classification has seen a revolution over the past years (Luxem et al. 2022; Mathis & 

Mathis 2020). Despite this progress, most recent studies of the neural underpinnings of emotion, whether in 

human or nonhuman animals, have focused on a very limited set of emotion readouts and stimuli. We believe that 

in order to fully capture the complexity of emotion states, future studies should assess multiple behavioral, 

physiological and neuronal activity measurements in an integrated manner and vary stimuli across intensities and 

valence. Such approaches would not only allow to improve the classification and measurements of emotion, they 
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also represent an opportunity to address the commonalities and differences of emotion across species, and to 

address long held questions concerning the dimensionality or categorization of emotions. Furthermore, many 

physiological and behavioral variables could be assessed in human and nonhuman species, and help address the 

relationship between self-reported and objectively expressed emotions in humans with nonhuman emotion 

experience.  

 

Towards a multi-scale, cross-species science of emotion 

Emotions are processed in distributed networks across the entire brain. Therefore, whole brain activity correlates 

of emotion processes are desirable in addition to investigating the neuronal mechanisms within single brain 

regions or isolated circuit elements. While many human neuroimaging studies consider activity in the entire brain, 

invasive activity recordings at greater resolution are not possible in healthy human subjects. In nonhuman animals 

on the other hand, invasive techniques allow precise circuit dissections, but whole-brain imaging techniques like 

functional magnetic resonance imaging (fMRI) are difficult to apply in awake behaving animals. The recent 

establishment of functional ultrasound imaging (fUSi) as a whole-brain imaging technique in awake behaving 

animals, such as rodents, birds, ferrets and monkeys (Edelman & Macé 2021), may represent an unprecedented 

opportunity to discover brain-wide emotion processes in real time and pair them with in depth dissections of 

neural circuit mechanism in animal models. Parallel observations between whole brain activity in human and 

nonhuman animals may yield extraordinary insights into potential similarities and differences in the encoding of 

emotions between species. 

 

CONCLUSION  

‘Emotion’ is a large, complicated, yet fascinating topic. We have tried to provide an overview of some aspects of 

the neuronal circuits contributing to emotion states. Recent advances in technology to assess neural circuit 

mechanisms as well as to track and classify behaviors in model organisms have revolutionized our capacity to 

answer questions about circuit mechanisms underlying emotion states. Finally, we believe that if we can turn the 

current dissent in defining emotions into testable hypothesis, the entire field of emotions could better align 

research in human and nonhuman animals and make great strides forward in the attempt to identify the brain 

basis of emotion. 
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