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Respirationmodulates sleep oscillations and
memory reactivation in humans

Thomas Schreiner 1 , Marit Petzka2,3, Tobias Staudigl 1 &
Bernhard P. Staresina 4,5

The beneficial effect of sleep on memory consolidation relies on the precise
interplay of slow oscillations and spindles. However, whether these rhythms
are orchestrated by an underlying pacemaker has remained elusive. Here, we
tested the relationship between respiration, which has been shown to impact
brain rhythms and cognition during wake, sleep-related oscillations and
memory reactivation in humans. We re-analysed an existing dataset, where
scalp electroencephalography and respiration were recorded throughout an
experiment in which participants (N = 20) acquired associative memories
before taking a nap. Our results reveal that respiration modulates the emer-
gence of sleep oscillations. Specifically, slow oscillations, spindles as well as
their interplay (i.e., slow-oscillation_spindle complexes) systematically
increase towards inhalation peaks. Moreover, the strength of respiration -
slow-oscillation_spindle coupling is linked to the extent of memory reactiva-
tion (i.e., classifier evidence in favour of the previously learned stimulus
category) during slow-oscillation_spindles. Our results identify a clear asso-
ciation between respiration and memory consolidation in humans and high-
light the role of brain-body interactions during sleep.

How are memories strengthened while we sleep? Current models
emphasize the key role of reactivation of information encoded during
prior wakefulness1. Through reactivation, memory representations are
relayed between the hippocampus and cortical long-term stores,
transforming initially labile representations into long-lasting
memories2,3. This hippocampal–cortical communication is thought
to be facilitated by the multiplexed co-occurrence of cardinal non-
rapid eye movement (NREM) sleep oscillations, namely cortical slow
oscillations (SOs; ~1 Hz), thalamic sleep spindles (~12–16Hz), and hip-
pocampal ripples (~80–120Hz in humans)4,5.

Recent work in humans and rodent models has corroborated the
role of SO-spindle coupling during NREM sleep for both the physio-
logical and behavioral expressions ofmemory consolidation. Evidence
from two-photon imaging in mice suggests that the plasticity sup-
porting role of spindles (via Ca2+ influx) is strongly amplified when

spindles concur with SO upstates6. Moreover, hippocampal ripples
preferentially emerge when SOs and spindles are coupled7–9, while
hippocampal–cortical interactions are most prominent when pre-
ceded by SO-spindles8. Finally, SO-spindle events and the precision of
their coupling have been shown to be instrumental for the retention of
episodic memories10–12 and to clock endogenous memory reactivation
in humans13.

In sum, the coordinated interplay of SOs and spindles has been
established as a crucial cornerstone for memory consolidation. How-
ever, while spindles tend to cluster in SO upstates, the exact preferred
SO phase at which spindles occur is highly variable—not only from
event to event but also across individuals and development. That is,
there is considerable inter-individual variability in the preferred phase
of SO-spindle coupling14. Moreover, its precision increases from
childhood to adolescence15 and then declines again during ageing10,16,
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with concomitant increases and decreases in memory performance.
These findings beg the question whether there is an additional
underlying pacemaker that influences SO-spindle coupling. Respira-
tion has recently been put forward as such a scaffold for brain
dynamics, as a growingnumber offindings demonstrate thatbreathing
impacts cognition17–21 andmodulates brain oscillations17,22 during wake
in humans. Interestingly, the rate of respiration (i.e., breathing fre-
quency) declines from birth to adolescence23, while sleep-related
breathing disturbances are very common in older adults24, with the
severity of symptoms accelerating with age25. Hence, these breathing-
related changes closely parallel developmental changes in the preci-
sion of SO-spindle coupling. However, whether respiration is indeed
associated sleep rhythms and ensuing consolidation processes
remains unknown.

In this study, we assessed the impact of breathing on sleep
rhythms and memory reactivation. Using EEG and respiratory record-
ings in a learning/nap paradigm, we show a clear association between
respiration and the emergence of SOs, spindles as well their interplay
in the form of coupled SO_spindle complexes during NREM sleep.
Moreover, the strength of respiration-SO_spindle coupling is directly
linked to memory reactivation during SO_spindle complexes. Our
results thus identify a tight relationship between respiration and SO-
spindle-mediated memory consolidation in humans.

Results
To examine whether respiration modulates particular oscillatory sig-
natures of human NREM sleep, we analyzed electroencephalography
(EEG) and respiratory signals from 20 participants taking part in two

experimental sessions. In both sessions they performed an episodic
learning task, associating verbs with images of objects or scenes
(counterbalanced across sessions). The learning taskwas followed by a
nap (average sleep time: 101.63 ± 2.3min; see Fig. 1). Each of the
experimental sessions ended with a localizer task, where a new set of
object and scene images was presented. This localizer served to train a
linear classifier to distinguish object- vs. scene-related EEG patterns.
Note that parts of the data have already been published13, demon-
strating that SO_spindles clock memory reactivation in humans. Spe-
cifics about the memory task and identification of memory
reactivation during SO_spindles are thus not covered here.

Respiration modulates NREM sleep rhythms
We hypothesized that if there is an association between respiration
and sleep oscillations, this should be expressed in respiration-locked
power changes in sleep EEG recordings. Hence, we detected inhalation
peaks in the respiratory signal using established algorithms17,26. The
inhalation-centered EEG data [±2 s] were then subjected to a
time–frequency analysis [1–25Hz] and contrasted against data seg-
ments randomly selected in relation to the respiration signal.
Respiration-locked time–frequency representations (TFRs) exhibited
increased power in the SO_spindle range around the inhalation peak,
i.e., an initial low-frequency burst (comprising peaks in the SO and
theta range27–29) followed by a fast spindle burst (12–18Hz; P <0.001,
corrected for multiple comparisons across time, frequency, and elec-
trodes; see Fig. 2a; for individual time–frequency representations of
five representative participants see Supplementary Fig. 1). Applying
the same analysis to source-space data suggested that these effects
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Fig. 1 | Experimental procedure. a During encoding, participants were presented
with 120 verb-object or verb-scene pairs (counterbalanced across sessions).
Memory performance was tested before and after a 120min nap period. Each
session ended with a localizer task in which participants processed a new set of
object and scene images. b Hypnogram of a sample participant, showing time
spent in different sleep stages across one nap. The gray shading indicates NREM

sleep stages N2 and SWS. c Example of a NREM sleep segment at Cz (30 s; top row
(red): EEG recording; bottom row (blue): respiration). d Example of 1/f corrected
power spectrum during NREM sleep at Cz for EEG (red) and respiratory recordings
(blue), as obtained by Irregular Resampling Auto-Spectral Analysis (IRASA)103.
Source data are provided as a Source Data file.
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originated from frontoparietal areas and the right medial temporal
lobe (see Fig. 2b; P =0.037, corrected across time, frequency, and
voxels).

We further assessed the relationship between respiration and
NREM sleep EEG data using a complementary analytical approach.
Specifically, we computed the modulation index (MI)30 to estimate
cross-frequency phase amplitude coupling between respiration (pro-
viding the phase) and EEG recordings at electrode F2 (providing
amplitude measures between 0.5 and 24.5Hz). Results revealed a sig-
nificant modulation of EEG amplitude by the phase of respiration with
local peaks in the SO (0.5Hz) and spindle range (15.5 Hz; z > 1.96;
corrected for multiple comparisons across frequencies, Fig. 2c).

Finally, we directly tested the association between respiration and
discrete SO and spindle events. First, we identified SOs in the EEG
recordings13,31 anddetermined the respiratoryphaseduring thepeakof
the detected SOs (downstate) across participants. A significant non-
uniform circular distribution became apparent at frontal, central and
parietal electrodes (V-test against 0°, Vmean = 7.42 ± 0.28, all P < 0.05;
corrected for multiple comparisons across electrodes using FDR
correction32, Fig. 2d), with the preferred phases of the respiration–SO
modulation clustering just before the inhalation peak (i.e., 0°; mean
angle of significant electrodes: −9.4° ± 0.22,mean vector length = 0.51;
see example circular plot and temporal modulation of SOs by
respiration at electrode F2 in Fig. 2d). On an individual level we found
significant nonuniform distributions in 15/20 participants. Finally, we

quantified the directional influence of respiration on SO activity at
electrode F2 using the Phase Slope Index (PSI33). We found that
respiration predicted SO activity, as evidenced by a positive PSI (mean
PSI: 0.0003 ±0.0001; t test against zero: t1,19 = 2.17; P =0.042;
see Fig. 2e).

Next, spindles were identified in the EEG recordings9,13,31 and the
preferred respiration phase for spindle onsets was assessed. A sig-
nificant nonuniform circular distribution was found across parietal
electrodes (V-test against0°, Vmean = 6.84 ± 0.24, all P < 0.05; corrected
for multiple comparisons across electrodes using FDR correction32),
with spindle onsets clustering right after the inhalation peak (mean
angle of significant electrodes: 16.95° ± 0.23, mean vector length =
0.52; see examplecircularplot and temporalmodulationof spindles by
respiration at electrode P1 in Fig. 2d). On an individual level we found
significant nonuniform distributions in 18/20 participants. Again, we
quantified the directional influence of respiration on spindle activity at
electrode P1 using the PSI33. As with SOs, we found that respiration
predicted spindle activity, as evidenced by a positive PSI (mean PSI:
0.0024 ± 0.0007; t test against zero: t1,19 = 3.1; P =0.005; see Fig. 2e).

Together, these results reveal a strong modulation of SOs and
spindles by respiration, with SOs grouping at earlier respirationphases
than spindles (see Supplementary Fig. 2, indicating a phase shift
between SOs and spindles in relation to their modulation by respira-
tion). An important question is whether this relationship is specific to
SOs and (fast) spindles, or whether respiration is associated with any
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Fig. 2 | Respiration modulates sleep rhythms. a Time–frequency representation
ofNREMsleep EEGdata locked to inhalationpeaks, contrastedagainst randomdata
segments (mean z values across significant electrodes). Contours indicate sig-
nificant clusters (two-sided dependent-sample t test; P <0.001, corrected), illus-
trating enhancedpower in the SO_spindle range around inhalation peaks (time =0).
The black line on the left illustrates mean z power, averaged across time in the
cluster (±SEM across participants). The white waveform depicts the inhalation-
locked respiration signal (mean± SEM across participants). The topography illus-
trates the statistical results across electrodes. b Source data suggest that TFR
results emerge from frontoparietal and rightmedial temporal lobe areas (P =0.037,
corrected). c The modulation index indicates that the respiration phase influences
EEG amplitudes at electrode F2 (mean± SEM across participants) with peaks in the
SO (0.5 Hz) and spindle range (15.5 Hz; z > 1.96; the red line depicts significantly
modulated frequencies; corrected). d SO downstates (red) and spindle onsets
(blue) were non-uniformly distributed across participants in relation to the

respiratory phase (two-sided V- test; SOs: Vmean = 7.42 ± 0.28, all P <0.05; Spindles:
Vmean = 6.84 ± 0.24, all P <0.05; corrected using FDR32; contour lines encompass
significant electrodes). The circular plot illustrates the preferred respiration phases
for SO (red, electrode F2: mean angle = −21.36° ± 0.20, mean vector length = 0.58)
and spindle modulation (blue, electrode P1: mean angle = 14.06° ± 0.23, mean
vector length = 0.44; inhalation peak = 0°). The right panel illustrates the temporal
modulation of SOs (red, electrode F2) and spindles (blue, electrode P1; event per-
centage in relation to inhalation peaks ± 1.5 s; mean± SEM across participants) by
respiration. Solid horizontal lines indicate significant differences from event-free
segments (SOs: p =0.004; Spindles: P =0.002; corrected). e The phase-slope index
(PSI; mean± SEM across participants), indicates that respiration phases predict
both SO and spindle amplitudes (t tests against zero, two-sided; SOs (red):
t1,19 = 2.17; P =0.042; Spindles (blue): t1,19 = 3.1; P =0.005). Source data are provided
as a Source Data file.
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EEG rhythm that prevails depending on the brain state. We addressed
this question by assessing whether slow spindles (9–12 Hz34) would be
similarly modulated by respiration. Determining the respiratory pha-
ses during the onset of slow spindles across participants revealed no
significant nonuniform circular distribution (all P >0.05; see Supple-
mentary Fig. 3).

Respiration modulates SO_spindle complexes, with coupling
strength being associated with memory reactivation
As mentioned in the introduction, a growing number of empirical
findings point to a particular role of SO-spindle coupling for memory
consolidation. Given the clear association between respiration and SOs
and spindles respectively, we next tested whether respiration would
also modulate the joint presence of SOs and spindles (henceforth
referred to as SO_spindle complexes). To identify SO_spindle com-
plexes, we detected events where SO downstates were followed by
sleep spindles within a time window of 1.5 s13. Determining the
respiratory phase during the peak of the SO_spindle complexes
(locked to SO downstates) revealed a significant nonuniform circular
distribution encompassing frontal, central and parietal electrodes
(V-test against 0°, Vmean = 9.46 ±0.23, P <0.05; corrected for multiple

comparisons across electrodes), with SO_spindles peaking briefly
before the inhalation peak (mean angle across significant electrodes:
−4.5° ± 0.16, mean vector length = 0.73; see example circular plot at
electrode F2 in Fig. 3a). On an individual level we found significant
nonuniform distributions in 18/20 participants (for topography of
preferred phases for SO_spindle modulation by respiration, see Sup-
plementary Fig. 4). To assess whether the likelihood of SOs to group
spindles is modulated by the respiration phase, we binned the number
of SO_spindles relative to all SOs at electrode F2 across the respiration
cycle in 20 evenly spaced bins (i.e., from -pi to pi in steps of 0.31
radians). (Non)uniformity of the resulting distribution was assessed
per participant using the Kolmogorov–Smirnov test35. We found non-
uniform distributions in all participants (all P <0.001; corrected for
multiple comparisons across participants using FDR correction; see
Fig. 3a), indicating that thephase of respirationwas associatedwith the
emergence of coupled SO_spindle events (see Supplementary Fig. 5 for
results across electrodes and Supplementary Fig. 6 for results with
regards to the impact of respiration on the consistency of SO-spindle
coupling).

Given that we recently demonstrated in the same dataset that
SO_spindle complexes coordinate memory reactivation13, we asked
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Fig. 3 | The impact of respiration on SO_spindles and memory reactivation.
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reveals a significant nonuniform circular distribution (two-sided V-test;
Vmean = 9.46± 0.23, all P <0.05; corrected; contour lines encompass significant
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respiration cycle (all P <0.001; corrected, see right panel). b Results of a robust
regression (two-sided) exhibiting a significant positive relationship between the
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whether there would be a functional link between the
respiration–SO_spindle coupling and the reprocessing of memories
during sleep. To address this question, we conducted, at each elec-
trode, a robust regression across participants between (i) the
respiration-SO_spindle coupling strength (i.e., vector length) and (ii)
levels of memory reactivation (i.e., decoding accuracies averaged
across the significant cluster as reported in ref. 13). As shown in Fig. 3b,
we observed a significant positive relationship between the two vari-
ables at frontal electrodes (P <0.05, corrected for multiple compar-
isons across electrodes using FDR32; for the relationship between
respiration–SO_spindle coupling strength and behavioral levels of
memory consolidation see Supplementary Fig. 7; conducting robust
regressions between levels ofmemory reactivationand respiration–SO
coupling or respiration–spindle coupling independently did not yield
any significant effect, see Supplementary Fig. 8).

Discussion
Our results unveil a putative relationship between respiration, the
emergence of sleep rhythms, and memory consolidation in humans.
We found that respirationmodulated the emergence of SOs, spindles,
and potentially their interplay in the form of SO_spindle complexes.
Moreover, the strength of respiration–SO_spindle coupling was asso-
ciated with the extent of memory reactivation during SO_spindles,
suggesting the functional significance of respiration–brain
interactions.

Many organs interact with brain rhythms. For example, the car-
diovascular, gastrointestinal and respiratory systems are known to
show ultradian rhythmicity, which in turn interacts with brain
rhythms36–38. These body oscillators potentially constrain endogenous
neuronal dynamics (e.g., refs. 37,39,40) and might act as common
clocks, organizing neuronal activity across brain regions. Among these
body rhythms, breathing has recently emerged as a potential global
pacemaker for neuronal oscillations and cognition during wake, link-
ing distinct neuronal network dynamics and facilitating information
processing and transfer across distributed circuits17,20–22,37. However,
whether respiration might play a similar role in sleep-related memory
consolidation, hence be associated with the emergence of sleep
oscillations in humans has remained unknown. In the current study, we
tackled this question by analyzing EEG and respiratory signals which
were recorded in parallel during NREM sleep (Fig. 1). Of note, using the
same dataset we have recently shown that spontaneous memory
reactivation in humans can be tracked during the presence of coupled
SO-spindle events13. This allowed us to not only establish the syn-
chronizing effect of respiration on sleep oscillations (Fig. 2), but also to
potentially link it to key aspects of memory consolidation, i.e., the
reactivation of prior learning material (Fig. 3).

A growing number of findings in humans demonstrate that
breathing impacts cognition and memory processes during wake18,19.
One study showed that memory was better for images that were pre-
sented during the inhalation as compared to the exhalation phase of
breathing17. In a delayed-match-to-sample task, the respirationphase at
which cue and target stimuli were presented impacted recognition
performance41. Finally, nasal breathing during a 1-h wake rest period
between study and test led to elevated memory performance as
compared tomouthbreathing42, pointing to a role of nasalbreathing in
entraining memory-related processes, possibly via the piriform-
hippocampal pathway18.

Indeed, coordinating influences of breathing on brain rhythms
have been demonstrated in several brain areas linked to memory
processes, including not only the hippocampus17,43–45, but also
thalamus46 and prefrontal cortex22,47. Notably, these three regions also
represent key structures for sleep-related memory consolidation,
giving rise to ripples, sleep spindles, and SOs, respectively48–50. In fact,
recent work in rodents has demonstrated that respiration modulates
the coordination of hippocampal sharp-wave ripples and cortical

down/upstate transitions duringNREMsleep46, while theta and gamma
and their interplay during REM sleep are likewise impacted by
breathing51,52. Hence, converging evidence across species points to a
role of respiration in online and offline memory processing, with the
latter presumably afforded by its coordinating effect on sleep rhythms
supporting memory consolidation.

The precise coupling between NREM sleep oscillations (i.e., SOs,
spindles, and ripples) has long been assumed to play a key part in the
memory function of sleep, as it is thought to enable the information
transfer between the hippocampus and cortical networks1,5,53–56.
Indeed, work in humans has revealed that the precision of SO-spindle
coupling, i.e., the exact timing of spindle maxima with respect to the
SO upstate, is tightly associated with the retention of declarative
learning material10–12. Moreover, work in rodents has demonstrated
that precise SO-spindle coordination is key for sustaining the reacti-
vation of neural ensembles57, while the full oscillatory hierarchy (i.e.,
SOs, spindles, and ripples) has been shown to be necessary for effec-
tive consolidation7,58. Our result that respiration is related to the
emergence of SOs, spindles and potentially SO_spindle coupling (and
putatively the effect of the latter on memory reactivation) suggests
breathing as a potential oscillatory scaffold for memory consolidation
in humans. Due to the restrictions of scalp EEG, our current data
remain agnostic as to whether hippocampal ripples in humans are
likewise influenced by respiration, as shown in rodents43,46. Hence,
future work will need to employ simultaneous recordings from the
hippocampus to directly test whether respiration is indeed associated
with the full hierarchy of NREM sleep oscillations in humans.

Is respiration associated with any EEG rhythm that prevails during
a given brain state? Our result that slow spindles, which are dominant
over frontal areas and emerge preferentially at the transition into the
SO downstate34, were not robustly impacted by respiration (Supple-
mentary Fig. 3) points to a specific effect on SOs and fast spindles.

How might breathing exert its impact on brain activity? When we
inhale, the incoming airflow stimulates mechanoreceptors of the
olfactory sensory neurons59. These in turn produce breathing-locked
oscillations, which are conveyed to the olfactory bulb and further to
the olfactory cortex60. The olfactory cortex, however, is not the last
terminal of breathing-entrained rhythms. The impact of breathing on
neuronal activity has been identified in rodent models and humans in
various brain areas20–22,43,44,46,47,61. This anatomical circuitry is in line
with recent findings indicating a privileged role of nose breathing as
compared to mouth breathing in synchronizing neuronal oscillations
and affecting memory processes17,42. However, the brainstem houses
respiratory rhythm generators, which might likewise account for the
breathing-related entrainment of neuronal oscillations46,62 (irrespec-
tive of nose or mouth breathing). Specifically, the phases of the
respiratory cycle, comprising inhalation and exhalation, are governed
by brainstem circuits62. The brainstem, as major control hub of the
autonomous nervous system, likewise impacts the activity of other
vital functions such as the heart rate or gastric functions63,64. Cardiac
activity and respiration are intimately linked65, while cardiac rhythms
and in particular heart rate variability have been shown not only to
covary with different sleep stages but also with SO and sleep spindle
activity during NREM sleep66. Hence, the extent to which sensory (i.e.,
olfactory bulb route) or non-sensory (i.e., brainstem route) breathing-
locked inputs modulate neuronal activity and whether they innervate
the same target regions in the brain remains unclear. Controlling the
breathing route during sleep would permit drawing more causal
inferences whether nose breathing is indeed key for clocking neuronal
activity during sleep.

On that note, it deservesmention thatour results are correlational
in nature. Hence, future studies, directly manipulating breathing
behavior, will be needed to provide causal evidence for the role of
breathing in modulating sleep-related oscillations. For example, it has
been shown that presenting odors during NREM sleep is capable of
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modifying respiration during sleep, by decreasing inhalation and
increasing exhalation volume for up to 6 breaths67. One hypothesis
would be that such interference (i.e., shallower inhalation due to odor
presentation) might mitigate the modulation of sleep-related oscilla-
tions during the initial presence of odors. Another line of research
potentially providing causal evidence could stem from patients suf-
fering from obstructive sleep apnea (OSA). OSA is characterized by
repetitive upper airway collapse resulting in intermittent hypoxia68.
Strikingly, in OSA patients’ sleep seems to have lost its beneficial effect
on memory69. While it has been shown that abnormal sleep spindle
properties are associated with OSA70, it remains unclear whether OSA
also impacts the emergence of SOs and SO_spindle complexes. This
would corroborate the notion that pathological, arrhythmic breathing
affects the coordination of sleep oscillations. Importantly, showing
that restoring normal breathing behavior (e.g., via Continuous Positive
Airway Pressure (CPAP) treatment) also restores the relationship
between respiration and sleep oscillations would lend some causal
evidence for the role of breathing on the coordination of sleep
oscillations.

It has to be noted that we did not explicitly screen for sleep-
disordered breathing (SDB) conditions in our participants, which
might have considerable impacted the results of our work. However,
SDB is well known to cause sleep fragmentation (e.g., ref. 71). All our
participants exhibited healthy sleep and no signs of sleep fragmenta-
tion (i.e., elevated number of awakenings) as assessed with sleep
scoring. Moreover, we carefully inspected the respiratory data during
recording and offline pre-processing and found no signs of breathing
cessation. Finally, sleep oscillations and specifically sleep spindle
properties (i.e., frequency and topography) have been shown to be
altered by SDB (e.g., ref. 70). Spindle characteristics were generally
within the expected range, both in terms of frequency and topo-
graphy. That said, the fact that pulse oximetry or plethysmography
were not collected during measurements, while no trained clinician
evaluated the data, constitutes a limitation of the current study, as we
cannot exclude any influence of SDB on our results with certainty.

Another potential caveat is that 17 of our 20 participants were
female. It is well known that sex differences affect sleep parameters,
sleep-related oscillations and in consequencememory consolidation72,
which might limit the generalizability of our results. Even though
removing the data from male participants did not change the main
outcomes of our study (see Supplementary Fig. 9), future work will
need to address potential gender-related differences in this context.

In recent years, several experimental procedures have been
employed in an effort to non-invasively bolster sleep and strengthen
overnight memory retention73. Entraining SOs by applying auditory
clicks during SO upstates (closed-loop protocol) or gentle rocking sti-
mulation has been shown to augment SO activity, elicit coupled sleep
spindles and support memory retention31,74,75 but see refs. 76,77. In
parallel, targeted memory reactivation (TMR) studies have established
that presenting auditory reminder cues during NREM sleep strengthens
the consolidation of memories78–82. Intriguingly, combining TMR with
closed-loop procedures, i.e., placing reminder cues towards SO
upstates, has been shown to be most efficient in modulating memory
retention83–85. The associationbetween respiration and sleeposcillations
might thus be harnessed to further improve such efforts of ameliorating
sleep and memory consolidation. Specifically, as inhalation tended to
precede the emergence of SO-spindles, TMR procedures could capita-
lize on the enhanced accessibility/signal-to-noise ratio of respiration to
optimize experimental protocols for memory reactivation.

Methods
The current analyses are based on ref. 13 and detailed information
about participants, stimuli, task, data acquisition, and behavioral
results can be found in the original article. In brief, twenty healthy
participants (mean age: 20.75 ± 0.35; 17 female) took part in the

experiment (for results comprising only female participants see Sup-
plementary Fig. 9). The data of five additional participants had to be
excludeddue to insufficient sleep (less than30min sleepduring oneof
the sessions). No statistical method was used to predetermine sample
size. Pre-study screening questionnaires (including the Pittsburgh
Sleep Quality Index (PSQI86), the morningness–eveningness
questionnaire87, and a self-developed questionnaire inquiring general
health status and the use of stimulants indicated that participants did
not take any medication at the time of the experimental session and
did not suffer from any neurological or psychiatric disorders. All par-
ticipants reported good overall sleep quality. The study was approved
by the University of Birmingham Research Ethics Committee and
written informed consent was obtained fromparticipants. Participants
received financial compensation or course credit for their participa-
tion in the study.

Experimental overview
The experiment consisted of two experimental sessions, separated by
at least 1 week (mean = 8.5 ± 0.85 days). The order of the two sessions
was counterbalanced across participants. The investigators were not
blinded to the order of session allocation. On experimental days par-
ticipants arrived at the sleep laboratory at 11 a.m. The experimental
sessions started with the set-up for polysomnographic recordings
during which electrodes for electroencephalographic (EEG), electro-
myographic (EMG), and electrocardiographic (ECG) recordings were
applied. In addition, a thermistor airflow sensorwas attached to record
breathing. Before the experimental sessions, participants were habi-
tuated to the environment by spending an adaptation nap in the sleep
laboratory. At around 12 p.m. the experiment started with a modified
version of the psychomotor vigilance task (PVT88), followed by the
memory task, where participants learned to associate 120 verbs and
images (comprising objects or scenes89, depending on the experi-
mental session). The sleep period began at ~1 p.m. and participants
were given 120min to nap (mean total sleep time: 101.63 ± 2.23min).
Afterward, the vigilance of all participants was assessed using the PVT
andmemory performancewas tested again. At the end of each session
a localizer task was conducted. For the recording of behavioral
responses and the presentation of all experimental tasks, Psycho-
physics Toolbox Version 390 and MATLAB 2018b (MathWorks, Natick,
USA) were used.

EEG and respiration
A Brain Products 64-channel EEG system was used to record electro-
encephalography (EEG) throughout the experiment. Impedances were
kept below 10 kΩ. EEG signals were referenced online to electrode FCz
and sampled at a rate of 1000Hz. Furthermore, EMG and the ECG was
recorded for polysomnography. Respiration was recorded using an
Embla thermistor airflow sensor. Sleep architecture was determined
offline according to standard criteria by two independent raters91.

Data analysis
All data were analyzed using Matlab (2018b; Mathworks). EEG data
were preprocessed using the FieldTrip toolbox for EEG/MEG analysis92

(v.09/01/2020). All data were downsampled to 200Hz. Noisy EEG
channels were identified by visual inspection, discarded, and inter-
polated, using a weighted average of the neighboring channels. Fol-
lowing standard procedures, all sleep data were re-referenced against
linkedmastoids. Subsequently, the sleep data were segmented into 4 s
epochs and time-locked to inhalationpeaks [−2 to+2 s] as derived from
the respiratory signal. We used electrode F2 as representative elec-
trode for all SO and SO_spindle-related analyses and electrode P1 for
spindles. In Supplementary Fig. 10, we show the average of all sig-
nificant electrodes for phase-related analyses and in Supplementary
Fig. 11 we show the electrodes exhibiting the strongest phase-
modulation related effects.
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Event detection
SOs, sleep spindles and inhalation peaks were identified for each par-
ticipant, based on established detection algorithms13,17,31,93,94. SOs were
detected as follows: Data were filtered between 0.3 and 1.25Hz (two-
pass FIR band-pass filter, order = three cycles of the low-frequency
cutoff). Onlymovement-freedata (asdeterminedduring sleep scoring)
from NREM sleep stages 2 and 3 were considered. All zero-crossings
were determined in the filtered signal and event duration was deter-
mined for SO candidates (that is, downstates followed by upstates) as
time between two successive positive- to-negative zero-crossings.
Events that met the SO duration criterion (minimum of 0.8 and max-
imum of 2 s) entered the analysis.

For spindle detection, data were filtered between 12 and 18Hz
(two-pass FIR band-pass filter, order = three cycles of the low-
frequency cutoff), and again only artifact-free data from NREM sleep
stages 2 and 3 were used for event detection. Note that we used a
slightly wider frequency range (12–18Hz as opposed to the more tra-
ditional 12–16Hz) for consistency with the detection settings pre-
viously applied to the same data13 and to accommodate the fact that
fast spindles tend to exceed 16Hz in humans13,95,96. The root mean
square (RMS) signal was calculated for the filtered signal using a
moving average of 200ms, and a spindle amplitude criterion was
defined as the 75% percentile of RMS values. Whenever the signal
exceeded this threshold for more than 0.5 s but less than 3 s (duration
criterion), a spindle event was detected. To isolate SO-spindle com-
plexes, we determined for all SOs whether a spindle was detected
following the SO (SOdownstate + 1.5 s). For statistical comparisons, we
also extracted 4-s- long intervals during NREM sleep which did not
exhibit any SO, spindle or SO-spindle event, respectively. Event-free
segments were only drawn from time window starting 5min before
and ending 5min after the corresponding oscillatory event. Inhalation
peaks were detected using BreathMetrics26.

Time–frequency analysis
Time–frequency analysis of inhalation peak-centered EEG segments
[−4 to 4 s] was performed using FieldTrip92. The longer time segments
were chosen to allow for resolving low-frequency activity within the
timewindowsof interest [−2 to 2 s] and avoid edge artifacts. Frequency
decomposition of the data was achieved using Fourier analysis based
on sliding time windows (moving forward in 50ms increments). The
window length was set to five cycles of a given frequency (frequency
range: 1–25Hz in 1 Hz steps). The windowed data segments were
multiplied with a Hanning taper before Fourier analysis. Afterward,
power values were z-scored across time [−2 to 2 s].

Respiration–sleep oscillation coupling
For the analysis of the coupling between respiration and the sleep
graph elements (SOs, spindles and SO-spindles), wedetermined in each
participant the respiratory peak frequency (mean = 0.25 ± 0.005Hz)
and filtered the respiratory data (locked to inhalation peaks) around
the peak frequency (± 0.05Hz, two-pass Butterworth band-pass filter,
order = three cycles of the low-frequency cutoff). Then a Hilbert
transform was applied, and the instantaneous phase angle was
extracted (for outcomes based on extracting respiratory phase using a
double interpolation21 approach see Supplementary Fig. 12). Next, we
isolated the respiratory phase angle at the time of SO downstates (in
case of respiration–SO coupling and respiration–SO_spindle coupling)
and spindle onsets (in case of respiration–spindle coupling). Each
participant’s preferred respiratory phase at SO downstates/spindle
onsetswas obtainedby taking the circularmeanof all individual events’
preferred phases.

Modulation Index
Phase amplitude coupling was assessed with the Modulation Index
(MI)30. To estimate instantaneous phase of the respiration signal, we

filtered the continuous respiratory data around 0.25 ± 0.05Hz two-
pass Butterworth band-pass filter). We then extracted instantaneous
amplitude data across frequencies between 0.5 and 24.5Hz at elec-
trode F2 in steps of 1 Hz. To this end, a two-pass FIR filter (order = three
times the lower frequency bound) was used to create 20 equally
spaced frequency bins, with center frequencies ranging from 0.5 to
24.5 Hz, and with fixed-frequency bandwidths of 1 Hz. The envelope of
the Hilbert-transformed band-pass filtered data was then used as
amplitude estimate.

To compute the MI (for a given frequency pair), we divided the
phase signal into 20 bins, and then, for each bin, computed the mean
amplitude for that bin. This yields a distribution of amplitude as a
function of phase. The MI is defined as the Kullback–Leibler distance
between that distribution and the uniform distribution (over the same
number of bins). To assess the statistical significance of the MI values,
we randomly shifted the phase time series, and computed theMI using
the shifted signal97. We repeated this procedure 200 times, resulting in
a MI-level reference distribution. The mean and standard deviation
across the reference distributionwas then used to z score theMI of the
empirical data. Z values were than transformed into P values, with a
significance threshold of z values greater or smaller than +/− 1.96.

Phase-slope index
Weassessedwhether respirationwould influence activity in the SO and
sleep spindle range or vice versa using the PSI33. The cross-frequency
PSI was calculated between the respiration signal (filtered around the
peak frequency ± 0.05Hz) and electrode F2 in the case of SOs (filtered
around 0.3–1.25Hz) and electrode P1 in case of spindles (filtered
around 12 and 18Hz). In this context, positive values indicate respira-
tion driving SO/sleep spindle activity, while negative values indicate
sleep spindles/SOs driving respiration. The obtained data distributions
were tested against zero, using paired samples t tests.

Source analysis
To estimate the sources of the obtained effects in the scalp EEG study,
we applied a LCMV beamforming method, as implemented in
FieldTrip92. A spatial filter for each specified location (each grid point;
10mm3 grid) was computed based on the cross-spectral density. Elec-
trode locations for the 64-channel EEG systemwere co-registered to the
surface of a standard MRI template in MNI (Montreal Neurological
Institute) space using the nasion and the left and right preauricular as
fiducial landmarks. A standard leadfield was computed using the stan-
dard boundary element model98. The forwardmodel was created using
a commondipole grid (10-mm3 grid) of thegraymatter volume (derived
from the anatomical automatic labeling atlas99 in MNI space, warped
onto standardMRI template, leading to 1457 virtual sensors. Frequency
decomposition of the data in source space was achieved using Fourier
analysis based on sliding time windows (moving forward in 100ms
increments). The window length was set to five cycles of a given fre-
quency (frequency range: 1–25Hz in 2Hz steps). The windowed data
segments weremultiplied with a Hanning taper before Fourier analysis.
Afterward, power values were z-scored across time [−2 to 2 s].

Peri-event time histograms
To assess the temporal relationship between respiration and sleep
oscillations (SOs and spindles, Fig. 2d), we created peri-event time
histograms (bin size = 50ms) where inhalation peaks served as seed
(time = 0), while the targets (SO downstates and spindle onsets,
respectively) are depicted relative to the seed. The resulting histo-
gramswere normalized by dividing the number of detected events per
bin by the total number of detected sleep events in the timewindowof
interest (i.e., inhalation peak ± 1.5 s). The resulting values were multi-
plied by 100. This was done per participant and electrode site to
account for the overall rate of events (SOs or spindles, respectively) at
a given site.
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SO_spindle rate across the respiration cycle
Toassesswhether the likelihoodofSOs to group spindles ismodulated
by the respiration phase (Fig. 3a), we determined in each participant
the respiratory peak frequency (mean = 0.25 ± 0.005Hz) and filtered
the respiratory data (locked to inhalation peaks) around the peak
frequency (± 0.05Hz, two-pass Butterworth band-pass filter, order =
three cycles of the low-frequency cutoff). Then aHilbert transformwas
applied, and the instantaneous phase angle was extracted. Next, we
binned the number of detected SO_spindles at electrode F2 across the
respiration cycle in 20 evenly spaced bins (i.e., from -pi to pi in steps of
0.31 radians). The same procedure was conducted with regard to all
detected SOs. Finally, the resulting SO_spindle distribution was nor-
malized per participant by dividing the number of detected SO_s-
pindles per bin by the number of detected SO per bin. The resulting
values were multiplied by 100. This was done per participant and
electrode site to account for the overall rate of SOs at a given site.

Multivariate analysis (brief description, for details, see ref. 13)
Multivariate classification of single-trial EEG data was performed using
MVPA-Light, a MATLAB-based toolbox for multivariate pattern
analysis100. For all multivariate analyses, a LDA was used as a
classifier100. Prior to classification, all data were re-referenced using a
common average reference (CAR).

To investigate differential evidence for object vs. scene repre-
sentations as a function of prior learning during SO-spindle com-
plexes, we used the temporal generalization method101. Prior to
decoding, a baseline correction was applied based on the whole trial
([−0.5 to 3 s] for localizer segments; [–1.5 to 1.5 s] for SO-spindle seg-
ments). Next, localizer and sleep data were z-scored across trials and
collapsed across sessions. PCA was applied to the pooled wake-sleep
data and the first 30 principal components were retained. Localizer
and sleep data were smoothed using a running average window of
150ms.A classifierwas then trained for every timepoint in the localizer
data and applied on every timepoint during SO-spindle complexes. No
cross-validation was required since localizer and sleep datasets were
independent. As metric, we used the area under the curve. For statis-
tical evaluation, surrogate decoding performance was calculated by
shuffling the training labels (stemming from the localizer task) 250
times. Again, the resulting performance values were averaged, pro-
viding baseline values for eachparticipant under the null hypothesis of
label exchangeability.

Statistics
Before entering statistical assessment, datawere collapsed across both
sessions per participant, resulting in 20 datasets. Unless stated
otherwise, we used non-parametric cluster-based permutation tests,
which do not rely on the assumption of a specific underlying dis-
tribution, to correct for multiple comparisons as implemented in
FieldTrip92. A dependent-sample t test was used at the sample level and
values were thresholded at P =0.05 (1000 randomizations). The sum
of all t values in clusters served as cluster statistic and Monte Carlo
simulations were used to calculate the cluster P value (alpha = 0.05,
two-tailed) under the permutation distribution. The input data were
either time × frequency x electrode/voxel values (Fig. 2a, b) or occur-
rence probabilities across time (e.g., Fig. 2d), which were either tested
against randomly centered data segments (Fig. 2a, b) or against data
stemming from event-free events. For circular statistics (e.g., 2d and
3a), the phase distributions across participants were tested against
uniformity with a specified mean direction (i.e., 0°, corresponding to
the inhalation peak) using the V-test (CircStat toolbox102, v1). The
unimodality of the phase distribution in relation to each stimulus
category (SOs, spindles and SO-spindles) was validated usingWatson’s
test against a von Mises distribution (all P >0.1). To assess (non)uni-
formity of SO_spindle rate across the respiration cycle (Fig. 3a) the
non-parametric Kolmogorov–Smirnov test was applied within each

participant35. To assess the link between (i) the respiration–SO_spindle
coupling strength (i.e., vector length) and (ii) levels of memory reac-
tivation a robust regression, which reduces the impact of violations of
the distribution assumption and heterogeneity in variance, was per-
formed at each electrode to minimize the influence of outliers. The
false discovery rate (FDR) was used to correct for multiple compar-
isons across electrodes (in case of circular statistic, e.g., 2 d, 3 a and 3b)
or participants (Fig. 3a; SO_spindle rate across respiration)32.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This study comprises the re-analysis of an existing dataset13. All pro-
cessed data supporting the findings of this study are publicly available
at the Open Science Framework (https://doi.org/10.17605/OSF.IO/
D6YHB)104. While publicly sharing the raw data is prohibited due to
ethics protocols, datamaybe shared upon request. To obtain the data,
please contact the corresponding author, Thomas Schreiner (Tho-
mas.Schreiner@psy.lmu.de). Source data are providedwith this paper.

Code availability
All custom codes to reproduce the central findings of this study are
available at the Open Science Framework (https://doi.org/10.17605/
OSF.IO/D6YHB)104.
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