Impact of nasal breathin
on somatosensory detection:
experimental design and pilot results
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INTRODUCTION DESIGN & DEMOGRAPHICS

* Evidence exists that breathing influences rnythmic brain activity
and cognitive function. A central role has been attributed to the [ECG, abdominal respiration belt, pulse oximetry]
nasal pathway. Here, (rhythmic) sensory input in the nasal cavity
(1) modulates neural activity at breathing rate and has been shown 120 trials
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to (2) entrain faster oscillations [1, for review].

* In fact, agents adjust their breathing to task demands [2], and 15 sec 500 ms 1-3.5 sec 585 ms 1.25 sec

perceptual thresholds vary across the respiratory cycle with v
beneficial effects during late inspiration [3] to early expiration [2]. -4 START | & - ==
Similarly, it has been shown that alpha power fluctuates across the N

cycle [3], a proxy for cortical excitability, that was found to predict 1
perceptual performance prior to stimulus presentation [3,4,5,6].
« Similar to breathing, perceptual sensitivity varies across the cardiac

cycle, namely being improved during late cycle, i.e. diastole [2,6]. 2
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« Are we more sensitive to weak somatosensory stimuli during

nose (compared to mouth) breathing, i.e. better in detecting them?
« Does detection performance vary across the respiratory cycle?

If so, differentially by breathing route?
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Hypotheses N = nose, M = mouth; conditionorder [NM / MN ] counterbalanced
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CONCLUSION

* Perceptual sensitivity improved during nose breathing

* However, hit rates were not higher during late inspiration . Block order & length:
and early expiration - - - alternating conditions;
* Instead decreased at expiration-to-inspiration transition shorter in length

« Threshold: online staircase,
detection probability T,
* N (catch trials) 1

- Future improvements

* Perceptual sensitivity improved during cardiac diastole

* Subjective reports of disturbed mouth breathing flow . Refinement of
!  Task allowed less for breathing alignment to trial sequence breathing control
« Hardware less precise (0.1 mA)  Electroencephalography
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