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Abstract

We review the methodology to theoretically treat parity-time- (PT -) symmetric, non-
Hermitian quantum many-body systems. They are realized as open quantum systems with
PT symmetry and couplings to the environment which are compatible. PT -symmetric non-
Hermitian quantum systems show a variety of fascinating properties which single them out
among generic open systems. The study of the latter has a long history in quantum the-
ory. These studies are based on the Hermiticity of the combined system-reservoir setup and
were developed by the atomic, molecular, and optical physics as well as the condensed matter
physics communities. The interest of the mathematical physics community in PT -symmetric,
non-Hermitian systems led to a new perspective and the development of the elegant math-
ematical formalisms of PT -symmetric and biorthogonal quantum mechanics, which do not
make any reference to the environment. In the mathematical physics research, the focus is
mainly on the remarkable spectral properties of the Hamiltonians and the characteristics of
the corresponding single-particle eigenstates. Despite being non-Hermitian, the Hamiltonians
can show parameter regimes, in which all eigenvalues are real. To investigate emergent quan-
tum many-body phenomena in condensed matter physics and to make contact to experiments
one, however, needs to study expectation values of observables and correlation functions. One
furthermore, has to investigate statistical ensembles and not only eigenstates. The adoption of
the concepts of PT -symmetric and biorthogonal quantum mechanics by parts of the condensed
matter community led to a controversial status of the methodology. There is no consensus on
fundamental issues, such as, what a proper observable is, how expectation values are supposed
to be computed, and what adequate equilibrium statistical ensembles and their correspond-
ing density matrices are. With the technological progress in engineering and controlling open
quantum many-body systems it is high time to reconcile the Hermitian with the PT -symmetric
and biorthogonal perspectives. We comprehensively review the different approaches, including
the overreaching idea of pseudo-Hermiticity. To motivate the Hermitian perspective, which we
propagate here, we mainly focus on the ancilla approach. It allows to embed a non-Hermitian
system into a larger, Hermitian one. In contrast to other techniques, e.g., master equations,
it does not rely on any approximations. We discuss the peculiarities of PT -symmetric and
biorthogonal quantum mechanics. In these, what is considered to be an observable depends
on the Hamiltonian or the selected (biorthonormal) basis. Crucially in addition, what is de-
noted as an “expectation value” lacks a direct probabilistic interpretation, and what is viewed
as the canonical density matrix is non-stationary and non-Hermitian. Furthermore, the non-
unitarity of the time evolution is hidden within the formalism. We pick up several model
Hamiltonians, which so far were either investigated from the Hermitian perspective or from
the PT -symmetric and biorthogonal one, and study them within the respective alternative
framework. This includes a simple two-level, single-particle problem but also a many-body
lattice model showing quantum critical behavior. Comparing the outcome of the two types
of computations shows that the Hermitian approach, which, admittedly, is in parts clumsy,
always leads to results which are physically sensible. In the rare cases, in which a comparison
to experimental data is possible, they furthermore agree to these. In contrast, the mathemat-
ically elegant PT -symmetric and biorthogonal approaches lead to results which, are partly
difficult to interpret physically. We thus conclude that the Hermitian methodology should be
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employed. However, to fully appreciate the physics of PT -symmetric, non-Hermitian quantum
many-body systems, it is also important to be aware of the main concepts of PT -symmetric
and biorthogonal quantum mechanics. Our conclusion has far reaching consequences for the
application of Green function methods, functional integrals, and generating functionals, which
are at the heart of a large number of many-body methods. They cannot be transferred in
their established forms to treat PT -symmetric, non-Hermitian quantum systems. It can be
considered as an irony of fate that these methods are available only within the mathematical
formalisms of PT -symmetric and biorthogonal quantum mechanics.
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1 Introduction
Let us be clear about this from the outset: We trust that the reader consulting this review already
has a personal motivation to learn more about the theoretical and, in particular, methodological
aspects of parity-time-symmetric, non-Hermitian quantum systems. We thus avoid the standard
introductory paragraphs emphasizing the growing interest in such systems and do not give an
overview of very recent experimental breakthroughs. We also restrict our discussion of the novel and
surprising physical effects already identified in these systems, to a few examples. A comprehensive
account of this can be found in several very recent topical reviews [1–4]. Instead, we quickly dive
into the methodological questions of parity-time-symmetric, non-Hermitian quantum systems.

We entered the field of non-Hermitian quantum systems with the goal to theoretically study
emergent, collective many-body phenomena of correlated systems in the presence of terms break-
ing Hermiticity. In the Hermitian case, effects such as, e.g., phase transitions, quantum critical
behavior, Tomonaga-Luttinger physics, etc., are well understood [5, 6]. To study these phenom-
ena requires the computation of time-dependent expectation values of observables, time-dependent
correlation functions, and thermodynamical properties [5, 6]. Focusing on the spectra and eigen-
states of the Hamiltonian, as it is often done in the context of other topics involving non-Hermitian
Hamiltonians [7–11], is, in this case, not sufficient.

We were, in particular, aiming at non-Hermitian models showing a combined parity and time-
reversal symmetry—in short, PT -symmetry [7–9]. They are popular as the corresponding Hamilto-
nians have the peculiar property that their eigenvalues are either entirely real or are partly real and
come partly in complex conjugate pairs. This leads to surprising physical properties. Furthermore,
this symmetry has a clear physical interpretation.

We think of the non-Hermitian terms in the Hamiltonian to arise from the coupling of the
quantum system under investigation to the outer world [3, 9]. Non-Hermitian systems are thus
open quantum systems [12–14]. The PT symmetry is only realized in special open systems and,
on top, requires a fine tuning of the system-reservoir couplings. Hamiltonians of this type are
easily written down but need sophisticated techniques for an experimental realization; see [1–4]
and references therein. However, such effort is rewarded by the observation of unique effects. If
one aims at a bold characterization of the dynamics of non-Hermitian, PT -symmetric quantum
systems, one could say that it is located in between the one of closed systems and that of generic
open systems. Below we will exemplify this.

Studying the literature on PT -symmetric, non-Hermitian quantum many-body systems, we
quickly realized that many methodological questions are partly controversial and partly open.
Different groups of authors use different incompatible definitions of fundamental objects such
as quantum mechanical expectation values or correlation functions. Some employ the (grand-)
canonical partition function to derive equilibrium thermodynamic observables while others argue,
that the underlying statistical ensemble does not have any meaning if the Hamiltonian is non-
Hermitian. Also the question of the use of generating functionals, Green functions, response
functions, and other standard tools of quantum many-body theory is controversial. We believe that
this unsatisfying state of affairs is partly due to the lack of a review focusing on the methodological
aspects of PT -symmetric or, more generally (see below), pseudo-Hermitian [3] quantum many-body
theory. We intend to close this gap.

The systems investigated in most of the experiments aiming at PT -symmetric, non-Hermitian
quantum physics were, in fact, classical. What is exploited there is the analogy to optics (optical
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1.1 Hermitian quantum theory

metamaterials with gain and loss) and other wave phenomena such as microwaves and even to
(classical) mechanics. In that sense PT -symmetric, non-Hermitian quantum effects were mostly
only emulated [1–3, 15, 16]. Experiments in genuine quantum systems are still rare [17–19]. In a
very new trend experiments on non-Hermitian, PT -symmetric systems are performed on quantum
processors [20,21]. To explain the results of the experiments emulating this physics does not require
a full-fledged, consistent methodology including many-body concepts such as, e.g., Green, response,
and correlation functions. Understanding the properties of the spectrum and the single-particle
eigenfunctions of the Hamiltonian is largely sufficient [1–4,22]. We mention this here to show that
the pressure from the experimental side to converge to a commonly accepted quantum mechanical
formalism to treat PT -symmetric, non-Hermitian quantum many-body systems was up to now
rather moderate. However, with the increasing progress in the control of few- and many-body
quantum systems, this is about to change.

In this manuscript, we provide strong evidence that the notion of observables and expectation
values should be carried over from Hermitian quantum mechanics. Alternative concepts, such as
those of PT -symmetric [9] or biorthogonal quantum mechanics [23], should not be used beyond
the study of spectra. A minimal reading selection elucidating this, is provided by Sects. 1, 2, 3.1
and 4, whereby Sect. 4 contains the main points of the argument. However, a word of warning is
in order. The reader will only fully benefit from this methodological review if carefully studying
all parts. It should thus not merely be used as a reference guide. Other reviews on non-Hermitian
and PT -symmetric quantum systems, with less of a theoretical and methodological focus, are more
suitable in this respect [1–4]. In Sect. 7 we summarize the formalism which proved to be most
reasonable on physical grounds in a compact form. This way we hope to make it accessible for
direct use.

1.1 Hermitian quantum theory
In quantum mechanics, as it was developed about a century ago, the dynamics of a system of
particles is described by the Schrödinger equation (ℏ = 1)

i∂t |ψ(t)⟩ = Ht |ψ(t)⟩ , |ψ(0)⟩ = |ψ0⟩ (1.1)

with a Hermitian, in general time dependent, Hamiltonian Ht and a time dependent state vector
|ψ(t)⟩ from an underlying Hilbert space H [24]. We use standard Dirac notation. The initial state
is denoted as |ψ0⟩ and is assumed to be normalized ⟨ψ0 |ψ0⟩ = 1, according to the canonical inner
product. We select t = 0 as the (arbitrary) initial time. The Hermiticity of Ht ensures that the
time evolution operator

U(t) = T exp

{
−i
∫ t

0

dt′Ht′

}
, (1.2)

with the time-ordering symbol T , is unitary, i.e., the dynamics is unitary,

⟨ψ(t) |ψ(t)⟩ = ⟨ψ0|U†(t)U(t) |ψ0⟩ = ⟨ψ0 |ψ0⟩ = 1. (1.3)

The Hermiticity of Ht is also a sufficient condition for its instantaneous eigenvalues Etν , fulfilling
Ht

∣∣Rtν〉 = Etν
∣∣Rtν〉, with the instantaneous right eigenstates

∣∣Rtν〉 (which explains the label R), to
be real. In case of degeneracy, ν denotes a multi-index. The set of eigenstates is pairwise orthonor-
mal as well as complete and forms a basis of H. The Hamiltonian is, in addition, the observable of
the energy and the real eigenvalues are the possible outcomes of an energy measurement. Also all
other observables in quantum mechanics are represented by Hermitian operators with real eigen-
values and complete, pairwise orthonormal sets of eigenstates. All this lies at the heart of our
theoretical understanding of quantum mechanics as well as its probabilistic interpretation [24].

1.2 Open quantum systems
Bearing in mind the above, one might wonder why at all non-Hermitian Hamiltonians are con-
sidered as the generator of the time evolution of a quantum system and as the observable of its
energy [3, 7–9, 25]. However, if the system investigated is only one part of a larger setup, i.e., if
one is interested in an open quantum system, studying (effectively) non-Hermitian Hamiltonians
becomes reasonable [3, 12–14,25].

In fact, the idea that an energy eigenvalue of an open system can effectively become complex
dates back at least to 1928 when Gamow studied radioactive decay of a nucleus (the system)
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1.2 Open quantum systems

using the, back then, new quantum theory [26]. Physically, the imaginary part of the energy is
associated to the lifetime of the state. The goal to better understand nuclear reactions also led
Feshbach and others to introduce the idea of complex (real-space) single-particle potentials and thus
of non-Hermitian Hamiltonians [27, 28]. Effective (phenomenological) models with non-Hermitian
Hamiltonians were thus considered from the early days of modern quantum theory on.

Mainly three theoretical schemes leading to (effectively) non-Hermitian Hamiltonians of open
quantum systems are popular: Feshbach projection, quantum master equations, and the ancilla
approach. They were developed for specific classes of physical problems encountered by different
communities. In this review we only give the basic ideas of the first two approaches. More
can be found in the reviews [25], [29], [3], and [30]. Although, both approaches are important
to derive generic non-Hermitian Hamiltonians of experimental relevance, we believe that for a
theoretical analysis of PT -symmetric, open quantum systems, the third framework, the ancilla
approach [17,31,32], is the most transparent one. Often it is also referred to as the dilation method,
in particular, in the context of quantum information theory [31]. The ancilla approach has the
additional advantage that it does not rely on any approximations or phenomenological reasoning.
Therefore, our considerations will build mainly upon this. Surprisingly, the ancilla approach was,
up to now, not reviewed in a comprehensive way in the quantum many-body context. We give a
brief overview of this scheme in the present introduction and a full account, including all technical
details, in Sect. 3.

Open quantum systems [12–14] are at the heart of the timely and vivid field of quantum
engineering which includes quantum information processing. This is one of the reasons why the
study of non-Hermitian systems experiences a recent revival [1, 3]. PT -symmetric, open systems
are of particular interest. Their dynamical properties can, e.g., show coherence features which
differ strongly from those of closed systems but, at the same time, lack a decay, as it does occur
in generic open systems [17,19–21]. For a discussion of this, see Sect. 4.9. One often refers to this
phenomenon as a balance of gain and loss of the open system [9].

1.2.1 Feshbach projection

We first present the main ideas of Feshbach projection [3, 25]. The total, Hermitian Hamiltonian
H = Hs +Hr +Hsr consists of a system part Hs with a few degrees of freedom, a reservoir part
Hr with many degrees of freedom, and the coupling Hsr. One takes the thermodynamic limit for
the reservoir part for which its spectrum becomes continuous. One way of deriving an effective
Hamiltonian of the system part is to consider the resolvent or Green function G(z) = {z −H}−1,
z ∈ C, of the total Hamiltonian H. The total Green function is projected onto the system leading
to the (exact) system Green function Gs(z) = {z − [Hs +Σr(z)]}−1, with the operator valued
reservoir self-energy Σr(z). Note that Σr(z) only contains system degrees of freedom but depends
on the spectrum of the reservoir as well as the details of the system-reservoir coupling. Now
Hs + Σr(z) is interpreted as the effective Hamiltonian at energy z. In general, Σr(z) will not be
Hermitian and the effective Hamiltonian will be non-Hermitian. In addition, Σr(z) depends on the
(complex) energy variable z. Generically, the effective Hamiltonian will not have PT symmetry.
This will be realized only in special systems involving fine-tuning of the system-reservoir coupling.

The Feshbach projection is often employed in scattering theory and in mesoscopic physics to
study resonances with a finite broadening in the quantum regime [3,25,28]. In many-body physics it
is used to integrate out the non-interacting parts (reservoirs) of a setup such that computationally
demanding quantum many-body methods must only be employed to the system with fewer degrees
of freedom; see, e.g., [33].

1.2.2 Master equations and the quantum trajectory approach

The second scheme to treat open quantum systems which leads to non-Hermitian Hamiltonians are
master equations complemented by the quantum trajectory approach, which is heavily used in the
atomic, molecular, and optical (AMO) community, including quantum optics, as well as in quantum
information theory [29]. Employing the rotating wave approximation, the Born approximation, and
the Markov approximation leads to a Markovian master equation of Lindblad form

i∂tρs(t)=[Hs, ρs(t)]−
i

2

∑
l

γl

{
a†l alρs(t) + ρs(t)a

†
l al − 2alρs(t)a

†
l

}
(1.4)
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1.2 Open quantum systems

for the time evolution of the systems’ reduced density matrix ρs = Trrρ, where ρ is the density
matrix of the combined system and reservoir setup. The trace is taken over the reservoir degrees
of freedom. The a

(†)
l are called jump operators and describe the systems loss processes with

corresponding (real) rates γl. Often, the jump operators and the rates can only be constructed
based on phenomenological reasoning. Note that Eq. (1.4) ensures that the reduced density matrix
ρs(t) is Hermitian for all t if it is Hermitian at t = 0. We emphasize that in contrast to Feshbach
projection the reservoir is not projected but traced out. Due to an appropriate hierarchy of the
system and reservoir energy scales and a weak system-reservoir coupling, the criteria underlying
the above three approximations are often met in AMO systems [3, 29]. A typical example is a
few-level atom coupled to a quantized light field.

Equation (1.4) can be rewritten as

i∂tρs(t) = Heffρs(t)− ρs(t)H
†
eff − i

2

∑
l

γlalρs(t)a
†
l , (1.5)

with
Heff = Hs −

i

2

∑
l

γla
†
l al. (1.6)

Up to the so-called recycling term
∑
l γlalρsa

†
l , Eq. (1.5) has the form of a generalized von Neumann

equation known from quantum statistical mechanics [24], with a non-Hermitian Hamiltonian Heff .
As H†

eff ̸= Heff the first two terms cannot be combined to a commutator. Generically, Heff will
not be PT -symmetric. This requires a special system and a fine-tuned system-reservoir coupling,
which is encoded in the jump operators and the rates.

The master equation in the form of Eq. (1.4) or equivalently (1.5) approximately describes the
dynamics of the reduced system density matrix. A further reduction to a Hamiltonian dynamics can
be obtained along the following line. If one performs a continuous measurement on the system and
disregards all instances in which losses via jumps, described by the addends γlalρs(t)a

†
l , occurred,

the dynamics is captured by only the first two terms on the right hand side of Eq. (1.5). Therefore,
understanding the dynamics of ρs(t) resulting out of the generalized von Neumann equation without
the last addend in Eq. (1.5), but the non-Hermitian Hamiltonian Heff , is very useful. Note that also
in this case the equation of motion guarantees that the systems reduced density matrix remains
Hermitian at all times if it is Hermitian initially. More on this can be found in the reviews [3], [29],
and [30].

1.2.3 The ancilla approach

We will extensively use the ancilla approach which is the third scheme leading to equations involving
non-Hermitian Hamiltonians [17,31,32]. For our purpose of reconciling the open quantum system
view on non-Hermitian many-body systems with that of PT -symmetric systems, we judge this to
be the most transparent method. This holds, in particular, as the ancilla approach does not rely on
any approximations or an effective Hamiltonian picture. In Sect. 3 we thus give a comprehensive
account of this.

In the ancilla approach one assumes that a non-Hermitian Hamiltonian Hs of a system, acting
on a Hilbert space Hs, is given. It might be PT -symmetric. The system is supplemented by a
single spin-1/2 ancilla. One can construct a Hermitian Hamiltonian Hsa for the combined system-
ancilla setup, i.e., a linear, Hermitian operator acting on Hsa = C2 ⊗ Hs, which leaves a certain
subset Hsub

sa of states from Hsa invariant (see Sect. 3 for details). The non-Hermitian system is
hence embedded in a Hermitian one. In this sense the logic in the ancilla approach is inverse to
that of Feshbach projection and the master equation technique, in which effective, non-Hermitian
Hamiltonians of the subsystem are derived from Hermitian ones.

The non-unitary dynamics in the ancilla approach results as follows. A normalized state∣∣ψsub
sa (0)

〉
from Hsub

sa is time-evolved with the unitary time evolution operator corresponding to
Hsa up to time t. At that time a measurement of the ancilla spin is performed, and only the
instances which give spin-up are kept. One then notices that, up to a normalization, the time
evolution of the above outlined protocol, can also be described by the non-unitary time evolution
with the time evolution operator associated to the non-Hermitian Hs. In this sense a continuous
measurement of the ancilla spin leads to a state that evolves according to the Schrödinger equation
with a non-Hermitian Hamiltonian. No approximations are required. Details are give in Sect. 3.
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1.3 PT -symmetric Hamiltonians

In a very impressive real world experiment with a single nitrogen-vacancy center in diamond the
ancilla scheme was directly implemented and non-Hermitian dynamics in a PT -symmetric system
was observed [17]. This shows, that the ancilla idea is not only theoretically appealing but can be
brought to life in real systems.

1.3 PT -symmetric Hamiltonians
1.3.1 PT -symmetry

Despite the early appearance of non-Hermitian Hamiltonians in open system quantum theory, their
mathematical structure [3] was analyzed in detail only later. This was substantially triggered by
the observation of Bender et al., that the non-Hermitian single-particle Hamiltonian

H = p̂2 + x̂2 + (ix̂)N , (1.7)

with N ≥ 2, has an entirely real spectrum and that the set of right eigenstates forms a (non-
orthogonal) basis of the Hilbert space [34, 35].1 This Hamiltonian was not studied in relation to
open system quantum mechanics, but emerged as a toy model in the context of quantum field
theory [7, 8]. Further model Hamiltonians with these properties were found [3, 7–9].

Bender and collaborators speculated that the reality of the spectrum of the toy Hamiltonian
Eq. (1.7) originates from its combined PT symmetry. For a (continuous) translational degree
of freedom PT symmetry implies that the Hamiltonian is invariant under simultaneous spatial
reflection x → −x (P) and time reversal (T ); the latter also changes i → −i (anti-linearity of
T [24]). Due to this, the combined PT transformation is anti-linear. In mathematical terms a
Hamiltonian H is PT -symmetric if

[H,PT ] = 0. (1.8)

It would be very appealing if the reality of the spectrum of a Hamiltonian could be ensured based
on a physical symmetry principle rather than the mathematical requirement of Hermiticity [36]. In
particular, as the Hermiticity of a Hamiltonian is sufficient, but, apparently not necessary for the
spectrum to be entirely real; see the above toy model Eq. (1.7) for an example. The ultimate goal
was to set up a quantum theory in which the mathematical axiom of Hermiticity of the Hamiltonian
and, for that matter, all other observables, would be replaced by a more physical one associated
to a symmetry. This spurred a tremendous research effort, originally in the field of mathematical
physics [9]. For an overview, we merely summarize some crucial insights into the structure of the
theory of PT -symmetric, non-Hermitian Hamiltonians, following the historical development in this
introduction. If needed, we provide more technical details and, in particular, further examples in
Sect. 2.

This line of research opened up an independent second route towards the current popularity of
the field of non-Hermitian, PT -symmetric quantum systems. The investigation of PT -symmetric
Hamiltonians led to two formalisms which are nowadays subsumed under the terms “PT -symmetric
quantum mechanics” [9] and “biorthogonal quantum mechanics” [23], respectively. They have a
common ground but there are also specific differences which we will discuss in this review. This,
in particular, concerns the definition of the concept of an observable. The focus of this research
program is more on the spectral properties of the Hamiltonian and not so much on its role as
the generator of the dynamics. It is crucial to keep in mind that even if the spectrum of a non-
Hermitian Hamiltonian is entirely real, the dynamics of the underlying quantum system is still
non-unitary if the standard formalism of quantum mechanics is used. We emphasize this already
at this stage, as it is very likely, that the typical reader of this review will be familiar with or, at
least, will have heard of the idea of a biorthogonal inner product [23].2 Postulating a modified
inner product between two quantum states, that is, working in a modified Hilbert space, the
dynamics can become effectively unitary if the spectrum is real. Reconciling the biorthogonal and
PT -symmetric quantum mechanics view on PT -symmetric non-Hermitian Hamiltonians with the
standard formalism, familiar from Hermitian quantum theory, is one of the main goals of this
review. Note that only the standard formalism of Hermitian quantum mechanics is employed
for non-PT -symmetric, that is, generic open quantum systems [12–14]. We will return to this
observation.

1Note also footnote [1] of [34]
2Within PT -symmetric quantum mechanics this is also denoted as the CPT inner product [9]. We here use this

synonymously.
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1.3 PT -symmetric Hamiltonians

PT symmetry is obviously not a necessary condition for the spectrum to be real. Hermitian
Hamiltonians can be given which are not PT -symmetric but have an entirely real spectrum. Think,
e.g., of the Hamiltonian of a single particle confined to move in one spatial dimension, with mass
m, and kinetic energy p̂2/(2m) subject to a real potential V (x̂) which is not an even function.
It is important to emphasize that this only holds, if the parity transformation is understood in
its direct sense, namely, a as spatial reflection. Employing more general definitions of the parity
transformation [37,38], every Hermitian Hamiltonian turns out to have a “generalized” P symmetry
and the above one, H = p̂2/(2m) + V (x̂), would also be “generalized” PT -symmetric [38]. This
generalized parity transformation, not referring to spatial reflection, is, however, not very intuitive.

The study of the toy model Eq. (1.7) also indicates that the PT symmetry is not sufficient for
the reality of the spectrum. For 1 < N < 2 the Hamiltonian Eq. (1.7) has partly real eigenvalues
and partly complex conjugate pairs of eigenvalues. ForN ≤ 1 no real eigenvalues are left [7,8,34,35].

It was shown, that [7–9]:

Theorem (TPT
1 ). A PT -symmetric Hamiltonian has an entirely real spectrum if and only if all

of its right eigenvectors are also eigenvectors of PT .

If this is not the case one speaks of a spontaneously broken PT symmetry. One might wonder why
it is even an option that the eigenvectors of H are not simultaneously eigenvectors of PT even
though H and PT commute; see Eq. (1.8). This is possible as PT is an anti-linear operator and not
a linear one [8]. In the toy Hamiltonian Eq. (1.7) the phase of broken PT symmetry is associated
to the appearance of the complex conjugate pairs of eigenvalues mentioned above. Exactly at the
point of the PT transition, a minimum of two eigenenergies, which do not repel each other, are
degenerate and the set of right eigenvectors does no longer form a basis; the eigenvectors coalesce.
One denotes this as an exceptional point [3, 39]; there are too few eigenvectors of H to span the
entire Hilbert space. As in the toy example Eq. (1.7), it is often the case that the system can be
driven across the PT transition by tuning a parameter of the Hamiltonian (here N). When doing
so, further exceptional points might occur, which, however, are not necessarily related to a PT
transition. In short PT transitions occur at an exceptional point but not every exceptional point
is related to a PT transition. Going beyond PT -symmetric systems the role of exceptional points
of non-Hermitian Hamiltonians in many interesting physical effects was reviewed in [2,3,10,11,39].

The quest for a necessary and sufficient condition for the spectrum of a Hamiltonian to be
entirely real led to a very fruitful academic dispute between Bender and his collaborators on the
one side and Mostafazadeh on the other. Mostafazadeh showed [40]:

Theorem (TPT
2 ). For every PT -symmetric Hamiltonian H with unbroken PT symmetry, there

exists a Hermitian Hamiltonian h, which is isospectral to H and is related to it by a similarity
transformation: h = SHS−1, where S denotes an invertible linear operator.

In this sense PT -symmetric Hamiltonians with real spectra do not extend the class of Hermitian
Hamiltonians. Bender and others reacted by emphasizing that for most PT -symmetric H with
unbroken PT symmetry of physical interest it is neither possible to exactly construct S nor h
[41, 42]. In fact, even for the simple PT -symmetric model

H = (p̂2 + x̂2)/2 + igx̂3 (1.9)

with real spectrum, S and h can only be constructed in perturbation theory in g. Already to O(g),
h has very unfamiliar terms ∼ p̂3 and ∼ x̂p̂x̂ [41, 43]. This becomes worse in higher orders. Only
in a few exceptional cases, closed exact expressions for S or h can be given [41,44–49]. We return
to this in Sect. 2.3.1.

It was furthermore shown that PT symmetry is not special and that Hamiltonians being invari-
ant under other anti-linear symmetry transformations can also have entirely real spectra [37,50,51].

1.3.2 Pseudo-Hermiticity

In his studies, Mostafazadeh emphasized that the underlying principle which might render even the
spectrum of non-Hermitian Hamiltonians to be entirely real is pseudo-Hermiticity [37, 40, 52, 53].
An operator—here the Hamiltonian H—is denoted as pseudo-Hermitian if a linear, Hermitian, and
invertible operator η exists, such that H† = ηHη−1. For η = 1 the condition of pseudo-Hermiticity
reduces to Hermiticity. The class of pseudo-Hermitian Hamiltonians thus includes the Hermitian
ones. In general, the operator η depends on the Hamiltonian considered and might not even be
unique [53]. One thus also speaks of η-pseudo-Hermiticity of a given Hamiltonian.
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1.4 Outline

Theorem (Tη1). A direct relation between PT symmetry and pseudo-Hermiticity can be made
when the PT -symmetric Hamiltonian can be represented by a complex, symmetric matrix. In this
case H is pseudo-Hermitian with η = P [40].

Furthermore, several of the PT -symmetric one-dimensional real space continuum models studied
by Bender et al. [9] have a Hamiltonian of the form H = p̂2 + Vr(x̂) + iVi(x̂) with two real-valued
potentials Vr/i(x), with Vr being an even function and Vi being an odd one. Also for this type of
PT -symmetric, non-Hermitian Hamiltonians it is straightforward to show that they are P-pseudo-
Hermitian [53].

To fully understand a crucial theorem on the spectral properties of non-Hermitian operators,
we first have to introduce the notion of left eigenvectors. As H† ̸= H, the left eigenvectors |Lν⟩,
with

H† |Lν⟩ = Ẽν |Lν⟩ , (1.10)

are no longer equal to the right ones. Furthermore, the set of right eigenvectors cannot be chosen
as (pairwise) orthonormal: ⟨Rν |Rµ⟩ ̸= δν,µ. Instead one can normalize (and label) the left and
right eigenstates such that ⟨Lν |Rµ⟩ = δν,µ [23]. Mostafazadeh proved that [53,54]:

Theorem (Tη2). If H is a non-Hermitian Hamiltonian with a discrete spectrum and the set
{|Rν⟩ , |Lν⟩} is complete, i.e.,

∑
ν |Rν⟩ ⟨Lν | = 1 (complete biorthonormal basis), then H is pseudo-

Hermitian if and only if the spectrum of H is either entirely real or complex eigenvalues come in
complex conjugate pairs.

While, as discussed above, PT symmetry of a Hamiltonian is neither a necessary nor a sufficient
condition for its entire spectrum to be real, we conclude that pseudo-Hermiticity (which includes
Hermiticity) is at least necessary. Mostafazadeh was also able to prove [55]:

Theorem (Tη3). A necessary and sufficient condition for the spectrum of an η-pseudo-Hermitian
Hamiltonian to be real, is the existence of the square root of η, i.e., one can write η = η1/2η1/2

with a linear, Hermitian, and invertible operator η1/2 .

In fact, η1/2 is related to the operator S of theorem TPT
2 which transforms a PT -symmetric

Hamiltonian H with entirely real spectrum to the isospectral Hermitian one h; for more on this,
see Sect. 2.3.1. Finally, it was shown that [53]:

Theorem (Tη4). Every PT -symmetric Hamiltonian H with a discrete spectrum and a complete,
biorthogonal basis of eigenstates is pseudo-Hermitian. Its eigenvalues are either entirely real or
come in complex conjugate pairs.

PT -symmetric Hamiltonians form a subset of the larger set of pseudo-Hermitian ones. If,
in the following, we speak about properties of pseudo-Hermitian Hamiltonians with entirely real
spectra, one can think of a PT -symmetric Hamiltonian in its symmetry unbroken phase. For a
pseudo-Hermitian Hamiltonian with partly real eigenvalues and partly complex conjugate pairs of
eigenvalues one can think of a PT -symmetric Hamiltonian in its symmetry broken phase.

All this is, unfortunately, pretty far away from Benders original idea to directly relate PT
symmetry of a Hamiltonian to the reality of its spectrum. In particular, the above theorems do
not allow for a simple, physically intuitive understanding of the conditions under which a non-
Hermitian Hamiltonian is guaranteed to have a real spectrum. We will return to the spectral
theory of pseudo-Hermitian Hamiltonians as well as to what is denoted as biorthogonal [23] and
PT -symmetric [9] quantum mechanics in Sects. 2-4.

1.4 Outline
As an introduction, we summarized a few notions of relevance for the understanding of the theory
of PT -symmetric, non-Hermitian, and open quantum systems. We also gave a historical account
of these.

In Sect. 2 we analyze the properties of non-Hermitian, pseudo-Hermitian, and PT -symmetric
Hamiltonians in more detail. Doing so we (first) ignore the question why it is meaningful to study
these Hamiltonians. We introduce the concept of a biorthonormal basis and a corresponding resolu-
tion of unity. This paves the way towards biorthogonal and PT -symmetric quantum mechanics. In
Sect. 2 we also introduce our three example systems employed to illustrate the reviewed methodolo-
gies. The first is a PT -symmetric, non-Hermitian 2×2 matrix corresponding to a quantum particle

9



1.4 Outline

hopping between two lattice sites (or a single spin-1/2 degree of freedom). We refer to it as the two-
level problem. This is heavily used in the literature as one of the simplest systems to convey some
of the major differences between Hermitian and non-Hermitian quantum mechanics [3,7,8,23,56].
The second is the PT -symmetric resonant level model with complex hybridization between the
single (quantum dot) level and the two leads which destroys Hermiticity [57]. The Hermitian reso-
nant level model is a simple toy model of mesoscopic physics to study quantum transport through
a quantum dot. The third is a PT -symmetric one-dimensional tight-binding model with staggered
complex hopping and staggered onsite energy very recently introduced as a PT -symmetric toy
model for quantum critical behavior in the presence of non-Hermitian terms [58]. All these models
show a phase of unbroken PT symmetry as well as a symmetry broken phase.

In Sect. 3 we review the ancilla approach which is a transparent way to show how the dynamics
of a quantum system can become effectively non-unitary. In the ancilla approach the system
is complemented by a single spin-1/2 and a measurement on this is performed. The combined
setup of system and ancilla spin evolves unitarily, i.e., according to the Schrödinger equation with
a Hermitian Hamiltonian. This framework does not rely on any approximations or an effective
Hamiltonian picture and was brought to life in an experiment [17]. We illustrate the ancilla idea
for the example of the non-Hermitian two-level problem. Further, we discuss one of the reasons
why biorthogonal and PT -symmetric quantum mechanics are popular in mathematical physics
and quantum field theory. Within these frameworks the time evolution is (effectively) unitary with
respect to a modified inner product as long as the entire spectrum is real.

Building on the ideas which evolved out of Sects. 2 and 3 we introduce the concepts of observ-
ables and quantum mechanical expectation values, as postulated within the different formalisms
in Sect. 4. We argue that a definition of observables, just like in Hermitian quantum mechanics, is
physically more compelling on general grounds as compared to the ones used in biorthogonal and
PT -symmetric quantum mechanics. The same holds for the concept of an expectation value. This
is further substantiated by the explicit comparison of results obtained for our models within the
two alternative frameworks. It is still very useful to be aware of the main concepts of biorthogonal
and PT -symmetric quantum mechanics when analyzing non-Hermitian Hamiltonians, since both
are mathematically powerful.

The considerations of Sects. 3 and 4 naturally lead to an extension towards statistical ensembles
which we present in Sect. 5. As the dynamics is non-unitary a crucial question is to clarify
if ensembles with non-trivial statistical operators exist, which are stationary and can thus be
employed to set up equilibrium thermodynamics. We show that for pseudo-Hermitian Hamiltonians
with entirely real spectra, such exist but that the standard (grand) canonical ensemble of Hermitian
quantum statistical mechanics does not fall into this class. For the case of pseudo-Hermitian
Hamiltonians with pairs of complex conjugate eigenvalues we were unable to identify a mixed
state, stationary statistical operator. We employ the ancilla approach to make contact with what
is known for the Hermitian system-ancilla Hamiltonian. Quantum statistical expectation values
are introduced and we review linear response theory for non-Hermitian Hamiltonians. This leads
us to conclude that response functions, which are central in Hermitian quantum many-body theory
when making contact to experiments, are less practical in non-Hermitian systems.

In Sect. 6 we show, that crucial concepts of quantum many-body theory, such as generating
functionals, functional integrals, and Green functions, can be mathematically defined for non-
Hermitian systems within the frameworks of biorthogonal and PT -symmetric quantum mechanics.
However, these concepts turn out to be less useful and even difficult to define in the physical scheme
we propagate here. As they are at the heart of most analytical quantum many-body methods and
also at some numerical ones, their usage for non-Hermitian systems has to be reconsidered. In
short, for non-Hermitian systems one cannot remove the explicit dependence of expectation values
and correlation functions on many-body states. That these drop out is one of the strengths of
Green function techniques in Hermitian many-body theory. We identify this as a major roadblock
for the application of a plethora of quantum many-body methods. We, in addition, discuss the use
of correlation functions to investigate quantum critical behavior in one of our model systems.

We conclude our review by presenting a recap of the methodological aspects of non-Hermitian
quantum many-body theory in Sect. 7. It summarizes the formalism which proved to be most
reasonable on physical grounds in a compact form.

The Appendices contain some technical details, in particular, those on our numerical compu-
tations.
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2 PT -symmetric and pseudo-Hermitian Hamiltonians
In this section we take it for granted that it is meaningful to study both the Schrödinger equation
(1.1) with a non-Hermitian Hamiltonian Ht on the right hand side as well as the spectral properties
of this operator. For now we suppress the index t.

For a non-Hermitian Hamiltonian the time evolution operator U(t) Eq. (1.2) is no longer unitary.
This implies that even if the evolution starts in a state |ψ0⟩ which is normalized to one, ⟨ψ0 |ψ0⟩ = 1,
the time-evolved state will not be normalized for all t > 0, ⟨ψ(t) |ψ(t)⟩ ≠ 1. Here ⟨. . . |. . .⟩ denotes
the (canonical) inner product of Hermitian quantum mechanics.

Generic statements about the spectral properties of a general non-Hermitian (Hamilton) oper-
ator on a general Hilbert space are difficult [3]. We thus have to further specify the non-Hermitian
Hamiltonians of interest to us. Furthermore, we want to avoid any mathematical subtleties related
to infinite dimensional Hilbert spaces when it comes to statements about separability and com-
pleteness. Such are already known from the Hermitian case and one would not expect matters to
improve for non-Hermitian operators [23]. Also our mathematical statements in Sects. 1.3.1 and
1.3.2 must be understood with this caveat. Investigating such refinements is a challenge for mathe-
matical physics or even pure mathematics. Generically they do not play any role for the operators
of interest in quantum many-body theory. Therefore, we only consider finite dimensional Hilbert
spaces of dimension n and thus have to deal with n× n-dimensional matrices [3, 23]. For models,
for which this does not apply, such as, e.g., the toy model Eq. (1.7), we take a pragmatic approach.
We first restrict the size of the Hilbert space based on physical considerations, e.g., by considering
the low-energy sector,1 and later on relax this restriction. This can also be used as a strategy for
numerically determining the eigenvalues and eigenvectors. For an example see [59] in which the
non-Hermitian but PT -symmetric Hamiltonian Eq. (1.9) is investigated. With this restriction the
spectrum is also guaranteed to be discrete, which is an additional asset when it comes to avoiding
mathematical subtleties [3, 23, 37, 40, 53]. In many-body problems this can always be ensured by
studying a finite system and taking the thermodynamic limit only at the end of the calculation.

2.1 The biorthonormal basis
To set up a proper extension of Hermitian quantum mechanics we assume that, for a given H, the
set of right eigenvectors {|Rν⟩} and the set of left ones (i.e., the right eigenvectors of H†) {|Lν⟩}
each form a basis in H. Or, put differently, we only accept operators as Hamiltonians which have
this property. Needless to say that our example Hamiltonians introduced in Sect. 2.3 fall into this
class. In the Hermitian case the existence of a basis consisting of eigenstates of H is always ensured
and the sets of right and left eigenvectors are identical. As emphasized above, for non-Hermitian
operators the states of each of the two sets are not guaranteed to be pairwise orthogonal [23]. In
case the Hamiltonian depends on parameters which can be tuned such that isolated exceptional
points occur, the corresponding parameter sets leading to these must be excluded.

For non-degenerate spectra it is now straightforward to show that [23]:

Theorem (Tbio
1 ). With a proper labeling and normalization of the eigenstates one can always

ensure the biorthonormality relation
⟨Lν |Rµ⟩ = δν,µ. (2.1)

In addition, one finds Ẽν = E∗
ν ; see Eq. (1.10).

From now on we will assume that the eigenstates of the Hamiltonian are normalized in this way.
Employing the standard Gram-Schmidt process this can be generalized to the case of degenerate
eigenvalues [53]. With all this we end up with the completeness relation∑

ν

|Rν⟩ ⟨Lν | = 1 (2.2)

and the {|Rν⟩ , |Lν⟩} form a complete biorthonormal basis. In addition, we have the spectral
representation

H =
∑
ν

Eν |Rν⟩ ⟨Lν | ⇒ H† =
∑
ν

E∗
ν |Lν⟩ ⟨Rν | . (2.3)

Remember that if degeneracy matters, ν is a multi-index. Identifying |Rν⟩ = |Lν⟩ we get back to
the well known expressions in the Hermitian case.

1Note that for complex energy eigenvalues one would first have to define what is meant by this.
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2.2 Pseudo-Hermiticity and η operators

2.2 Pseudo-Hermiticity and η operators
To determine, whether a given non-Hermitian Hamiltonian H is pseudo-Hermitian, we have to find
a linear, Hermitian operator η which fulfills ηHη−1 = H†. As an ansatz for this let us consider1 [53]

ηr =
∑
ν

|Lν⟩ ⟨Lν | . (2.4)

This operator is obviously Hermitian. Employing the biorthonormality relation Eq. (2.1) and the
completeness relation Eq. (2.2) one can show that

η−1
r =

∑
ν

|Rν⟩ ⟨Rν | . (2.5)

With this and the spectral representation Eq. (2.3) we obtain

ηrHη
−1
r =

∑
ν,µ,κ

Eµ |Lν⟩ ⟨Lν |Rµ⟩ ⟨Lµ |Rκ⟩ ⟨Rκ| =
∑
ν

Eν |Lν⟩ ⟨Rν | . (2.6)

If the spectrum is real, the expression to the right of the last equal sign, is equal to H†; see
Eq. (2.3). For the case of an entirely real spectrum (explaining the index r of η) H is therefore
ηr-pseudo-Hermitian

ηrHη
−1
r = H†. (2.7)

As emphasized in Sect. 1.3.2 the η operator of a pseudo-Hermitian Hamiltonian depends in general
on the Hamitonian; in the above ansatz via the eigenvectors. Note that Bender and coworkers
avoid to introduce the operator ηr. However, they introduce a linear operator C instead, which,
in a proper combination with P and T , plays the role of ηr. In particular, also C depends on the
Hamiltonian under investigation. We here do not further elaborate on this and refer the interested
reader to [9] and [23].

We so far constructed a feasible η for the case of an entirely real spectrum (PT -symmetric phase
in case of a PT -symmetric Hamiltonian). In accordance with the theorem Tη2 , it is also possible
to give a ηcp for the case in which the eigenvalues of the non-Hermitian Hamiltonian are partly
real and partly come in complex conjugate pairs (PT symmetry broken phase in case of a PT -
symmetric Hamiltonian). Here the index cp stands for “complex pairs”. ηcp is constructed in close
analogy to ηr but requires a slight extension of our notation. Let us denote the left eigenvectors to
the real eigenvalues Eνr as

∣∣Lr
νr

〉
. We write the left eigenvectors of one pair (Eνc , E

∗
νc) of complex

conjugate eigenvalues as
∣∣Lc
νc

〉
and

∣∣Lc,∗
νc

〉
, respectively. Then [53]

ηcp =
∑
νr

∣∣Lr
νr

〉 〈
Lr
νr

∣∣+∑
νc

(∣∣Lc
νc

〉 〈
Lc,∗
νc

∣∣+ ∣∣Lc,∗
νc

〉 〈
Lc
νc

∣∣) . (2.8)

The inverse η−1
cp is obtained by replacing L → R, just as in going from Eq. (2.4) to (2.5). After

rewriting the spectral representation of H Eq. (2.3) in the new notation, it is straightforward to
see that Eq. (2.7) holds with ηr → ηcp.

Let us assume that a general biorthonormal basis {|rν⟩ , |lν⟩} is given which fulfills the or-
thonormalization relation Eq. (2.1) as well as the completeness relation Eq. (2.2). As these basis
vectors are not necessarily the right and left eigenvectors of a non-Hermitian Hamiltonian H, we
denote them with small letters instead of capital ones. In analogy to Eq. (2.4) we define the linear
operator [23]

ĝ =
∑
ν

|lν⟩ ⟨lν | . (2.9)

If one applies ĝ to a right basis state, it is mapped onto the corresponding left one

ĝ |rν⟩ =
∑
µ

|lµ⟩ ⟨lµ |rν⟩ = |lν⟩ , (2.10)

were we employed the biorthonormality relation Eq. (2.1). With this and the property that {|rν⟩}
forms a (non-orthogonal) basis, i.e., |ψ⟩ =

∑
ν aν |rν⟩, aν ∈ C, we obtain

⟨ψ| ĝ |ψ⟩ =
∑
ν,µ

a∗νaµ ⟨rν | ĝ |rµ⟩ =
∑
ν

|aν |2 > 0 (2.11)

1The reason for the index r will become clear soon.
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2.3 Models

Figure 1: Sketch of the PT -symmetric two-level system with non-Hermitian Hamiltonian
Eq. (2.12). It describes two sites with complex “energy” re±iθ (red and blue) that are connected
by a complex hopping se±iϕ. The on-site matrix elements describe balanced gain and loss via the
coupling to an environment, indicated by the dashed arrows and leading to the phase e±iθ. The
phase of the hopping e±iϕ originates from a perpendicular magnetic flux indicated by the “⊗”.

for an arbitrary state |ψ⟩ ≠ 0 from H. Thus ĝ is a positive definite operator.
For the special case that the biorthonormal basis vectors are eigenvectors of a non-Hermitian

Hamiltonian we have ηr = ĝ. Thus ηr is positive definite and the square root η1/2r can be taken.
This Hermitian operator η1/2r is the one of theorem Tη3 . In contrast, ηcp is not a positive definite
operator (for an example, see Sect. 2.3.1) [23, 53] . The positivity of ηr (or ĝ) can be exploited to
define an alternative inner product [9, 23,52,60]. Further down we will return to this.

We next introduce our three model systems. The first is the non-Hermitian two-level problem
represented by a simple non-Hermitian 2 × 2 matrix. This we use to illustrate all the general
concepts and theorems of PT -symmetric and pseudo-Hermitian non-Hermitian quantum theory
discussed so far. We also discuss its interesting dynamical properties. For the other two models,
the resonant level model with complex hybridization and the staggered tight-binding chain with
complex hopping, we focus primarily on the physics. However, we partly also use them to demon-
strate some of the general ideas in a more complex setting. When introducing these two models,
we first aim at their single-particle properties. In Sects. 4 and 6 we will extend this and study the
non-Hermitian many-body physics of those.

2.3 Models
2.3.1 A non-Hermitian two-level problem

As our simplest toy problem we study a single quantum particle hopping between two lattice
sites. The orthonormal basis states in which the particle occupies the left or the right lattice
site are denoted by |↑⟩ and |↓⟩, respectively. This notation is reminiscent of the often employed
interpretation of this model in terms of a single spin-1/2 degree of freedom. The onsite “energies”
are set to re±iθ with the complex phase resulting out of a gain and loss to a reservoir [3, 9].
The hopping amplitude se±iϕ is assumed to be complex as well. Its phase can be understood as
originating from a magnetic vector potential in the Peierls substitution [61]. The model is sketched
in Fig. 1. In the up-down-basis the Hamiltonian reads

H(ϕ)
.
=

(
reiθ seiϕ

se−iϕ re−iθ

)
(2.12)

It depends on the real variable ϕ and the three real parameters r, s, and θ. We distinguish between
a variable and parameters as we will further down investigate H(ϕ) at the special point ϕ = 0 but
for arbitrary r, s, and θ. For r ̸= 0 and θ ̸= nπ, with n ∈ N the Hamiltonian is non-Hermitian.
The eigenvalues are given by

E±

s
=
r

s
cos θ ±


√

1−
(
r
s

)2
sin2 θ for

∣∣ r
s sin θ

∣∣ < 1

i

√(
r
s

)2
sin2 θ − 1 for

∣∣ r
s sin θ

∣∣ > 1.
(2.13)

They are independent of the variable ϕ. The overall energy scale is set by s. The remaining two
dimensionless parameters are r/s and θ. We introduce

z =
r

s
sin θ ∈ R. (2.14)
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2.3 Models

For |z| < 1 the spectrum is real, while a pair of complex conjugate eigenvalues is found for |z| > 1.
For |z| = 1 the two real eigenvalues are degenerate and for z = 0 the Hamiltonian is Hermitian.
The right and left eigenvectors are given by

|R±⟩ =
eiϕ
(
iz ±

√
1− z2

)
|↑⟩+ |↓⟩[

1 +
(
iz ±

√
1− z2

)2]1/2 , (2.15)

|L±⟩ =
eiϕ
(
−iz ±

√
1− z2

)
|↑⟩+ |↓⟩[

1 +
(
−iz ±

√
1− z2

)2]1/2 (2.16)

for |z| < 1 and

|R±⟩ =
ieiϕ

(
z ±

√
z2 − 1

)
|↑⟩+ |↓⟩[

1−
(
z ±

√
z2 − 1

)2]1/2 , (2.17)

|L±⟩ =
−ieiϕ

(
z ±

√
z2 − 1

)
|↑⟩+ |↓⟩{[

1−
(
z ±

√
z2 − 1

)2]1/2}∗ (2.18)

for |z| > 1. It is easy to verify that |R+⟩ and |R−⟩ are linearly independent and thus form a basis of
C2, but that they are not orthogonal. The same holds for |L+⟩ and |L−⟩. However, ⟨Lν |Rµ⟩ = δν,µ
as in Eq. (2.1) due to a proper normalization. For |z| = 1 the eigenvectors for ν = + and ν = − are
equal and cannot be used to span the Hilbert space C2, i.e., the eigenvectors of the Hamiltonian do
no longer form a basis. This corresponds to an exceptional point. The resolution of unity Eq. (2.2)
and the spectral representation of the Hamiltonian Eq. (2.3) can also be verified explicitly. In the
Hermitian case z = 0 the right and left eigenvectors Eqs. (2.15) and (2.16) are equal.

To analyze the spectral properties of the Hamiltonian Eq. (2.12) from the perspective of the
theory of PT -symmetric quantum systems, we first have to investigate if H(ϕ) is PT -symmetric.
With the above interpretation of the Hamiltonian as that of a particle hopping between a left and
a right lattice site, it is evident, that the parity operator P, which is supposed to interchange left
and right, is represented by [7]

P .
=

(
0 1
1 0

)
= σx, (2.19)

with the Pauli matrix σx. With T performing complex conjugation it is straightforward to show
that

[PT , H] = 0 (2.20)

and thus the Hamiltonian Eq. (2.12) is PT -symmetric.
It is easy to show that for |z| < 1 the right eigenvectors |R±⟩ Eq. (2.15) are also eigenvectors

of PT with eigenvalues e−iϕ
(
iz ±

√
1− z2

)
.1 This does no longer hold for |z| > 1. These findings

are in accordance with the theorem TPT
1 . For |z| > 1, PT symmetry is spontaneously broken and

the exceptional point |z| = 1 is the point of a PT transition.
For our two-level toy model it is also possible to determine an exact expression for the similarity

transformation S which, in the PT symmetry unbroken phase |z| < 1, maps H to an isospectral
Hermitian Hamiltonian h = SHS−1; see theorem TPT

2 . We postpone the explicit construction of S
and h until we analyzed the spectral properties of the Hamiltonian Eq. (2.12) within the framework
of pseudo-Hermiticity; this will significantly simplify the construction. Employing the result that
the eigenvalues Eq. (2.13) of the Hamiltonian Eq. (2.12) are either real or form complex conjugate
pairs and the theorem Tη2 or, alternatively, theorem Tη4 , which states that every PT -symmetric
Hamiltonian is also pseudo-Hermitian, we know that the Hamiltonian H(ϕ) is pseudo-Hermitian
(in both phases). We next aim to determine appropriate η’s.

For ϕ = 0, Eq. (2.12) is a complex, symmetric, PT -symmetric matrix and the theorem Tη1
ensures that H(0) is P-pseudo-Hermitian. It is indeed straightforward to show that with

η = P .
=

(
0 1
1 0

)
.
= η† = η−1 (2.21)

1Note that the absolute value of the eigenvalue is 1. This holds on general grounds [8].
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one finds
ηH(0)η−1 = H†(0). (2.22)

Note that this holds in both phases |z| < 1 and |z| > 1.
To explicitly determine a η for H(ϕ) and all ϕ we first consider the PT -symmetric phase |z| < 1

with real eigenvalues and employ Eq. (2.4). Using Eq. (2.16) for the left eigenvectors we obtain in
the orthonormal basis of spin-up and -down states

ηr
.
=

1√
1− z2

(
1 −izeiϕ

ize−iϕ 1

)
. (2.23)

This matrix is obviously Hermitian: ηr = η†r . It becomes the unity matrix in the Hermitian limit
z = 0. It is easy to check explicitly that for |z| < 1 the pseudo-Hermiticity relation ηrH(ϕ)η−1

r =
H†(ϕ) holds. For ϕ = 0, ηr Eq. (2.23) and η Eq. (2.21) do not coincide. This gives an explicit
example that the η operator of a pseudo-Hermitian Hamiltonian is not necessarily unique. We can
now take the square root of the positive operator ηr and obtain (see theorem Tη3)

η1/2r
.
=

1

[1− z2]
1/4

( [
1
2 + 1

2

√
1− z2

]1/2 −i
[
1
2 − 1

2

√
1− z2

]1/2
eiϕ

i
[
1
2 − 1

2

√
1− z2

]1/2
e−iϕ

[
1
2 + 1

2

√
1− z2

]1/2
)
. (2.24)

Note that in contrast to ηr, η = P = σx is not a positive operator (remember that the eigenvalues
of σx are ±1) and the square root cannot be taken. We next compute

η1/2r H(ϕ)η−1/2
r

.
=

(
r cos θ s

√
1− z2eiϕ

s
√
1− z2e−iϕ r cos θ

)
.
= h(ϕ). (2.25)

h(ϕ) is represented by a Hermitian matrix which has the same eigenvalues Eq. (2.13) as H(ϕ). This
illustrates that the operator η1/2 of theorem Tη3 coincides with S of theorem TPT

2 . As announced
above for the present model it was thus easy to exactly determine S and h of TPT

2 by employing
pseudo-Hermiticity.

We now turn to the PT symmetry broken phase with |z| > 1. Using the eigenvectors Eq. (2.18)
and the general expression Eq. (2.8) of ηcp for the case of complex conjugate pairs of eigenvalues,
the matrix form is

ηcp
.
= sgn(z)

(
0 eiϕ

e−iϕ 0

)
. (2.26)

Straightforward matrix multiplication gives ηcpHη−1
cp = H† for |z| > 1. Also in this phase η = P

and ηcp for ϕ = 0 do not coincide if z < −1. However, they coincide for z > 1. As ηcp has
eigenvalues ±1, it is not positive definite, as stated at the end of Sect. 2.2 for the general case.

2.3.2 The resonant level model with complex hybridization

The resonant level model describes a single quantum level which is tunnel coupled to two leads. The
fermionic particle(s) residing on the level and in the leads are assumed to be spinless. In mesoscopic
physics the model is often considered as a simple toy model to study resonant transport through
a quantum dot. We here use a version of the resonant level model in which the leads are given by
tight-binding chains with hopping amplitude J > 0 and lattice constant a = 1. The Hamiltonian
is

H = −J
−2∑

j=−N/2

(
c†jcj+1 + H.c.

)
− γ

(
c†−1c0 + H.c.

)
− γ∗

(
c†0c1 + H.c.

)
− J

N/2−1∑
j=1

(
c†jcj+1 + H.c.

)
.

(2.27)
Here j denotes the lattice site index and c

(†)
j the annihilation (creation) operator of a particle on

site j in standard second quantization notation. The Wannier states {|j⟩} form an orthonormal
basis of the single-particle Hilbert space. In this section we discuss the problem of a single particle
and we could avoid second quantization. In Sect. 4 we will, however, be interested in the many-
particle problem. This explains why we already now use this notation. Each lead has N/2 lattice
sites and open boundary conditions at the end opposing the dot site. Combined with the dot
site at j = 0 the system has N + 1 lattice sites in total. The tunnel coupling of the dot level to
the left lead is given by γ. In the Hermitian resonant level model γ is taken to be real and one
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Dot

Figure 2: Sketch of the PT -symmetric resonant level model with non-Hermitian Hamilto-
nian Eq. (2.27). The quantum dot couples to leads with complex hopping amplitude γ (left) and
γ∗ (right). The leads themselves are Hermitian and modeled as a fermionic chain with hopping J .
The non-Hermiticity is induced by a coupling of the dot to the environment, which is indicated by
the dashed arrows.

usually assumes γ ≪ J to describe resonance phenomena. We obtain a non-Hermitian model if
γ = γr + iγi ∈ C is assumed (with γr/i ≥ 0). Such complex hopping amplitude could result from
the local coupling of the lattice model to an additional environment (not to be confused with the
two leads of the model) and a corresponding gain and loss. If the tunnel coupling between the
level and the right lead is taken to be γ∗, the non-Hermitian Hamiltonian Eq. (2.27) is obviously
PT -symmetric (reflection at site j = 0 and complex conjugation). The model is sketched in Fig. 2.

The single-particle left and right eigenstates of H Eq. (2.27) fall into two classes. The first
is made of the scattering states which are spatially delocalized and have real eigenvalues. They
appear for all γr/i. The second class are bound states exponentially localized around the quantum
dot, which appear in certain parameter regimes. For γr >

√
J2 + γ2i we find two bound states with

real eigenvalues while for γi > γr their eigenvalues are purely imaginary and complex conjugate to
each other. In this parameter regime the PT symmetry is spontaneously broken. In the following
we elaborate on the results for the eigenvalues and eigenvectors which are necessary for our later
considerations. Details on the derivation can be found in [57].

Using a standard standing wave ansatz (open boundary conditions) including a scattering phase
shift, for the right eigenstates in the Wannier (position) basis representation

⟨j |Rk⟩ =
{
Nr

(
eikj + ei2kδ(k)e−ikj

)
j = 1, 2, 3, . . .

Nl

(
eikj + e−i2kδ(k)e−ikj

)
j = −1,−2,−3, . . .

, (2.28)

one obtains for the eigenvalues of the scattering states the usual real band energies of a one-
dimensional tight-binding chain

Ek = −2J cos k, (2.29)

where we replaced the general (quantum number multi-) index ν used so far by the momentum k.
The quantization condition for k follows from the boundary conditions at the end of the two leads
opposing the dot site. These manifest in the implicit equation

eikN =
Γλ − J2e−2ik

Γλ − J2e2ik
, (2.30)

with λ = ±1 and

Γλ = (1 + λ)Γ̃− J2, Γ̃ =
γ2 + (γ∗)2

2
. (2.31)

For fixed N , γ, and J one thus finds two sets of allowed momenta. To avoid an overloading of the
notation, we suppress the index λ as well as one for the discreetness of k. The right eigenstates
are 〈

j
∣∣Rλk〉 = Nλ

R ×
{

cos (k [j − δλ(k)]) j = 1, 2, 3, . . .
Mλ cos (k [j + δλ(k)]) j = −1,−2,−3, . . .

, (2.32)

with the two phase shifts δλ(k) determined by

ei2kδλ(k) =
J2 − Γλe

i2k

Γλ − J2e2ik
(2.33)

and M+ = γ2/|γ|2 as well as M− = −(γ∗)2/|γ|2. For notational ease we here and in the following
suppressed the 1 when replacing λ in an index by one of the two options ±1. For λ = −1 one finds
Γ− = −J2 and ei2kδ−(k) = −1. The phase shift is thus δ−(k) = π/(2k). Inserting this in Eq. (2.32)
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the j dependence is given by sin (kj). This is the odd solution of the scattering problem with a
vanishing amplitude on the dot site 〈

0
∣∣R−

k

〉
= 0. (2.34)

For the λ = +1 solution the phase shift is non-trivial and must be determined by solving Eq. (2.33).
The amplitude on the dot site is give by〈

0
∣∣R+

k

〉
= −N+

R cos (k [1− δ+]) (γM+ + γ∗) /Ek. (2.35)

With this the right scattering eigenstates are fully determined up to the overall normalization
constant Nλ

R. This can be used to achieve Eq. (2.1); see below. The scattering state solutions of
the time-independent Schrödinger equation (eigenvalue problem) occur for arbitrary (γr, γi).

As in Eq. (2.27), H† = H(γ → γ∗) (in obvious notation), the left scattering eigenstates follow
from the above expressions by interchanging γ ↔ γ∗ and replacing Nλ

R → Nλ
L . Biorthonormaliza-

tion Eq. (2.1) is achieved for

N−
R =

γ√
2Γ̃

[
1

2
+
N

4

]−1/2

, N+
R =

γ∗√
2Γ̃

[
1

2
+
N

4
+

2Γ̃(J2 − Γ̃)

∆+(k)

]−1/2

, (2.36)

with
∆+(k) = Γ2

+ + J4 − 2Γ+J
2 cos (2k) (2.37)

and Nλ
L =

(
Nλ

R

)∗. Employing the latter we obtain
〈
j
∣∣Lλk〉 =

〈
j
∣∣Rλk〉∗. In the absence of bound

states—see the next paragraph—the
{∣∣Rλk〉 , ∣∣Lλk〉} form a biorthonormal basis.

Next we elaborate on bound state solutions of the time-independent Schrödinger equation. As
it is difficult to give their analytical form in the presence of the open boundaries of the leads at
j = ±N/2, we take the thermodynamic limit N → ∞. By doing so, we relax the constraints we
discussed in the beginning of the present section. However, this does not lead to any mathemat-
ical problems as we are only doing it for the discrete bound states. In Sect. 4 when computing
expectation values of observables we will, in addition, compute the bound states numerically for
finite N . For γr >

√
J2 + γ2i the ansatz of an exponentially decaying wave function for increasing

|j| gives the real eigenenergies1

Er
± = ∓ γ2 + (γ∗)2√

γ2 + (γ∗)2 − J2
. (2.38)

These are solutions which are also present if γ is real (γi = 0) in case the tunnel coupling is larger
than the hopping in the leads γr > J . In mesoscopic physics this parameter regime is usually of no
interest as the resonance width ∼ γ2r /J is larger than the band width ∼ J (and one can no longer
speak of a resonance). The energies of the two bound states are located above and below the band
edges ±2J . The right eigenstate wave function is given by

〈
j
∣∣Rr

±
〉
= N r

R ×


(±1)

j
e−j/ξ j = 1, 2, 3, . . .

J
γ∗ j = 0

M+ (±1)
j
ej/ξ j = −1,−2,−3, . . .

, (2.39)

with the localization length ξ = 2/ ln |Γ+/J
2|. For the left eigenstates it holds

〈
j
∣∣Lr

±
〉
=
〈
j
∣∣Rr

±
〉∗.2

Biorthonormalization is achieved for

N r
R =

γ∗

J

√
J2 − Γ̃

J2 − 2Γ̃
=
(
N i

L

)∗
(2.40)

To obtain a biorthonormal basis in this parameter regime, the set
{∣∣Rλk〉 , ∣∣Lλk〉} has to be supple-

mented by these bound states.
A second type of bound state solutions is found for γi > γr. These have purely imaginary

energies

Ei
± = ∓i γ2 + (γ∗)2√

J2 − γ2 − (γ∗)2
(2.41)

1Note the different sign as compared to Eq. (19) of [57].
2Note the typo in Eq. (18) of [57].
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and right eigenstate wave functions

〈
j
∣∣Ri

±
〉
= N i

R ×


(±i)j e−j/ξ j = 1, 2, 3, . . .
J
γ∗ j = 0

M+ (∓i)j ej/ξ j = −1,−2,−3, . . .

. (2.42)

The left eigenstates in position representation again follow from complex conjugation:
〈
j
∣∣Li

±
〉
=〈

j
∣∣Ri

±
〉∗ and biorthonormalization requires

N i
R =

γ∗

J

√
Γ̃− J2

2Γ̃− J2
= (N r

L)
∗
. (2.43)

The biorthonormal basis for γi > γr is obtained by adding the bound states with imaginary energy
to
{∣∣Rλk〉 , ∣∣Lλk〉}.
For the single-particle PT -symmetric resonant level model with complex hybridization γ =

γr + iγi one thus finds a spontaneous breaking of the PT symmetry for γi > γr. In the symmetry
broken phase a (purely imaginary) pair of complex conjugate energies is found. To apply the
spatial reflection P to an eigenstate one simply has to replace γ → γ∗. Applying T leads to
complex conjugation. Using the above explicit expressions Eqs. (2.32) and (2.39) for the scattering
states and the bound states with real energies, respectively, it is straightforward to see that they
are eigenstates of PT ; compare to theorem TPT

1 . This does no longer hold for the bound states
with imaginary energy Eq. (2.42) as i explicitly appears in the wave function.

According to theorems Tη4 or Tη2 the Hamiltonian is also pseudo-Hermitian. Corresponding η
operators can be obtained from the general expressions Eqs. (2.4) and (2.8) but are not constructed
explicitly here. We neither attempt to explicitly determine the operators η1/2r of theorem Tη3 nor
S and the associated Hermitian Hamiltonian h (with the same spectrum as H) of theorem TPT

2 in
the symmetry unbroken parameter regime γi < γr. However, from these theorems we know that
they must exist.

2.3.3 The staggered tight-binding chain with complex hopping

The lattice model (lattice constant a = 1) with a staggered onsite energy g ≥ 0 and a staggered
complex hopping δ ≥ 0 with non-Hermitian Hamiltonian

H =

N∑
j=1

[
J + iδ(−1)j

2

(
c†jcj+1 + H.c.

)
+ g(−1)jc†jcj

]
(2.44)

was recently introduced as a toy model to study non-Hermitian quantum critical behavior [58].
Note that the uniform hopping has amplitude J/2, not J as in Eq. (2.27), and the opposite
sign. Using this convention we follow the authors of [58]. We take an even number of lattice
sites N and consider periodic boundary conditions; we identify the single-particle Wannier states
|j = N + 1⟩ and |j = 1⟩. The model is sketched in Fig. 3. As the authors of [58] emphasize the non-
Hermitian term can be thought of as arising in Heff of the Lindblad equation (1.5) when using jump
operators

√
δ (cj ± cj+1) on even and odd bonds, respectively, and dropping a term proportional

to the particle number operator. As the spatial reflection at any lattice site (P) in combination
with complex conjugation (T ) leaves H Eq. (2.44) invariant, the model is indeed PT -symmetric;
with theorem Tη4 it is also pseudo-Hermitian.

The system is translationally invariant and hence best treated in momentum space. We trans-
form from the single-particle Wannier basis {|j⟩} to momentum space states {|k⟩}. In this, the
momenta k and k− π, with 0 ≤ k < π are coupled, that is, the single-particle (1p) Hamiltonian is
block-diagonal with non-Hermitian sub-blocks

H1p
k

.
=

(
J cos k g + δ sin(k)

g − δ sin k −J cos k

)
. (2.45)

To ease notation we again suppress an index on k, indicating that the momenta are discrete k =
n2π/N , n ∈ Z. The single-particle dispersion (eigenvalues) can now be obtained by diagonalizing
Eq. (2.45). This gives

E±
k = ±

√
(J2 + δ2) cos2 k + g2 − δ2. (2.46)
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Figure 3: Sketch of the PT -symmetric staggered tight-binding chain with non-Hermitian
Hamiltonian Eq. (2.44). Lattice sites with alternating on site potential ±g are coupled by a
uniform hopping J and a imaginary alternating hopping δ. The latter is induced by a coupling to
the environment, which differs on even and odd sides, leading to the alternation.
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Figure 4: Single-particle dispersion of the quantum critical model Eq. (2.44) for g/J = 0.2
and δ/J = 0.0, 0.1, 0.15, 0.17, 0.19, 0.2 from desaturated to saturated lines. For all parameters
shown the PT symmetry is unbroken. As δ ↗ g, the direct band-gap at k = π/2 closes and the
system becomes quantum critical [6, 58].

For g ≥ δ all single-particle eigenvalues are real, that is, the PT symmetry is unbroken. When
studying quantum critical behavior, we will only be interested in this regime. For g < δ there is
always a region of momenta k close to π/2 with complex conjugate pairs of complex eigenvalues
and the PT symmetry is spontaneously broken.

In Fig. 4 the single-particle dispersion is shown for g/J = 0.2 and different δ/J from the phase
of unbroken PT symmetry. For g > δ the dispersion is gapped with a minimal value of the gap at
k = π/2, while it becomes gapless for g = δ. For this case the dispersion is linear close to k = π/2.
In the many-body case and for half-filling, with Fermi momentum kF = π/2, this is the parameter
regime in which the model becomes quantum critical [6]. If, for g = δ, one expands the elements
of the matrix H1p

k of Eq. (2.45) close to k = π/2 to leading order, one obtains

H1p
k ≈̇

(
−J

[
k − π

2

]
2g

0 J
[
k − π

2

] ) . (2.47)

This single-particle momentum space block is also realized in a field theoretical continuum model
with Hamiltonian

H =

∫
dx
{
J
[
ψ̂†
r (x)i∂xψ̂r(x)− ψ̂†

l (x)i∂xψ̂l(x)
]
+ 2gψ̂†

r (x)ψ̂l(x)
}
, (2.48)

which describes a critical system with dynamical critical exponent z = 1 [6]. Here ψ̂r/l(x) denotes
right and left moving fermionic fields.

We do not compute the single-particle eigenstates of the lattice model Eq. (2.44) analytically.
Instead when studying correlation functions of this model in Sect. 6, we will numerically determine
these. For our purposes this is sufficient. We also do not aim to compute any η operator.

3 Non-unitary dynamics and the ancilla approach
In this section we discuss in which sense the dynamics induced by a non-Hermitian Hamiltonian,
and thus by a non-unitary time evolution operator, might be of relevance for physical systems.
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3.1 The basic idea

The non-Hermitian system is embedded into a larger one described by a Hermitian Hamiltonian.
We, in particular, focus on the ancilla approach [17, 31, 32]. Some readers familiar with Feshbach
projection or Lindblad master equations and the quantum trajectory approach, might find these
methods of deriving non-Hermitian Hamiltonians physically more appealing; see Sect. 1.2.1 and
Sect. 1.2.2 for a brief summary of these. However, we hope that at the end of this section all
readers can agree, that the ancilla approach is conceptionally transparent and formally attractive.
Crucially, it does not rely on any approximations or an effective Hamiltonian picture. It was so
far not reviewed in the context of quantum many-body theory.

We show that, within the ancilla approach, one can always find an embedding, which, in combi-
nation with a measurement, yields the non-Hermitian physics. We use this embedding approach in
subsequent sections for deriving a consistent methodological framework for theoretically studying
PT -symmetric, non-Hermitian systems. Note that considerations of this type, or its converse, of
deriving a non-Hermitian subsystem Hamiltonian from a Hermitian one, are rarely put forward
in the mathematical physics research which led to the concepts of pseudo-Hermiticity as well as
biorthogonal and PT -symmetric quantum mechanics [7–9,23,40,53,55], at least beyond cartoons;
see Chapter 1 of [9]. On the one hand, we believe that it is important to keep this in mind to
better appreciate the nature of these approaches. On the other hand, we judge this embedding
into a Hermitian system to be crucial for the development of a methodology which can be used to
study emergent quantum many-body phenomena.

To introduce the ancilla approach we start out with the time-dependent Schrödinger equation

i∂t |ψs(t)⟩ = Hs(t) |ψs(t)⟩ , |ψs(0)⟩ = |ψs,0⟩ . (3.1)

We slightly adopted the notation; compare Eq. (1.1). The non-Hermitian Hamiltonian Hs and
the state now carry a label s; denoting “system”. The possible time dependence is indicated as
the argument instead of by an index. We often suppress the argument and only restore it if time
dependence is important. The state |ψs(t)⟩ is an element of the systems Hilbert space Hs and
formally given by

|ψs(t)⟩ = Us(t) |ψs(0)⟩ = T exp

{
−i
∫ t

0

dt′Hs(t
′)

}
|ψs(0)⟩ . (3.2)

We now pose the question if we can find an enlarged quantum system, with Hilbert space Hsa and
a dynamics given by the Schrödinger equation with a Hermitian Hamiltonian Hsa which results
in the state |ψs(t)⟩ “if one focusses” on the system part. Here the index a denotes ancilla. One of
the crucial issues is to decipher the meaning of the phrase in the quotation marks. It will turn out
that complementing the system by a single spin-1/2 degree of freedom is sufficient and “focusing
on the system” corresponds to performing a measurement on the ancilla spin.

3.1 The basic idea
To present the basic idea we first consider a general non-Hermitian Hamiltonian Hs(t). Below,
we will focus on pseudo-Hermitian and PT -symmetric Hamiltonians. We complement the systems
Hilbert space Hs by C2 and consider Hsa = C2⊗Hs as the combined system-ancilla Hilbert space.
In C2 we take the orthonormal basis states |↑⟩ and |↓⟩. We now focus on time-dependent states
from a subset Hsub

sa ⊂ Hsa of the special form∣∣ψsub
sa (t)

〉
= K [|↑⟩ ⊗ |ψs(t)⟩+ |↓⟩ ⊗ g(t) |ψs(t)⟩] , (3.3)

with a, for now, unspecified linear, time-dependent operator g(t) and a normalization constant
K. Assuming that |ψs(t)⟩ solves Eq. (3.1) with the given non-Hermitian Hs(t) we ask: Can one
construct a Hermitian Hamiltonian Hsa(t), an initial state

∣∣ψsub
sa (0)

〉
∈ Hsub

sa , and an operator g(t)
such that, for times 0 ≤ t ≤ τ ,

∣∣ψsub
sa (t)

〉
of Eq. (3.3) fulfills the Schrödinger equation with this

Hsa(t)? Here τ denotes the largest time up to which the time evolution is performed. Ideally, we
can consider the limit τ → ∞; see below. Furthermore,

∣∣ψsub
sa (0)

〉
is supposed to be normalized〈

ψsub
sa (0)

∣∣ψsub
sa (0)

〉
= 1. To achieve this we can use K which allows to normalize

∣∣ψsub
sa (0)

〉
indepen-

dent of what is assumed for ⟨ψs(0) |ψs(0)⟩.1 If we can find a Hermitian Hsa(t) the normalization
1Note that

〈
ψsub
sa (0)

∣∣ψsub
sa (0)

〉
and ⟨ψs(0) |ψs(0)⟩ denote canonical inner products on the two different Hilbert

spaces Hsa and Hs, respectively.
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of
∣∣ψsub

sa (0)
〉

would persist for 0 < t ≤ τ as the dynamics of the combined system-ancilla setup is
unitary.

To conclude the reasoning, let us first assume that we succeeded and postpone the construction
of Hsa,

∣∣ψsub
sa (0)

〉
, and g. We time-evolve the initial state

∣∣ψsub
sa (0)

〉
up to time t ≤ τ , employing

the unitary time evolution operator Usa(t), obtained from Eq. (3.2) by replacing Hs(t
′) by Hsa(t

′),
leading to

∣∣ψsub
sa (t)

〉
of Eq. (3.3). Next we perform a measurement on the ancilla spin, and only keep

the instances in which the ancilla spin pointed upwards. This process is often referred to as post-
selection. According to the principles of Hermitian quantum mechanics, after the measurement
the system is in the state∣∣ψ↑

sa(t)
〉
= N(t) (P↑ ⊗ 1s)

∣∣ψsub
sa (t)

〉
= N(t) (|↑⟩ ⟨↑| ⊗ 1s) (|↑⟩ ⊗ |ψs(t)⟩+ |↓⟩ ⊗ g(t) |ψs(t)⟩)
= N(t) |↑⟩ ⊗ |ψs(t)⟩ , (3.4)

with the normalization1

|N(t)|2 = ⟨ψs(t) |ψs(t)⟩−1
. (3.5)

Remember that because of the non-Hermiticity of Hs, ⟨ψs(t) |ψs(t)⟩ ≠ 1 even if we would have
taken ⟨ψs(0) |ψs(0)⟩ = 1 initially.

We next consider the equation of motion for the normalized state
∣∣ψ↑

sa(t)
〉
∈ Hsa. Note that

the logic is similar to the master equation, in that we want to derive a dynamical equation for a
subpart of the full system-ancilla problem. For this we examine

i∂t
∣∣ψ↑

sa(t)
〉
= i∂t

|↑⟩ ⊗ |ψs(t)⟩
⟨ψs(t) |ψs(t)⟩1/2

= i∂t
|↑⟩ ⊗ Us(t) |ψs(0)⟩

⟨ψs(0)|U†
s (t)Us(t) |ψs(0)⟩1/2

= [1a ⊗Hs(t)]
∣∣ψ↑

sa(t)
〉
− 1

2

⟨ψs(t)|
[
Hs(t)−H†

s (t)
]
|ψs(t)⟩

⟨ψs(t) |ψs(t)⟩
∣∣ψ↑

sa(t)
〉
. (3.6)

As |ψs(t)⟩ enters in
∣∣ψ↑

sa(t)
〉
, see Eq. (3.4), this is a non-linear differential equation. This has to be

contrasted to the Schrödinger equation, which is linear. Equation (3.6) is equivalent to a norm-
preserving equation of motion for a system with gain and loss which was written down mainly
based on phenomenological reasoning in [62–66].2

This rationale leads to a rather pragmatic reason why it is useful to solve the Schrödinger
equation (3.1) with a non-Hermitian Hamiltonian Hs(t): It is linear and thus generically easier
to solve than the non-linear equation (3.6). After the solution |ψs(t)⟩ of Eq. (3.1) was found, one
can compute the normalization Eq. (3.5) and obtain

∣∣ψ↑
sa(t)

〉
of Eq. (3.4) [67]. To put it reversely

and, in particular, in more physical terms: Within the ancilla approach the non-unitary dynamics
originating from the non-Hermitian Hs is effectively captured within the unitary evolution with
Hsa and the ancilla spin-measurement. In fact, this idea was brought to life in an impressive
experiment with a single nitrogen-vacancy center in diamond [17].

The remaining objective is to find a Hermitian Hamiltonian Hsa(t), an initial state
∣∣ψsub

sa (0)
〉
∈

Hsub
sa , and an operator g(t) such that

∣∣ψsub
sa (t)

〉
Eq. (3.3) fulfills the Schrödinger equation with

Hsa(t). To determine a normalized
∣∣ψsub

sa (0)
〉

is straightforward. We simply take∣∣ψsub
sa (0)

〉
= K [|↑⟩ ⊗ |ψs(0)⟩+ |↓⟩ ⊗ g(0) |ψs(0)⟩] , (3.7)

with the given initial state |ψs(0)⟩ ∈ Hs and

K =
[
⟨ψs(0) |ψs(0)⟩+ ⟨ψs(0)| g†(0)g(0) |ψs(0)⟩

]−1/2
. (3.8)

1This holds as ⟨↑ |↑⟩ = 1, with the inner product in C2.
2Note that Eq. (2) of [65] contains an additional term ∼ i ⟨ψs(t)|

[
Hs(t) +H†

s (t)
]
|ψs(t)⟩. This is, however,

irrelevant as it only changes the phase of the solution. Similarly, this holds for the equation of motion given
in [62–64].
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3.2 How to determine Hsa(t) and g(t)

To construct the Hermitian Hamiltonian Hsa(t) on Hsa and the linear operator g(t) on Hs for a
given time-dependent Hs(t) we write the former in its most general form as

Hsa =
∑

σ,σ′=↑,↓

|σ⟩ ⟨σ′| ⊗Hσσ′
sa , (3.9)

were we suppressed the time argument. The Hσσ′
sa are linear operators acting on Hs to be deter-

mined. For an obvious reason we refer to them as the components of Hsa. For Hsa to be Hermitian
we have to require that

(Hσσ
sa )

†
= Hσσ

sa ,
(
Hσσ̄

sa

)†
= H σ̄σ

sa , (3.10)

with σ̄ being the complement of σ. Inserting the ansatz Eq. (3.9) and the assumed form of the
state Eq. (3.3) into the Schrödinger equation, replacing i∂t |ψs(t)⟩ by Hs |ψs(t)⟩, and taking the
orthonormality of the ancilla basis states |↑⟩ and |↓⟩ into account we end up with the two coupled
equations (with the time arguments suppressed)

i∂tg + gHs = H↑↑
sa g +H↑↓

sa , Hs = H↓↓
sa +H↓↑

sa g. (3.11)

These and the corresponding adjoint equations can be rewritten as

H↓↑
sa = −i∂tg† +H†

s g
† − g†H↑↑

sa

H↑↓
sa = i∂tg + gHs −H↑↑

sa g

H↓↓
sa = Hs −

[
−i∂tg† +H†

s g
† − g†H↑↑

sa

]
g (3.12)

and
i∂t
[
g†g + 1

]
= H†

s

[
g†g + 1

]
−
[
g†g + 1

]
Hs. (3.13)

Note that the first two lines of Eq. (3.12) are consistent with Eq. (3.10). Employing Eq. (3.12)
all components of Hsa can be computed from H↑↑

sa , g, and the given Hs. Equation (3.13) can be
solved formally (we reintroduce the time arguments)

M(t) = g†(t)g(t) + 1 = T
(
e−i

∫ t
0
dt′H†

s (t
′)
)
M(0)T̃

(
ei

∫ t
0
dt′Hs(t

′)
)

(3.14)

with the anti-time-ordering symbol T̃ , the initial value M(0), and M†(t) = M(t). Let us assume
that we can chose M(0) such that M(t)− 1 is a positive operator for all 0 ≤ t ≤ τ . In this case

g(t) = U(t) [M(t)− 1]1/2 , (3.15)

with an arbitrary unitary operator U(t), exists for 0 ≤ t ≤ τ .
Following this reasoning we have to chose an arbitrary Hermitian operator H↑↑

sa (t), an arbitrary
unitary operator U(t), and the initial Hermitian operator M(0), the latter such that M(t) − 1 is
positive for all 0 ≤ t ≤ τ . From these operators Hsa(t) and g(t) can be computed using Eqs. (3.15),
(3.14), and (3.12). The supplementary material of [17] contains an argument that a M(0) fulfilling
the above condition can always be found. However, it, in general, depends on the largest time τ
up to which the system is time-evolved. In this case it might be impossible to take τ → ∞ and the
time evolution with Hsa(t) is restricted to a finite time interval. In special cases a τ -independent
M(0) can be found; see below. We here do not repeat the rationale of [17] but explicitly give
appropriate M(0) for the cases of interest to us.

We next discuss the situation of time-independent, pseudo-Hermitian Hamiltonians Hs with
entirely real spectra. To illustrate this important case we employ the formalism to our two-level
toy model Eq. (2.12) with |z| < 1.

3.3 ηr-pseudo-Hermitian Hamiltonians
We now assume that Hs is time independent which simplifies Eq. (3.14) to

M(t) = e−iH
†
s tM(0)eiHst. (3.16)
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3.4 The PT -symmetric two-level problem in its unbroken phase

If Hs is, in addition, ηr-pseudo-Hermitian, e.g., PT -symmetric and in the PT symmetry unbroken
phase, we make the ansatz M(0) = cηr with ηr of Eq. (2.4) and c ∈ R. Exploiting the pseudo-
Hermiticity relation Eq. (2.7) we obtain

M(t) = e−iH
†
s tcηre

iHst = cηre
−iHsteiHst = cηr =M(0) (3.17)

and the time dependence drops out. We finally have to determine a c such that cηr −1 is positive.
As ηr is a positive Hermitian operator it has positive eigenvalues λν . If we now take

c =
∑
ν

1

λν
, (3.18)

the operator cηr−1 is positive. For U(t) we take the unity operator and obtain a time-independent,
Hermitian

g = [cηr − 1]1/2 = g†. (3.19)

This considerably simplifies Eq. (3.12). If we, in addition, exploit the freedom to chose a H↑↑
sa and

assume that H↑↑
sa = H↓↓

sa , Hsa is time-independent and can be written as

Hsa = 12 ⊗A+ σy ⊗B (3.20)

with the Pauli matrix σy and

A =
(
gHs +Hsg

−1
) (
g−1 + g

)−1
, B = i

(
Hs + gHsg

−1
) (
g−1 + g

)−1
, (3.21)

acting on Hs. This is the form given in the supplementary material of [32]. We, however, emphasize
that the above reasoning shows that Hsa is by no means unique. E.g., choosing a different unitary
operator U(t) or relaxing the condition H↑↑

sa = H↓↓
sa would lead to a different form of Hsa.

We note that in the present case the expression for the normalization constant K Eq. (3.8)
simplifies. As g†g = cηr − 1 we obtain

K = [c ⟨ψs(0)| ηr |ψs(0)⟩]−1/2
. (3.22)

3.4 The PT -symmetric two-level problem in its unbroken phase
To illustrate the considerations of the last subsection we next apply them to our (toy) model
Hamiltonian Eq. (2.12), with |z| < 1, as the non-Hermitian but PT -symmetric Hs acting on
Hs = C2. The matrix representation of ηr in the systems |↑⟩ and |↓⟩ basis is given in Eq. (2.23).
Its eigenvalues are λ± = (1±z)/

√
1− z2 which leads to c = 2/

√
1− z2. With this we can determine

g of Eq. (3.19) and obtain g = ηr [32]. Furthermore, g−1+g = c1, which simplifies the computation
of the operators A and B of Eq. (3.21). A straightforward computation gives

A
.
=

(
r cos θ s(1− z2)eiϕ

s(1− z2)e−iϕ r cos θ

)
, B

.
=
√
1− z2

(
−r sin θ 0

0 r sin θ

)
. (3.23)

Inserting this in Eq. (3.20) leads to the matrix representation of Hsa

Hsa
.
=


r cos θ s(1− z2)eiϕ ir

√
1− z2 sin θ 0

s(1− z2)e−iϕ r cos θ 0 −ir
√
1− z2 sin θ

−ir
√
1− z2 sin θ 0 r cos θ s(1− z2)eiϕ

0 ir
√
1− z2 sin θ s(1− z2)e−iϕ r cos θ

 (3.24)

in the {|↑a↑s⟩ , |↑a↓s⟩ , |↓a↑s⟩ , |↓a↓s⟩} basis of Hsa (in self-explaining notation). This Hermitian
matrix has the same real eigenvalues Eq. (2.13) as Hs = H(ϕ) of Eq. (2.12), both being doubly
degenerate.

We find it instructive to explicitly compute the states
∣∣ψsub

sa (t)
〉

and |ψs(t)⟩ by applying the
time evolution operator e−iHsat and e−iHst to initial states related by Eq. (3.7) and show that the
time-evolved ones are related according to the reasoning of Sect. 3.1. Furthermore, we will reuse
some of the results presented here when computing expectation values in Sect. 4. As our initial
state in Hs we take the normalized state |ψs(0)⟩ = |↑⟩, that is, the particle initially occupies the
left of the two lattice sites (or the spin-1/2 points upwards). Expressing |↑⟩ in terms of the right
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Figure 5: Time dependence of the norm Eq. (3.27) in the PT -unbroken phase (|z| < 1). As
|z| ↗ 1 the period and amplitude of the oscillations increases.

energy eigenstates Eq. (2.15) it is straightforward to see that the non-unitarily time-evolved state
is given by

|ψs(t)⟩ = e−iHst |↑⟩ = e−iϕ

2
√
1− z2

(
e−iE+t

{
1 +

[
iz +

√
1− z2

]}1/2

|R+⟩

− e−iE−t
{
1 +

[
iz −

√
1− z2

]}1/2

|R−⟩
)

(3.25)

or, in the systems |↑⟩ and |↓⟩ basis,

|ψs(t)⟩
.
=

1

2
√
1− z2

(
e−iE+t

[
iz +

√
1− z2

]
− e−iE−t

[
iz −

√
1− z2

]
e−iϕ

[
e−iE+t − e−iE−t

] )
. (3.26)

From the last expression, the norm of |ψs(t)⟩ can be directly read off

⟨ψs(t) |ψs(t)⟩ =
1

1− z2

[
1− z2 cos

(
2s
√
1− z2t

)
+ z
√
1− z2 sin

(
2s
√
1− z2t

)]
. (3.27)

This shows explicitly that, in the non-Hermitian case z ̸= 0, the state |ψs(t)⟩ is no longer normalized
to one for t > 0 although it was so at t = 0; the time evolution operator e−iHst is non-unitary. The
norm oscillates with the frequency given by the difference E+ − E− of the (real) eigenenergies. It
is shown in Fig. 5 for different z.

Next we compute the initial state of the combined system-ancilla setup associated to |ψs(0)⟩ =
|↑⟩. We consider

g |ψs(0)⟩
.
=

1√
1− z2

(
1 −izeiϕ

ize−iϕ 1

)(
1
0

)
=

1√
1− z2

(
1

ize−iϕ

)
. (3.28)

Furthermore [see Eq. (3.22)]

K = [c ⟨ψs(0)| ηr |ψs(0)⟩]−1/2
=

[
2√

1− z2
1√

1− z2

]−1/2

=

√
1− z2

2
. (3.29)

With Eq. (3.7) and in the same basis as used in Eq. (3.24) this leads to

∣∣ψsub
sa (0)

〉 .
=

1√
2


√
1− z2

0

1

ize−iϕ

 ,
〈
ψsub
sa (0)

∣∣ψsub
sa (0)

〉
= 1. (3.30)

Determining the eigenvectors of the Hermitian Hsa Eq. (3.24) one finds that in each of the
eigenspaces H±

sa ⊂ Hsa to the doubly degenerate eigenvalues E± one normalized eigenvector
∣∣Rsa

±
〉

can be constructed which is element of Hsub
sa , i.e., which is of the form Eq. (3.3) (dropping time-

dependence). We only need to consider those, as the initial state Eq. (3.30) is element of Hsub
sa
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3.5 ηcp-pseudo-Hermitian Hamiltonians

and the time evolution leaves this subspace invariant. The states
∣∣Rsa

±
〉

can most easily be found
by inserting the two right eigenvectors Eq. (2.15) for |ψs(0)⟩ in Eq. (3.7). Writing

∣∣ψsub
sa (0)

〉
as

a linear combination of
∣∣Rsub

sa,±
〉
, applying e−iHsat, and projecting with |↑⟩ ⟨↑| ⊗ 1s gives the state

Eq. (3.26) extended to a four dimensional vector by adding two rows containing 0.
For this example it is also straightforward to (at least numerically) show explicitly that if the

state |ψs(t)⟩ ∈ Hs fulfills the linear Schrödinger equation (3.1), the normalized state
∣∣ψ↑

sa(t)
〉
∈ Hsa

fulfills the non-linear equation of motion (3.6) and vice versa. All this is in full accordance with
the formalism developed in Sect. 3.1.

We finally briefly investigate the case of a time-independent, PT -symmetric Hamiltonian Hs

in its symmetry broken phase, to contrast this to the unbroken one discussed in Sect. 3.3.

3.5 ηcp-pseudo-Hermitian Hamiltonians
As in Sect. 3.3 we start out with Eq. (3.16). Employing the ansatz M(0) = cηcp, with ηcp of
Eq. (2.8) and the pseudo-Hermiticity relation Eq. (2.7) with ηr → ηcp, in analogy to Eq. (3.17),
M(t) becomes time-independent. Unfortunately, one cannot follow the steps of Sect. 3.3 any further
as ηcp is not a positive definite operator. Thus, no c can be found which renders cηcp −1 positive.
This raises the question if, in the PT symmetry broken phase, one can find a M(0) such that M(t)
in Eq. (3.16) becomes time-independent. We are not able to answer this question definitely but it
appears unlikely that this is possible.

As an alternative ansatz we employ M(0) = m1s with m ∈ R. Inserting this in Eq. (3.16) we
obtain

M(t) = mei(Hs−H†
s )t. (3.31)

With this M(t) is time-dependent and thus g(t) Eq. (3.15), even if we still chose U(t) = 1. With
Eqs. (3.9) and (3.12) also Hsa(t) becomes time-dependent even if Hs is time-independent. To
ensure that M(t)−1 is positive for all 0 ≤ t ≤ τ we furthermore have to chose a m which depends
on the largest time τ considered. To see this explicitly let us consider our toy model Hamiltonian
Eq. (2.12) with |z| > 1. For this we obtain

M(t)
.
=

(
me−2rt sin θ 0

0 me2rt sin θ

)
(3.32)

Given this M(t), M(t) − 1 is positive in 0 ≤ t ≤ τ if we take m > e2|r sin θ|τ . As emphasized in
Sect. 3.2, M(0) depends on the largest time τ considered and the limit τ → ∞ cannot be taken.

This brief discussion hints at the difficulties one encounters when attempting to explicitly
construct the Hermitian Hsa(t) given a time-independent, PT -symmetric, non-Hermitian Hs in its
symmetry broken phase. We, however, emphasize that with the rational of Sect. 3.2 we can be
certain that such a Hsa(t) exists.

3.6 Can a single spin-1/2 act as a complex environment?
On first glance it appears to be very surprising, that adding just a single spin-1/2 degree of
freedom and a post-selection measurement is sufficient to capture the non-Hermitian dynamics
usually associated to open systems with much more complex environments [3, 9, 29, 30]. However,
one has to take a closer look.

The most microscopical view on justifying a non-unitary quantum dynamics associated with a
non-Hermitian Hamiltonian of a system coupled to an environment we are aware of, is the master
equation and quantum trajectory approach summarized in Sect. 1.2.2. We use it here to illustrate
that the environment and the system-environment coupling captured by the dynamics of a non-
Hermitian Hamiltonian are both restricted. Already the starting equation (1.5) of the master
equation approach is approximate in nature. It relies on the rotating wave, the Born, and the
Markov approximations. This strongly restricts the nature of the environment and the system-
environment coupling. Furthermore, the jump operators a(†)l can frequently not been given based
on microscopic considerations. This further restricts the universality of the approach. Finally, to
end up with the von Neumann equation (1.5) with the last term dropped, one has to assume that
up to time t no quantum jump occurred—this is the post-selection inherent to this approach. If
we do not want to limit the time too severely, it again restricts the nature of the environment
and that of the system-environment coupling. Only after performing all these steps and this way
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giving up the idea of a rather general environment and system-environment coupling, the dynamics
derived from the Master equation and quantum trajectory approach becomes equivalent to that
of the ancilla approach. Under these assumption the environment in effect becomes equivalent
to a single spin-1/2. Following this reasoning it might appear to be less surprising, that a single
spin-1/2 degree of freedom is sufficient to emulate the non-unitary system dynamics.

In this context we would like to again emphasize that the very interesting line of research of
Bender et al. does not contain any derivation of a quantum dynamics described by PT -symmetric
non-Hermitian Hamlitonian from the unitary dynamics of a coupled system-environment setup
with a Hermitian Hamlitonian. Concerning this, it relies on general considerations and intuitions.

3.7 The dynamics using a biorthogonal inner product
Many readers will be familiar with or will, at least, have heard of the concept of a biorthogonal
inner product [9, 23]. We here introduce this and discuss, in which sense it can be used to render
the time evolution for a ηr-pseudo-Hermitian Hamiltonian to be unitary.

We assume that a general biorthonormal basis {|rν⟩ , |lν⟩} is given; see Sect. 2.1. With the linear
operator ĝ Eq. (2.9) being positive definite and given two arbitrary states

∣∣∣ψ(i)
s

〉
∈ Hs, i = 1, 2,〈

ψ(1)
s

∣∣∣ψ(2)
s

〉
ĝ
=
〈
ψ(1)
s

∣∣∣ ĝ ∣∣∣ψ(2)
s

〉
(3.33)

fulfills all the defining axioms of an inner product.1 In particular,
〈
ψ
(i)
s

∣∣∣ ĝ ∣∣∣ψ(i)
s

〉
≥ 0. We will

refer to it as a biorthogonal inner product. The space of vectors from Hs equipped with this inner
product constitutes an alternative (biorthogonal) Hilbert space H̃s. In this sense ĝ can be viewed
as a metric operator [52, 60]. We here do not use the notation on the left hand side of Eq. (3.33)
but rather always explicitly insert ĝ in the standard inner product.

To better understand the effect the insertion of ĝ in the inner product has, let us consider the
two arbitrary states ∣∣∣ψ(i)

s

〉
=
∑
ν

c(i)ν |rν⟩ , i = 1, 2, (3.34)

with the right basis vectors |rν⟩, and c(i)ν ∈ C. The standard inner product of these two states is〈
ψ(1)
s

∣∣∣ψ(2)
s

〉
=
∑
ν,µ

[
c(1)ν

]∗
c(2)µ ⟨rν |rµ⟩ . (3.35)

As the right basis states are not orthonormal, this expression does not simplify further. For the
biorthogonal inner product one instead obtains〈

ψ(1)
s

∣∣∣ ĝ ∣∣∣ψ(2)
s

〉
=
∑
ν,µ

[
c(1)ν

]∗
c(2)µ ⟨rν | ĝ |rµ⟩ =

∑
ν

[
c(1)ν

]∗
c(2)ν , (3.36)

were we used that ĝ |rµ⟩ = |lµ⟩, see Eq. (2.10), and ⟨rν |lµ⟩ = δν,µ, see Eq. (2.1). Equation (3.36)
is the familiar result for an inner product of Hermitian quantum mechanics.

As there might be many different biorthonormal basis sets in a given vector space, these con-
siderations define an entire family of biorthogonal inner products [23]. However, there is only one
biorthonormal basis set and thus one biorthogonal inner product which is used when studying the
dynamics in biorthogonal and PT -symmetric quantum mechanics. To introduce this, we consider
the non-Hermitian, time-independent Hamiltonian Hs and its biorthonormal basis {|Rν⟩ , |Lν⟩}.
We time evolve the two arbitrary states Eq. (3.34) by applying e−iHst. The standard inner prod-
uct gives 〈

ψ(1)
s (t)

∣∣∣ψ(2)
s (t)

〉
=
∑
ν,µ

e−i(Eµ−E∗
ν )t
[
c(1)ν

]∗
c(2)µ ⟨Rν |Rµ⟩ , (3.37)

which, for arbitrary states, cannot be simplified. The time t does not drop out which indicates
that the dynamics is non-unitary. If we now assume that Hs is ηr-pseudo-Hermitian, e.g., PT -
symmetric and in its unbroken phase, and use ĝ → ηr as the metric operator in the biorthogonal
inner product we obtain〈

ψ(1)
s (t)

∣∣∣ ηr ∣∣∣ψ(2)
s (t)

〉
=
∑
ν,µ

e−i(Eµ−E∗
ν )t
[
c(1)ν

]∗
c(2)µ ⟨Rν | ηr |Rµ⟩ =

∑
ν

[
c(1)ν

]∗
c(2)ν

1On the right hand side of Eq. (3.33) we use the standard inner product in Dirac notation.
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=
〈
ψ(1)
s (0)

∣∣∣ ηr ∣∣∣ψ(2)
s (0)

〉
(3.38)

Besides using Eqs. (2.1) and (2.10) we employed the reality of the eigenvalues Eν . The same result
can be obtained without expressing the two states in terms of the right eigenvectors of Hs〈

ψ(1)
s (t)

∣∣∣ ηr ∣∣∣ψ(2)
s (t)

〉
=
〈
ψ(1)
s (0)

∣∣∣ eiH†
s tηre

−iHst
∣∣∣ψ(2)

s (t)
〉

=
〈
ψ(1)
s (0)

∣∣∣ ηreiHste−iHst
∣∣∣ψ(2)

s (t)
〉

=
〈
ψ(1)
s (0)

∣∣∣ ηr ∣∣∣ψ(2)
s (0)

〉
, (3.39)

were we used the pseudo-Hermiticity relation Eq. (2.7). In this sense the dynamics on H̃s is unitary.
This, in particular, implies that a state |ψs(0)⟩ normalized to one according to the biorthogonal
inner product ⟨ψs(0)| ηr |ψs(0)⟩ = 1, remains normalized at all times, in accordance with what is
known in standard Hermitian quantum mechanics.

Note that this biorthogonal inner product, and thus H̃s, depends on the Hamiltionian Hs, as ηr
Eq. (2.4) depends on Hs (via its left eigenvectors). One first has to determine all the eigenvectors
before the Hilbert space can be given [9]. From the perspective of standard Hermitian quantum
mechanics it appears odd that the Hamiltonian and the Hilbert space are tied together in this way.
Note also, that these considerations cannot be extended to the regime of complex eigenvalues, e.g.,
to a PT -symmetric Hamiltonian in its symmetry broken phase. In other words, the mathematical
option of introducing an inner product according to which the dynamics is unitary is tied to the
particular physical properties of the dynamics in the phase of unbroken PT symmetry; for an
example see Sect. 4.9.

The idea of an alternative inner product involving a metric operator can be extended to the
case of explicitly time-dependent non-Hermitian Hamiltonians [68, 69], where this approach leads
to a time dependent Hilbert space. This is reviewed in [70].

The observation that the time evolution for a non-Hermitian, PT -symmetric Hamiltonian in
its symmetry unbroken phase is unitary within the framework of biorthogonal and PT -symmetric
quantum mechanics is one of the reasons why these approaches are popular in mathematical physics
[9,23]. Other reasons will be given in Sects. 4 and 6. Note that all this is formalism (mathematics)
not physics. Also in biorthogonal and PT -symmetric quantum mechanics the initial state is time-
evolved with the non-unitary time evolution operator e−iHst and contains all the non-Hermitian
physics. Having emphasized this, we here pose the question if, for an open quantum system with
a non-Hermitian Hamiltonian, employing a formalism in which the dynamics becomes unitary is
expedient. Regardless if the non-Hermitian Hamiltonian is derived from Feshbach projection [3,25]
or Lindblad master equations [3, 29] or embedded into a Hermitian one in the ancilla approach
discussed in this section, a clear “yes” as an answer does not appear to be compelling. This
holds even if all eigenvalues of Hs are real. Furthermore, employing a formalism in which the
non-unitarity of the time evolution is hidden, might lead to misconceptions when it comes to the
computation of expectation values of observables and correlation functions. In the next section we
will elaborate on this.

4 Observables and expectation values
The concept of observables lies at the heart of quantum mechanics. In this section we review the
definition of observables and the notion of expectation values as it is introduced in PT -symmetric
as well as biorthogonal quantum mechanics and contrast this to what follows from a direct transfer
of the ideas from Hermitian quantum mechanics to PT -symmetric, non-Hermitian systems. The
former two approaches postulate a modified definition of the notion of observables. They fur-
thermore rely on a definition of “expectation values” evaluated in a modified scalar product—the
biorthogonal inner product (see Sect. 3.7)—, which, while formally appealing, leads to physically
questionable results. We illustrate this explicitly on the examples of the two-level model and the
resonant level model. On the other hand, the direct application of the approach to observables
and expectation values, as it is used in Hermitian quantum mechanics, does not suffer from these
problems. Its validity for PT -symmetric systems can be directly derived from the ancilla approach
and leads to physically reasonable results in all cases considered. In addition, it is this Hermitian
approach which is used for generic open quantum systems. We begin our argumentation with a
short recap of standard Hermitian quantum mechanics.
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4.1 Hermitian quantum mechanics

4.1 Hermitian quantum mechanics
In standard Hermitian quantum mechanics an observable is represented by a Hermitian operator
O [24]. Hermiticity ensures that its eigenvalues oν , with a multi-index ν, are real. The oν are the
possible outcomes of a measurement of the observable. Every state |ψ⟩ of the Hilbert space H1 can
furthermore be expanded in the orthonormal (right) eigenstates

∣∣ROν 〉 of O,2 which form a basis,

|ψ⟩ =
∑
ν

cOν
∣∣ROν 〉 , (4.1)

with cOν ∈ C. Here
∣∣cOν ∣∣2 is the relative probability to obtain oν when measuring O, if the quantum

system is prepared in the state |ψ⟩ [24]. Employing probability theory the (real) expectation value
of a repeated measurement of O in the state |ψ⟩ is given by

⟨O⟩|ψ⟩ =
∑
ν oν

∣∣cOν ∣∣2∑
ν |cOν |

2 . (4.2)

Using the spectral representation O =
∑
ν oν

∣∣ROν 〉 〈ROν ∣∣ of O and the expansion Eq. (4.1) the
probabilistic expression Eq. (4.2) for the expectation value can be rewritten as an expression of
linear algebra

⟨O⟩|ψ⟩ =
⟨ψ|O |ψ⟩
⟨ψ |ψ⟩

, (4.3)

involving the matrix element of O in the state |ψ⟩. If the latter is normalized to one, the denomi-
nator drops out.

4.2 PT -symmetric quantum mechanics
In Sect. 3.7 we discussed the biorthogonal inner product which is a defining element of PT -
symmetric quantum mechanics. We now present the concepts of an observable and that of the
“expectation value” of an observable as they are introduced within this framework [9].

Given a general biorthonormal basis {|rν⟩ , |lν⟩}, we can express any linear operator O as

O = 1O1 =
∑
ν,µ

|rν⟩ ⟨lν |O |rµ⟩ ⟨lµ| =
∑
ν,µ

Oν,µ |rν⟩ ⟨lµ| , (4.4)

where, in the last step, we defined the matrix element Oν,µ = ⟨lν |O |rµ⟩. Note that this left-right-
matrix element provides a proper matrix representation of O in the given biorthonormal basis in
the following sense. If one has two linear operators O(1) and O(2) the matrix representation of the
product of the two is given by the standard matrix multiplication

∑
κO

(1)
ν,κO

(2)
κ,µ. This would not

be the case, if we would express O in terms of the non-orthogonal basis {|rν⟩} [23].
If we take a ηr-pseudo-Hermitian H, e.g. a PT -symmetric H in its symmetry unbroken phase,

and the corresponding biorthonormal basis of eigenstates, using Eq. (2.10), we can write for the
left-right matrix element of a linear operator O in the eigenstates of this H

Oν,µ = ⟨Lν |O |Rµ⟩ = ⟨Rν | ηrO |Rµ⟩ . (4.5)

For this reason we also refer to Oν,µ as the biorthogonal matrix element; it involves the biorthogonal
inner product.

Let us now assume that O is ηr-pseudo-Hermitian ηrO = O†ηr, ηr = η†r , i.e., it is pseudo-
Hermitian with the same Hermitian η-operator as H. Note that this is a severe constraint on the
operator O, as it ties O to H. With this we get

Oν,µ = ⟨Rν | ηrO |Rµ⟩ = ⟨Rν |O†ηr |Rµ⟩ = ⟨Rµ| ηrO |Rν⟩∗ = O∗
µ,ν (4.6)

and Oν,µ is a Hermitian matrix. Taking into account that {|Rν⟩} forms a basis this also holds the
other way around: If Oν,µ is a Hermitian matrix in the biorthonormal basis of eigenstates of H, O
is ηr-pseudo-Hermitian.

1We here drop the index s introduced in Sect. 3.
2As O is Hermitian, right and left eigenstates are identical. We still stick to the notation introduced earlier.
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4.2 PT -symmetric quantum mechanics

We are now in a position to introduce what is considered to be an observable within PT -
symmetric quantum mechanics (PT -symmetric observable) [9]. Given a ηr-pseudo-Hermitian
Hamiltonian H, a linear operator O is denoted as an observable if it is ηr-pseudo-Hermitian as
well. This ensures that its eigenvalues oν are real and that its biorthogonal, diagonal matrix ele-
ment ⟨ψ| ηrO |ψ⟩, in an arbitrary state |ψ⟩ is real [9, 23]. To show oν ∈ R, consider the eigenvalue
equation O

∣∣ROν 〉 = oν
∣∣ROν 〉,1 and apply

〈
ROν
∣∣ ηr from the left

oν =
〈
ROν
∣∣ ηrO ∣∣ROν 〉 = 〈ROν ∣∣O†ηr

∣∣ROν 〉 = 〈ROν ∣∣ ηrO ∣∣ROν 〉∗ = o∗ν , (4.7)

where we used the ηr-pseudo-Hermiticty of O and, without loss of generality, assumed that
∣∣ROν 〉

is normalized to one according to the biorthogonal inner product
〈
ROν
∣∣ ηr ∣∣ROν 〉 = 1. To prove

⟨ψ| ηrO |ψ⟩ ∈ R for an arbitrary |ψ⟩, we also employ the assumed ηr-pseudo-Hermiticity of O

⟨ψ| ηrO |ψ⟩ = ⟨ψ|O†ηr |ψ⟩ = ⟨ψ| ηrO |ψ⟩∗ . (4.8)

This suggests to postulate the PT -symmetric “expectation value” of a PT -symmetric observable
in a state |ψ⟩ to be

⟨O⟩PT
|ψ⟩ =

⟨ψ| ηrO |ψ⟩
⟨ψ| ηr |ψ⟩

∈ R. (4.9)

It is (formally) appealing, that Eq. (4.9) has the same form as the algebraic expression of an expec-
tation value in Hermitian quantum mechanics Eq. (4.3), with the standard inner product replaced
by the biorthogonal one. In that sense Eq. (4.9) is a matrix element within the biorthogonal Hilbert
space H̃.

This definition of an observable has obvious weaknesses if compared to the concept of an ob-
servable in standard Hermitian quantum mechanics. Firstly, in PT -symmetric quantum mechanics
what is considered to be an observable depends on ηr and thus on the Hamiltonian. On general
grounds, one might wonder, if this is reasonable, in particular, if one thinks of experimentally ac-
cessible systems. As we will exemplify below, it certainly has consequences which appear to be odd.
The concept of an observable is, secondly, restricted to the case of a ηr-pseudo-Hermitian Hamil-
tonian, e.g., a PT -symmetric H in its symmetry unbroken phase. The PT -symmetric observable
ceases to exists if one crosses the PT -transition, which can be achieved by varying model parame-
ters, that might be directly accessible in experiments. This notion seems highly questionable. One
might, thirdly, wonder, how this definition matches the concept of an observable as it is used for
general open quantum systems with non-Hermitian Hamiltonians which are not PT -symmetric.
In this case an observable of the system would simply be a Hermitian operator which only contains
system degrees of freedom [13, 14]. It seems odd to use an alternative definition of obervables
for PT -symmetric systems, which simply represent a subclass of open quantum systems. Let us
emphasize that denoting a ηr-pseudo-Hermitian operator an observable, is semantics not physics.
The ultimate question is, if the concept of a PT -symmetric observable O is of physical and not only
of mathematical relevance. An observable should, in particular, be measurable in experiments.

There is a reason, why we put the expression “expectation value” above Eq. (4.9) into quotation
marks. To reveal this, we ask if this equation has a proper probabilistic interpretation. Let us
assume that the right eigenstates of O,

{∣∣ROν 〉} constitute a (non-orthonormal) basis. In this case
Eq. (4.1) holds for any |ψ⟩. Using this and the definition of ηr Eq. (2.4), Eq. (4.9) can be rewritten
as

⟨O⟩PT
|ψ⟩ =

∑
ν,µ,κ oµ

(
cOν
)∗
cOµ
〈
ROν |Lκ⟩ ⟨Lκ

∣∣ROµ 〉∑
ν,µ,κ (c

O
ν )

∗
cOµ ⟨ROν |Lκ⟩ ⟨Lκ

∣∣ROµ 〉 . (4.10)

This reduces to Eq. (4.2) only if either the right eigenvectors of O are identical to those of H, i.e.,
if a common system of right eigenvectors of O and H exists,—the trivial option would be that
O = H—or if ηr = 1, i.e., if H and O are Hermitian. For all other cases, the algebraic definition of
a PT -symmetric “expectation value” does not have a straightforward probabilistic interpretation.
Once again, one can dismiss this as semantics, but one cannot deny the danger of confusion which
might occur if an “expectation value” does not have an obvious probabilistic interpretation. The

1As in the last subsection the right eigenstates of a linear operator O are denoted as
∣∣RO

ν

〉
. If O is non-

Hermitian the right and left eigenvectors are no longer the same. If O = H we drop the superscript O and recover
our established notation for the right eigenvectors of H.
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4.3 The position and the occupancy of the two-level model

crucial question might, however, be, if the PT -symmetric “expectation value” of the PT -symmetric
observable O is the outcome of a repeated measurement of O in the state |ψ⟩.

We want to elaborate on the PT -symmetric energy “expectation value” in detail. Using the
expansion of the arbitrary state |ψ⟩ =

∑
ν cν |Rν⟩ in the right eigenstates of H and the biorthonor-

mality of the {|Rν⟩ , |Lν⟩} we obtain

⟨H⟩PT
|ψ⟩ =

⟨ψ| ηrH |ψ⟩
⟨ψ| ηr |ψ⟩

=

∑
ν Eν |cν |

2∑
µ |cµ|

2 , (4.11)

i.e., a probabilistic expectation value as in Eq. (4.2). For the PT -symmetric energy expectation
value we can thus drop the quotation marks. To put it differently, if one requires that a non-
Hermitian, but pseudo-Hermitian Hamiltonian H with an entirely real spectrum is an observable,
then Eq. (4.11) is a reasonable definition of its (real) expectation value in the arbitrary state |ψ⟩.
We will return to this in Sect. 4.5.

4.3 The position and the occupancy of the two-level model
The definition of a PT -symmetric observable as an operator which is ηr-pseudo-Hermitian has
serious consequences. Let us illustrate this in our two-level toy model Eq. (2.12). Within standard
Hermitian quantum mechanics the position operator on the two-site lattice is given by the Her-
mitian Pauli matrix σz. The two possible outcomes of a position measurement are +1, meaning
that the particle was found on the left site, and −1, for the particle being on the right. To check
whether σz is also a valid observable within PT -symmetric quantum mechanics we compute√

1− z2ηrσz
.
=

(
1 −izeiϕ

ize−iϕ 1

)(
1 0
0 −1

)
=

(
1 izeiϕ

ize−iϕ −1

)
(4.12)

and √
1− z2σ†

zηr
.
=

(
1 0
0 −1

)(
1 −izeiϕ

ize−iϕ 1

)
=

(
1 −izeiϕ

−ize−iϕ −1

)
. (4.13)

As ηrσz ̸= σ†
zηr, for z ̸= 0, σz is not ηr-pseudo-Hermitian and thus not an observable in the sense

of PT -symmetric quantum mechanics; to put it differently, what one would like to call the position
operator is not an observable.

The same holds for the continuum model with Hamiltonian H = (p̂2 + x̂2)/2 + igx̂3 [see
Eq. (1.9)]. In this the position operator x̂ is not an observable in the sense of PT -symmetric
quantum mechanics [9,59]. Bender argues that there is no fundamental problem with the absence
of a position operator in PT -symmetric quantum mechanics; see Sect. 3.4 of [9]. Relating to the
continuum model Eq. (1.9) (and similar ones), an analogy to relativistic quantum field theory
is drawn. In this the notion of a position operator is only meaningful in the non-relativistic
limit which, in our context, would correspond to the Hermitian limit. However, we have severe
difficulties to accept this as a reason to deny the existence of a position operator and, for that
matter, a position measurement, in our toy model of a particle hopping between two lattice sites.

Another Hermitian operator in our two-level problem, which one would intuitively associate to
a measurement, is

d̂L = |↑⟩ ⟨↑| .=
(

1 0
0 0

)
. (4.14)

It represents the occupancy of the left lattice site and has eigenvalues 1 (occupied) and 0 (unoc-
cupied). A simple calculation similar to that of Eqs. (4.12) and (4.13) shows that also d̂L is not
ηr-pseudo-Hermitian. One would thus conclude that it cannot be measured. In Sect. 4.9 we will
discuss that the occupancy of the left lattice site, was, however, measured in experiments [17, 20].
One cannot reconcile this within PT -symmetric quantum mechanics. The application of the con-
ventional ideas of an observable and expectation value from Hermitian quantum mechanics will
provide a way out of this dilemma; see Sects. 4.5 and 4.9.

As we are at a crucial stage of the development of a methodology to treat non-Hermitian and
pseudo-Hermitian quantum many-body systems let us summarize what is accomplished within
the formalism of PT -symmetric quantum mechanics. The above postulates of a PT -symmetric
observable and of a PT -symmetric “expectation value” fulfill the mandatory requirements that the
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4.4 Biorthogonal quantum mechanics

eigenvalues of observables and the “expectation value” are real. They have two more advantages.
Firstly, in this framework the non-Hermitian but ηr-pseudo-Hermitian Hamiltonian H is a valid
observable and the expression for the energy expectation value has a probabilistic interpretation.
Secondly, for all observables a formal equivalence to the algebraic expression for the expectation
value known from Hermitian quantum mechanics is achieved, if the standard inner product is
replaced by the biorthogonal one. This leads to a consistent formalism within the biorthogonal
Hilbert space H̃. As we will discuss in Sect. 6 PT -symmetric quantum mechanics can be extended
to quantum field theory allowing to use standard concepts such as generating functionals, path
integrals, Green and vertex functions, diagrammatic perturbation theory etc. [9,59,71,72]. For these
reasons the above definitions are used in mathematical physics [9,23] and non-Hermitian quantum
field theory [9,71–75]. They have also been adopted by parts of the condensed matter community to
study quantum many-body systems [76–84] and non-Hermitian topological systems [10,11,85,86].1

However, the above postulates of a PT -symmetric observable and of a PT -symmetric “expec-
tation value” have limiting weaknesses which cannot be ignored. On the one hand, this concerns
general issues, such as the restriction to systems with ηr-pseudo-Hermitian Hamiltonians, the link-
age of the concept of an observable to the Hamiltonian, and the lack of a probabilistic interpretation
of the algebraic expression which is considered to be the “expectation value”. The first, e.g., implies
that one cannot investigate the behavior of the “expectation value” of an observable across a PT
transition; it is simply not defined in the symmetry broken phase. There, furthermore, appears
a discontinuity in the definition and evaluation of observables, when comparing general open sys-
tem formalisms with PT -symmetric quantum mechanics. On the other, hand specific problems
occur, such as in the above examples, in which operators which we intuitively consider to be the
observable for the position of a quantum particle or the occupancy of a level turn out not to be an
observable in the PT -symmetric sense.

All of this are formal (and in parts even aesthetic) considerations. The ultimate question
is, if PT -symmetric observables and PT -symmetric “expectation values” can be measured. This
does not seem to be the case. We are not aware of a single work in which a PT -symmetric
observable (besides the energy) was measured or in which a potential way how to measure such
was described [81]. From the perspective of physics the formalism of PT -symmetric quantum
mechanics does not appear to be the first choice however beautiful it may seem mathematically.
After extending our analysis to the slightly different definitions of biorthogonal observables and
biorthogonal “expectation values” [23] in the next subsection, in Sect. 4.5 we discuss that applying
the definitions of observables and expectation values of standard Hermitian quantum mechanics to
non-Hermitian systems does not lead to any of the above problems and is further more consistent
with the broader range of open system formalism.

4.4 Biorthogonal quantum mechanics
Although PT -symmetric quantum mechanics and biorthogonal quantum mechanics have a common
ground [9,23] the definition of the concepts of observables and “expectation values” differ slightly.
In biorthogonal quantum mechanics, instead of referring to the biorthonormal basis of eigenstates
of a given H, one considers a general biorthonormal basis {|rν⟩ , |lν⟩} and the corresponding metric
operator ĝ Eq. (2.9). The biorthogonal matrix representation of an operator O is then given by
Eq. (4.4). One now denotes an operator O as a biorthogonal observable if Oν,µ, represented in
some biorthogonal basis, is Hermitian. This ensures that the biorthogonal “expectation values”

⟨O⟩bo|ψ⟩ =
⟨ψ| ĝO |ψ⟩
⟨ψ| ĝ |ψ⟩

(4.15)

is real for all states |ψ⟩. If |ψ⟩ is an eigenstate of O this also implies that the eigenvalues of O
are real. The minimal requirements for an observable and an “expectation value” are thus fulfilled.
As in PT -symmetric quantum mechanics this “expectation value” does not have a probabilistic
interpretation (up to the exceptional case that the {|rν⟩} are eigenvectors of O [23]) such that the
quotation marks are justified here as well.

In biorthogonal quantum mechanics the selected metric operator affects what is denoted as an
observable. It might turn out that a certain operator is an observable for one fixed biorthogonal
basis but not for another one. This is equally troubling as the dependence of the concept of an

1Another important work on non-Hermitian topological systems is [87]. In this, the term non-Hermitian skin
effect was coined and the non-Hermitian bulk-boundary correspondence was investigated.
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4.5 Non-Hermitian quantum systems

observable on the Hamiltonian in PT -symmetric quantum mechanics. The formalism does not pro-
vide an answer which of the possibly many biorthogonal basis sets to select. On physical grounds,
there appears to be only one which is distinguished. This is the set of eigenvectors of a given
non-Hermitian Hamiltonian. With this one recovers the definitions of PT -symmetric quantum
mechanics (at least in the phase of real eigenvalues of H; see below) and all the criticism raised in
the last subsection applies. It is, in addition, not obvious how the definition of biorthogonal quan-
tum mechanics matches the one used for open systems with general non-Hermitian Hamiltonians
(see the last subsection). The only advantage as compared to the PT -symmetric observable is,
that the definition is not bound to the phase in which the eigenvalues of a given Hamiltonian are
entirely real. The biorthogonal basis exists in both phases such that one can follow an “expectation
value” across the phase transition.

To summarize, the definitions of a biorthogonal observable and a biorthogonal “expectation
value” have their mathematical justification but their usefulness is restricted to the analysis of
spectral properties.

4.5 Non-Hermitian quantum systems
As the basis of another definition of the concepts of observables and expectation values for non-
Hermitian quantum systems, three properties from Hermitian quantum mechanics can be adopted:

1. An observable O is independent of the Hamiltonian H and the selected basis.

2. The real eigenvalues oν of O are the possible outcomes of a measurement of the observable
O.

3. The expectation value of O in an arbitrary state is real and has a probabilistic interpretation.

All this can be achieved if we simply take an observable O to be a Hermitian operator. This implies
that its eigenvalues oν are real and that the right eigenstates

{∣∣ROν 〉} form an orthonormal basis
right away. An arbitrary state can be expanded in these; see Eq. (4.1). With this, the appropriate
probabilistic expression for the real expectation value is Eq. (4.2), which can be rewritten in
algebraic form as

⟨O⟩|ψ⟩ =
⟨ψ|O |ψ⟩
⟨ψ |ψ⟩

. (4.16)

We thus do not use the biorthogonal inner product to define the expectation value but rather the
standard one. We refer to these definitions as Hermitian observables and Hermitian expectation
values.

The definition of a Hermitian observable implies that the non-Hermitian Hamiltonian H is not
an observable, even if it has an entirely real spectrum. As H describes the dynamics of an open
quantum system, this does not seem to be utterly surprising. We believe that this restriction is less
severe than the shortcomings of the postulates of PT -symmetric and biorthogonal observables and
“expectation values” discussed in the last two subsection. It can, furthermore, be overcome. If one
considers a ηr-pseudo-Hermitian Hamiltonian with real spectrum, for the definition of an energy
expectation value Eq. (4.11) can be used, which has a probabilistic interpretation. A matrix element
of this type appears in the computation of the ground state energy in perturbation theory. There,
the leading order correction to the energy is given by the biorthogonal matrix element of the part of
the Hamiltonian, that is considered as the perturbation [88].1 Equation (4.11) can also be employed
for other non-Hermitian operators O with entirely real spectra and a complete biorthonormal set{∣∣ROν 〉 , ∣∣LOν 〉} of eigenvectors by replacing H → O and ηr → ηOr =

∑
ν

∣∣LOν 〉 〈LOν ∣∣. Note that the
use of the operator ηOr specific to O prevents the linking of H and the observable O. If desired,
this opens a path towards observables which are represented by non-Hermitian operators with real
eigenvalues. However, in the following we focus on Hermitian observables.

As emphasized above some authors from the quantum many-body community use the postu-
lates for observables and “expectation values” of PT -symmetric and biorthogonal quantum me-
chanics [76,77,80,82,83,86]. However, others employ the alternative ones described in the present
subsection [49, 56, 58, 89–93]. Some even present results for expectation values of observables ob-
tained by both definitions in a single paper [78,79,81,84,94]. One of the central goals of this review

1This was employed to show that the ground state energy in a non-Hermitian system can strongly depend on
the boundary conditions [88]. The authors suggested to use this effect in a highly sensitive sensor.
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4.6 Time dependence and the Heisenberg picture

is to contribute to a resolution of this conflict. We do so by showing that the postulates directly
adopted from Hermitian quantum mechanics are more reasonable on general grounds and give
physically sensible results in all our examples. Furthermore, they are consistent with established
open system formalism.

4.6 Time dependence and the Heisenberg picture
We next discuss the difference between time-dependent expectation values in PT -symmetric quan-
tum mechanics and employing the postulates adopted from Hermitian quantum mechanics. Note
that in the former case the non-Hermitian Hamiltonian H must be ηr-pseudo-Hermitian while in
the latter, H can be arbitrary.

We start out with the perspective of PT -symmetric quantum mechanics. Let us assume that
O is a PT -symmetric observable. The “expectation value” of O in the state |ψ(t)⟩ time-evolved
according the Schrödinger equation with a time-independent Hamiltonian is

⟨O⟩PT
|ψ(t)⟩ =

⟨ψ(t)| ηrO |ψ(t)⟩
⟨ψ(t)| ηr |ψ(t)⟩

=
⟨ψ(0)| eiH†tηrOe

−iHt |ψ(0)⟩
⟨ψ(0)| ηr |ψ(0)⟩

=
⟨ψ(0)| ηreiHtOe−iHt |ψ(0)⟩

⟨ψ(0)| ηr |ψ(0)⟩

=
⟨ψ(0)| ηrOH(t) |ψ(0)⟩

⟨ψ(0)| ηr |ψ(0)⟩
= ⟨OH(t)⟩PT

|ψ(0)⟩ . (4.17)

In the first line, we employed the effective unitarity of the time evolution when using the biorthog-
onal inner product Eq. (3.39) and in the second, the ηr-pseudo-Hermiticity relation Eq. (2.7). In
the third line, the observable in the Heisenberg picture OH(t) is introduced. It is defined as in
Hermitian quantum mechanics

OH(t) = eiHtOe−iHt. (4.18)

Note that the non-Hermiticity of H is not apparent from Eq. (4.18). Without loss of generality
we can assume that |ψ(0)⟩ is normalized to one according to the biorthogonal inner product. In
this case the denominator in Eq. (4.17) can be dropped. That the Heisenberg picture can be
employed is another formally appealing feature of the postulates of a PT -symmetric observable
and of a PT -symmetric “expectation value”. With this, the Heisenberg equation of motions for the
observable and the Ehrenfest theorem for its “expectation value” hold as in Hermitian quantum
mechanics [24]. This further extends the mathematical analogy between PT -symmetric quantum
mechanics for a ηr-pseudo-Hermitian H and the formalism of standard quantum mechanics.

Within the framework taken from Hermitian quantum mechanics the expression for the time-
dependent expectation value turns out to be mathematically less appealing. We obtain

⟨O⟩|ψ(t)⟩ =
⟨ψ(t)|O |ψ(t)⟩
⟨ψ(t) |ψ(t)⟩

=
⟨ψ(0)| eiH†tOe−iHt |ψ(0)⟩
⟨ψ(0)| eiH†te−iHt |ψ(0)⟩

. (4.19)

No conventional Heisenberg picture can be employed [95]1 and, even worse, the denominator never
drops out. Even if we assume that the initial state |ψ(0)⟩ is normalized to one according to the
standard inner product, due to the non-unitarity of the time evolution, the denominator is a non-
trivial function of t and cannot be dropped. This will turn out to be one of the main challenges
when it comes to the explicit computation of expectation values (and correlation functions) of
quantum many-body systems. Needless to say, we cannot discard this methodology based on the
lack of formal beauty or the abundance of technical challenges. What matters is the physical
sensibility of an approach.

4.7 The ancilla approach
In this subsection we show, that the concepts of Hermitian observables and Hermitian expectation
values of Sect. 4.5, naturally fit into the framework of the ancilla approach which can be used
to embed non-Hermitian systems into Hermitian ones; see Sect. 3. In fact, the ancilla approach
enforces a definition of observables according to the Hermitian postulates.

1Note that in [95] the definition of the operator expectation value lacks the denominator of Eq. (4.19).
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4.8 Employing the isospectral Hamiltonian

To study the physics of a non-Hermitian system with Hamiltonian Hs we determine the Hermi-
tian Hsa and the linear operator g as described in Sect. 3. This might be difficult in practice, given
a non-Hermitian (maybe even time-dependent) Hs, but it is formally always possible. We start in
the initial state Eq. (3.7) and time evolve this up to time t, applying the unitary time evolution
operator Usa associated to Hsa. At that time we perform the measurement on the ancilla spin.
Right after the measurement we are in the state

∣∣ψ↑
sa(t)

〉
. This is, by construction, normalized to

one with respect to the standard inner product on Hsa. We now perform a measurement of the
observable associated to the operator 1a ⊗O acting on Hsa in the state

∣∣ψ↑
sa(t)

〉
. This operator is

Hermitian as long as O is a Hermitian operator on Hs, which we assume to be the case. As the
Hamiltonian Hsa is Hermitian by construction we are not tempted to employ any other formalism
than the one of standard quantum mechanics to compute the operator expectation value

⟨1a ⊗O⟩|ψ↑
sa(t)⟩ =

〈
ψ↑
sa(t)

∣∣1a ⊗O
∣∣ψ↑

sa(t)
〉

=
⟨ψs(t)|O |ψs(t)⟩
⟨ψs(t) |ψs(t)⟩

= ⟨O⟩|ψs(t)⟩ , (4.20)

where we used Eqs. (3.4) and (3.5). Note that the inner products in the second line are standard
ones on Hs. The second line is directly obtained if one does not extend the non-Hermitian system
to a Hermitian one and uses the formalism put forward in Sect. 4.5. The corresponding state
is |ψs(t)⟩, time-evolved out of the initial one |ψs(0)⟩ employing the non-unitary time evolution
operator Us, associated to Hs, and the observable is represented by the Hermitian operator O.

4.8 Employing the isospectral Hamiltonian
Theorem TPT

2 states that for every PT -symmetric Hamiltonian H with unbroken PT symmetry,
i.e., if H has an entirely real spectrum, there exists a Hermitian Hamiltonian h, which is isospectral
to H and is related to this by a similarity transformation: h = SHS−1. We have clarified that
S = η

1/2
r . In the special cases, in which h and η1/2r are known explicitly, see, e.g., Sect. 2.3.1, one

can also use this theorem to compute expectation values. Depending on which set of postulates
for the concept of an observable and that of the expectation value is used, this leads to different
expressions.

Let us start out with the Hermitian postulates of Sect. 4.5. In this case O is Hermitian and we
obtain

⟨O⟩|ψ(t)⟩ =
⟨ψ(t)|O |ψ(t)⟩
⟨ψ(t) |ψ(t)⟩

=
⟨ψ(0)| eiH†tOe−iHt |ψ(0)⟩
⟨ψ(0)| eiH†te−iHt |ψ(0)⟩

(4.21)

=
⟨ψ(0)| η1/2r eihtη

−1/2
r Oη

−1/2
r e−ihtη

1/2
r |ψ(0)⟩

⟨ψ(0)| η1/2r eihtη−1
r e−ihtη

1/2
r |ψ(0)⟩

.

This shows that using the isospectral, Hermitian Hamiltonian does neither simplify the formal
structure of the expectation value of an observable in a time-dependent state nor can one expect
that it simplifies its computation.

If O, in contrast, is an observable in the sense of PT -symmetric quantum mechanics and we
use the corresponding “expectation value” (see Sect. 4.2) we obtain

⟨O⟩PT
|ψ(t)⟩ =

⟨ψ(t)| ηrO |ψ(t)⟩
⟨ψ(t)| ηr |ψ(t)⟩

=
⟨ψ(0)| eiH†tηrOe

−iHt |ψ(0)⟩
⟨ψ(0)| ηr |ψ(0)⟩

=
⟨ψ(0)| η1/2r eihtη

1/2
r Oη

−1/2
r e−ihtη

1/2
r |ψ(0)⟩

⟨ψ(0)| ηr |ψ(0)⟩
. (4.22)

With O being ηr-pseudo-Hermitian, Õ = η
1/2
r Oη

−1/2
r , appearing in the numerator, is a Hermitian

operator and thus an observable in the Hermitian sense[
η1/2r Oη−1/2

r

]†
=η−1/2

r O†η1/2r =η−1/2
r O†ηrη

−1/2
r =η−1/2

r ηrOη
−1/2
r =η1/2r Oη−1/2

r , (4.23)

where we used the pseudo-Hermiticity relation Eq. (2.7) for O. Written in terms of the Hermitian
operator Õ, Eq. (4.22) simplifies to

⟨O⟩PT
|ψ(t)⟩ =

⟨ψ(0)| η1/2r eihtÕe−ihtη
1/2
r |ψ(0)⟩

⟨ψ(0)| ηr |ψ(0)⟩
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4.9 The occupancy in the non-Hermitian two-level problem

=
⟨φ(0)| eihtÕe−iht |φ(0)⟩

⟨φ(0) |φ(0)⟩
, (4.24)

with |φ(0)⟩ = η
1/2
r |ψ(0)⟩. All the operators appearing on the right hand side are Hermitian and

the time evolution is unitary. The formal structure is simple.
In fact, given a PT -symmetric observable OPT a corresponding Hermitian one Oherm can always

be defined as
Oherm = η1/2r OPT η

−1/2
r (4.25)

and vice versa
OPT = η−1/2

r Ohermη
1/2
r . (4.26)

Consider for example our 2 × 2-matrix Hamiltonian Eq. (2.12). As discussed in Sect. 4.3, we
intuitively would like to interpret the Hermitian operator σz as the observable for the position.
However, it is not ηr-pseudo-Hermitian and thus not an observable in the biorthogonal sense.
Within PT -symmetric quantum mechanics one could now take η−1/2

r σzη
1/2
r instead, which is ηr-

pseudo-Hermitian and thus a valid observable in this framework. However, the physical meaning
of this operator is far from obvious. A reasoning similar to this plays an important role when
setting up functional integrals for PT -symmetric and pseudo-Hermitian systems [59,71,72,74,75].
We will return to this in Sect. 6.

4.9 The occupancy in the non-Hermitian two-level problem
We now return to our non-Hermitian toy problem of a two-site lattice system occupied by a single
particle. It was introduced in Sect. 2.3.1. As discussed in Sect. 4.3, on physical grounds we consider
d̂L = |↑⟩ ⟨↑| to be the Hermitian operator which represents the occupancy of the left lattice site.
Initially the particle is assumed to be localized on this site, associated to the eigenvalue +1 of d̂L.
We thus start in the state |ψ(0)⟩ = |↑⟩.

We first consider the regime of unbroken PT symmetry with |z| < 1. The time-evolved state
|ψ(t)⟩ under the action of the non-unitary time evolution operator e−iHt was computed in Sect. 3.4
and is given in Eq. (3.25). To obtain the Hermitian expectation value〈

d̂L

〉
|ψ(t)⟩

=
⟨ψ(t)|↑⟩ ⟨↑|ψ(t)⟩
⟨ψ(t) |ψ(t)⟩

(4.27)

we still need to compute the numerator. The denominator is given in Eq. (3.27). In a straightfor-
ward computation using the results of Sects. 2.3.1 and 3.4 we obtain〈

d̂L

〉
|ψ(t)⟩

=
1
2 [1 + cos (ωzst)]− z2 cos (ωzst) + z

√
1− z2 sin (ωzst)

1− z2 cos (ωzst) + z
√
1− z2 sin (ωzst)

. (4.28)

This is a periodic function with a (dimensionless) z-dependent frequency set by the difference of
the two eigenvalues ωz = (E+ −E−)/s = 2

√
1− z2. In the Hermitian case z = 0, this simplifies to〈

d̂L

〉
|ψ(t)⟩

z=0
=

1

2
[1 + cos (2st)] , (4.29)

which is a manifestation of Rabi oscillations for two energetically degenerate, coupled levels. The
particle is oscillating back and forth between the left and the right lattice site in a simple, sinusoidal
form. Figure 6 shows

〈
d̂L

〉
|ψ(t)⟩

Eq. (4.28) as a function of t for different z, including the case

z = 0. For increasing z ∈ [0, 1) the oscillation becomes increasingly non-sinusoidal. This complex
line shape originates from the non-Hermiticity of the Hamiltonian, or, to put it in physical terms,
from the coupling of the hopping particle to an environment. However, the coupling is special as
it leads to an open system Hamiltonian which is PT -symmetric. As a consequence the oscillation
is undamped. Achieving this symmetry, and thus the undamped but non-sinusoidal oscillation re-
quires fine-tuning of the coupling which manifests in the special form of the Hamiltonian Eq. (2.12).
This is often phrased as a balance of gain and loss [3, 7–9].

As we are using the concepts of observables and expectation values from Hermitian quantum
mechanics we can also compute the expectation value

〈
d̂L

〉
|ψ(t)⟩

in the PT symmetry broken phase
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Figure 6: Occupancy of the left lattice site Eq. (4.28) in the PT -unbroken phase of the
two-level toy model for various |z| < 1. Starting from Rabi oscillations at z = 0 [see Eq. (4.29)] the
non-Hermiticity deforms the time evolution with increasing z, leading to a distinct non-sinusoidal
time dependence.
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Figure 7: Occupancy of the left lattice site Eq. (4.30) in the PT -broken phase of the
two-level toy model for various |z| > 1. Color matched dashed lines indicate the asymptotic limit
t→ ∞ [see Eq. (4.31)], which always remains different from 1/2 due to the balanced loss and gain
of the PT -symmetric system.

|z| > 1. We again start in the state with the particle located on the left lattice site. Using the results
for the eigenvalues and eigenvectors presented in Sect. 2.3.1 the calculation is straightforward and
we do not give any details here. We obtain〈

d̂L

〉
|ψ(t)⟩

=
eγzst

(
z2 + z

√
z2 − 1− 1

2

)
+ e−γzst

(
z2 − z

√
z2 − 1− 1

2

)
− 1

eγzst
(
z2 + z

√
z2 − 1

)
+ e−γzst

(
z2 − z

√
z2 − 1

)
− 2

. (4.30)

The expectation value decays monotonically from 1 to the asymptotic limit〈
d̂L

〉
|ψ(t)⟩

t→∞−→
z2 + z

√
z2 − 1− 1

2

z2 + z
√
z2 − 1

. (4.31)

The (dimensionless) rate is given by γz = 2
√
z2 − 1. The time-dependence is shown in Fig. 7 for

different z. Remarkably, and in contrast to the behavior of a open quantum system with generic
decoherence, the expectation value does not decay to 1/2 (for |z| > 1). In this sense the PT
symmetry also manifests in the dynamics of the symmetry broken phase.

The Hamiltonian Eq. (2.12) was realized in an experiment on a single nitrogen-vacancy center
in diamond [17]. The left and right lattice sites correspond to two energy levels of the nitrogen-
vacancy center. The setup is tunable such that it was possible to drive the system through the PT
transition. The occupancy of the energy level corresponding to |↑⟩ was measured as a function of
time. The data were compared to the theoretical results Eqs. (4.28) and (4.30). As shown in Fig. 8
excellent quantitative agreement was reached. In addition, this Hamiltonian was implemented on
a superconducting quantum processor [20].

Two important lessons can be learned from the preceding discussion:
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4.10 The dot occupancy in the PT -symmetric resonant level model

Figure 8: Time evolution of the occupancy of a level in a single nitrogen-vacancy
center in diamond, modeled by the PT -symmetric two-level model with Hamiltonian Eq. (2.12)
for ϕ = 0, θ = π/2, s = 1, implying z = r. Shown are measurements and theoretical results for
P0 =

〈
d̂L

〉
|ψ(t)⟩

[see Eqs. (4.28) and (4.30)] in the regime of unbroken (panels A, B) and broken

(panels C, D) PT -symmetry. Note the excellent agreement between the theoretical prediction and
the measurement in both regimes. From [17]. Reprinted with permission from AAAS.

1. The physics of non-Hermitian, PT -symmetric systems is unusual and interesting, even in
very simple setups such as our two-level toy problem.

2. Hermitian observables and expectation values, evaluated using Eq. (4.16), can be directly
measured in non-Hermitian systems. It is not evident how the concepts of an observable
and its “expectation value” from PT -symmetric or biorthogonal quantum mechanics might
be useful in the present context.

4.10 The dot occupancy in the PT -symmetric resonant level model
4.10.1 The single-particle case

In a first step we compute the occupancy of the dot site of the resonant level model in the single-
particle scattering and bound eigenstates discussed in Sect. 2.3.2 [57]. Avoiding second quantiza-
tion, we can write the corresponding operator as d̂ = |j = 0⟩ ⟨j = 0| = |0⟩ ⟨0|, with the Wannier
state |j⟩. It is obviously Hermitian and thus an observable in the conventional sense. However, d̂ is
also an observable in the PT -symmetric as well as in the biorthogonal sense, hence providing the
opportunity to directly compare the expectation values obtained within the different approaches.
To show that d̂ is an observable in the biorthogonal sense, we have to verify that there exists a
matrix representation of d̂ in some biorthonormal basis that is Hermitian (see Sect. 4.4), while
for d̂ to be an observable in the PT -symmetric sense we need the matrix representation of d̂ in
the biorthonormal eigenbasis of the Hamiltonian to be Hermitian (see Sect. 4.2). Remember that
the entire concept of a PT -symmetric observable is only defined if the spectrum is entirely real.
In the PT -symmetric resonant level model we are thus restricted to the regime of unbroken PT
symmetry γi < γr. In the present case it will turn out that the biorthogonal matrix representation
of d̂ is always Hermitian in the eigenstates of the Hamiltonian, also in the symmetry broken phase.

To investigate the Hermiticity of the matrix representation of d̂ we have to compute all matrix
elements of d̂ in the single-particle states determined in Sect. 2.3.2. As d̂ is a projector on the
dot site, all matrix elements involving the odd scattering solution

∣∣R−
k

〉
vanish; see Eq. (2.34).

Employing the results of Sect. 2.3.2 it is straight forward to show that
〈
L+
k

∣∣ d̂ ∣∣R+
k′
〉

is real and
symmetric (k ↔ k′). This proves that the biorthogonal matrix representation of d̂ in these states
is Hermitian. Considering the single-particle bound states with real energy one can furthermore
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show that

⟨Lr
λ| d̂

∣∣R+
k

〉
=
〈
L+
k

∣∣ d̂ |Rr
λ⟩ ∈ R,

⟨Lr
λ| d̂ |Rr

λ′⟩ = ⟨Lr
λ′ | d̂ |Rr

λ⟩ ∈ R. (4.32)

The same holds for the bound states with imaginary energy, i.e., for r → i. This finalizes our
argumentation showing that the matrix representation of d̂ in the biorthonormal basis of eigenstates
is Hermitian and d̂ is a

1. PT -symmetric observable for γi < γr,

2. a biorthogonal observable for all parameter regimes, and

3. a Hermitian observable for all parameter regimes.

In the symmetry unbroken regime the PT -symmetric and the biorthogonal “expectation values”
of course agree. It is meaningful to compute expectation values of d̂ both within Hermitian and
biorthogonal quantum mechanics, a situation we did not encounter in the two-level model.

We thus compute the expectation values of d̂ in one of the scattering eigenstates
∣∣R+

k

〉
according

to Eqs. (4.16) and (4.15), respectively. We start out with the latter

〈
d̂
〉bo
|R+

k ⟩
=

〈
L+
k

∣∣ d̂ ∣∣R+
k

〉〈
L+
k

∣∣R+
k

〉 =
2Γ̃2 cos2 (k [1− δ+])

E2
k

[
1
2 + N

4 + 2Γ̃(J2−Γ̃)
∆+(k)

] , (4.33)

where we used the biorthonormalization of the scattering states. Note that this “expectation value”
vanishes as 1/N in the thermodynamic limit. This is reasonable as, in this limit, a single scattering
state does have a vanishing weight on every lattice site including the dot site. Using the results of
Sect. 2.3.2 we obtain for the Hermitian expectation value

〈
d̂
〉
|R+

k ⟩
=

〈
R+
k

∣∣ d̂ ∣∣R+
k

〉〈
R+
k

∣∣R+
k

〉 =

〈
L+
k

∣∣ d̂ ∣∣R+
k

〉〈
R+
k

∣∣R+
k

〉 . (4.34)

The numerator agrees with Eq. (4.33), while in the non-Hermitian case γi ̸= 0 the denominator is
not unity so that the two results Eqs. (4.33) and (4.34) differ. The expression for the denominator
is lengthy and not of particular interest, but simplifies in the thermodynamic limit to

〈
R+
k

∣∣R+
k

〉 N→∞−→ |γ|2

Γ̃

γi=0
= 1. (4.35)

We also find differences in the two expressions for the expectation value of d̂ in the bound states.
In the case of a single particle in the system and based on the above results for the dot occupancy

in a scattering state we find it difficult to argue that the Hermitian expectation value is physically
more reasonable than the biorthogonal “expectation value”, in particular, as both vanish in the
thermodynamic limit. However, this changes if we consider the many-body case with M fermions
occupying the, in total, N + 1 lattice sites [57]. That is the first time in this review that we
explicitly consider a quantum many-body problem.

4.10.2 The many-body case

We tackle the many-body problem numerically, since an analytic evaluation of expectation values of
the form ⟨ψ| d̂ |ψ⟩ is difficult (see Appendix B and [57]). Here |ψ⟩ denotes a many-body eigenstate
of the Hamiltonian, that is constructed as a M body Slater-determinant of the single-particle
eigenstates of the problem, just as in Hermitian quantum many-body theory [5]. We use exact
diagonalization to determine all single-particle states for a fixed number of lattice sites N + 1
(see Appendix B). As it is common in quantum many-body theory we consider large system sizes,
ideally the thermodynamic limit N → ∞, with the filling M/(N + 1) being fixed. We focus on
half-filling (in the thermodynamic limit) of the entire system. Parametrizing the tunnel coupling
as γ = |γ|eiϕ, we can vary the angle ϕ ∈ [0, π) to analyze the system both in the broken and
unbroken phase. For ϕ < π/4 all eigenvalues are real, while for ϕ > π/4, a pair of bound states
with purely imaginary energy Eq. (2.41) emerges.
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Figure 9: The dot occupancy of the resonant level model in a many-body eigenstate of
the Hamiltonian Eq. (2.27) for |γ| = 0.2 and N = 2018 as a function of ϕ with γ = |γ|eiϕ. For
ϕ > π/4 two single-particle bound states with complex energy appear. The red and blue data in the
main panels are obtained taking the biorthogonal or conventional Hermitian expectation values,
respectively. (a) The occupancy of the dot if both complex energy bound states are occupied
n+ = n− = 1 and (b) unoccupied n+ = n− = 0. The inset shows the expectation value ⟨d̂⟩
evaluated with the energy level at vanishing energy occupied and unoccupied. For more on this,
see the main text. The main panels show the average of these two curves (speed-up of convergence
to the thermodynamic limit).

More specifically, we would like to evaluate the occupancy of the dot level in a many-body
state which one can reasonably regard as the ground state of the system. In the case that all
eigenvalues are real, i.e., for ϕ < π/4, it is clear how to construct this state [57]. We simply fill up
all the scattering and real-energy bound states (if they appear) with negative eigenenergies. The
corresponding single-particle right eigenstates are the entries of the Slater-determinant. Details of
the numerics are presented in Appendix B. For a large but finite system with N = 2018 sites this
leads to the lower branch shown in the inset of Fig. Fig. 9(b) for the dot occupancy

〈
d̂
〉
. The

deviation of this curve from 1/2 decreases for increasing N (finite size corrections; not shown). We
observe numerically that the system hosts a scattering state with energy Eν = 0. If this state is, in
addition, occupied in the Slater-determinant we obtain the upper branch of the inset of Fig. 9(b).1
In the thermodynamic limit, it must be irrelevant whether this zero energy state is occupied or not,
since it only has a contribution of measure 0. To speed up the convergence to the thermodynamic
limit, we hence average the two dot occupancies. This procedure follows naturally when starting
from a grand canonical ensemble and considering the case β → ∞ for chemical potential µ = 0,
which would lead to an occupancy of 1/2 for a single-particle state with vanishing energy. This
averaging is performed in the main panels of Fig. 9. As expected, in the thermodynamic limit the
dot occupancy in the many-body ground state with half-filling is 1/2 (for ϕ < π/4). This holds
for both ways to compute the dot occupancy; the expectation value according to conventional
Hermitian quantum theory Eq. (4.16) (blue in Fig. 9 and for ϕ < π/4 hidden by the red data)
as well as that of biorthogonal quantum mechanics Eq. (4.15) (red in Fig. 9). For ϕ < π/4 we
therefore do not obtain any indication to which approach is physically more reasonable.

In the PT -symmetry broken phase ϕ > π/4, where complex bound state energies appear (even
purely imaginary in the present case), it is not evident how to construct the many-body ground
state [94]. We do not have a guiding principle telling us which complex energy states to fill and
which to leave empty. This holds, in particular, for the case of half filling of the entire system
that we are interested in [57]. To circumvent this problem we proceed as follows. To construct
the many-body eigenstate the single-particle scattering states are filled as for ϕ < π/4. On top
of that, we either fill none of the bound states with purely imaginary energy Eq. (2.41), or both.
We also analyzed the case where only one of the complex bound states is occupied, but we focus
on the former two cases, as these illustrate the breakdown of the biorthogonal “expectation value”
very nicely. In Fig. 9(a) the data for both bound states being filled (n+ = n− = 1) are shown.
In Fig. 9(b) both imaginary energy bound states are empty (n+ = n− = 0). Regardless if one
considers one of the two cases as the ground state, they are certainly many-body eigenstates and

1Note that in Fig. 10 of [57] only the lower branch is shown.
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the expectation value of d̂ should thus show a physically sensible behavior. In contrast to this, for
ϕ > π/4, ⟨d̂⟩bo suddenly yields values larger than one, see Fig. 9(a), or even smaller than zero,
Fig. 9(b). In both cases, a physically sensible interpretation is hard to find, since according to the
Pauli-exclusion principle, the occupancy of a fermionic lattice site should always be between zero
and one [24]. This is indeed fulfilled when considering ⟨d̂⟩, which shows the same universal trend
as ⟨d̂⟩bo, i.e. ⟨d̂⟩ > 1/2 in Fig. 9(a) and ⟨d̂⟩ < 1/2 in Fig. 9(b), but which always remains in a
physically sensible range. It is hence directly amenable to a physical interpretation.

This observation calls into question the physical significance of the biorthogonal observables
and their “expectation values”. This is to be expected, since the definition of the non-Hermitian
observables can be rigorously derived from the ancilla approach, see Sect. 4.7, while the definition
of the biorthogonal observable remains a postulate. The main allure of the latter approach are
convenient mathematical properties, but at the cost of loosing a direct physical interpretation, as
explicitly shown in this section.

5 Statistical ensembles and the density matrix
Theoretical studies of quantum many-body systems are not restricted to states but routinely ex-
tended to statistical ensembles [5]. The density matrix ρ(t) for a non-Hermitian Hamiltonian obeys
the generalized von Neumann equation

i∂tρ(t) = Hρ(t)− ρ(t)H†, ρ(t = 0) = ρ0, (5.1)

with the initial density matrix ρ0. The right hand side cannot be rewritten as a commutator
as H† ̸= H. This equation was already presented in Sect. 1.2.2 when discussing the derivation
of non-Hermitian Hamiltonians in the master equation approach, with the recycling term being
dropped; compare Eq. (1.5). The latter is justified if no quantum jumps occurred, which has to be
monitored by a continuous measurement (and is getting more and more unlikely with increasing
time). In Sect. 5.1 we, in addition, explicitly derive Eq. (5.1) from the ancilla approach. The
formal solution of Eq. (5.1) for a time-independent Hamiltonian H is

ρ(t) = e−iHtρ0e
iH†t. (5.2)

In this section we will discuss the time evolution of density matrices of non-Hermitian systems, but
also investigate equilibrium ensembles for which the density matrix becomes stationary: ρ(t) = ρ0.
In Hermitian quantum statistical mechanics these are central to derive an equilibrium thermody-
namics [96].

To investigate statistical ensembles and density matrices in non-Hermitian and pseudo-Hermitian
(PT -symmetric) systems in detail, we proceed in several steps. We start out by deriving the time-
evolution equation of the density matrix employing the ancilla approach. This shows that the
embedding of the non-Hermitian system in a larger, Hermitian one, provides a transparent ap-
proach to the (sub-) systems dynamics, in complete analogy to states (see Sect. 3),

5.1 The equation of motion from the ancilla approach
In accordance with the notation of Sect. 3 we reintroduce the labels s and a, for system and ancilla,
and follow the steps of Sect. 3.1. Instead of a single normalized state from the subspace Hsub

sa of
the system-ancilla Hilbert space Hsa of the form Eq. (3.7), we consider several of these (index n)∣∣∣ψsub,(n)

sa (0)
〉
= Kn

[
|↑⟩ ⊗

∣∣∣ψ(n)
s (0)

〉
+ |↓⟩ ⊗ g

∣∣∣ψ(n)
s (0)

〉]
, (5.3)

where the
∣∣∣ψ(n)

s (0)
〉

are taken from Hs. As usual in the construction of an ensemble in (stan-
dard) quantum statistical mechanics we assign a probability pn, with

∑
n pn = 1, to each state∣∣∣ψsub,(n)

sa (0)
〉
. The density matrix of the ensemble on Hsa is then written as a weighted sum of the

state projectors
ρsa(0) =

∑
n

pn

∣∣∣ψsub,(n)
sa (0)

〉〈
ψsub,(n)
sa (0)

∣∣∣ . (5.4)
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5.1 The equation of motion from the ancilla approach

As the states
∣∣∣ψsub,(n)

sa (0)
〉

are normalized to one according to the standard inner product on Hsa,
also ρsa(0) is normalized

TrHsa
[ρsa(0)] =

∑
j

〈
esaj
∣∣ρsa∣∣esaj 〉 =∑

n,j

pn

〈
esaj

∣∣∣ψsub,(n)
sa (0)

〉〈
ψsub,(n)
sa (0)

∣∣∣esaj 〉
=
∑
n,j

pn

〈
ψsub,(n)
sa (0)

∣∣∣esaj 〉〈esaj ∣∣∣ψsub,(n)
sa (0)

〉
=
∑
n

pn

〈
ψsub,(n)
sa (0)

∣∣∣ψsub,(n)
sa (0)

〉
=
∑
n

pn = 1. (5.5)

Here
{
|esaj ⟩

}
denotes an orthonormal basis in Hsa and TrHsa

the corresponding trace.
With the Hermitian Hamiltonian Hsa a density matrix on Hsa obeys the von Neumann equation

i∂tρsa(t) = [Hsa, ρsa(t)] . (5.6)

To determine the density matrix ρsa(t), which evolves out of the initial one Eq. (5.4), we thus
have to time evolve the states

∣∣∣ψsub,(n)
sa (0)

〉
, forming the ensemble, with the unitary time-evolution

operator Usa(t). Using the results of Sect. 3.1 we obtain∣∣∣ψsub,(n)
sa (t)

〉
= Usa(t)

∣∣∣ψsub,(n)
sa (0)

〉
= Kn

[
|↑⟩ ⊗

∣∣∣ψ(n)
s (t)

〉
+ |↓⟩ ⊗ g

∣∣∣ψ(n)
s (t)

〉]
, (5.7)

with
∣∣∣ψ(n)

s (t)
〉
= Us(t)

∣∣∣ψ(n)
s (0)

〉
from Hs. The density matrix at time t is given by Eq. (5.4) with

0 replace by t
ρsa(t) =

∑
n

pn

∣∣∣ψsub,(n)
sa (t)

〉〈
ψsub,(n)
sa (t)

∣∣∣ . (5.8)

As the time evolution is unitary we have TrHsa [ρsa(t)] = 1.
Following the steps of Sect. 3.1 one now performs a measurement of the ancilla spin at time

t and post-selects for incidents with up-spin. According to the formalism of standard quantum
statistical mechanics [96] the density matrix right after the measurement with outcome “up” is
given by

ρ↑sa(t) =

(
|↑⟩ ⟨↑| ⊗ 1s

)
ρsa(t)

(
|↑⟩ ⟨↑| ⊗ 1s

)
TrHsa

[(
|↑⟩ ⟨↑| ⊗ 1s

)
ρsa(t)

(
|↑⟩ ⟨↑| ⊗ 1s

)] , (5.9)

with TrHsa

[
ρ↑sa(t)

]
= 1. Inserting Eqs. (5.8) and (5.7) we end up with

ρ↑sa(t) =

∑
n pnK

2
n

[
|↑⟩ ⊗

∣∣∣ψ(n)
s (t)

〉] [
⟨↑| ⊗

〈
ψ
(n)
s (t)

∣∣∣]
TrHsa

{∑
n pnK

2
n

[
|↑⟩ ⊗

∣∣∣ψ(n)
s (t)

〉] [
⟨↑| ⊗

〈
ψ
(n)
s (t)

∣∣∣]} . (5.10)

Taking the time derivative of this expression and employing the Schrödinger equation (on Hs, i.e.,
with Hs) we obtain the equation of motion of ρ↑sa(t)

i∂tρ
↑
sa(t) = [1a ⊗Hs] ρ

↑
sa(t)− ρ↑sa(t)

[
1a ⊗H†

s

]
− ρ↑sa(t) TrHsa

{
ρ↑sa(t)

[
1a ⊗

(
Hs −H†

s

)]}
. (5.11)

This is the analogue of Eq. (3.6) obtained for states. In [65] the result Eq. (5.11) was written down
for mixed states (apparently) based on purely phenomenological reasoning. For pure states it was
derived in [66,94]. Its formal solution is

ρ↑sa(t) = |↑⟩ ⟨↑| ⊗ ρs(t)

TrHs
[ρs(t)]

, ρs(t) = Us(t)ρs(0)U
†
s (t), (5.12)

The density matrix ρs(t) on Hs obeys the von Neumann equation (5.1) with the non-Hermitian
Hamiltonian Hs. We thus derived this equation within the ancilla approach. The trace in the
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5.2 Equilibrium ensembles on Hs

denominator is now only taken in the system Hilbert space Hs. It is carried out with respect to
an orthonormal basis

{∣∣esj〉} in Hs

TrHs [. . .] =
∑
j

〈
esj
∣∣ . . . ∣∣esj〉 . (5.13)

For an arbitrary linear operator A on Hs the trace can, however, be rewritten as

TrHs
[A] =

∑
j

〈
esj
∣∣A ∣∣esj〉 =∑

j

〈
esj
∣∣1A ∣∣esj〉 =∑

j,ν

〈
esj |Rν⟩ ⟨Lν |A

∣∣esj〉
=
∑
j,ν

⟨Lν |A
∣∣esj〉 〈esj |Rν⟩ =∑

ν

⟨Lν |A |Rν⟩ , (5.14)

where we used the completeness relation Eq. (2.2) for the biorthonormal basis of eigenstates of Hs.
The trace in Hs can thus be taken in the biorthonormal basis of energy eigenstates as well (and in
any other biorthonormal basis of Hs for that matter). Note, however, that it cannot be taken in
the non-orthogonal basis {|Rν⟩} of right energy eigenstates.

In analogy to the ancilla approach for states, the differential (operator) equation for the density
matrix ρ↑sa(t) on Hsa is non-linear, while the equation of motion for ρs(t) on Hs is linear. In
general, the latter will be easier to solve. The density matrix ρ↑sa(t) after the measurement is that
of a Hermitian system and thus a Hermitian operator. With this also ρs(t) Eq. (5.12) of the non-
Hermitian (sub-) system has to be a Hermitian operator, which is ensured if the initial one ρs(0) is
Hermitian. This is fully consistent with (reduced) density matrices of general open systems which
have to be Hermitian [13]; see also Eqs. (1.4) and (1.5).

To understand the non-unitary dynamics of the (sub-) system’s statistical ensemble one can
now follow the reasoning of the ancilla approach developed for states in Sect. 3.1. Instead of
solving the non-linear operator equation (5.11) for the density matrix, one solves the linear von
Neumann equation (5.1) with a non-Hermitian Hs and normalizes afterwards by taking the trace
of the solution.

5.2 Equilibrium ensembles on Hs

The most commonly used equilibrium ensembles for Hermitian systems are the canonical and
the grand canonical ones. They are constructed from the projectors to the eigenstates of the
Hamiltonian which are weighted by the Boltzmann factor e−βEν , with the inverse temperature β.

For a time-independent, non-Hermitian Hamiltonian Hs the canonical density matrix is often
assumed to be [65,77–79,86,97,98]

ρcans =
1

Zcan
s

e−βHs =
1

Zcan
s

∑
ν

e−βEν |Rν⟩ ⟨Lν | , (5.15)

with the partition function
Zcan
s = TrHs

[
e−βHs

]
=
∑
ν

e−βEν , (5.16)

ensuring that ρcans is normalized to one: TrHs [ρ
can
s ] = 1. In the second step of Eq. (5.15) we used

the spectral representation Eq. (2.3) and expressed ρcans in terms of the biorthonormal basis of
right and left eigenstates of the non-Hermitian Hamiltonian.

If ρcans is used as the initial density matrix in Eq. (5.2), it is evidently not stationary, unless
[Hs, H

†
s ] = 0.1 The same holds for the grand canonical density matrix. This is in striking contrast

to the case of a Hermitian Hamiltonian. Note that this problem occurs regardless if the spectrum
is entirely real or not. Therefore, ρcans does not correspond to an equilibrium ensemble.

With a non-Hermitian Hs, ρcans Eq. (5.15) is furthermore not Hermitian, but density matrices
of open systems should still be Hermitian [13], as we also emphasized in Sect. 1.2.2. In fact, this is
fully consistent with the two constructive ways towards non-Hermitian open systems, the Master
equation approach of Sect. 1.2.2 as well as the ancilla approach of Sect. 5.1. Both lead to Hermitian
(sub-) system density matrices.

1The canonical density matrix ρcans is stationary with respect to the usual von Neumann equation i∂tρs(t) =
[Hs, ρs(t)] even for a non-Hermitian Hs [94]. However, thinking of the the non-Hermitian system as an open one,
this equation of motion does not appear to be a proper choice. We have shown this using the Master equation as
well as the ancilla approach.
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5.2 Equilibrium ensembles on Hs

Based on these insights we conclude that ρcans of Eq. (5.15) is not a proper density matrix
for a non-Hermitian, PT -symmetric (or pseudo-Hermitian) Hamiltonian even if the symmetry is
unbroken. It does certainly not represent an equilibrium ensemble. It is thus surprising, that
this (grand) canonical density matrix was still used by many authors to compute thermodynamic
expectation values of non-Hermitian quantum (many-body) systems [65,77–79,86,97,98].

For a time-independent Hs which is ηr-pseudo-Hermitian (real eigenvalues), it is, however,
easy to construct stationary density matrices on Hs, and thus equilibrium ensembles, which are
Hermitian operators. As an ansatz we take the normalized density matrix

ρeqs =

∑
ν πν |Rν⟩ ⟨Rν |

TrHs
[
∑
ν πν |Rν⟩ ⟨Rν |]

, TrHs
[ρeqs ] = 1, (5.17)

with the right eigenstates |Rν⟩ of the non-Hermitian Hs and πν ∈ R. With this Eq. (5.2) gives

ρeqs (t) = e−iHst

∑
ν πν |Rν⟩ ⟨Rν |

TrHs
[
∑
ν πν |Rν⟩ ⟨Rν |]

eiH
†
s t

=

∑
ν πνe

−iEνt |Rν⟩ ⟨Rν | eiEνt

TrHs
[
∑
ν πν |Rν⟩ ⟨Rν |]

= ρeqs , (5.18)

where in the second row we used Eν ∈ R. We intentionally denoted the amplitude with which the
eigenstate |Rν⟩ contributes to the equilibrium ensemble by πν and not by pν . With the |Rν⟩ not
being orthonormal one cannot directly interpret this weight as a probability (see below).

We now construct the density matrix ρeqsa on Hsa which leads to ρeqs Eq. (5.17) when following
the steps of the ancilla approach of the last subsection. For this we first have to go back to
the foundations of the ancilla approach. We consider a time-independent state |Rsa

ν ⟩ of the form
Eq. (3.7) with |ψs⟩ → |Rν⟩. According to the action of Hsa Eq. (3.20) on states from Hsub

sa , |Rsa
ν ⟩

is an eigenstate of this system-ancilla Hamiltonian1

Hsa |Rsa
ν ⟩ = HsaKν [|↑⟩ ⊗ |Rν⟩+ |↓⟩ ⊗ g |Rν⟩]

= Kν [|↑⟩ ⊗Hs |Rν⟩+ |↓⟩ ⊗ gHs |Rν⟩]
= Eν |Rsa

ν ⟩ . (5.19)

As the left and right eigenstates of Hs form a biorthonormal basis the normalization constant Kν

is, in fact, ν-independent

Kν = [c ⟨Rν | ηr |Rν⟩]−1/2
= [c ⟨Lν |Rν⟩]−1/2

= c−1/2, (5.20)

where we used Eq. (3.22) and c is given in Eq. (3.18). It is crucial to keep in mind that states
of the form |Rsa

ν ⟩ only constitute a subset of the eigenstates of Hsa. This was exemplified for our
two-level toy Hamiltonian in Sect. 3.4. We take the ensemble of states {|Rsa

ν ⟩} with weights {pν},∑
ν pν = 1,

ρeqsa =
∑
ν

pν |Rsa
ν ⟩ ⟨Rsa

ν | . (5.21)

When following the steps of the last subsection, it leads to an equilibrium density matrix on Hs of
the form Eq. (5.17), with πν = pν/c.

The density matrix of the combined system-ancilla setup ρeqsa Eq. (5.21), leading to the density
matrix ρeqs of the system, is stationary under the time evolution with exp{−iHsat}. It thus describes
an equilibrium ensemble. Note, however, that even for pν = e−βEν/

∑
µ e

−βEµ Eq. (5.21) is not the
conventional canonical density matrix of the system-ancilla setup with respect to the Hermitian
Hamiltonian Hsa as only the energy eigenstates from Hsub

sa contribute to the ensemble.
We will introduce the systems equilibrium density matrix which we consider to represent the

proper extension of the canonical ensemble to non-Hermitian, ηr-pseudo-Hermitian Hamiltonians
when studying ensemble expectation values in Sect. 5.4.

1Given a Hs, the system-ancilla Hamiltonian Hsa is, in fact, constructed just so that this is fulfilled. See also
the supplementary material of [32].
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5.3 Stationary density matrices for broken PT -symmetry

5.3 Stationary density matrices for broken PT -symmetry
We now consider the situation in which the system Hamiltonian Hs is in its PT symmetry broken
phase. We still assume, that Hs is time independent. This appears to be necessary when aiming
at a stationary density matrix on Hs. As the symmetry is broken at least one pair of complex
conjugate eigenvalues occurs. As discussed in Sect. 3.5 the ancilla approach can be used in this
case as well. We can thus follow all the steps of Sect. 5.1 up to Eq. (5.12). As the system-ancilla
Hamiltonian becomes time dependent, the time evolution operator exp{−iHsat} must be replaced
by the general one Usa(t). The equation of motion for ρ↑sa(t) remains of the same form Eq. (5.11)
as the operator g(t) (see Sect. 3.1) drops out when the ancilla spin is measured and the instances
with spin down are disregarded.

We now pose the question, if we can find an equilibrium, mixed-state ensemble such that the
time dependence in Eq. (5.12) drops out or more precisely the time dependence in the system part
ρs(t)/TrHs

[ρs(t)], with ρs(t) = e−iHstρs(0)e
iH†

s t drops out. As in the PT symmetry unbroken
case an obvious ansatz for an equilibrium density matrix would be Eq. (5.17) made out of right
eigenstates of Hs. Considering Eq. (5.18), the time dependence only drops out, if the weights πν
for the eigenstates with complex energies vanish. If not, for t→ ∞ the contributing state with the
largest ImEν survives and the density matrix becomes the one of the corresponding pure state.
One could avoid this by replacing the ket-state ⟨Rν | in Eq. (5.17) by the “partner state” with
conjugate complex eigenvalue, as discussed in context of Eq. (2.8). In this case, the density matrix
would, however, lose its established form as a weighted sum over a product of the same ket and
bra states. This goes even beyond the generalization of Eq. (5.15).

We do not investigate this any further here and simply note that it is not obvious how to obtain
a non-trivial, mixed-state stationary density matrix on Hs and thus an equilibrium ensemble if the
PT symmetry is broken.

5.4 Ensemble expectation values for stationary density matrices
Given a stationary, statistical ensemble of system states for a time-independent Hamiltonian we
now study ensemble expectation values of observables. As we will not make any further explicit
contact with the ancilla approach we drop the corresponding indices s and a to lighten the notation.

We start out by considering the definitions of observables and “expectation values” of PT -
symmetric and biorthogonal quantum mechanics introduced in Sects. 4.2 and 4.4 for states. We
aim to generalize them to ensembles. In Sect. 4 we already argued that employing these definitions
is not compelling from the perspective of physics. Still we want to show that using these and the
canonical density matrix ρcans Eq. (5.15) leads to a mathematically consistent formalism that was
used in [65, 77–79, 86, 97, 98]. We already emphasized that ρcans is not stationary and the reader
might wonder why we discuss this situation in the present subsection whose title contains the word
“stationary”. The reasons are, that the computations formally fit into the present subsection and
that, in any case, the non-stationarity was ignored in [65, 77–79, 86, 97, 98]. As the biorthonormal
basis appearing in Eq. (5.15) is the one made out of right and left eigenstates of H, it is reasonable
to use this in the metric operator ĝ and the PT -symmetric and biorthogonal definitions of an
observable become equal (see Sects. 4.2 and 4.4). We thus start out with the “expectation value”
of an observable O (ηr-pseudo-Hermitian operator) in a right energy eigenstate. According to
Eq. (4.9) this is given by

⟨O⟩PT
|Rν⟩ =

⟨Rν | ηrO |Rν⟩
⟨Rν | ηr |Rν⟩

= ⟨Lν |O |Rν⟩ , (5.22)

where we used Eqs. (2.10) and (2.1). We now assign the Boltzmann weight e−βEν/Zcan to each
pair of right and left eigenstates and sum over ν to obtain∑

ν

pν ⟨O⟩PT
|Rν⟩ =

1

Zcan

∑
ν

e−βEν ⟨Lν |O |Rν⟩ = Tr [ρcanO] = ⟨O⟩PTρcan , (5.23)

where we used Eq. (5.15) and in the last step defined the PT -symmetric “expectation value” with
respect to the canonical density matrix.

When discussing generating functionals and correlation functions in Sect. 6, we will be interested
in the β → ∞ limit (zero temperature) of Eq. (5.23). In this limit only the addend with the smallest
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5.4 Ensemble expectation values for stationary density matrices

(real) energy E0 survives, the Boltzmann weight drops out, and one ends up with the ground state
“expectation value” of PT -symmetric quantum mechanics as defined in Eq. (4.9)

⟨O⟩PTρcan
β→∞−→ ⟨L0|O |R0⟩ = ⟨R0| ηrO |R0⟩ = ⟨O⟩PT|R0⟩ . (5.24)

The non-Hermiticity of ρcan and the lack of stationarity do not play a role in this limit.
We next use the concepts of an observable and the expectation value of Hermitian quantum

mechanics as favoured by us on physical grounds; see Sect. 4.5. In this case we take an arbitrary set
{|ψn⟩} of (un-normalized) states to construct an ensemble. The expectation value of a Hermitian
observable with spectral representation

O =
∑
ν

oν
∣∣ROν 〉 〈ROν ∣∣ (5.25)

in a state is given in Eq. (4.3). We assign a weight pn to every state leading to the ensemble
average

∑
n

pn ⟨O⟩|ψn⟩ =
∑
n

pn
⟨ψn|O |ψn⟩
⟨ψn |ψn⟩

=
∑
n

pn

∑
ν oν

〈
ψn
∣∣ROν 〉 〈ROν ∣∣ψn〉

⟨ψn|ψn⟩

=
∑
ν

〈
ROν
∣∣ [∑

n

pn
⟨ψn|ψn⟩

|ψn⟩ ⟨ψn|

]
︸ ︷︷ ︸

=ρ

O
∣∣ROν 〉

= Tr [ρO] = ⟨O⟩ρ . (5.26)

Using
∑
n pn = 1, it is straightforward to show that Tr[ρ] = 1 and the Hermitian operator ρ is a

valid density matrix as known from standard quantum statistical mechanics [96]. Note that the
formal expression Tr[ρO] is exactly the same as that of Eq. (5.23). As shown in Eq. (5.14), the
trace can either be taken in an orthonormal or in a biorthonormal basis of Hs. If the states {|ψn⟩}
contributing to the ensemble are taken as a subset of the set of right eigenstates of H, {|Rν⟩}, ρ
in Eq. (5.26) is stationary.

The (normalized) stationary density matrix for a system with a non-Hermitian Hamiltonian
and right eigenstates {|Rν⟩}, in which the Boltzmann weight is assigned to each eigenstate, is given
by

ρnH =
1

Zcan

∑
ν

e−βEν

⟨Rν|Rν⟩
|Rν⟩ ⟨Rν | =

1

Zcan
e−βH

∑
ν

|Rν⟩ ⟨Rν |
⟨Rν|Rν⟩

, (5.27)

with Zcan Eq. (5.16). We consider this as the proper generalization of the canonical ensemble to
a pseudo-Hermitian Hamiltonian with real eigenvalues. It obviously differs from Eq. (5.15) by the
factor involving the sum over ν. In contrast to ρcan, ρnH is a stationary as well as a Hermitian
operator and thus suitable to set up an equilibrium thermodynamics.

For the β → ∞ (zero temperature) limit we obtain from Eqs. (5.26) and (5.27)

⟨O⟩ρnH

β→∞−→ ⟨R0|O |R0⟩
⟨R0 |R0⟩

= ⟨O⟩|R0⟩ , (5.28)

that is, the ground state expectation value as in Hermitian quantum mechanics. This appears to
be necessary if we want to speak about a generalization of the canonical ensemble. In the last step
we used the definition Eq. (4.16).

In Hermitian quantum statistical mechanics the inverse temperature in the canonical density
matrix plays the role of the Lagrange multiplier which can be adjusted to fix the energy expectation
value at the desired value. We now show that (formally) the same holds for the β appearing in
ρnH. Ignoring that, within the formalism we prefer on physical grounds, a non-Hermitian H is not
an observable (see Sect. 4.5), we still compute

Tr[ρnHH] =
∑
ν,µ

e−βEµ

Zcan

⟨Lν |Rµ⟩ ⟨Rµ|H |Rν⟩
⟨Rµ |Rµ⟩

=
1

Zcan

∑
ν

Eνe
−βEν . (5.29)

This is the statistical expectation value of the (real) eigenenergies Eν under the probability distri-
bution given by the Boltzmann weight pν = e−βEν/Zcan just as in the Hermitian case employing the
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canonical density matrix. The right hand side defines a unique relation between this expectation
value and the inverse temperature β. This completes the reasoning that Eq. (5.27) is indeed the
analogue of the canonical density matrix for a pseudo-Hermitian Hamiltonian with real eigenvalues.

The computation of Eq. (5.29) leads us to a curiosity we would like to emphasize. If O is taken
as an arbitrary function f(H), with the Hamiltonian H (in the simplest case O = H), using ρnH
Eq. (5.27) and ρcan Eq. (5.15) give the same result for the quantum statistical “expectation value”

Tr[ρnHf(H)] =
∑
ν

⟨Lν | ρnHf(H) |Rν⟩ =
∑
ν,µ

e−βEµ

Zcan

⟨Lν |Rµ⟩ ⟨Rµ| f(H) |Rν⟩
⟨Rµ |Rµ⟩

=
∑
ν

e−βEν

Zcan
f(Eν) =

∑
ν

⟨Lν |
e−βH

Zcan
f(H) |Rν⟩

= Tr[ρcanf(H)]. (5.30)

Note, however, that the quotation marks around the expression “expectation value” are this time
advisable in both cases. When using ρcan [last line of Eq. (5.30)] the quantum part of the averaging
lacks a straightforward probabilistic interpretation (see Sect. 4.2). Employing the definition of
an observable from Hermitian quantum mechanics [left hand side of Eq. (5.30)] f(H) is not an
observable as it is not Hermitian; see Sect. 4.5. Note, that the equality of the two results does not
extend to other observables beyond this rather peculiar case.

5.5 Linear response theory
Using Eqs. (5.12) and (5.26) the expectation value of a Hermitian observable O, for a time-
dependent density matrix, is given by

⟨O⟩ρ(t) =
Tr [ρ(t)O]

Tr [ρ(t)]
(5.31)

within the Hermitian scheme (see Sect. 4.5). This general expression can be used to set up a linear
response theory for a time-independent, Hermitian or non-Hermitian (but η0-pseudo-Hermitian)
Hamiltonian H0 in the presence of a time-dependent perturbation Vt = f(t)D.1 The real-valued
function f vanishes for t < 0, i.e., the perturbation is switched on at time t = 0 and in the most
general case the perturbing operator D, might (also) be non-Hermitian. The crucial assumptions of
linear response theory are, that the problem with H0 is exactly solvable and that the perturbation
Vt is small. Linear response theory is central in quantum many-body physics as it allows to make
contact with a variety of experimental techniques to probe a system [5]. It leads to the concept
of response functions. Different variants of the general setup were investigated in the literature.
In two papers only the perturbation was assumed to be non-Hermitian [99, 100]. Here we are not
interested in this case, as it is the nature of H0 which leads to major differences in the formalism.
The most general case of non-Hermitian H0 and D was comprehensively introduced and employed
in [92], while in [56] the focus was on non-Hermitian H0 but Hermitian perturbations. Here we
mainly consider the latter case and refer the interested reader to [92] for the most general one.

To start out we rewrite Eq. (5.31) for the general case of a time-dependent non-Hermitian
Hamiltonian as

⟨O⟩ρ(t) =
Tr [ρ(t)O]

Tr [ρ(t)]
=

Tr
[
U(t)ρU†(t)O

]
Tr [U(t)ρU†(t)]

=
Tr
[
ρU†(t)OU(t)

]
Tr [ρU†(t)U(t)]

, (5.32)

with the time-evolution operator U(t) and the initial density matrix ρ. In the last step we used the
invariance of the trace under cyclic permutations. Note that in [56] the denominator is missing.
As this will give a contribution to linear order in Vt [92], the analysis of [56] is incomplete. Writing

U(t) = e−iH0tS(t), (5.33)

the operator S(t) fulfills the differential equation

i∂tS(t) = eiH0tVte
−iH0tS(t), (5.34)

1A biorthogonal linear response theory, which essentially boils down to the expressions known for Hermitian
Hamiltonians, was set up and used in [86].
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with the solution

S(t) = 1− i

∫ t

0

dt′eiH0t
′
Vt′e

−iH0t
′
+ . . . = 1− i

∫ t

0

dt′f(t′)DD(t
′) + . . . , (5.35)

where the dots denote terms O
(
V 2
t

)
. We introduced the operator DD(t) as known from the Dirac

(or interaction) picture of standard quantum mechanics1

DD(t) = eiH0tDe−iH0t. (5.36)

This holds regardless if D is Hermitian or not. We next consider the numerator and the denomi-
nator in Eq. (5.32) separately.

The denominator can be written as

Tr
[
ρU†(t)U(t)

]
= Tr

[
ρS†(t)eiH

†
0 te−iH0tS(t)

]
(5.37)

= Tr

[
ρeiH

†
0 te−iH0t+iρeiH

†
0 t

∫ t

0

dt′f(t′)
{
D†

D(t
′ − t)−DD(t

′ − t)
}
e−iH0t

]
+ . . . .

As usual in linear response theory, we assume that the initial density matrix is stationary with
respect to the unperturbed time evolution [5] and that it is normalized Tr[ρ] = 1. Taking into
account the considerations of Sects. 5.2 and 5.3 we are essentially restricted to Hamiltonians H0

with entirely real spectra (PT symmetry unbroken phase). Using this and the cyclic invariance of
the trace we end up with

Tr
[
ρU†(t)U(t)

]
= 1 + Tr

[
ρ

∫ t

0

dt′f(t′)
{
D†

D(t
′ − t)−DD(t

′ − t)
}]

+ . . . . (5.38)

Without specifying H0 and Vt this cannot be simplified any further. Crucially, the denominator
has a contribution of order Vt. Up to now we did not use that D is Hermitian.

For the computation of the numerator of Eq. (5.32) we study

U†(t)OU(t) = eiH
†
0 tOe−iH0t + i

∫ t

0

dt′f(t′)eiH
†
0 t

′
D†e−iH

†
0 (t

′−t)Oe−iH0t

− ieiH
†
0 tO

∫ t

0

dt′f(t′)eiH0(t
′−t)De−iH0t

′
+ . . . . (5.39)

If we now use D† = D, introduce the two operators Ω = η−1
0 O and ∆ = η−1

0 D, with η0 correspond-
ing to H0, and employ the pseudo-Hermiticity relation Eq. (2.7) we can rewrite this expression
as

U†(t)OU(t) = η0ΩD(t) + iη0

∫ t

0

dt′f(t′)eiH0t
′
∆η0ΩD(t− t′)e−iH0t

′

− iη0

∫ t

0

dt′f(t′)eiH0t
′
ΩD(t− t′)η0∆e

−iH0t
′
+ . . . . (5.40)

Multiplying by the initial density matrix ρ, again assumed to be stationary under the time-evolution
generated by H0, and using the cyclic invariance of the trace we end up with

Tr
[
ρU†(t)OU(t)

]
= Tr [ρη0ΩD(t)]− i

∫ t

0

dt′f(t′) Tr {ρ [η0ΩD(t− t′), η0∆D(0)]}+ . . . . (5.41)

In analogy to Hermitian quantum many-body theory [5] one is now tempted to define a response
function of the unperturbed systems as

χO,D(t) = −iΘ(t) Tr {ρ [η0ΩD(t), η0∆D(0)]} (5.42)

such that the denominator is given by

Tr
[
ρU†(t)OU(t)

]
= Tr [ρη0ΩD(t)] +

∫ ∞

−∞
dt′f(t′)χO,D(t− t′) + . . . . (5.43)

1Note that in the Dirac picture no H†
0 appears even though H0 is non-Hermitian.
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The response function is computed with respect to the time-evolution of the unperturbed system
with non-Hermitian Hamiltonian H0 and a density matrix which is stationary with respect to the
time evolution induced by H0, e.g., the analogue of the canonical density matrix Eq. (5.27). This
is the extension of the result given in [56] for states1 to density matrices.

It is formally appealing that by introducing the response function we obtained an expression
similar to that of Hermitian quantum theory. However, for practical calculations this formulation
of linear response theory for a non-Hermitian (but η0-pseudo-Hermitian) H0 is by far less useful
than in the Hermitian case. There are several reasons for this. Firstly, the entire response to the
perturbation Vt switched on at t = 0 to linear order is given by

δ ⟨O⟩ρ(t) =
∫ ∞

−∞
dt′f(t′)χO,D(t− t′) (5.44)

− Tr [ρη0ΩD(t)] Tr

[
ρ

∫ t

0

dt′f(t′)
{
D†

D(t
′ − t)−DD(t

′ − t)
}]

.

The second line, which is absent in the Hermitian case, cannot be expressed in terms of a response
function of the unperturbed system. It results out of the required normalization of the density
matrix which, for a non-unitary time evolution, is not preserved. Already in Sect. 4.6 we emphasized
that it is this normalization denominator which spoils much of the many-body formalism established
for Hermitian systems. The present case is an example for this. More on this will be discussed in
the next section. Secondly, the operators appearing in the response function are not the observable
O and the Hermitian system operator D to which the perturbation couples but rather operators
transformed by multiplying η−1

0 from the left. As emphasized above, for most non-Hermitian
Hamiltonians H0 of interest a corresponding η0 will not be known explicitly. Thirdly, the approach
is limited to the case of an unbroken PT -symmetry of H0 and cannot be extended to the symmetry
broken case (due to the lack of a stationary density matrix with respect to H0).

6 Correlation functions and functional integrals

6.1 Correlation functions
To investigate the physical properties of quantum many-body systems, besides studying expectation
values of observables directly, one often computes correlation functions. They contain crucial
information about spatial and temporal correlations of a system, are central to make contact with
experiments, and can be used to extract expectation values of various observables [5]. The response
functions appearing in linear response theory introduced in Sect. 5.5 [see Eq. (5.42)] are special
types of correlation functions. The general structure of a correlation function is ⟨A1A2A3 . . .⟩ with
generic operators Ai and an averaging ⟨. . .⟩. The operators might depend on real or imaginary
time. The different Ai could, e.g., be the same operator at different times or at different spatial
locations but the same time. Neither the individual operator nor their product needs to be an
observable. For now we do not specify of what type the averaging (expectation value) is. It could
be a state expectation value or a quantum statistical one (involving a density matrix). It could
also be an expectation value of Hermitian quantum mechanics or one involving a metric operator
ĝ (of PT -symmetric or biorthogonal quantum mechanics).

To be concrete, let us consider two examples. The first concerns the PT -symmetric harmonic
oscillator with imaginary, cubic anharmonicity Eq. (1.9). For this model one might be interested
in the ground state or canonical PT -symmetric “expectation value” of the product of two position
operators at different times in the imaginary time Heisenberg picture [59]. Remember that a
conventional Heisenberg picture exists only when using this “expectation value”. The imaginary
time evolution [for real times, see Eq. (4.18)] is given by [5, 101]

x̂H(τ) = eHτ x̂e−Hτ . (6.1)

The correlation function is defined as (τ ≥ 0)

⟨x̂H(τ)x̂H(0)⟩PT
ρcan = Tr [ρcanx̂H(τ)x̂H(0)] . (6.2)

1Note that in [56] it is not mentioned that the state considered must be a right eigenstate ofH0. This corresponds
to our requirement of the stationarity of the initial density matrix.
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6.2 Functional integrals and generating functionals

For β → ∞ this yields the ground state “expectation value”; see Eq. (5.24). Equation (6.2) is an
auto-correlation function. For τ = 0 it enters the expression for the square of the fluctuations of

the particles “position”1 around its mean value
〈
x̂2H(0)

〉PT
ρcan

−
(
⟨x̂H(0)⟩PT

ρcan

)2
[59].

In the course of this review we already collected several arguments why ⟨x̂H(τ)x̂H(0)⟩PT
ρcan eval-

uated at finite or infinite β will very likely be of mathematical interest but not of direct physical
relevance. Its computation fits into the elegant formalism of PT -symmetric or biorthogonal quan-
tum mechanics (see below) but defining it, several concepts are used, which turned out to be
questionable from the physics perspective. This, in particular, concerns the Heisenberg picture
(see Sect. 4.6) as well as the averaging with the non-Hermitian and non-stationary ρcan at finite β
(see Sect. 5.2) or the left-right state “expectation value” [see Eq. (5.24) and Sect. 4.2] for β → ∞.
For the introduction of functional integrals it turns out that considering this correlation function
is still very instructive.

The second example is a spatial many-body correlation function of our staggered tight-binding
chain with complex hopping Eq. (2.44). To investigate the model’s quantum critical behavior
for g = δ, in Sect. 6.3, we explicitly compute temperature T = 0 correlation functions within
PT -symmetric quantum mechanics

GPT
l (j) =

〈
c†l+jcl

〉PT
|R0⟩

= ⟨L0| c†l+jcj |R0⟩ (6.3)

and Hermitian quantum mechanics

Gl(j) =
〈
c†l+jcl

〉
|R0⟩

=
⟨R0| c†l+jcj |R0⟩

⟨R0 |R0⟩
(6.4)

in the many-body ground state |R0⟩. The latter was earlier studied in [58]. The operators entering
these expressions are not observables; neither in the framework of PT -symmetric quantum me-
chanics nor in the Hermitian sense. But they contain information about criticality and symmetry
breaking; more on this later. These type of single-particle correlation functions are often also
denoted as Green functions, which explains our notation.

6.2 Functional integrals and generating functionals
To compute correlation functions in quantum many-body theory one often employs functional
integrals [101]. For PT -symmetric, non-Hermitian systems with Hamiltonian H, functional (or
path) integrals were first used for specific models to construct the isospectral Hermitian operator
h and the corresponding similarity transformation S according to theorem TPT

2 [46,47]. However,
they are also crucial for an extension of PT -symmetric quantum mechanics to PT -symmetric
quantum field theory [72,102]. This is reviewed in chapter 5 of [9].

To introduce the use of functional integrals for non-Hermitian, PT -symmetric systems let us
rewrite the canonical partition function Eq. (5.16) of the Hamiltonian Eq. (1.9) as

Zcan=Tr
[
e−βH

]
=
∑
ν

⟨Lν | e−βH |Rν⟩ =
∫
dx ⟨x| e−βH |x⟩ =

∫
x(0)=x(β)

Dx e−S[x], (6.5)

where for the second equal sign we used Eq. (2.2) as well as the (over-) completeness of the basis of
position eigenstates {|x⟩}. In the last step we employed the standard slicing derivation to obtain
a functional integral [101]. The imaginary time (Euclidean) action S[x] for this model reads

S[x] =

∫ β

0

dτ

{
[∂τx(τ)]

2

2
+
x2(τ)

2
+
ik

3!
x3(τ)

}
. (6.6)

After transforming from the operator x̂H(τ) in the imaginary time Heisenberg picture to the func-
tion x(τ) in the functional integral we, as usual, suppress the index H. Note that Zcan is an integral
part of the unphysical (non-stationary, non-Hermitian) ρcan Eq. (5.15) but also of the proper exten-
sion of the canonical density matrix to non-Hermitian systems ρnH Eq. (5.27). Since the functional

1Remember that x̂ is not an observable in the sense of PT -symmetric quantum mechanics; see Sect. 4.3. In
fact, its ground state expectation value for the present model is purely imaginary; for more see [59].
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6.2 Functional integrals and generating functionals

integral with a cubic term cannot be solved exactly, Eqs. (6.5) and (6.6) can be used as the starting
point to derive expressions for Zcan perturbative in k involving Feynman diagrams [5, 101]. Also
more elaborate methods such as mean-field theory or a functional renormalization group approach
can be employed starting from the functional integral presentation [59, 103–106]. For β → ∞ one
can extract the ground state energy (eigenvalue) E0 from Zcan [59].

By adding a source term

Ss[x, j] =

∫ β

0

dτ x(τ) j(τ) (6.7)

to the action, the functional integral becomes an even more versatile tool for Hermitian systems
[101]. Formally (and on first glance) this appears to be the case for non-Hermitian Hamiltonians
as well. One can use the resulting functional

W[j] =

∫
x(0)=x(β)

Dx e−S[x]+Ss[x,j] (6.8)

to generate correlation functions by applying functional derivatives with respect to j(τi) [101]. For
τ > 0 we obtain

⟨x̂H(τ)x̂H(0)⟩PT
ρcan =

1

Zcan

δ2W[J ]

δj(τ)δj(0)

∣∣∣∣
j=0

. (6.9)

To derive this, one can follow the same steps as in the Hermitian case to relate operator averages
(left hand side) to functional integral ones (right hand side) [101]. This exemplifies that within the
framework of PT -symmetric (and, for that matter, also in that of biorthogonal) quantum mechan-
ics, functional integrals can be introduced and used just as established for Hermitian Hamiltonians.
However, all this is rather formal as one has to ignore that ρcan is not a proper stationary density
matrix, and the “expectation value” is thus not taken for an equilibrium ensemble. This appears
to be odd when thinking of physics and not merely of elegant mathematics. Furthermore, the
operator x̂ appearing in the correlation function is not the observable of the particles position
(see Sect. 4.3). We conclude that for finite β the correlation function ⟨x̂H(τ)x̂H(0)⟩PT

ρcan is not a
physically sensible object. The usefulness of its elegant functional integral representation appears
to be questionable.

If one takes the zero temperature limit the missing stationarity and also the lack of Hermiticity
of ρcan are no longer an issue. In this case one ends up with the ground state “expectation value”
of PT -symmetric quantum mechanics; see Eq. (5.24). However, we already argued on physical
grounds that the methodology of PT -symmetric quantum mechanics does not appear to be the
proper one, even for states. At least, employing a Lehmann representation [5, 101], one can still
extract energy eigenvalues of excited states [59]. Even for β → ∞, ⟨x̂H(τ)x̂H(0)⟩PT

ρcan and its
functional integral representation are thus only of limited usefulness.

The question that immediately arises is, if a functional integral can also be used to compute
the expectation value of a product of time evolved position operators involving the proper gener-
alization of the canonical density matrix ρnH Eq. (5.27). As emphasized in Sect. 5.4 ρnH and ρcan
differ by the factor

∑
ν |Rν⟩ ⟨Rν | / ⟨Rν|Rν⟩. To investigate this, let us start with an even simpler

expectation value, namely

⟨x̂⟩ρnH
= Tr [ρnHx̂] = Tr

[
1

Zcan
e−βH

∑
ν

|Rν⟩ ⟨Rν |
⟨Rν |Rν⟩

x̂

]

=
1

Zcan

∫
dx dx′ x ⟨x| e−βH |x′⟩

∑
ν

⟨x′ |Rν⟩ ⟨Rν |x⟩
⟨Rν |Rν⟩

, (6.10)

where we took the trace in the (overcomplete) basis of position states {|x⟩}. Now the problem
becomes apparent. While the first factor in the integrand can be treated in the slicing derivation
of functional integrals [101] this does not hold for the second one involving the sum. The (right)
eigenfunctions of the Hamiltonian |Rν⟩ do not drop out but cannot be part of a standard functional
integral. We thus conclude that a standard functional integral cannot be used to compute more
complex products of time evolved position operators.1

This insight has severe consequences for the application of a variety of established quantum
many-body methods which are based on the functional integral approach to non-Hermitian systems.

1This leaves open which type of time evolution one should use; the Heisenberg picture one of Eq. (4.18) or that
of Eq. (4.19). Staying consistently within the Hermitian approach, Eq. (4.19) appears to be the correct choice.
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6.3 Quantum critical behavior of the staggered tight-binding chain

We emphasize that, as in linear response theory Eq. (5.44) and the (Hermitian) expectation value
of an observable Eq. (4.16), it is again the presence of states which spoils the use of methods for
non-Hermitian Hamiltonians which are at the heart of Hermitian quantum many-body theory.

For completeness we mention the following. In the β → ∞ limit Eq. (6.9) becomes the ground
state “expectation value” of x̂H(τ)x̂H(0) according to the definitions of PT -symmetric quantum
mechanics. While the latter explicitly contains the metric operator ĝ = ηr it does not appear in
the functional integral expression. This surprising observation led to an extensive discussion in the
mathematical physics community [71,74,75]. In this Mostafazadeh [71] emphasized that the “field”
x(τ), the source j(τ) is coupled to in Eq. (6.7), is not an observable in the sense of PT -symmetric
quantum mechanics; see Sect. 4.3. He argued that the external source should be coupled to an
observable which he suggested to be the ηr-pseudo-Hermitian operator x̂PT = η

−1/2
r x̂η

1/2
r ; see

Sect. 4.8. If using this, the metric operator would only drop out in W[j = 0] = Zcan but not for
finite sources.

6.3 Quantum critical behavior of the staggered tight-binding chain
Correlation functions are routinely used to analyze the critical behavior of quantum many-body
systems. Quantum (temperature T = 0) or thermal (T ̸= 0) criticality, is generally associated with
the emergence of long-range correlations, that manifest as spacial or temporal power-law decaying
Green functions whose exponents provide insight into the universality class of the transition. In
the case of quantum critical systems, such a critical behavior is associated with the closing of an
excitation gap [6].

These ideas have recently been extensively investigated in the context of PT -symmetric quan-
tum mechanics, unveiling new kinds of criticality, universality, and symmetry breaking [15, 16, 32,
48, 58, 77, 81, 89, 97, 107–114]. At this point we refrain from diving into this advanced topic and
focus on the methodological aspects. Underlying many established methods for analyzing criti-
cality, such as the renormalization group or loop-wise expansions [115], is the functional integral.
But, as outlined in the last section (Sect. 6.2), the conventional construction of the functional
integral fundamentally relies on the non-stationary density matrix ρcan and on PT -symmetric cor-
relation functions. As we have argued throughout this review, these “expectation values” and the
corresponding correlation functions do not seem to be of physical significance.

One might, however, ask if aspects of criticality and symmetry breaking can be captured in
the behavior of the PT -symmetric correlation functions? Below we show by example, that this
is not the case. The quantum critical behavior of a PT -symmetric system can not be captured
by analyzing the PT -symmetric Green function. This complements our previous studies and
strengthens the argument, that only the Hermitian correlation functions capture the complete
physical picture.

The example we will consider is the staggered tight-binding chain with complex hopping
Eq. (2.44), that we introduced in Sect. 2.3.3. There we discussed, that the system shows a gap
closing for δ = g and hence becomes quantum critical. Here we want to analyze the behavior of
the Hermitian Eq. (6.4) and PT -symmetric Eq. (6.3) correlation functions at the quantum critical
point, for a half-filled system in the thermodynamic limit. The Hermitian Green function was
previously analyzed in [58].

Due to the translational invariance of the Hamiltonian Eq. (2.44) we have G(PT )
l (j) = G

(PT )
l+2N(j)

(for both, the Hermitian and the PT -symmetric case), so that, without loss of generality, we fix
l = 1 and drop the index in the following. Linearizing the model around k = π/2, and mapping it
onto the field theory Eq. (2.48), analytical results for the scaling behavior of the Hermitian Green
function have been obtained in [58]. In the thermodynamic limit N → ∞ one finds at half-filling

S(m) = |G(2m+ 1)| ∼

{
m−1 for 1 ≪ m≪ J/δ,

m−3 for J/δ ≪ m
, (6.11)

F(m) = |G(2m)| ∼

{
log(|m|) for 1 ≪ m≪ J/δ,

m−2 for J/δ ≪ m
, (6.12)

i.e., exactly the kind of power-law scaling we would expect for a quantum critical model. The
distinction between even and odd lattice sites can be intuitively understood, due to the staggered
nature of the model [momenta k and k−π couple in the Hamiltonian; see Eq. (2.45)]. The spectrum
of the linearized theory Eq. (2.47) is given by ϵ(k) = ±J |k − π/2| and therefore equivalent to that

51



6.3 Quantum critical behavior of the staggered tight-binding chain

100 101 102 103

m

10−11

10−8

10−5

10−2

S(
m
)

m−1

m−3
δ = 0.2

δ = 0.1

δ = 0.04

δ = 0.02

δ = 0.01

Figure 10: Quantum critical regime of the Hermitian Green function S(m) from an
exact numerical treatment, for various δ = g − δs, large N = 20002, and small δs = 10−8 at
half-filling. The exact numerical solution is compared with the approximate analytical results
Eq. (6.11) indicated by the dashed lines. The crossover from intermediate-distance m−1 to long-
distance m−3 behavior is beautifully visible for small δ, and hence confirms the validity of the
analytical calculation.

of a free Fermi gas. This in particular implies that the canonical partition function Zcan does not
show signs of criticality [58]. Despite this, the Hermitian Green function, which in a free Fermi gas
would decay as G(m) ∼ m−1, are suppressed at large separations. This feature can be explained
by a measurement induced Fano effect [58].

In the following, we compare the approximate analytical result with the full numerical solution
of the lattice model. But more importantly, we numerically compute the PT -symmetric correlation
function Eq. (6.3) to analyze if the same power-law behavior can be found in this quantity. The
numerical details are explained in Appendix B. The quantum critical point δ = g is at the same time
an exceptional point, that separates the region of broken and unbroken PT -symmetry. This implies,
that the Hamiltonian is not diagonalizable at the quantum critical point, leading to technical
difficulties. To avoid these in our numerical treatment, we consider a shift away from the quantum
critical point towards the phase of unbroken PT symmetry, i.e. we calculate the correlation
functions for δ = g − δs, with a small δs. The inverse of δs as well as the system size N provide
large-m cutoff scales for the quantum critical power-law scaling [6]. We do not want to deal with
this issue and therefore aim for numerical results, converged on the scales of the plots in δs and
N . The data shown in Fig. 10 and Fig. 11 for the Hermitian Greens functions does not suffer
from finite δs and 1/N corrections while we find that it is not possible to numerically converge the
results for the PT -symmetric correlation function. For a given δs there exists a N(δs) ∼ − ln(δs)
beyond which the data are converged in N . However, limδs→0N(δs) = ∞, so that it is impossible
to evaluate the thermodynamic limit of the PT -symmetric correlation function at the quantum
critical point. For completeness, in Fig. 11 we show the results for a finite but fixed δs (green
diamonds), that allows numerical convergence in N(δs); see Appendix C for more details.

The transition from m−1 to m−3 behavior of the Hermitian Green function S(m) in the ther-
modynamic limit at half filling is illustrated in Fig. 10. With decreasing δ, the crossover scale J/δ
shifts to larger m. The figure nicely illustrates, that the analytical result can capture both the
intermediate and long-range behavior of the system.

Hermitian and PT -symmetric Green functions are shown in Fig. 11. The long-distance behavior
of F(m) and S(m) again agrees nicely with the analytical prediction Eq. (6.11). This is further
validated by the inset, which shows the double logarithmic derivative of the data from the main plot.
The color-matched dashed lines at large m confirm the long-range power-law behavior irrevocably.
The PT -symmetric Green function on the other hand, which we can only evaluate at fixed δs,
does not show the same behavior. In fact, it neither captures the distinction between even and
odd lattice sites, nor does it show power-law decaying correlations. The latter point can be seen in
the main panel, or, more clearly, in the inset. The interpretation of this quantity and the physical
picture it provides is hence unclear, even ignoring the convergence issues discussed above. Note
that related problems appear within the field theory (see Sect. 2.3.3) when analytically computing
the PT -symmetric Green function.1

1Private communication with B. Dora.
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Figure 11: Quantum critical regime of the Green functions evaluated with the PT -
symmetric Eq. (6.3) (green) and the Hermitian Eq. (6.3) (red, blue) expectation value, together
with the analytical predictions (dashed and dashed-dotted lines) for δ = g − δs = 0.2. The inset
shows the double logarithmic derivative ∆lnf(m) = ∂ ln[f(m)]

∂ ln(m) , of the data from the main plot, eval-
uated as centered differences and illustrates the power-law behavior of the Hermitian correlation
function . The PT -symmetric Green function can not be evaluated in the thermodynamic limit
for δs → 0 (see main text). For a small but finite δs, which provides a large distance cutoff much
larger than the largest m shown in the plot, the inset illustrates that it does not follow a power
law. The data was obtained for Nherm. = 20002 and Nbo = 40002, with δs = 10−9 and δs = 10−8

respectively.

This concludes our final argument. The PT -symmetric correlation functions, while mathemat-
ically very convenient, does not seem to carry any physical significance. They can not capture the
same critical behavior that is observed in the Hermitian correlation function. Therefore, the usage
of conventional path integrals and PT -symmetric (and biorthogonal) correlation functions seems
questionable.

7 Summary
In the course of this review we have collected strong evidence that the established formalism of
Hermitian quantum mechanics should be applied when theoretically studying PT -symmetric, non-
Hermitian quantum many-body systems. They are realized as open quantum systems in which
this symmetry originates in the systems symmetry and in a fine tuned system-reservoir coupling;
a balanced gain and loss. Investigating the physics of such systems requires more than the mere
computation of spectral properties of the non-Hermitian Hamiltonian. Vital physical information
can only be accessed by studying observables and correlation functions. Due to the non-unitarity of
the time evolution the formalism propagated in the present review is, in parts, clumsy. However, it
does not suffer from basic problems and in all the examples we studied, leads to physically sensible
results. This has to be contrasted, to the mathematically elegant formalisms of PT -symmetric and
biorthogonal quantum mechanics, which were mainly developed to study the spectral properties
of PT -symmetric, non-Hermitian systems. They suffer from methodological peculiarities which
are difficult to reconcile with our physical intuition. Examples for this are the dependence of the
concept of an observable on the Hamiltonian and the lack of a direct probabilistic interpretation
of what is denoted as an “expectation value”. The density matrix considered in these formalisms,
which is supposed to be the analogue of the canonical one, is non-stationary and non-Hermitian.
The former shows that it does not correspond to an equilibrium ensemble, but was still employed
in this sense. The latter contradicts what one expects from the established theory of open quantum
systems. More specifically, we showed for several model Hamiltonians that the formalisms of PT -
symmetric and biorthogonal quantum mechanics lead to results for which physical interpretations
can hardly be found; e.g., negative fermionic level occupancies and correlation functions of quantum
critical systems which do not decay as a power law.

We reviewed the ancilla approach. It allows to embed the non-Hermitian system with its
non-unitary dynamics into a Hermitian one. The effective non-unitarity of the dynamics follows
from a measurement of the ancilla spin and the post-selection. In contrast to other methods from
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open system quantum mechanics, the ancilla approach is free of approximations. It presents a
transparent way to substantiate the application of the Hermitian formalism for PT -symmetric
systems and is fully consistent with the general theory of open quantum systems. Using the ancilla
approach we constructed statistical ensembles and their corresponding density matrices for non-
Hermitian systems. For time independent, PT -symmetric Hamiltonians with entirely real spectra,
stationary, Hermitian density matrices corresponding to equilibrium ensembles, which differ from
the canonical ones, can be found.

The necessity to apply the formalism of Hermitian quantum mechanics to PT -symmetric,
non-Hermitian systems has severe consequences for quantum mechanical many-body theory. Es-
tablished methods such as Green functions, functional integrals, and generating functionals, being
at the heart of many of the elaborate quantum many-body methods cannot be directly employed.
Ironically, they can be used within PT -symmetric and biorthogonal quantum mechanics. Further-
more, the extension of linear response theory to non-Hermitian systems suffers from a vital draw-
back. It requires the computation of the ηr-operator of the unperturbed Hamiltonian, something
that is, up to rare exceptional cases, unfeasible, even for non-interacting systems. Adding insult to
injury, the final expression of linear response theory still involves references to the non-conserved
norm of the density matrix, which can not be recast as a response function of the unperturbed
system. Hence, a reformulation only involving response functions is not possible. With the appear-
ance of the norm of the state or the trace of the density matrix in the denominator of expectation
values, also correlation functions, being crucial to unravel emergent many-body phenomena, have
a structure different to what is known from standard many-body theory. Their efficient evaluation
in a many-body context requires further theoretical progress, as shown in this review.

To wrap up we want to provide a “cookbook” of the methodology to investigate PT -symmetric—
or more generally, pseudo-Hermitian—, non-Hermitian Hamiltonians.

1. Observables are given by Hermitian operators. The state expectation value of an observable
O is defined as in Hermitian quantum mechanics

⟨O⟩|ψ(t)⟩ =
⟨ψ(t)|O|ψ(t)⟩
⟨ψ(t)|ψ(t)⟩

,

has a direct probabilistic interpretation, and always leads to physically sensible results.

2. The Heisenberg picture, as known for Hermitian Hamiltonians, is not applicable.

3. Density matrices are Hermitian operators which obey the generalized von Neumann equation
(5.1).

4. For time-independent, PT -symmetric non-Hermitian Hamiltonians with real spectra station-
ary density matrices corresponding to equilibrium ensembles have the general form Eq. (5.27).
The conventional (grand) canonical density matrix from Hermitian quantum mechanics does
not fall into this class.

5. Linear response theory can be set up formally, but leads to expressions Eqs. (5.44) and (5.42)
which are much more complex than for Hermitian Hamiltonians. As the ηr operator enters,
it is questionable if it can be employed in practical computations beyond the exceptional
cases in which ηr is known analytically.

6. Correlation functions remain to be useful objects. As expectation values they contain the
norm of the state or the trace of the density matrix. It is, however, not evident how to
compute them from generating functionals, prohibiting the direct usage of several established
many-body methods.
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Appendix A Ladder operators of a biorthonormal basis
In this section we discuss the ladder operators, associated with a biorthonormal basis as introduced
in Sect. 2 [57]. To start out, let us consider a single-particle Hamiltonian ĥ, that in second
quantization, i.e., on the Fock space, is written as a quadratic form in terms of creation c†i and
annihilation ci operators corresponding to a complete orthonormal basis { |ei⟩} of single-particle
states

H =
∑
ij

hijc
†
i cj . (A.1)

Here, the ladder operators fulfill the usual (anti-) commutation relations [c†i , cj ]∓ = δij , with the
upper (lower) sign corresponding to fermions (bosons). The matrix hij = ⟨ei|ĥ|ej⟩ is in general not
Hermitian, but we assume that its biorthonormal eigensystem { |Rν⟩ , |Lν⟩} constitutes a basis of
the single particle Hilbert space. Using the resolution of unity Eq. (2.1) in terms of this biorthogonal
basis, the ladder operators of the biorthonormal eigenbasis can be obtained via a conventional basis
transformation

c†i =
∑
ν

⟨Lν |ei⟩ c†R,ν =
∑
ν

⟨Rµ|ei⟩ c†L,ν , (A.2)

with c†R,ν |0⟩ = |Rν⟩. Using Eq. (A.2) and the commutation relations of c†i and ci, we can directly
deduce the (anti-) commutators of the biorthogonal ladder operators[

c†X,µ, cY,ν

]
∓
= ⟨Yν |Xµ⟩ , (A.3)[

c
(†)
X,µ, c

(†)
Y,ν

]
∓
= 0, (A.4)

where X,Y ∈ {R,L}. While the (anti-) commutator between c†R,µ and cL,ν reduces to the conven-
tional relation, [c†R,ν , cR,µ]∓ = ⟨Rµ|Rν⟩ is in general difficult to evaluate. This observation implies,

that the state |Rν⟩ is created by c†R,ν and annihilated by cL,ν and not by cR,ν . Consequently, the
role of the pair (c†i , ci), which creates and destroys particles in state |ei⟩, is taken by (c†R,ν , cL,ν),
which correspondingly create and destroy particles in |Rν⟩. In particular the (biorthogonal) number
operator, measuring the occupation in |Rν⟩, is given by

n̂R,ν |ψ⟩ = c†R,νcL,ν |ψ⟩ =

{
1 if |Rν⟩ occupied
0 else

}
|ψ⟩ . (A.5)

Inserting Eq. (A.2) into Eq. (A.1) and using that |Rν⟩ , |Lν⟩ are the biorthonormal eigensystem of
ĥ, we attain a diagonal representation in terms of the biorthogonal number operator

H =
∑
ij

∑
µν

⟨Lµ|ei⟩ ⟨ei|ĥ|ej⟩ ⟨ej |Rν⟩ c†R,µcL,ν =
∑
ν

Eνc
†
R,νcL,ν . (A.6)

Appendix B Numerical computation of correlation functions
In this section we describe the numerical evaluation of biorthogonal and Hermitian correlation
functions in many-body states. We expand on the exposition given in [57]. If proper operators
are chosen the correlation functions become (many-body) expectation values of observables, which
were discussed in Sect. 4. However, to be efficient we from now on speak of correlation functions
only. We consider correlation functions evaluated in a given many-body state (Slater-determinant)
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|ψ⟩, e.g., the groundstate of the system in question. The two distinct Green functions are then
defined by

G(i, j) =
⟨ψ|c†i cj |ψ⟩
⟨ψ|ψ⟩

, (B.1)

Gbo(i, j) = ⟨ψ|ηrc†i cj |ψ⟩ . (B.2)

The action of the metric operator ηr on a Fock space Slater-determinat |ψ⟩ must be understood as
follows. On every single-particle wave function |ψ1p⟩ =

∑
ν cν |Rν⟩ entering the Slater-determinant

it acts as
ηr |ψ1p⟩ =

∑
ν

cνηr |Rν⟩ =
∑
ν

cν |Lν⟩ . (B.3)

Therefore, Eq. (B.2) corresponds to the calculation of the expectation value in the biorthogonal
sense, with the left-eigenvector as the dual vector appearing in scalar products, see Sect. 4. In the
following we assume the single-particle wave functions |ψ1p⟩ to be normalized as ⟨ψ1p|ηr|ψ1p⟩ =∑
n |cn|

2
= 1, which corresponds to the biorthogonal normalization Eq. (2.1). Accordingly, many-

body wave functions are normalized as ⟨ψ|ηr|ψ⟩ = 1.
The biorthogonal correlation function Eq. (B.2) can be obtained by transforming the ladder

operators c†i , cj to the biorthonormal basis, using Eq. (A.2), upon which one can directly employ
Eq. (A.5) to obtain

Gbo(i, j) =
∑
µ,ν

⟨Lµ|ei⟩ ⟨ej |Rν⟩ ⟨ψ|ηrc†R,µcL,ν |ψ⟩ =
∑

ν∈occp.

⟨Lν |ei⟩ ⟨ej |Rν⟩ . (B.4)

Here the sum
∑
ν∈occp. runs over all occupied states, i.e. all ν with n̂R,ν |ψ⟩ = |ψ⟩. We observe that

for Hermitian ĥ, Eq. (B.4) reduces to the well known formula of Hermitian quantum mechanics.
The calculation for the conventional (normalized) Green function Eq. (B.1) is more involved.

We begin by rewriting the state |ψ⟩, which consists of M particles occupying states {ϵ1, . . . , ϵM},
in terms of ladder operators in some orthonormal basis {|ei⟩}, using Eq. (A.2)

|ψ⟩ =
∏

ν∈{ϵ1,...,ϵM}

c†R,ν |0⟩ =
∑
i1...iM

⟨ei1 |Rϵ1⟩ ⟨ei2 |Rϵ2⟩ . . . ⟨eiM |RϵM ⟩ c†i1 . . . c
†
iM

|0⟩ . (B.5)

Here |0⟩ denotes the vacuum state. To simplify the notation, we define the matrix Ri,ν = ⟨ei|Rν⟩.
For the computation of the inner product ⟨ψ|ψ⟩, we need to evaluate ⟨0|ci′M . . . ci′1c

†
i1
. . . c†iM |0⟩ for

arbitrary indices. This can be done directly using Wicks-theorem [5,101]

⟨0|ci′M . . . ci′1c
†
i1
. . . c†iM |0⟩ =

∑
π∈SM

(∓1)N(π)δi1,i′π(1)
. . . δiM ,i′

π(M)
, (B.6)

with SM denoting the permutation group of size M and N(π) the number of inversions of the
permutation π.

Using Eq. (B.6), the norm of the wave function ⟨ψ|ψ⟩ becomes

⟨ψ|ψ⟩ =
∑
π∈SM

sgn(π)
∏

i∈1...M

[
R†R

]
ϵi,π(ϵi)

= det
µ,ν∈occp.

(
R†R

)
. (B.7)

In the second equation we have identified the Leibinz form of the determinant, which has to be eval-
uated over all occupied states, i.e. the determinant of the matrix R†R|occp. ≡

[
R†R

]
µ,ν

|µ,ν∈occp..
With this we have a prescription to calculate the denominator of Eq. (B.1).

The expectation value of the ladder operators, i.e. the numerator of Eq. (B.1), can also be
brought into the form of an overlap. For this we write

⟨ψ|c†i cj |ψ⟩ =
∑
µ,ν

(R†)µ,iRj,ν ⟨ψ|c†L,µcL,ν |ψ⟩ (B.8)

=
∑

µ,ν∈occp.

(∓1)µ+ν(R†)µ,iRj,ν ⟨ψ \ Rµ|ψ \ Rν⟩ (B.9)

=
∑

µ,ν∈occp.

(∓1)µ+ν(R†)µ,iRj,νminorµ,ν(R†R|occp.). (B.10)
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The sign factor in Eq. (B.9) results from the Wigner string of applying the ladder operators.
In Eq. (B.10) we have rewritten the overlap ⟨ψ \ Rµ|ψ \ Rν⟩ using Eq. (B.7) and identified the
resulting expression, which is a determinant without ν-th column and µ-th row, as the minorµ,ν .

Combining Eqs. (B.7) and (B.10), we obtain an expression for the conventional (Hermitian)
correlation function

G(i, j) =
1

detµ,ν∈occp. (R†R)

∑
µ,ν

(∓1)µ+ν(R†)µ,iRj,νminorµ,ν(R†R|occp.). (B.11)

While Eq. (B.11) is a valid representation of the correlation function, it is numerically unstable
and not efficient for practical implementations, since it involves the calculation of minors and
determinants of potentially large matrices. Realizing that (−1)µ+νminorµ,ν(R†R|occp.) is just the
cofactor Cij of the matrix R†R|occp., we can rewrite Eq. (B.11) using Cramers rule

Cij = det
(
R†R|occp.

) (
R†R|occp.

)−1

ji
. (B.12)

The determinant of Eq. (B.12) cancels the norm of the wave-function, leading to our final, numer-
ically stable and efficient result

G(i, j) =
∑

µ,ν∈occp.

(±1)µ+νRj,ν(R
†R|occp.)

−1
ν,µ(R

†)µ,i (B.13)

Replacing R† → L†, one can also calculate the PT -symmetric correlation function Eq. (B.2) using
Eq. (B.13), which provides a convenient consistency check for numerical implementations.

Appendix C Numerical convergence of the PT -symmetric cor-
relation function

We comment on the numerical convergence of the PT -symmetric correlation function, discussed in
Sect. 6.3. To assess numerical convergence in system sizes N and the shift away from the quantum
critical point δs, we consider the correlation function GPT (m) [see Eq. (6.4)] at fixed argument m
as a function of N in Fig. 12.

The larger two m-arguments lie well within the regime, where the Hermitian correlation func-
tions acquire their power law behavior. We observe the system size necessary to achieve convergence
depends on the shift δs. The functional form is roughly logarithmic N = N(δs) ∼ − ln(δs), indicat-
ing that it is impossible to numerically represent the thermodynamic limit at the quantum critical
point (δs → 0). We are restricted to analyze the behavior of GPT (m), for a given δs > 0, for
which we can achieve numerical convergence in N(δs). Since a finite δs provides a large distance
cutoff, this is expected to give a valid representation of the thermodynamic limit for short and
intermediate separations.
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Figure 12: Numerical convergence of the PT -symmetric correlation function in system
size N and shift δs. Distinct colors denote different m-arguments and the saturation’s indicate
various δs. While the figure only shows m even, the curves for m odd appear completely analogous
[also see Fig. 11]. We observe that N(δs) ∼ − ln(δs), implying that the thermodynamic limit is
not numerically accessible.
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