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Abstract

The interplay of electronic and nuclear degrees of freedom presents an outstanding
problem in condensed matter physics and chemistry. Computational challenges arise
especially for large systems, long time scales, in nonequilibrium, or in systems with
strong correlations. In this work, we show how downfolding approaches facilitate com-
plexity reduction on the electronic side and thereby boost the simulation of electronic
properties and nuclear motion—in particular molecular dynamics (MD) simulations.
Three different downfolding strategies based on constraining, unscreening, and com-
binations thereof are benchmarked against full density functional calculations for se-
lected charge density wave (CDW) systems, namely 1H-TaS2, 1T-TiSe2, 1H-NbS2, and a
one-dimensional carbon chain. We find that the downfolded models can reproduce po-
tential energy surfaces on supercells accurately and facilitate computational speedup in
MD simulations by about five orders of magnitude in comparison to purely ab initio cal-
culations. For monolayer 1H-TaS2 we report classical and path integral replica exchange
MD simulations, revealing the impact of thermal and quantum fluctuations on the CDW
transition.
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1 Introduction

The coupling of electronic and nuclear degrees of freedom is an extremely complex problem of
relevance to multiple branches of the natural sciences, ranging from quantum materials in and
out of thermal equilibrium [1–6] to chemical reaction dynamics [7,8]. Long-standing problems
include the simulation of coupled electronic and nuclear degrees of freedom for large systems
and large time scales, in excited states of matter or systems with strong electronic correlations.
A central contributor to these challenges is the complexity of first-principles treatments of the
electronic subsystem usually required to address real materials.

Charge density wave (CDW) materials exemplify these challenges. The bidirectional cou-
pling between electrons and nuclei results in a phase transition, where the atoms of the CDW
material acquire a periodic displacement from a high-temperature symmetric structure [1,3,9].
Understanding the characteristics of the CDW phase transitions, the emergence of collective
CDW excitations, the control of CDW states, and excitation induced dynamics of CDW sys-
tems [10–19] requires typically simulations on supercells involving several hundred or thou-
sand atoms, where eV-scale electronic processes intertwine with collective mode dynamics at
the meV scale. CDW systems thus define a formidable spatio-temporal multiscale problem.
Solutions to this problem can be attempted with variational techniques [20–24], which ne-
glect certain anharmonic effects like the anharmonic phonon decay, or by trying to circumvent
the multi-scale problem by scale-separation [25,26].
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Corresponding complexity reduction strategies have been developed in distinct fields:
Multi-scale coarse-grained models, machine-learning models [27–31], or (density functional)
tight binding potentials [32–53] have been put forward. In these methods, models are defined
by fitting semiempirical or “machine learned” (neural networks, Gaussian processes, others)
parameter functions to reference data often taken from density-functional theory (DFT) [54]
calculations.

In the field of strongly correlated electrons, one also deals with minimal models, which
typically focus on low-energy degrees of freedom: The electronic system is divided into high-
and low-energy sectors. Then, the high-energy states are integrated out via field theoretical or
perturbative means, leaving an effective low-energy model [55]. Methods for the derivation of
model parameters include the constrained random phase approximation (cRPA) [56–62], con-
strained density functional perturbation theory (cDFPT) [63–67], and the constrained func-
tional renormalization group [68–70]. The field theoretical integrating out of certain elec-
tronic states is often called “downfolding”.

In this work, we demonstrate how downfolding approaches for complexity reduction on the
electronic side boost the simulation of coupled electronic and nuclear degrees of freedom—
in particular molecular dynamics (MD) simulations. The idea is to map the first-principles
solid-state Hamiltonian onto minimal quantum lattice models, where “minimal” refers to the
dimension of the single-particle Hilbert space. Three different downfolding strategies based on
constraining, unscreening, and combinations thereof, are compared and demonstrated along
example cases from the domain of CDW materials.

We start by introducing the first-principles electron-nuclear Hamiltonian and the minimal
quantum lattice models together with the three downfolding schemes in Section 2. Potential
energy surfaces resulting from the downfolded models are benchmarked against DFT for exem-
plary CDW systems in Section 3. MD simulations based on a downfolded model are presented
in Section 4, where the CDW transition of 1H-TaS2 is studied as a function of temperature,
and the computational performance gain from downfolding is analyzed.

2 From first-principles to minimal lattice models

The general Hamiltonian of interacting electrons and nuclei in the position representation and
atomic units, where in particular me = e = 1, reads

HFP = −
∑

i

∆i

2
−
∑

k

∆k

2Mk
+
∑

i< j

1
|ri − r j|

+
∑

k<l

ZkZl

|Rk −Rl |
−
∑

ik

Zk

|ri −Rk|
, (1)

where ri and Rk are electronic and nuclear positions,∆i and∆k are the corresponding Laplace
operators, and Zk and Mk are atomic numbers and nuclear masses. This Hamiltonian is also
called “first-principles (FP) Hamiltonian”, since only fundamental laws (i.e., the Schrödinger
equation, Coulomb potential, etc.) and fundamental constants (elementary charges etc.) en-
ter. It accounts for full atomic scale and chemical details. Numerical treatments leading di-
rectly from this Hamiltonian to physical results are called “ab initio”, cf. Fig. 1 (left).

In principle, DFT provides us with a tool to calculate the total (free) energy and forces
given fixed atomic positions Rk as needed for MD simulations in the Born-Oppenheimer ap-
proximation [71]. However, DFT calculations with large supercells can become prohibitively
expensive (cf. Fig. 7 for benchmark calculations later in this work). As a consequence, DFT
simulations of phase transitions governed by inhomogeneity effects are often very challenging.
It is, thus, desirable to obtain energies and forces in a cheaper way, while remaining close to
the quantum mechanical accuracy of ab initio simulations.
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Minimal lattice model
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Figure 1: Ab initio versus ab initio based downfolding approaches to coupled
electron-nuclear dynamics.

Here, our goal is to use a reduced low-energy electronic Hilbert space for this purpose,
with only a few orbitals per unit cell, cf. Fig. 1 (right).

We thus aim to work with a lattice model

H = Hel +Hn +Hel-n , (2)

which consists of the low-energy electronic subsystem

Hel = H0
el +H1

el +HDC , (3)

with one-body
H0

el =
∑

kn

ϵ0
knc†

knckn , (4)

Coulomb interaction

H1
el =

1
2N

∑

Uqkmnk ′m′n′ c
†
k+qmc†

k ′n′ ck ′+qm′ ckn , (5)

and double counting (HDC) parts, the nuclear subsystem

Hn = −
∑

k

∆k

2Mk
+ V 0(u1, . . . , uNn

) , (6)

and a coupling between the electronic and nuclear degrees of freedom

Hel-n =
∑

qkmn

Vqkmn(u1, . . . , uNn
)c†

k+qmckn . (7)

The electronic subspace is spanned by a set of low-energy single particle states |kn〉, with k
the crystal momentum, and n summarizing further quantum numbers (band index, spin). c†

kn
(ckn) are the corresponding electronic creation (annihilation) operators. N is the number of
k points summed over. The nuclear degrees of freedom are expressed in terms of displacements
(u1, . . . , uNn

)≡ u = R−R0 from a relaxed reference structure R0.
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Hel describes the low-energy electronic subsystem in the non-distorted configuration (u=0)
with the effective electronic dispersion ϵ0

kn and an effective Coulomb interaction U . In this
work, ϵ0

kn is always taken from the DFT Kohn-Sham eigenvalues of the undistorted reference
system. Whenever U ̸= 0, a term HDC has to be added to avoid double counting (DC) of the
Coulomb interaction already contained in the Kohn-Sham eigenvalues (see Appendix A).

V 0 plays the role of an effective interaction between the nuclei, or equivalently a partially
screened deformation energy, which accounts for the Coulomb interaction between the nuclei
and the interaction between the nuclei and the high-energy electrons not accounted for in Hel.
In this work, we expand V 0 to second order in the atomic displacements u,

Hdef = V 0 = −
∑

i

F0
i ui +

1
2

∑

i j

uiCi ju j , (8)

where F0 is a force vector and C a force constant matrix. The coupling between the displace-
ments and the low-energy electronic system from Eq. (7) is expanded to first order in the
displacements u:

Hel-n = u
∑

qkmn

dqkmnc†
k+qmckn . (9)

Here, dqkmn =∇u Vqkmn(u), and u · dqkmn plays the role of a displacement-induced potential
acting on the low-energy electrons.

MD simulations are a major motivation for constructing the low-energy electronic model.
These simulations are here performed at various temperatures, using an electronic model that
is established based on a single DFT and density functional perturbation theory (DFPT) cal-
culation. The effective free energy of the system at given nuclear coordinates R = R0 + u
is

F(u) = −kT log Z(u) . (10)

Here, the partition function Z(u) = Trel exp(−βH) traces out the electronic degrees of freedom
but not the nuclei. Thus, F(u) plays the role of a potential energy surface, which governs the
dynamics of the nuclei in Born-Oppenheimer approximation. Forces acting on the nuclei are
then F = −∇u F(u) and can be conveniently obtained using the Hellmann-Feynman theorem
(see Appendix B):

F = −
∑

qkmn

dqkmn〈c
†
k+qmckn〉 . (11)

C , U , and d entering the model Hamiltonian H are not bare but (partially) screened quan-
tities. The (partial) screening has to account for electronic processes not contained explicitly
in H. Here, we consider three different schemes to determine C , U , and d:

Model I strictly follows the idea of the constrained theories [57, 64]. In these theories, the
high-energy electronic degrees of freedom are integrated out to derive the low-energy
model. The parameters entering the low-energy Hamiltonian are therefore “partially
screened” by the high-energy electrons. In particular, we use cRPA for the Coulomb
interaction U and cDFPT for the displacement-induced potential d and for the force
constant matrix C .

Model II again applies U from cRPA. Now, however, d and C are based on the unscreening of
the respective DFPT quantities using U inspired by Ref. [72].

Model III considers a non-interacting low-energy system, U = 0. d is taken from DFPT. C is
obtained from unscreening DFPT. This approach is inspired by Ref. [73].
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In all models, the force vector F0 entering Hdef in Eq. (8) is chosen to guarantee that
dF/dui|u=0 = 0, i.e., vanishing forces also in the models for the reference structure R0. The
term−F0u, thus, plays the role of a “force double counting correction” similar to Refs. [63,64].

Since the downfolding is done on the primitive unit cell for u = 0, and we are interested
in the potential energy surface for displacements on supercells, we have to map the model
parameters ϵ0, C , U , and d from the unit cell to the supercell. For displacements with the
supercell periodicity, we can set q = 0 in Eq. (9) and—within the random phase approximation
(RPA)—also in Eq. (5) and drop the corresponding subscripts.

We have implemented this mapping for arbitrary commensurate supercells defined by their
primitive lattice vectors Ai =

∑

j Ni ja j with integer Ni j [74]. It relies on localized representa-
tions in the basis of Wannier functions and atomic displacements [75], for which the mapping
is essentially a relabeling of basis and lattice vectors.

2.1 Unscreening in models II and III

The central idea of models II and III is to choose C entering Hdef such that d2F/duidu j|u=0=CDFT
i j ,

where the latter are the DFT force constants, accessible via DFPT. In model II we addition-
ally require that the screened deformation-induced potential and accordingly the screened
electron-phonon vertex at the level of the static RPA matches the corresponding DFPT quan-
tity.

The unscreening procedure is represented diagrammatically: The Green’s function result-
ing from the undistorted Kohn-Sham dispersion ϵ0

kn is shown as a black arrow line, G→ .
We use a wavy line to denote the Coulomb interaction U → obtained from cRPA. The
deformation-induced potential obtained from DFPT, which is by definition fully screened, is
represented as a black dot, dDFT = d III→ .

2.1.1 Model II

We define the unscreened deformation-induced potential d II→ (red dot) entering model II
via Eq. (9) as

= − , (12)

which can be written in shorthand notation as d II = d − UΠd, or explicitly as

d II
kmn = dkmn −

1
N

∑

k ′m′n′αβ

ϕ∗kαmϕkβnUαβϕk ′αm′ϕ
∗
k ′βn′

f (ϵk ′m′)− f (ϵk ′n′)
ϵk ′m′ − ϵk ′n′

dk ′m′n′ . (13)

Here, ϵkn,ϕkβn are the eigenvalue and -vector of band n from the undistorted Wannier Hamil-
tonian, and Uαβ is the cRPA Coulomb interaction in the orbital basis.

The definition in Eq. (12) implies that the static RPA screening of the deformation-induced
potential in model II indeed matches the DFPT input, since

= +

= + + + . . . (14)

The force constant matrix C = CDFT−∆CRPA entering model II is obtained by unscreening
the DFPT fully screened force constants CDFT on the RPA level, i.e., we subtract the second-
order response in RPA of the electronic system to the atomic displacements, as given by the
bubble diagram

∆CRPA = . (15)
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Table 1: Comparison of downfolded models.

Model I Model II Model III
Coulomb interaction [Eq. (5)] cRPA cRPA —
Electron-phonon coupling1 [Eq. (9)] cDFPT DFPT (⋆)* DFPT
Force constants [Eq. (8)] cDFPT DFPT (⋆)* DFPT (⋆)*

1 as in displacement-induced potential.
* (⋆) refers to unscreened quantities.

2.1.2 Model III

Again, we construct the total free energy to be exact in second order. As in model II, we have
to subtract the unwanted second order, C = CDFT−∆C III. The change in the interatomic force
constants for this non-interacting model is given by the bubble diagram (cf. Appendix B)

∆C III = . (16)

The unscreening is exact when the DFT force constants, the bubble diagram, and the free
energy are evaluated at the same electronic temperature TDFT. This electronic temperature fa-
cilitates the treatment of metals within DFT calculations. However, on the model side we have
the freedom to evaluate the free energy at a different electronic temperature TM . Interest-
ingly, the resulting second order is still a very good approximation to the DFT force constants
at temperature TM [73,76], as it will be demonstrated in this work.

This completes the definitions of models I, II, and III, which are also summarized in Table 1.
In the following, we will explain and demonstrate the downfolding according to models I–III
along the example case of monolayer 1H-TaS2.

3 CDW potential energy landscapes in 1H-TaS2: DFT vs downfold-
ing

Monolayer 1H-TaS2 exhibits a 3 × 3 CDW [77–79], where atoms are displaced from their
symmetric positions as illustrated in Fig. 2a. Coupling between electrons within the low-
energy subspace (highlighted in Fig. 2b) and the lattice distortions u is responsible for the 3×3
CDW instability [66]. Hence, we choose these three bands to span the low-energy subspace
of electrons in the Hamiltonian H.

We present practical calculations using downfolded models I–III and benchmark the result-
ing potential energy landscapes against full DFT calculations. Details of the DFT calculations
are presented in Appendix C. The energy landscapes will be illustrated along the displace-
ment direction of the CDW distortion: u = α(RCDW − R0). Here, R0 is the symmetric relaxed
structure, and RCDW is the CDW structure as obtained by DFT. α plays the role of a scalar
coordinate, where by construction α = 0 yields the symmetric state and α = 1 the CDW dis-
placement pattern. Note, however, that the models readily yield the full energy landscape for
arbitrary displacements.

Model I starts with partially screened force constants C from cDFPT in Hdef, which exclude
screening processes taking place within the low-energy electronic target space highlighted in
Fig. 2b. The “bare” harmonic potential energy versus displacement curves resulting from Hdef
(dark gray cDFPT parabola) is compared to full DFT total energy calculations (crosses) in
Fig. 2c. The upward opened cDFPT parabola shows that the CDW lattice instability is induced
by the electrons of the target subspace, in accordance with Ref. [66].
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Figure 2: (a) Crystal structure of the 3× 3 CDW in 1H-TaS2 (displacements are in-
creased by a factor of 5 for visibility). (b) Electronic bands of 1H-TaS2 from DFT
(gray) and Wannier bands (blue dashed), which span the cDFPT active subspace
highlighted in yellow. (c) Born-Oppenheimer potential energy surface from DFT for
the 3× 3 CDW in 1H-TaS2 (blue crosses). Its negative curvature matches the DFPT
parabola (light gray curve). The cDFPT parabola, which is not screened by the active
subspace electrons, is opened upward (dark gray curve).

We account for density-density type Coulomb matrix elements in Hel, which we obtain from
cRPA, and solve the resulting model Hamiltonian H for the potential energy landscape F(u) in
Hartree approximation. See Appendix A for a detailed description of the Hartree calculations.
The resulting total (free) energy versus displacement curve is compared to DFT in Fig. 3a.
Model I generates an anharmonic double-well potential and thus features a CDW instability
like DFT, which is qualitatively reproduced. Nevertheless, there is some deviation of model I
from DFT, which originates mainly from the harmonic term. In comparison to DFT, model I
and its subsequent Hartree solution involve two additional approximations, which could be
responsible for the deviations to second order: neglecting non density-density type Coulomb
terms, and neglecting exchange-correlation effects.

Model II suppresses deviations from the DFT potential energy landscape to second order
in u by construction: Since the fully screened deformation energy from DFPT agrees with the
DFT energy versus displacement curve (see Fig. 2b), as it must be, also the solution of the
downfolded model II matches DFT to second order in the displacement (Fig. 3b). The overall
match between the downfolded model II and DFT is clearly much better than for model I
and indeed almost quantitative also at displacements |α| > 1, where anharmonic terms are
substantial.

Also model III, which involves non-interacting electrons coupled to lattice deformations
via fully screened DFPT displacement-induced potentials, recovers the DFT potential energy
vs displacement curve for the 3×3 CDW distortion in 1H-TaS2 almost quantitatively (Fig. 3c)
and even slightly better than model II.

We also applied downfolded model III to monolayer 1T-TiSe2, a one-dimensional carbon
chain, and monolayer 1H-NbS2 as examples of further CDW materials. The resulting potential
energy landscapes in Fig. 4 show the agreement between DFT and the downfolded model.
Hence, model III captures the most important anharmonicities in these cases. CDWs are espe-
cially, but not exclusively, found in low-dimensional systems. As a consequence, we focussed
on low-dimensional materials for this benchmark. However, the downfolding formalism is
independent of dimensionality.
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Figure 3: Free energies of the 3× 3 CDW mode in 1H-TaS2 from DFT (blue crosses)
and downfolded models. (a) Interacting model with partially screened quantities
from constrained theories cRPA and cDFPT (start from cDFPT parabola). (b) Inter-
acting model with partially screened quantities from unscreening (start from DFPT
parabola). (c) Non-interacting model with fully screened quantities (start from DFPT
parabola).
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(c) 1H-NbS2 (3 × 3)

Figure 4: Free energies of (a) the 2×2 CDW in 1T-TiSe2, (b) the CDW in the carbon
chain, and (c) the 3×3 CDW in 1H-NbS2. The blue crosses are data points from DFT
and the orange curves are the model III results.

3.1 Influence of Wannier orbitals and electronic Hilbert space dimension

Since the electronic Hamiltonian [Eq. (3)] is represented via Wannier functions, we have a
certain freedom of choice. From a computational standpoint, we are aiming for a maximal
reduction of the dimension of the single-particle Hilbert space, while maintaining a reasonable
level of accuracy. Thus, the natural question arises: How many and which Wannier orbitals to
choose to create the single-particle Hilbert space?

For 1H-TaS2, we compare a “minimal” and a “maximal” model involving, respectively, three
and eleven Wannier orbitals per unit cell: In the case of three orbitals, there are three d-type
orbitals on the Ta atom (dz2 , dx2−y2 , dx y), and in the case of eleven orbitals, there are five
d-type orbitals on the Ta atom (dz2 , dxz , dyz , dx2−y2 , dx y) and three p-type orbitals on both S
atoms (px , py , pz). Note that these are the Hilbert space dimensions on the primitive unit cell.
On the 3× 3 supercell calculations, the dimensions are 27 and 99 respectively.

We compare the energy-displacement curves resulting from model III for both Hilbert space
sizes to DFT in Fig. 5. While the results are similar in both cases, the eleven orbital model
is slightly closer to full DFT than the three orbital model. In the eleven-orbital model, the
displacement potentials directly induce changes in the d-p hybridization. We speculate that
anharmonicities associated with these rehybridization terms are responsible for the slightly
improved accuracy of the eleven band model.
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Figure 5: Free energies of the 3×3 CDW in 1H-TaS2. We show DFT data points (blue
crosses), model III results for three Wannier orbitals (orange solid curve), and model
III results for eleven Wannier orbitals (blue dashed curve).

3.2 Electronically generated anharmonicities

Models I, II, and III are based on the electronic structure at the symmetric equilibrium positions
of the atoms, as well as the linear response to displacements that is accessible in DFPT. By
construction, models II and III guarantee agreement with the full DFT calculation at small
displacements u, up to order u2 in the energy and up to order u in the electronic structure. One
might wonder if these models, based on linear response, can ever be useful for the description
of the distorted phase, which is necessarily stabilized by anharmonicity and terms of order u3,
u4, and beyond.

The close match between the significantly anharmonic DFT potential energy landscapes
and models II and III in Figs. 3, 4, and 5 at |α|> 1 might thus come as a surprise. The reason
behind the good match even in the anharmonically dominated region can be understood in
the following sense: Linear changes in the electronic potential lead to non-linear changes
in eigenvalues of the electronic Hamiltonian and therefore in the total energy. Thus, if the
low-energy electrons are responsible for the anharmonicity that stabilizes the CDW, then a
low-energy electronic model based on DFPT quantities has the possibility to describe this.

The emergence of electronically driven anharmonicities can be illustrated with an elec-
tronic two-level system, H0

el = ∆σz , coupled linearly to a nuclear displacement u through
Hel-n = u·dσx [following Eq. (9)]. Here, σi denote Pauli matrices, 2∆ is the level-splitting and
d encodes the strength of the coupling of electrons to nuclear displacements as in Eq. (9). The
ground state eigenvalue of H0

el+Hel-n reads E0=−
p

∆2+(du)2 ≈−∆
�

1+ 1
2

� du
∆

�2
− 1

8

� du
∆

�4
+. . .
�

.
Thus, electronically generated anharmonicities appear at displacements on the order u≈∆/d.
Taking the level splitting∆ as a proxy for the electronic bandwidth W ∼∆ or for the inverse of
the density of states at the Fermi level ρ ∼ 1/∆, we have electronically generated anharmonic-
ities appearing at displacements on the order u ≈ W/d ≈ 1/(ρd). In other words, systems
with strong electron-lattice coupling and high density of states at the Fermi level are expected
to be domains where the linearized electron-lattice coupling preferably works. In addition, the
approximation of a linearized electron-lattice coupling as in Eq. (9) has also been successfully
applied to describe polaronic lattice distortions [80,81].

This hypothesis is further corroborated by the comparison of energy-displacement curves
for 1H-TaS2 at different electronic smearings to those of the related system 1H-WS2, in Fig. 6.

The electronic band structure of WS2 [82] is very similar to the one of TaS2 (see Fig. 2b)
with the key difference that it has one additional valence electron per unit cell. Hence, the half-
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Figure 6: (a) Free energy and (b) anharmonic part of the free energy for 1H-TaS2
at electronic smearings kT = 14 meV (blue), 68 meV (orange), 680 meV (dark red)
and for 1H-WS2 at smearing kT = 68 meV. Solid lines originate from model III and
crosses from DFT. Even though the inputs for model III (see Table 1) were generated
at the electronic temperature TDFT = 68 meV, we can still evaluate the free energy at
higher or lower model temperatures TM and get a good agreement with DFT.

filled conduction band of TaS2 becomes completely filled in the WS2 case, which renders WS2
semiconducting and quenches the response of the low energy electronic system. Similarly, an
increased electronic smearing/temperature quenches the response of the low-energy electronic
system. Both WS2 and TaS2 at high smearing, are dynamically stable, which is indicated by
the positive second order of the free energy in Fig. 6a. This tells us that at least the harmonic
term is significantly affected by the occupation of the low-energy subspace. Furthermore, in
Fig. 6b, we show the corresponding anharmonic part of the free energies. The flat shape
of the high smearing (dark red) and the WS2 (gray) curves show that the anharmonicity is
strongly reduced compared to the low smearing cases. These observations suggest that the
anharmonicities associated with the CDW formation in 1H-TaS2 indeed originate to a large
extent from non-linearities in the response of the low-energy electronic system to the external
displacement-induced potentials.

Anharmonicities associated with the non-linear low-energy electronic response comprise
single-particle and Coulomb contributions. We analyze these contributions diagrammatically
in the following for the grand canonical potential Ω:

Model III has the Coulomb contributions accounted for indirectly via the fully screened
DFPT deformation-induced potential and the diagrams contributing to anharmonicities in Ω
are of the following types:

ΩIII
anh = + + . . . (17)

Model II has explicit Coulomb interaction entering and the diagrammatic content is de-
termined by the approximation used to treat the Coulomb interaction in model II. When
solving model II in self-consistent Hartree approximation, we generate terms screening the
deformation-induced potential according to Eq. (14). Thus, the anharmonic contributions to
the grand potential in model II, ΩII

anh, contain those diagrams also present in model III but also
further ones. For example, at order u4, model II contains a diagram of the form

(18)

which is not present in model III.
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Both the Green’s function (not shown here) and total energy or grand canonical poten-
tial in models II and III agree at small displacements (by construction) and disagree at higher
orders in u, and their difference scales with the strength of the Coulomb interaction. Fun-
damentally, the Green’s function of the exact DFT solution contains interaction-mediated an-
harmonic response to displacements, just like model II does. At the same time, in our current
implementation model II only contains Hartree-like diagrams of this kind and lacks other di-
agram topologies present in the exact DFT solution. These additional diagrams can lead to
substantial error cancellation. Thus, it is hard to make general arguments about which model
to prefer beyond order u2, given the opaqueness of the underlying DFT exchange-correlation
functional. We speculate that cancellations similar to those occurring in second order [73,76]
in u could be also effective in higher orders. In our numerical studies, we find that the total
energy curves of model II and III are relatively close for the systems studied here.

4 Downfolding-based molecular dynamics

So far we have seen that the downfolded models can reproduce total free energies from DFT. In
the following Section 4.1, we assess the computational speed of these models, which ultimately
paves the way to enhanced sampling simulations based on MD. As a demonstration of this
enhancement, we perform the downfolding-based MD for the example case of monolayer 1H-
TaS2 in Section 4.2.

4.1 Benchmark of model III against DFT: Force and free energy calculations

To demonstrate the performance gain of model III, we benchmark the calculation of forces and
free energies against DFT. For this benchmark, we perform structural relaxations of 1H-TaS2
starting from random displacements |ui| < 0.01 Bohr—to mimic the conditions of a MD sim-
ulation step—on different supercells. Durations are averaged over five steps, excluding the
first step starting from the initial guess for the density in the DFT case. Calculations are per-
formed on identical machines, using equivalent computational parameters (cf. Appendix C).
The results are shown in Fig. 7.

More precisely, we benchmark two implementations of model III: Calculations on finite
k meshes, as shown in the previous Section 3, currently require a lot of memory to store the
deformation-induced potential in the real-space (dR,R′) and reciprocal-space (dq=0,k) represen-
tations, which limits the system to similar sizes as achievable in DFT (Fig. 7a). Thus, in this
section, we instead use a sparse representation, which uses significantly less memory (Fig. 7b),
reaching linear scaling with the system size (cf. Ref. [46]), but is currently restricted to k = 0,
appropriate for large supercells. It also increases the time needed to initialize the program
(Fig. 7c, d), which however does not influence the MD simulations. Comparing to the same
DFT program we use to obtain the parameters for the downfolded model, i.e., the plane-wave
code QUANTUM ESPRESSO [83, 84], we find a speedup of about five orders of magnitude in
the downfolding approach for the relevant systems (Fig. 7e, f). Note that our implementation
is based on NUMPY and SCIPY [85,86] and that optimizations both on the ab initio and on the
model side are possible.

The computational advantage from the non-interacting model III over DFT is easily ex-
plained: While DFT relies on the self-consistent solution of the Kohn-Sham system, model III
only needs a single matrix diagonalization to solve the Schrödinger equation, thus making it
the fastest of all three models. Model I and II on the other hand, incorporate the Coulomb
interaction through a self-consistent Hartree algorithm. Assuming a typical number of ∼ 10
cycles needed for convergence the speedup should be on the order of 104 rather than 105.
Most importantly, through downfolding, the matrix of all downfolded models only covers the
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Figure 7: Comparison of (a, b) memory requirements, (c, d) initialization times, and
(e, f) durations of energy and forces calculations using QUANTUM ESPRESSO (blue)
and our PYTHON implementations of model III (orange) (cf. Appendix C). We consider
(a, c, e) k meshes of constant density and (b, d, f) the Γ -only case, for which model
III has been implemented using arrays of sparse matrices for the electron-phonon
coupling diαβ . The DFT calculations have been parallelized over plane waves and
real-space grids (-nk 1 -nd 1) using 40 CPUs; the model calculations have been
run serially. In both cases, Intel Skylake 6148 processors have been used.

low-energy subspace of the electronic structure, as opposed to DFT, whose matrix accounts for
low- and high-energy bands.

In fact, most of the time is spent on setting up the Hamiltonian matrix and evaluating the
forces [Eq. (11)]. To guarantee that the former is Hermitian and to make the use of sparse
matrices more efficient, we have symmetrized dR,R′αβ = d∗R−R′,−R′βα and neglected matrix
elements smaller than 1 % of the maximum, the effect of which on the free-energy landscape
is negligible.

4.2 Enhanced sampling simulations based on downfolded model III

We now perform enhanced sampling simulations based on MD with the downfolding scheme
defined by model III. To this end, we implemented a PYTHON-based tight-binding solver [74],
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Figure 8: Structure factors 〈S(q)〉T [Eq. 19] for 1H-TaS2 on the 18 × 18 supercell.
(a–d) Structure factor SCL from classical MD. (e–h) Structure factor SPI from PIMD.
The peaks at q = 2/3 ΓM and q = K for T = 50 K are characteristic for the 3 × 3
CDW. At higher temperatures, the peaks are broadened and reduced in intensity. (i–
l) Ratio of structure factors SCL/SPI from classical and path integral MD. A value close
to 1 (indicated in white) corresponds to minimal differences between classical and
quantum simulations.

which delivers displacement field dependent forces and total free energies to the i-PI (path
integral) MD engine [87].

As stated in the previous section, we find a speedup of about five orders of magnitude
in the downfolding approach. Thus, the downfolding approaches make larger system sizes
and longer time scales well accessible. While for instance Ref. [88] simulates the dynamics of
3× 3 supercells of 1H-NbS2 with ab initio MD (AIMD) for time scales of about 6 to 12 ps, the
downfolding-based MD allows us to address much larger 18× 18 supercells for time scales of
about 500 ps using a similar amount of CPU hours.1

For monolayer 1H-TaS2, we performed classical (and path integral) replica exchange MD
simulations (see Appendix D) on the 18 × 18 supercells using 26 replicas (and 10 beads)
spanning a temperature range from 50 to 200 K in the canonical (NVT) ensemble. In each MD
step ν we record the position vectors of all nuclei Rl(ν, T ) for all temperatures T . Defining
the static structure factor

S(q) =
1

N2
at

�

�

�

�

�

Nat
∑

l=1

e−iq ·Rl

�

�

�

�

�

2

(19)

for a given atomic configuration Rl , we obtain the temperature-dependent MD ensemble av-
eraged structure factors 〈S(q)〉T . We confine the summation to the positions of the tantalum
atoms and normalize the structure factor such that S(q = 0) = 1. The static structure factor
is the frequency integrated version of the dynamic structure factor S(q) = ħh

∫ +∞
−∞ S(q ,ω)dω.

Furthermore, it contains both Bragg and all orders of thermal diffuse scattering contributions.

1The actual simulated times are 430 ps and 930 ps for the path integral (classical) replica exchange MD.
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Figure 9: Structure factor 〈S(q = 2/3 ΓM)〉T at the characteristic CDW wavevector
q = 2/3 ΓM for the classical MD (light blue) and path integral MD (blue). The
effective shift of the PIMD curve toward the experimental value can be attributed to
nuclear quantum effects.

The resultant structure factor maps on the first Brillouin zone of 1H-TaS2 are shown in Fig. 8
for temperatures T = 50, 81,96, 200 K.2 The upper row corresponds to classical MD simula-
tions. At 50 K, we find peaks in the structure factor at q = 2/3 ΓM, which are characteristic of
the 3×3 CDW. These peaks broaden and become reduced in intensity upon increasing temper-
ature. Fig. 9 shows the temperature dependence of 〈S(q = 2/3 ΓM)〉T in more detail. We see
the aforementioned temperature-induced reduction in 〈S(q = 2/3 ΓM)〉T with an inflection
point around TCL ≈ 96 K. We take this inflection point as the finite system size approximation
to the phase transition temperature that would be expected for an infinitely large simulation
cell.

While a 3 × 3 CDW has been observed in monolayer 1H-TaS2 [89], the exact transition
temperature is not known in this system. For the three-dimensional bulk of 2H-TaS2, CDW
transition temperatures on the order of T exp ≈ 75 K have been reported [90–95]. Our classical
finite system size estimate exceeds these temperatures by about 25 %. One possible origin of
this deviation can be quantum fluctuations in nuclear degrees of freedom.

Therefore, we performed path integral MD (PIMD) replica exchange simulations to assess
the influence of nuclear quantum effects on the CDW formation. The PIMD structure factor
maps in the middle row of Fig. 8 behave qualitatively similar to the classical counterpart. Their
ratio is quantitatively illustrated in the lowest row. The overall area of the Brillouin zone turns
from blue to white by heating up the system. Thus, as expected, the classical and quantum
simulations agree at high temperatures. However, the CDW fingerprints (q = 2/3 ΓM and
q = K) clearly increase in intensity and survive at higher temperatures in the classical case.
Note that while there is no phonon instability at q = K, the corresponding displacements
are commensurate with a 3× 3 superstructure and couple anharmonically to the soft modes
at q = 2/3 ΓM. This explains the high ratios at the Brillouin-zone corners in Fig. 8 (i–k),
especially in the vicinity of the transition temperature.

This difference between classical and quantum simulations can be inspected in more detail
in Fig. 9. While the qualitative shape of the PIMD curve (dark blue) is similar to the classical
MD (light blue) simulation, we find an effective shift of the curve and an inflection point
at TPI ≈ 82 K. Thus, quantum effects can significantly reduce the estimated CDW transition
temperature as compared to the classical estimate and lead to a closer match with experiment.

2We show those q vectors compatible with the periodic boundary conditions on the 18× 18 unit cell.
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From these demonstrator calculations it becomes clear that the downfolding-based
MD developed in this work opens the gate for precise computational studies of CDW
(thermo)dynamics, which were inaccessible in the domain of ab initio MD hitherto.

5 Conclusions

We presented three downfolding schemes to describe low-energy physics of electron-lattice
coupled systems—in particular CDWs—on a similar level of accuracy as full ab initio DFT:
Model I is based on constrained theories and models II and III are based on unscreening, where
model II features explicit Coulomb interactions and model III is effectively non-interacting.
The central goal of these downfolding schemes is to reduce the complexity of first-principles
electronic structure calculations. This is achieved by mapping the general solid-state Hamil-
tonian onto minimal quantum lattice models with only a few localized Wannier orbitals per
unit cell. The solution of these models is significantly faster than DFT. For model III, we found
a speedup of about five orders for the example case of monolayer 1H-TaS2. Despite this enor-
mous speedup and complexity reduction, we demonstrated a quantitative recovery of DFT
potential energy surfaces in downfolded models II and III.

As a demonstration, we performed classical and path integral MD simulations using model
III of the 1H-TaS2 CDW systems. The downfolding-based speedup opens the gate for enhanced
sampling techniques and path integral simulations of nuclear quantum effects on the CDW
transition. This makes downfolded models the method of choice for precise computational
studies of dynamics and thermodynamics in CDW systems, which were hitherto largely inac-
cessible to ab initio MD.

While we focussed, here, on Born-Oppenheimer MD, the Hamiltonians resulting from
downfolded models I–III are generic and likely applicable also when dealing with non-
adiabatic phenomena, electron-lattice coupled dynamics in excited electronic states, and sit-
uations where strong electron-electron correlations are at play. Due to the explicit account
of Coulomb interactions in models I and II, these schemes offer themselves for treatments
of situations where electronic interaction effects beyond semilocal DFT are to be included in
studies of coupled electron-nuclear dynamics. Furthermore, anharmonic force constants and
non-perturbative electron-phonon couplings [96] can be incorporated into the downfolded
models to expand the accuracy to even larger lattice distortions.

Future applications of the downfolding schemes developed here might reach to the physics
of (nonequilibrium) phase transitions involving CDW order [10–18] or the interplay of corre-
lations and (dis)ordering [19,97] as well as driven quantum systems [4–6]. Beyond potential
energy surfaces, the downfolded models can also be used to study the effective electronic
structure in the presence of atomic dynamics.

Acknowledgments

The authors would like to thank Jean-Baptiste Morée for discussions of the RESPACK software
package and Bálint Aradi for technical advice.

Funding information We gratefully acknowledge support from the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) through RTG 2247 (QM3, Project
No. 286518848) (AS, TW), FOR 5249 (QUAST, Project No. 449872909) (TW), EXC 2056
(Cluster of Excellence “CUI: Advanced Imaging of Matter”, Project No. 390715994) (TW, SB),
EXC 2077 (University Allowance, University of Bremen, Project No. 390741603) (JB), SFB 951

16

https://scipost.org
https://scipost.org/SciPostPhys.16.2.046


SciPost Phys. 16, 046 (2024)

(Project No. 182087777) (MR), and SE 2558/2 (Emmy Noether program) (MAS). AS and TW
further acknowledge funding and support from the European Commission via the Graphene
Flagship Core Project 3 (grant agreement ID: 881603). JB gratefully acknowledges the support
received from the “U Bremen Excellence Chair Program” and from all those involved in the
project, especially Lucio Colombi Ciacchi and Nicola Marzari. EvL acknowledges support from
the Swedish Research Council (VR) under grant 2022-03090 and from the Crafoord Founda-
tion. We also acknowledge the computing time granted by the Resource Allocation Board and
provided on the supercomputer Lise and Emmy at NHR@ZIB and NHR@Göttingen as part of
the NHR infrastructure. The calculations for this research were conducted with computing
resources under the project hhp00063.

Data availability The source code and data associated with this work are available on Zen-
odo [98].

A Free energy calculations of the downfolded models in Hartree
approximation

The Coulomb interaction in models I and II renders the electronic Hamiltonian interacting
and requires approximate treatments. Here, we solve the interacting Hamiltonian in Hartree
approximation, which is the simplest mean-field approximation and as such requires a self-
consistency loop.

For the Coulomb interaction, we assume here a density-density type interaction

H1
el =

1
2N

∑

qkk ′αβ

Uq
αβ

c†
k+qαc†

k ′β ck ′+qβ ckα , (A.1)

with Uq
αβ

being cRPA density-density matrix elements evaluated at momentum transfer q .
The Hartree decoupling of Eq. (A.1) reads

H1
el =

1
N

∑

kk ′αβ

Uq=0
αβ

�

c†
kαckα

¬

c†
k ′β ck ′β

¶

−
1
2




c†
kαckα

�

¬

c†
k ′β ck ′β

¶

�

. (A.2)

Since the DFT input parameters of models I and II already contain Coulomb contributions, we
have to avoid double counting. The hopping terms t0

kαβ stem from the Kohn-Sham eigenvalues
of the undistorted structure, which contain (among others) a Hartree term. Here, we choose
HDC to compensate for the Hartree term of the undistorted structure:

HDC = −
1
N

∑

kk ′αβ

Uq=0
αβ

�

c†
kαckα

¬

c†
k ′β ck ′β

¶

0
−

1
2




c†
kαckα

�

0

¬

c†
k ′β ck ′β

¶

0

�

, (A.3)

where 〈. . . 〉0 denotes expectation values obtained for the undistorted structure.
We introduce the Hartree potentials Uα and U

0
α for the distorted and undistorted structures,

respectively,

Uα =
∑

β

Uq=0
αβ

nβ and U
0
α =
∑

β

Uq=0
αβ

n0
β , (A.4)

where n(0)
β
= 1

N

∑

k ′β〈c
†
k ′β ck ′β〉(0) denotes local orbital occupations. Then, the electronic mean-

field Hamiltonian written in the Wannier orbital basis of the supercell reads

Hel +Hel-n =
∑

kαβ

�

t0
kαβ + udkαβ + (Uα − U

0
α)δαβ
�

c†
kαckβ −

1
2

∑

αβ

Uq=0
αβ
(nαnβ − n0

αn0
β) . (A.5)
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This Hamiltonian is solved self-consistently. The converged electronic dispersion ϵkn and
occupations nα are used to determine the free energy:

Fel =
2
N

kB T
∑

nk

ln
�

f
�

−(ϵkn −µ)/kT
�

�

+µNel −
1
2

∑

αβ

Uq=0
αβ
(nαnβ − n0

αn0
β) . (A.6)

The Coulomb matrix Uq
αβ

contains one divergent eigenvalue for q → 0, which is associ-
ated with the homogeneous charging of the system. Since we are working at fixed system
charge, we exclude the divergent contribution of Uq

αβ
. In practice we perform the eigenvec-

tor decomposition of Eq. (15) from Ref. [99] and exclude the contribution from the leading
eigenvector.

B Perturbation expansion of grand potential and free energy

Changes of the grand potential of non-interacting electrons due to atomic displacements can
be straightforwardly evaluated using diagrammatic perturbation theory [100]:

Ω = Ω
�

�

0 +
∑

i

Ω
(1)
i

�

�

0ui +
1
2

∑

i j

Ω
(2)
i j

�

�

0uiu j + . . . (B.1)

≡ Ω
�

�

0 + + + . . . (B.2)

Without loss of generality, we consider q = 0 in Eq. (9) and drop the corresponding sub-
script.

In first order, we then have

Ω(1) =
kT
N

∑

knν

dknn
1

iων − ϵkn +µ
=

1
N

∑

kn

dknn f (ϵkn −µ) , (B.3)

with the Matsubara frequency ων = (2ν+ 1)πkT .
In second order, we have

Ω(2) =
kT
N

∑

kmnν

dkmn
1

iων − ϵkm +µ
1

iων − ϵkn +µ
dT

knm (B.4)

=
1
N

∑

kmn

dkmn
f (ϵkm −µ)− f (ϵkn −µ)

ϵkm − ϵkn
dT

knm . (B.5)

We deliberately have omitted the superscript zero from ϵkn [cf. Eq. (3)] as in our models with
linear electron-phonon coupling these formulas also hold for u ̸= 0 as long as d is represented
in the electronic eigenbasis.

The number of electrons Nel is typically conserved in DFT and MD calculations, so we are
instead interested in the canonical ensemble and the free energy

F(Nel) = Ω(µ(Nel)) +µ(Nel)Nel . (B.6)

Its first derivative with respect to displacements is

F (1)i =
dF
dui
=
∂ Ω

∂ ui
+
�

∂ Ω

∂ µ
+ Nel

�

dµ
dui
= Ω(1)i , (B.7)

since ∂ Ω/∂ µ = −Nel. In other words, the expression for the forces [cf. Eq. (11)] is the same
in the canonical and the grand-canonical ensemble.
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For the unscreening of the force constants (cf. Section 2.1), we also need access to the
second derivative of the free energy at constant electron density,

F (2)i j =
dF (1)i

du j
=
∂ Ω

(1)
i

∂ u j
+
∂ Ω

(1)
i

∂ µ

dµ
du j

. (B.8)

Expectedly, the first term on the right is Ω(2)i j from Eq. (B.5). Here, the second term does not
vanish, at least not for monochromatic perturbations with q = 0 [101]. The change of the
chemical potential upon atomic displacements follows from the electron conservation,

0
!
=

dNel

du
=

1
N

d
du

∑

kn

f (ϵkn −µ) = −
1
N

∑

kn

�

dknn −
dµ
du

�

δ(ϵkn −µ) , (B.9)

with δ(ϵ) = −d f (ϵ)/dϵ. We have used the Hellmann-Feynman theorem,

dϵkn

du
=

d
du
〈kn|H0

el +Hel-n|kn〉= 〈kn|
d

du
(H0

el +Hel-n)|kn〉 ≡ dknn . (B.10)

Note that here the matrix element of the deformation-induced potential dknn is represented
in the basis of eigenstates |kn〉 of the perturbed Hamiltonian. Rearranging Eq. (B.9) shows
that the change of the chemical potential is nothing but the Fermi surface (FS) average of the
intraband deformation-induced potential,

dµ
du
=

∑

kn dknnδ(ϵkn −µ)
∑

knδ(ϵkn −µ)
≡ 〈dknn〉FS . (B.11)

From Eq. (B.3), we can also readily evaluate

∂Ω(1)

∂ µ
=

1
N

∑

kn

dknnδ(ϵkn −µ)≡ ρ(µ)〈dknn〉FS , (B.12)

where ρ is the electronic density of states per unit cell. Inserting Eqs. (B.11) and (B.12) into
Eq. (B.8) yields

∆C III
i j = Ω

(2)
i j +ρ(µ)〈diknn〉FS〈d jknn〉FS . (B.13)

The first term are the force constants in the grand canonical ensemble, i.e., at constant chemical
potential. The second term is the correction for going from the grand canonical to the canonical
ensemble.

C Computational parameters for DFT

All DFT and DFPT calculations are carried out using QUANTUM ESPRESSO [83,84]. The mod-
ification that is required for cDFPT is described in detail in Ref. [64]. For the transformation
of the electronic energies and electron-phonon couplings to the Wannier basis, we use WAN-
NIER90 [102] and the EPW code [103–105]. The cRPA Coulomb interaction was calculated
using RESPACK [106]. In the following, we will list the specific DFT and DFPT parameters for
each material individually:

1H-TaS2 Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials [107, 108]; 18 × 18 × 1
k mesh and 6 × 6 × 1 q mesh for unit cell; Fermi-Dirac smearing of 5 mRy (Gaussian
smearing of 0.1 Ry for Fig. 7b, d, f); energy convergence threshold of 10−15 Ry (10−8 Ry
per unit cell for Fig. 7); lattice constant of 3.39 Å. The cRPA Coulomb interaction has
been calculated on a 32× 32× 1 q mesh taking 80 electronic bands into account.
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1H-NbS2 HGH pseudopotentials [107,108]; 18×18×1 k mesh and 6×6×1 q mesh for unit
cell; Fermi-Dirac smearing of 3 mRy; lattice constant of 3.34 Å.

1H-WS2 HGH pseudopotentials [107,108]; 18×18×1 k mesh and 6×6×1 q mesh for unit
cell; Fermi-Dirac smearing of 5 mRy; lattice constant of 3.23 Å.

1T-TiSe2 Ultrasoft pseudopotential [109] from the SSSP library [110,111]; 18×18×1 k mesh
and 6× 6× 1 q mesh for unit cell; Fermi-Dirac smearing of 5 mRy; lattice constant of
3.54 Å.

Carbon chain Optimized norm-conserving Vanderbilt pseudopotential (ONCVPSP) [112]
from the PSEUDODOJO library [113]; 200 × 1 × 1 k mesh and 20 × 1 × 1 q mesh for
unit cell; Fermi-Dirac smearing of 5 mRy; lattice constant of 1.30 Å.

In all cases, we have applied the Perdew-Burke-Ernzerhof (PBE) functional [114], set the
plane-wave cutoff to 100 Ry, and minimized forces and pressure in the periodic directions
to below 1 µRy/Bohr and 0.1 kbar. We have used a unit-cell dimension of 15 Å to separate
images in the non-periodic directions.

D Replica exchange

In order to characterize the CDW phase-transition, we employed replica exchange molecular
dynamics (REMD) and replica exchange path integral molecular dynamics [87] (PI-REMD),
as implemented in the i-PI code. For the 18 × 18 1H-TaS2 supercell, we ran NVT simulations
of 26 replicas in parallel that differed in the ensemble temperature. We covered a temper-
ature range between 50 and 200 K. In the PI-REMD simulations, each temperature replica
was represented by ten imaginary-time replicas (commonly called “beads” in the ring-polymer
representation). This amount of beads proved to be converged within 1 meV/atom for the
potential and quantum kinetic energy at the lowest temperature of 50 K. We note that due to
the high dimensionality of the system, enhanced by the use of many imaginary-time replicas,
the PI-REMD simulations with 26 temperature replicas in this range was not efficient in terms
of the frequency of replica swaps, while the REMD simulations were.
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