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Abstract14

How might differences in dispersal and learning interact in range expansion dynamics? To begin to answer15

this question, in this preregistration we detail the background, hypothesis plus associated predictions, and16

methods of our proposed study, including the development and validation of a mechanistic reinforcement17

learning model, which we aim to use to assay colour-reward reinforcement learning (and the influence of two18

candidate latent parameters—speed and sampling rate—on this learning) in great-tailed grackles—a species19

undergoing rapid range expansion, where males disperse.20

Introduction21

Dispersal and range expansion go ‘hand in hand’; movement by individuals away from a population’s core is22

a pivotal precondition of witnessed growth in species’ geographic limits (Chuang & Peterson, 2016; Ronce,23

2007). Because ‘who’ disperses—in terms of sex—varies both within and across taxa (for example, male-24

biased dispersal is dominant among fish and mammals, whereas female-biased dispersal is dominant among25

birds; see Table 1 in Trochet et al., 2016), skewed sex ratios are apt to arise at expanding range fronts, and,26

in turn, differentially drive invasion dynamics. Female-biased dispersal, for instance, can ‘speed up’ staged27

invertebrate invasions by increasing offspring production (Miller & Inouye, 2013). Alongside sex-biased28

dispersal, learning ability is also argued to contribute to species’ colonisation capacity, as novel environments29

inevitably present novel (foraging, predation, shelter, and social) challenges that newcomers need to surmount30

in order to settle successfully (Sol et al., 2013; Wright et al., 2010). Indeed, a growing number of studies31

show support for this supposition (as recently reviewed in Lee & Thornton, 2021). Carefully controlled32

choice tests, for example, show that urban-dwelling individuals—that is, the ‘invaders’—will both learn and33

unlearn novel reward-stimulus pairings more rapidly than their rural-dwelling counterparts (Batabyal &34

Thaker, 2019), suggesting that range expansion selects for enhanced learning ability at the dispersal and/or35

settlement stage(s). Given the independent influence of sex-biased dispersal and learning ability on range36

expansion, it is perhaps surprising, then, that their potential interactive influence on this aspect of movement37

ecology remains unexamined, particularly as interactive links between dispersal and other behavioural traits38

such as aggression are documented within the range expansion literature (Duckworth, 2006; Gutowsky &39

Fox, 2011).40

That learning ability can covary with, for example, exploration (e.g., Auersperg et al., 2011; Guillette et41
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al., 2011) and neophobia (e.g., Verbeek et al., 1994), two behaviours which may likewise play a role in42

range expansion (Griffin et al., 2017; Lee & Thornton, 2021), is one potential reason for the knowledge gap43

introduced above. Such correlations stand to mask what contribution, if any, learning ability lends to range44

expansion—an undoubtedly daunting research prospect. A second (and not mutually exclusive) reason is45

that, for many species, a detailed diary of their range expansion is lacking (Blackburn et al., 2009; Udvardy &46

Papp, 1969). And patchy population records inevitably introduce interpretive ‘noise,’ imaginably impeding47

population comparisons of learning ability (or the like).48

In range-expanding great-tailed grackles (Quiscalus mexicanus), however, learning ability appears to rep-49

resent a unique source of individual variation; more specifically, temporarily-captive great-tailed grackles’50

speed to solve colour-reward reinforcement learning tests does not correlate with measures of their exploration51

(time spent moving within a novel environment), inhibition (time to reverse a colour-reward preference),52

motor diversity (number of distinct bill and/or feet movements used in behavioural tests), neophobia (latency53

to approach a novel object), risk aversion (time spent stationary within a ‘safe spot’ in a novel environment),54

persistence (number of attempts to engage in behavioural tests), or problem solving (number of test-relevant55

functional and non-functional object-choices) (Logan, 2016a, 2016b). Moreover, careful combing by56

researchers of public records, such as regional bird reports and museum collections, means that great-tailed57

grackle range-expansion data is both comprehensive and readily available (Dinsmore & Dinsmore, 1993;58

Pandolfino et al., 2009; Wehtje, 2003). Thus, great-tailed grackles offer behavioural ecologists a useful study59

system to investigate the interplay between life-history strategies, learning ability, and range expansion.60

61

62

Figure 1 Left panel: images showing a male and female great-tailed grackle (credit: Wikimedia Commons).63

Right panel: schematic of the colour-reward reinforcement learning experimental protocol. In the initial64

learning phase, great-tailed grackles are presented with two colour-distinct tubes; however, only one coloured65

tube (e.g., dark grey) contains a food reward (F+ versus F-). In the reversal learning phase, the colour-reward66

tube-pairings are swapped. The passing criterion was identical in both phases (see main text for details).67

68

Here, for the first time (to our knowledge), we propose to investigate potential differences in colour-reward69

reinforcement learning performance between male and female great-tailed grackles (Figure 1), to test the70

hypothesis that sex differences in learning ability are related to sex differences in dispersal. Since the71

late nineteenth century, great-tailed grackles have been expanding their range at an unprecedented rate,72

moving northward from their native range in Central America into the United States (breeding in at least 2073

states), with several first-sightings spanning as far north as Canada (Dinsmore & Dinsmore, 1993; Wehtje,74

2003). Notably, the record of this range expansion in great-tailed grackles is heavily peppered with first-75

sightings involving a single or multiple male(s) (Dinsmore & Dinsmore, 1993; Kingery, 1972; Littlefield,76

1983; Stepney, 1975; Wehtje, 2003). Moreover, recent genetic data show that, when comparing great-tailed77

grackles within a population, average relatedness: (i) is higher among females than among males; and (ii)78

decreases with increasing geographic distance among females; but (iii) is unrelated to geographic distance79

among males; hence, confirming a role for male-biased dispersal in great-tailed grackles (Sevchik et al., in80

press). Considering these natural history and genetic data, then, we expect male and female great-tailed81

grackles to differ across at least two colour-reward reinforcement learning parameters: speed and sampling82

rate (here, sampling is defined as switching between choice-options). Specifically, we expect male—versus83

female—great-tailed grackles: (prediction 1 & 2) to be faster to, firstly, learn a novel colour-reward pairing,84

and secondly, reverse their colour preference when the colour-reward pairing is swapped; and (prediction85

3) to be more deterministic—that is, sample less often—in their colour-reward learning; if learning ability86

and dispersal relate. Indeed, since invading great-tailed grackles face agribusiness-led wildlife management87
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strategies, including the use of chemical crop repellents (Werner et al., 2011, 2015), range expansion should88

disfavour slow, error-prone learning strategies, resulting in a spatial sorting of learning ability in great-89

tailed grackles (Wright et al., 2010). Related to this final point, we further expect (prediction 4) such sex90

differences in learning ability to be more pronounced in great-tailed grackles living at the edge, rather than91

the intermediate and/or core, region of their range (e.g., Duckworth, 2006).92

Methods93

Data94

This preregistration aims to use colour-reward reinforcement learning data collected (or being collected)95

in great-tailed grackles across three study sites that differ in their range-expansion demographics; that is,96

belonging to a core, intermediate, or edge population (based on time-since-settlement population growth97

dynamics, as outlined in Chuang & Peterson, 2016). Specifically, data will be utilised from: (i) Tempe,98

Arizona—hereafter, the core population (estimated—by adding the average time between first sighting and99

first breeding to the year first sighted—to be breeding since 1951) (Walter, 2004; Wehtje, 2003); (ii) Santa100

Barbara, California—hereafter, the intermediate population (known to be breeding since 1996) (Lehman,101

2020); and (iii) Woodland, California—hereafter, the edge population (known to be breeding since 2004)102

(Hampton, 2001). Data collection at both the Tempe, Arizona and Santa Barbara, California study sites has103

been completed prior to the submission of this preregistration (total sample size across sites: nine females104

and 25 males); however, data collection at the Woodland, California study site is ongoing (current sample105

size: three females and nine males; anticipated minimum total sample size: five females and ten males).106

Thus, the final data set should contain colour-reward reinforcement learning data from at least 14 female107

and 35 male great-tailed grackles.108

Experimental protocol109

General110

A step-by-step description of the experimental protocol is reported elsewhere (e.g., Blaisdell et al., 2021). As111

such, below we detail only the protocol for the colour-reward reinforcement learning tests that we propose112

to analyse herein.113

Colour-reward reinforcement learning tests114

The reinforcement learning tests consist of two phases (Figure 1, right panel): (i) colour-reward learning115

(hereafter, initial learning) and (ii) colour-reward reversal learning (hereafter, reversal learning). In both116

phases, two different coloured tubes are used: for Santa Barbara great-tailed grackles, gold and grey (Logan,117

2016b, 2016a); for all other great-tailed grackles: light and dark grey (Blaisdell et al., 2021). Each tube118

consists of an outer and inner diameter of 26 mm and 19 mm, respectively; and each is mounted to two119

pieces of plywood attached at a right angle (entire apparatus: 50 mm wide × 50 mm tall × 67 mm deep);120

thus resulting in only one end of each coloured tube being accessible (Figure 1, right panel).121

In the initial learning phase, great-tailed grackles are required to learn that only one of the two coloured122

tubes contains a food reward (e.g., dark grey; this colour-reward pairing is counterbalanced across great-tailed123

grackles within each study site). Specifically, the rewarded and unrewarded coloured tubes are placed—either124

on a table or on the floor—in the centre of the aviary run (distance apart: table, 2 ft; floor, 3 ft), with the125

open tube-ends facing, and perpendicular to, their respective aviary side-wall. Which coloured tube is126

placed on which side of the aviary run (left or right) is pseudorandomised across trials. A trial begins at127

tube-placement, and ends when a great-tailed grackle has either made a tube-choice or the maximum trial128

time has elapsed (eight minutes). A tube-choice is defined as a great-tailed grackle bending down to examine129

the contents (or lack thereof) of a tube. If the chosen tube contains food, the great-tailed grackle is allowed130

to retrieve and eat the food, before both tubes are removed and the rewarded coloured tube is rebaited out131

of sight (for the great-tailed grackle). If a chosen tube does not contain food, both tubes are immediately132

removed. Each great-tailed grackle is given, first, up to three minutes to make a tube-choice (after which133

a piece of food is placed equidistant between the tubes to entice participation); and then, if no choice has134

been made, an additional five minutes maximum, before both tubes are removed. All trials are recorded135

as either correct (choosing the rewarded colour tube), incorrect (choosing the unrewarded colour tube), or136
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incomplete (no choice made); and are presented in 10-trial blocks. To pass initial learning, a great-tailed137

grackle must make a correct choice in at least 17 out of the most recent 20 trials, with a minimum of eight138

and nine correct choices across the last two blocks.139

In the reversal learning phase, great-tailed grackles are required to learn that the colour-reward pairing140

has been switched; that is, the previously unrewarded coloured tube (e.g., light grey) now contains a food141

reward. The protocol for this second and final learning phase is identical to that, described above, of the142

initial learning phase.143

Analysis plan144

General145

Here, we will analyse, process, and visually present our data using, respectively, the ‘rstan’ (Stan Development146

Team, 2020), ‘rethinking’ (McElreath, 2018), and ‘tidyverse’ (Wickham et al., 2019) packages in R (R147

Core Team, 2021). Our reproducible code is available on GitHub (https://github.com/alexisbreen/Sex-148

differences-in-grackles-learning).149

Reinforcement learning model150

In this preregistration, we propose to employ an adapted (from Deffner et al., 2020) Bayesian reinforcement151

learning model, to examine the influence of sex on great-tailed grackles’ initial and reversal learning perfor-152

mance. The reinforcement learning model, defined below, allows us to link observed coloured tube-choices to153

latent individual-level knowledge-updating (of attractions towards, learning about, and sampling of, either154

coloured tube) based on recent tube-choice reward-payoffs, and to translate such latent knowledge-updating155

into individual tube-choice probabilities; in other words, we can reverse engineer the probability that our pa-156

rameters of interest (speed and sampling rate) produce great-tailed grackles’ observed tube-choice behaviour157

by formulating our scientific model as a statistical model (McElreath, 2018, p. 537). This method can there-158

fore capture whether, and, if so, how multiple latent learning strategies simultaneously guide great-tailed159

grackles’ decision making—an analytical advantage over more traditional methods (e.g., comparing trials to160

passing criterion) that ignore the potential for equifinality (Barrett, 2019; Kandler & Powell, 2018).161

Our reinforcement learning model consists of two equations:162

𝐴𝑖,𝑗,𝑡+1 = (1 − 𝜙𝑘,𝑙)𝐴𝑖,𝑗,𝑡 + 𝜙𝑘,𝑙𝜋𝑖,𝑗,𝑡, (1)

𝑃(𝑖)𝑡+1 = exp(𝜆𝑘,𝑙𝐴𝑖,𝑗,𝑡)
2

∑
𝑚=1

exp(𝜆𝑘,𝑙𝐴𝑚,𝑗,𝑡)
. (2)

Equation 1 expresses how attraction (𝐴) to a choice-option (𝑖) changes for an individual (𝑗) across time163

(𝑡 + 1) based on their prior attraction to that choice-option (𝐴𝑖,𝑗,𝑡) plus their recently experienced choice-164

payoff (𝜋𝑖,𝑗,𝑡), whilst accounting for the weight given to recent payoffs (𝜙𝑘,𝑙). As 𝜙𝑘,𝑙 increases in value,165

so, too, does the rate of individual attraction-updating; thus, 𝜙𝑘,𝑙 represents the individual learning rate.166

We highlight that the 𝑘, 𝑙 indexing denotes that we estimate separate 𝜙 parameters for each phase of the167

experiment (𝑘 = 1 for initial, 𝑘 = 2 for reversal) and each sex (𝑙 = 1 for females, 𝑙 = 2 for males).168

Equation 2 is a softmax function that expresses the probability (𝑃 ) that option (𝑖) is selected in the next169

choice-round (𝑡 + 1) as a function of the attractions and a parameter (𝜆𝑘,𝑙) that governs how much relative170

differences in attraction scores guide individual choice-behaviour. The higher the value of 𝜆𝑘,𝑙, the more171

deterministic (less option-switching) the choice-behaviour of an individual becomes (note 𝜆𝑘,𝑙 = 0 generates172

random choice); thus, 𝜆𝑘,𝑙 represents the individual sampling rate for phase 𝑘 and sex 𝑙.173

From the above reinforcement learning model, then, we will generate inferences about the effect of sex on 𝜙𝑘,𝑙174

and 𝜆𝑘,𝑙 from at least 1000 effective samples of the posterior distribution (see our model validation below).175

We note that our reinforcement learning model also includes both individual bird and study site as random176

effects (to account for repeated measures within both individuals and populations); however, for clarity,177
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these parameters are omitted from our equations (but not our code: https://github.com/alexisbreen/Sex-178

differences-in-grackles-learning). Regarding our study site random effect, we further note that, as intro-179

duced above, we will also explore population-mediated sex-effects on 𝜙 and 𝜆, by comparing these learning180

parameters both within and between sexes at each study site. Finally, our reinforcement learning model181

excludes trials where a great-tailed grackle did not make a tube-choice, as this measure cannot clearly speak182

to individual learning ability—for example, satiation rather than any learning of ‘appropriate’ colour tube-183

choice could be invoked as an explanation in such cases. Indeed, there are, admittedly, a number of intrinsic184

and extrinsic factors (e.g., temperament and temperature, respectively) that might bias great-tailed grackles’185

tube-choice behaviour, and, in turn, the output from our reinforcement learning model (Webster & Rutz,186

2020). Nonetheless, our reinforcement learning model serves as a useful first step towards addressing if learn-187

ing ability and dispersal relate in great-tailed grackles (for a similiar rationale, see McElreath & Smaldino,188

2015).189

Model validation190

We validated our reinforcement learning model in three steps. First, we performed agent-based simulations.191

Specifically, we followed the tube-choice behaviour of simulated great-tailed grackles—that is, 14 females192

and 35 males from one of three populations (where population membership matched known study site sex193

distributions)—across the described initial learning and reversal learning phases. The tube-choice behaviour194

of the simulated great-tailed grackles was governed by a set of rules identical to those defined by our mathe-195

matical equations—for example, coloured tube attractions were independently updated based on the reward196

outcome of tube choices. Because we assigned higher average 𝜙 and 𝜆 values to simulated male (versus197

female) great-tailed grackles, the resulting data set should show males outperform females on initial and198

reversal learning, at both the group and individual-level; it did (Figure 2 & S1, respectively).199

200

Figure 2 Group-level tube-choice behaviour of simulated great-tailed grackles across colour-reward rein-201

forcement learning trials (females: yellow, n = 14; males: green, n = 35), following model validation step202

one. Tube option 1 (e.g., dark grey) was the rewarded option in the initial learning phase; conversely, tube203

option 2 (e.g., light grey) contained the food reward in the reversal learning phase. Each open circle repre-204

sents an individual tube-choice; black lines indicate binomial smoothed conditional means fitted with grey205

89% compatability intervals.206

Next, we ran our simulated data set on our reinforcement learning model. Here, we endeavored to determine207

whether our reinforcement learning model: (i) recovered our assigned 𝜙𝑘,𝑙 and 𝜆𝑘,𝑙 values (it did; Table 1);208

and (ii) produced ‘correct’ qualitative inferences—that is, detected the simulated sex differences in great-209

tailed grackles’ initial and reversal learning (it did; Figure 3).210
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Table 1: Comparison of assigned and recovered 𝜙 and 𝜆 values, following model validation step two. Eighty-
nine percent highest posterior density intervals (HPDI) are shown for recovered values.

𝜙 𝜆
Female Male Female Male

Initial Reversal Initial Reversal Initial Reversal Initial Reversal
Assigned 0.03 0.05 0.09 0.11 2.00 3.00 4.00 5.00
Recovered 0.03 0.05 0.07 0.10 2.16 2.82 4.31 5.68
89% HPDI 0.01 - 0.04 0.04 - 0.06 0.03 - 0.11 0.08 - 0.12 1.29 - 2.99 2.05 - 3.58 2.65 - 6.00 4.41 - 6.97

211

Figure 3 Comparison of learning ability in simulated female (yellow; n = 14) and male (green; n = 35) great-212

tailed grackles across initial and reversal colour-reward reinforcement learning, following model validation213

step two. (A) 𝜙, the rate of learning i.e., speed. (B) 𝜆, the rate of sampling i.e., switching between choice-214

options. (C) and (D) show posterior distributions for respective contrasts between female and male learning.215

Eighty-nine percent highest posterior density intervals are shaded in grey; that this interval does not cross216

zero evidences a simulated effect of sex on learning ability.217

Finally, we repeated step one and step two, using a range of realistically plausible 𝜙 and 𝜆 sex differences218

(note that values for female great-tailed grackles were left unchanged from Table 1), to determine whether219

our reinforcement learning model could detect different effect sizes of sex on our target learning parameters.220

This final step confirmed that, for our anticipated minimum sample size, our reinforcement learning model:221

(i) detects sex differences in 𝜙 values >= 0.03 and 𝜆 values >= 1; and (ii) infers a null effect for 𝜙 values222

< 0.03 and 𝜆 values < 1 i.e., very weak simulated sex differences (Figure 4). Both of these points together223

highlight how our reinforcement learning model allows us to say that null results are not just due to small224

sample size. Additionally, estimates obtained from step three were more precise in the reversal learning phase225

compared to the initial learning phase (Figure 4), and we can expect to detect even smaller sex differences if226

we analyse learning across both phases—an approach we will apply if we detect no effect of phase. In sum,227

model validation steps one through three confirm that our reinforcement learning model is reasonably fit.228
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229

Figure 4 Parameter recovery test for different sizes of simulated sex differences. Plots show posterior230

estimates of the effect of sex (contrasts between simulated male and female great-tailed grackles; n =231

14 and 35, respectively) on speed (𝜙) and sampling (𝜆) learning parameters, following model validation232

step three. Black circles represent the mean recovered sex effect estimates with grey eighty-nine percent233

highest posterior density intervals (HPDIs); black solid diagonal lines represent a ‘perfect’ match between234

assigned and recovered parameter estimates (note that we would not expect a perfect correspondence due235

to stochasticity of agent-based simulations); and black dashed horizontal lines represent a recovered null236

sex effect.237

Bias238

AJB and DD are (at the time of submitting this preregistration) blind with respect to all but two aspects239

of the target data: the sex and population membership of each grackle that has, thus far, completed, or is240

expected to complete, the colour-reward reinforcement learning tests (because these parameters were used241

in model validation simulations—see above).242

7



Open materials243

https://github.com/alexisbreen/Sex-differences-in-grackles-learning244

Acknowledgements245

We thank all members, past and present, of the Grackle Project for collecting and sharing the data that we246

propose to analyse herein. We further thank Richard McElreath for study support.247

Ethics248

All data utilised herein were collected with ethical approval.249

References250

Auersperg, A. M. I., Von Bayern, A. M. P., Gajdon, G. K., Huber, L., & Kacelnik, A. (2011). Flexibility251

in problem solving and tool use of kea and New Caledonian crows in a multi access box paradigm. PloS252

ONE, 6(6), e20231. https://doi.org/10.1371/journal.pone.0020231253

Barrett, B. J. (2019). Equifinality in empirical studies of cultural transmission. Behavioural Processes, 161,254

129–138. https://doi.org/10.1016/j.beproc.2018.01.011255

Batabyal, A., & Thaker, M. (2019). Lizards from suburban areas learn faster to stay safe. Biology Letters,256

15(2), 20190009. https://doi.org/10.1098/rsbl.2019.0009257

Blackburn, T. M., Lockwood, J. L., & Cassey, P. (2009). Avian invasions: The ecology and evolution of258

exotic birds (Vol. 1). Oxford University Press.259

Blaisdell, A., Seitz, B., Rowney, C., Folsom, M., MacPherson, M., Deffner, D., & Logan, C. J. (2021). Do260

the more flexible individuals rely more on causal cognition? Observation versus intervention in causal261

inference in great-tailed grackles. Peer Community Journal, 1(e50). https://doi.org/10.24072/pcjournal.262

44263

Chuang, A., & Peterson, C. R. (2016). Expanding population edges: Theories, traits, and trade-offs. Global264

Change Biology, 22(2), 494–512. https://doi.org/10.1111/gcb.13107265

Deffner, D., Kleinow, V., & McElreath, R. (2020). Dynamic social learning in temporally and spatially266

variable environments. Royal Society Open Science, 7(12), 200734. https://doi.org/10.1098/rsos.200734267

Dinsmore, J. J., & Dinsmore, S. J. (1993). Range expansion of the great-tailed grackle in the 1900s. Journal268

of the Iowa Academy of Science, 100(2), 54–59.269

Duckworth, R. A. (2006). Behavioral correlations across breeding contexts provide a mechanism for a cost270

of aggression. Behavioral Ecology, 17(6), 1011–1019. https://doi.org/10.1093/beheco/arl035271

Griffin, A. S., Netto, K., & Peneaux, C. (2017). Neophilia, innovation and learning in an urbanized world:272

A critical evaluation of mixed findings. Current Opinion in Behavioral Sciences, 16, 15–22. https:273

//doi.org/10.1016/j.cobeha.2017.01.004274

Guillette, L. M., Reddon, A. R., Hoeschele, M., & Sturdy, C. B. (2011). Sometimes slower is better: Slow-275

exploring birds are more sensitive to changes in a vocal discrimination task. Proceedings of the Royal276

Society B: Biological Sciences, 278(1706), 767–773. https://doi.org/10.1098/rspb.2010.1669277

Gutowsky, L. F. G., & Fox, M. G. (2011). Occupation, body size and sex ratio of round goby Neogobius278

melanostomus in established and newly invaded areas of an ontario river. Hydrobiologia, 671(1), 27–37.279

https://doi.org/10.1007/s10750-011-0701-9280

Hampton, S. (2001). Yolo County birding news.281

Kandler, A., & Powell, A. (2018). Generative inference for cultural evolution. Philosophical Transactions of282

the Royal Society B: Biological Sciences, 373(1743), 20170056. https://doi.org/10.1098/rstb.2017.0056283

Kingery, H. E. (1972). The nesting season: June 1-August 15, 1972. American Birds, 26, 882–887.284

Lee, V. E., & Thornton, A. (2021). Animal cognition in an urbanised world. Frontiers in Ecology and285

Evolution, 9, 120. https://doi.org/10.3389/fevo.2021.633947286

Lehman, P. E. (2020). The birds of Santa Barbara County, California (2nd ed.). https://doi.org/http:287

//www.sbcobirding.com/lehmanbosbc.html288

Littlefield, C. D. (1983). Oregon’s first records of the great-tailed grackle. Western Birds, 14, 201–202.289

Logan, C. J. (2016a). Behavioral flexibility and problem solving in an invasive bird. PeerJ, 4, e1975.290

https://doi.org/10.7717/peerj.1975291

Logan, C. J. (2016b). Behavioral flexibility in an invasive bird is independent of other behaviors. PeerJ, 4,292

e2215. https://doi.org/10.7717/peerj.2215293

8



McElreath, R. (2018). Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman;294

Hall/CRC.295

McElreath, R., & Smaldino, P. E. (2015). Replication, communication, and the population dynamics of296

scientific discovery. PloS One, 10(8), e0136088. https://doi.org/10.1371/journal.pone.0136088297

Miller, T. E. X., & Inouye, B. D. (2013). Sex and stochasticity affect range expansion of experimental298

invasions. Ecology Letters, 16(3), 354–361. https://doi.org/10.1111/ele.12049299

Pandolfino, E. R., Deuel, B. E., & Young, L. (2009). Colonization of the california’s central valley by the300

great-tailed grackle. Central Valley Bird Club Bull, 12, 77–95.301

R Core Team. (2021). R: A language and environment for statistical computing (Version 1.4.1106) [Computer302

software]. https://www.R-project.org/303

Ronce, O. (2007). How does it feel to be like a rolling stone? Ten questions about dispersal evolution.304

Annual Review of Ecology, Evolution, and Systematics, 38, 231–253. https://doi.org/10.1146/annurev.305

ecolsys.38.091206.095611306

Sevchik, A., Logan, C. J., McCune, K. B., Blackwell, A., Rowney, C., & Lukas, D. (in press). Investigating307

sex differences in genetic relatedness in great-tailed grackles in Tempe, Arizona to infer potential sex308

biases in dispersal. In Peer community in ecology. https://doi.org/10.32942/osf.io/t6beh309

Sol, D., Lapiedra, O., & González-Lagos, C. (2013). Behavioural adjustments for a life in the city. Animal310

Behaviour, 85(5), 1101–1112. https://doi.org/10.1016/j.anbehav.2013.01.023311

Stan Development Team. (2020). RStan: The R interface to Stan (Version 2.21.2) [Computer software].312

http://mc-stan.%20org313

Stepney, P. H. R. (1975). First recorded breeding of the great-tailed grackle in Colorado. The Condor, 77(2),314

208–210. https://doi.org/10.2307/1365794315

Trochet, A., Courtois, E. A., Stevens, V. M., Baguette, M., Chaine, A., Schmeller, D. S., Clobert, J., &316

Wiens, J. J. (2016). Evolution of sex-biased dispersal. The Quarterly Review of Biology, 91(3), 297–320.317

https://doi.org/10.1086/688097318

Udvardy, M. D. F., & Papp, C. S. (1969). Dynamic zoogeography. Van Nostrand Reinhold.319

Verbeek, M. E. M., Drent, P. J., & Wiepkema, P. R. (1994). Consistent individual differences in early320

exploratory behaviour of male great tits. Animal Behaviour, 48(5), 1113–1121. https://doi.org/10.1006/321

anbe.1994.1344322

Walter, W. (2004). The great-tailed grackle (Quiscalus mexicanus Gmelin) in the Western USA: Range323

expansion and secondary contact between subspecies [PhD thesis]. University of California Riverside.324

Webster, M. M., & Rutz, C. (2020). How STRANGE are your study animals? In Nature (No. 7812; Vol.325

582, pp. 337–340). Nature Publishing Group. https://doi.org/10.1038/d41586-020-01751-5326

Wehtje, W. (2003). The range expansion of the great-tailed grackle (Quiscalus mexicanus Gmelin) in North327

America since 1880. Journal of Biogeography, 30(10), 1593–1607. https://doi.org/10.1046/j.1365-2699.328

2003.00970.x329

Werner, S. J., DeLiberto, S. T., Mangan, A. M., Pettit, S. E., Ellis, J. W., & Carlson, J. C. (2015).330

Anthraquinone-based repellent for horned larks, great-tailed grackles, American crows and the protection331

of California’s specialty crops. Crop Protection, 72, 158–162. https://doi.org/10.1016/j.cropro.2015.03.332

020333

Werner, S. J., Linz, G. M., Carlson, J. C., Pettit, S. E., Tupper, S. K., & Santer, M. M. (2011).334

Anthraquinone-based bird repellent for sunflower crops. Applied Animal Behaviour Science, 129(2-4),335

162–169. https://doi.org/10.1016/j.applanim.2010.11.010336

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A.,337

Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, l, Ooms, J., Robinson,338

D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source339

Software, 4(43), 1686. https://doi.org/10.21105/joss.01686340

Wright, T. F., Eberhard, J. R., Hobson, E. A., Avery, M. L., & Russello, M. A. (2010). Behavioral flexibility341

and species invasions: The adaptive flexibility hypothesis. Ethology Ecology & Evolution, 22(4), 393–404.342

https://doi.org/10.1080/03949370.2010.505580343

9



Supplementary material344

345

Figure S1 Individual-level tube-choice behaviour of simulated great-tailed grackles across colour-reward346

reinforcement learning trials (females: yellow, n = 14; males: green, n = 35). Tube option 1 (e.g., dark grey)347

was the rewarded option in the initial learning phase; conversely, tube option 2 (e.g., light grey) contained348

the food reward in the reversal learning phase. Each open circle shows an individual tube-choice; black solid349

lines show loess smoothed conditional means fitted with grey 89% compatibility intervals; and dashed black350

lines show individual-unique transitions between learning phases.351
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