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ABSTRACT

Mobile genetic elements (MGEs) mediate the shuf-
fling of genes among organisms. They contribute
to the spread of virulence and antibiotic resis-
tance (AMR) genes in human pathogens, such
as the particularly problematic group of ESKAPE
pathogens. Here, we performed the first systematic
analysis of MGEs, including plasmids, prophages,
and integrative and conjugative/mobilizable ele-
ments (ICEs/IMEs), across all ESKAPE pathogens.
We found that different MGE types are asymmetri-
cally distributed across these pathogens, and that
most horizontal gene transfer (HGT) events are re-
stricted by phylum or genus. We show that the
MGEs proteome is involved in diverse functional pro-
cesses and distinguish widespread proteins within
the ESKAPE context. Moreover, anti-CRISPRs and
AMR genes are overrepresented in the ESKAPE mo-
bilome. Our results also underscore species-specific
trends shaping the number of MGEs, AMR, and vir-
ulence genes across pairs of conspecific ESKAPE
genomes with and without CRISPR-Cas systems. Fi-
nally, we observed that CRISPR spacers found on
prophages, ICEs/IMEs, and plasmids have differ-
ent targeting biases: while plasmid and prophage
CRISPRs almost exclusively target other plasmids
and prophages, respectively, ICEs/IMEs CRISPRs
preferentially target prophages. Overall, our study
highlights the general importance of the ESKAPE
mobilome in contributing to the spread of AMR and
mediating conflict among MGEs.

INTRODUCTION

Mobile genetic elements (MGEs) are DNA entities that
are capable of capturing and shuffling genes intra- and
intercellularly (1). Coevolution of bacterial hosts with
these MGEs has driven the evolution of complexity (2).
Movement within the genome is often mediated by spe-
cific MGEs, such as insertion sequences and transposons
(3). Others like plasmids, prophages, and integrative and
conjugative/mobilizable elements (ICEs/IMEs) are key
vectors for intercellular mobility, being responsible for a
large fraction of the variability observed between bacte-
rial species (4–7). Bacteria undergo extensive horizontal
gene transfer (HGT), and some estimates suggest that more
than 80% of bacterial genes were horizontally transferred at
some point in their evolutionary history (8). These events
are largely shaped by ecological niches, by the difference in
the GC content between pairs of bacteria exchanging ma-
terial, and by phylogenetic barriers (9–11). Network-based
methods are useful to trace HGT events and recover shared
content between bacterial genomes (11,12), and have been
recently applied to explore the population structure of thou-
sands of plasmids (13,14). Even though this approach has
been useful to explore population structure of plasmids,
the study of potential HGT events involving other MGEs
(such as prophages and ICEs/IMEs) is largely unexplored.
Moreover, only a few studies have used network-based ap-
proaches to explore the co-evolutionary dynamics of differ-
ent MGE types (15–17).

MGEs carry non-essential genes that can provide their
bacterial host with adaptive functions and alter their fit-
ness, such as antimicrobial resistance (AMR) and viru-
lence genes (18,19). These elements employ a myriad of
ecological and evolutionary strategies to promote their
own replication and transmission, which allow them to
persist even in the absence of positive selection for the
beneficial genes they carry. For example, non-mobilizable
plasmids can persist over evolutionary timescales without
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selection for the plasmid function, while multicopy plas-
mids can promote the coexistence of ancestral and novel
functions, allowing bacteria to escape from fitness trade-
offs (20,21). Bacteria have developed a variety of, of-
ten complex, defense mechanisms against invading MGEs,
including restriction-modification and clustered regularly
interspaced short palindromic repeats (CRISPR) and
CRISPR-associated (Cas) genes (22,23). These systems are
usually clustered in ‘defense islands’ and are widespread in
bacteria and archaea (24,25). Partially reconstructing re-
cent HGT events is made possible by the repeated incor-
poration of spacer sequences, which are derived from frag-
ments of invading MGEs, into CRISPR loci. When dealing
with obligatory parasites, CRISPR-Cas immunity that in-
hibits HGT can be advantageous, but it can also be harmful
since it blocks the acquisition of novel genetic traits carried
by MGEs. Invasion by these MGEs can still be associated
with fitness costs that may lead to selection against carriage
(5,26). Hence, bacteria often face a trade-off between immu-
nity and acquisition of novel elements, which favour adap-
tation to different ecological niches and stressors, such as
antibiotic pressure. MGEs can be equipped with inhibitors
of CRISPR-Cas systems, called anti-CRISPR (Acr) pro-
teins, which have been reported mostly in prophages (27–
29). Recently, Acr proteins were identified in non-phage
MGEs, including plasmids and ICEs (30).

Bacterial pathogens belonging to the ESKAPE panel
consist of five species (Enterococcus faecium, Staphylococ-
cus aureus, Klebsiella pneumoniae, Acinetobacter bauman-
nii and Pseudomonas aeruginosa) and one genus (Enterobac-
ter sp.) (31,32). These pathogens are frequently involved in
problematic nosocomial infections, due to their multi-drug
resistance and/or invasive phenotypes (33–38). The WHO
recently published a list of pathogens for which new an-
tibiotic development is urgently required, and the ESKAPE
pathogens were designated ‘priority status’ (39). AMR and
virulence genes are broadly distributed in plasmids across
the ESKAPE pathogens (19,33), and also in ICEs (40,41).
Recently, CRISPR-Cas systems have been identified in plas-
mids and ICEs from several bacterial species (including rep-
resentatives of the ESKAPE pathogens), and may be in-
volved in conflict between MGEs (42–44).

In this study, we performed the first systematic analysis of
the ESKAPE pathogens mobilome. We asked (i) how preva-
lent are different MGEs (prophages, ICEs/IMEs and plas-
mids) across the ESKAPE pathogens; (ii) how broad or con-
strained is the combined MGEs’ network; (iii) which func-
tions are overrepresented in these MGEs, and if AMR and
virulence genes are differently distributed in pairs of con-
specific ESKAPE pathogens with and without CRISPR-
Cas systems, which we here focus on as examples of effec-
tive defense systems in bacteria (22,25); (iv) whether the
CRISPR spacers have a targeting bias towards different
MGE types, i.e. prophages, plasmids, and ICEs/IMEs. We
found that plasmids, ICEs/IMEs, and prophages are un-
equally distributed across these pathogens, and found sig-
natures of HGT between different species. Uncovering the
structure of MGEs and masked (i.e. MGE-free) genomes al-
lowed us to discover an overrepresentation of AMR genes
and anti-CRISPRs in the ESKAPE mobilome. Our results
also unveiled ESKAPE-specific trends of MGEs, AMR,

and virulence genes promoted by the presence of CRISPR-
Cas systems. Finally, our work shows that CRISPR spacers
found on prophages, ICEs/IMEs and plasmids across the
ESKAPE pathogens have different targeting biases.

MATERIALS AND METHODS

ESKAPE pathogens collection

We retrieved all complete ESKAPE genomes available in
the NCBI Reference Sequence Database (RefSeq, accessed
on 12 November 2020), using ncbi-genome-download
v0.3.0 (https://github.com/kblin/ncbi-genome-download).
Genomes listed as ‘unverified’ were removed from our
dataset. We also excluded genomes classified as ‘Enter-
obacteriaeceae’. Finally, we used pyANI v0.2.10 (https:
//github.com/widdowquinn/pyani) to calculate the average
nucleotide identity based on MUMmer (ANIm) and re-
moved genomes with an ANIm value below the 95% thresh-
old for species delineation (45,46). To evaluate the tax-
onomy of the Enterobacter species, we retrieved genomes
for Enterobacteriaceae type strains and used them together
with the Enterobacter genomes to create a phylogenetic tree
using GToTree v1.5.22 (https://github.com/AstrobioMike/
GToTree) (47) and the IQ-TREE algorithm to estimate
maximum likelihood (48). We used the pre-built set of 74
single copy gene bacterial Hidden Markov Models (HMM)
available in GToTree. Genomes labelled as belonging to
the Enterobacter genus, but clustered in the phylogenomic
tree with type strains other than those from the Enter-
obacter genus, were removed from subsequent analyses. We
then built a phylogenetic tree including all curated ES-
KAPE genomes using GToTree and the IQ-TREE algo-
rithm as aforementioned. These trees were visualized with
iTOL v6 (https://itol.embl.de/). Multi-locus sequence typ-
ing (MLST) profiles were determined with mlst v2.19.0
(https://github.com/tseemann/mlst). The curated genomes
were automatically annotated using Prokka v1.14.6 (https:
//github.com/tseemann/prokka) (49).

Extraction of plasmids, ICEs/IMEs and prophages

Since the ESKAPE pathogens (as most bacteria) are hap-
loid, we separated the large replicon (i.e. the chromosome)
from the extrachromosomal replicons. For the latter, only
accessions with ‘plasmid’ and ‘complete sequence’ on their
description were kept and were used for further plasmid
analyses.

To extract ICEs from chromosomal replicons, we used
the chromosomal genbank files created with Prokka as in-
put to build a pangenome for each ESKAPE pathogen.
We used ppanggolin v1.1.96 (https://github.com/labgem/
PPanGGOLiN) (50), which uses a graphical model and a
statistical method to partition the pangenome in persis-
tent, shell and cloud genomes. Persistent gene families are
those conserved in a large majority of genomes, while shell
and cloud gene families are present at intermediate and
low frequencies, respectively. We used the panRGP method
to build the pangenomes (51). This method predicts re-
gions of genome plasticity (RGPs), which are clusters of
genes made of accessory genes (shell and cloud genomes)
in the pangenome graph. We then used bedtools v2.30.0
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(https://bedtools.readthedocs.io/en/latest/) (52) to extract
RGPs from the chromosomal replicons. The proteomes of
these extracted RGPs were scanned for relaxases with hm-
mer v.3.3.1 (http://hmmer.org/) (53) against MOBfamDB,
a curated relaxase profile HMM database (54). Simulta-
neously, the proteomes were screened with hmmer against
integrases (Pfam accession PF00589) and recombinases
(PF07508). Both analyses were performed using hmmscan
with default parameters. RGPs with hits both for integrases
(phage integrase or recombinase) and relaxases were clas-
sified as putative ICEs/IMEs and were kept for further
analysis.

To look for prophages, we masked the ICEs/IMEs
locations in the chromosomal replicons using bedtools.
The ICE/IME-masked chromosomes were annotated with
Prokka, using as proteins of interest a collection of non-
redundant viral proteins downloaded from NCBI’s RefSeq
database (https://ftp.ncbi.nlm.nih.gov/refseq/release/viral/,
accessed on the 25 January 2022). The masked chromo-
somal genbank files were then used as input in phispy
v4.2.6 (https://github.com/linsalrob/PhiSpy), which com-
bines similarity- and composition-based strategies to look
for prophages (55). We also masked the prophage regions
in the chromosomal replicons, to build the final masked
genomes, that are ICE/IME- and prophage-masked (these
masked replicons are also free of plasmids, since these are
part of the extrachromosomal replicons).

Network-based approach

To estimate the pairwise distances between all ESKAPE
MGE types (i.e. plasmids, ICEs and prophages), we first
ran the MMSEQseqs2 v13.45111 package (56), using 90%
sequence identity for clustering each MGE type. We then
reduced the dereplicated MGEs into sketches and com-
pared the Jaccard index (JI) and mutation distances be-
tween pairs of MGEs using BinDash v 0.2.1 (https://github.
com/zhaoxiaofei/bindash)(57). Each MGE sequence was
converted to a set of 21-bp k-mers. We used the mean() and
median() functions in R to calculate the arithmetic mean
and median of the JI, respectively. Only JI equal to or above
the mean and median were considered, and the mutation
distances were used as edge attributes to plot the network
with Cytoscape v3.9.0 under the prefuse force directed lay-
out (https://cytoscape.org/). We used the Analyzer function
in Cytoscape to compute a comprehensive set of topological
parameters, such as the clustering coefficient, the network
density, the centralization, and the heterogeneity.

Functional annotation

COGs annotation of the MGE proteins was carried
out through sequence alignments against the COGs
2020 database (https://www.ncbi.nlm.nih.gov/research/cog-
project). The alignments were performed with DIA-
MOND v0.9.10.111 (58) with a cutoff evalue of 1e–
05 and 80% coverage of both query and subject se-
quences. The COGs database was set up using a python
script (https://github.com/kkpenn/merger COG2020/blob/
main/merger 2.py) and DIAMOND makedb with default
settings. Around 36, 38 and 55% of the proteins encoded in

plasmids, ICEs/IMEs, and prophages matched a protein in
the COGs database, respectively, and were therefore anno-
tated with the information of their corresponding homolog.
Lists of non-redundant COG definitions (e.g. COG0105)
were extracted separately for prophages, plasmids and
ICEs/ IMEs, and compared with venny v2.1.0 (https:
//bioinfogp.cnb.csic.es/tools/venny/index.html) to identify
unique and shared COGs. Likewise, COGs occurrence
was determined separately for the proteomes of the three
MGE types in the different ESKAPE. Information on
the COGs classification into functional categories was re-
trieved from https://ftp.ncbi.nih.gov/pub/COG/COG2020/
data/. The relative frequency of the different COG func-
tional categories per MGE/ESKAPE pair was calculated
by summing up the occurrences of COGs belonging to a
given functional category and dividing the resulting num-
ber by the total number of proteins observed in the corre-
sponding MGE/ESKAPE pair.

To explore the diversity of MGE-encoded proteins, we
combined their proteomes (943246 proteins) and clustered
them using the cluster algorithm from the MMseqs2 pack-
age (56). The proteins were clustered at 80% sequence iden-
tity, 80% coverage, and otherwise default settings to match
the parameters used by ppanggolin when generating the ES-
KAPE pangenomes. The relative frequency of the differ-
ent protein clusters per MGE/ESKAPE pair was calculated
following the same approach used to estimate the relative
frequency of COG functional categories but using the oc-
currence of proteins belonging to a given cluster instead.
Representatives of the 72247 clusters identified were anno-
tated with eggNOG-mapper v2 (59) with default settings to
explore the functions of the MGE-encoded proteins further.

We used abricate v1.0.1 (https://github.com/tseemann/
abricate) to scan extracted MGEs and masked genomes
against antimicrobial resistance and virulence genes (us-
ing pre-downloaded databases from Resfinder (60) and
VFDB (61) containing 3138 and 4329 sequences, respec-
tively, and both updated on the 28 March 2022). We used
default parameters, except for a 90% identity and 90% cov-
erage thresholds. To identify and classify CRISPR-Cas sys-
tems, we used CRISPRCasTyper v1.2.3 with default thresh-
olds for CRISPR and Cas detection (https://github.com/
Russel88/CRISPRCasTyper), including a maximum of 3
unknown genes between Cas genes in the operon, an over-
all E-value threshold of 0.01, and a 10kb distance thresh-
old to connect Cas operons and CRISPR arrays (62). We
also used this tool to look for CRISPR spacers. The en-
tire CRISPR arrays identified on MGEs were then masked
using bedtools, and these masked MGEs served as a lo-
cal blast database using blast v2.12.0 (https://blast.ncbi.
nlm.nih.gov/Blast.cgi?PAGE TYPE=BlastDocs), when us-
ing MGE CRISPR spacers as a query. CRISPR spacers
from masked genomes were also blasted against a local
database of our extracted (non-masked) MGEs. Hits with
at least 95% nucleotide identity and 95% sequence cover-
age were considered as spacer targets (63). While a repre-
sentative collection of plasmids and virus is publicly avail-
able at RefSeq’s NCBI database (n = 33 269 and 13 778,
respectively, accessed on the 21 May 2021), a substantially
smaller collection of ICEs/IMEs is available at ICEberg
database (n = 1325), and was last updated in September
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2018. Due to this limitation in the number of publicly avail-
able ICEs/IMEs sequences, and to have a representative
collection of these three different types of MGEs, we fo-
cused on the curated dataset presented in this study to look
for targets of CRISPR spacers. Additionally, we mapped
the CRISPR spacers against annotated genes across the ES-
KAPE mobilome, using the same blast approach and the
same thresholds.

We retrieved an Anti-CRISPR collection of 1111 non-
redundant proteins from Anti-CRISPRdb v2.2 (http://
guolab.whu.edu.cn/anti-CRISPRdb/, accessed on the 29
March 2022). This collection was used to build a local
database with DIAMOND (https://github.com/bbuchfink/
diamond) (58). We used the blastp command in diamond
to scan the MGEs and masked proteomes against the anti-
CRISPR local database, using an identity and coverage
threshold of 90%. We used an amino acid-based homology
approach to find anti-CRISPRs encoded in the ESKAPE
mobilome. Even though recent approaches have applied a
guilt-by-association method to identify new Anti-CRISPRs
(30), currently there is no tool available to apply this method
in a large dataset of bacterial genomes.

Statistical analysis

Comparisons between MGEs’ GC content and sequence
length were performed using the Kruskal–Wallis test, and
the P-values adjusted using the Holm–Bonferroni method.
Comparisons between pairs of conspecific genomes with
and without CRISPR-Cas systems, as well as between
MGE targets for CRISPR spacers, were performed us-
ing the Wilcoxon test, and the p-values adjusted using the
Holm–Bonferroni method. Values above 0.05 were consid-
ered as non-significant (ns). We used the following conven-
tion for symbols indicating statistical significance: * P ≤
0.05, ** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001.

RESULTS

MGEs are unevenly distributed among the ESKAPE
pathogens

We downloaded 1782 ESKAPE complete genomes from
NCBI’s RefSeq database. To correct for species taxonomy,
genomes with <95% average nucleotide identity (ANI) were
removed for each ESKAPE species (Supplementary Table
S1). Since this parameter is only applied for species delin-
eation, we also built a phylogenomic tree with Enterobacter
sp. genomes and type strains belonging to the Enterobac-
teriaceae family (Supplementary Figure S1). Our curated
dataset included 1746 complete genomes which belong to
451 different MLST profiles (Supplementary Table S2). We
found a total of 21 478 MGEs, including 16 153 prophages,
2685 ICEs/IMEs and 2640 plasmids (Figure 1A and B).
The density of these MGEs (i.e. the cumulative length of
each MGE type per genome length) shows a patchy distri-
bution across the ESKAPE phylogeny (Figure 1A and Sup-
plementary Figure S2). S. aureus genomes are densely pop-
ulated by prophages, while ICEs/IMEs are prevalent in P.
aeruginosa. K. pneumoniae and Enterobacter are populated
by plasmids and prophages. In fact, plasmids were preva-
lent in every ESKAPE except P. aeruginosa and S. aureus

(Figures 1A and C). The majority of plasmids carried a re-
laxase (62.5%, 1651/2640), and were classified as mobiliz-
able (either self-conjugative or not) (64). Curiously, E. fae-
cium genomes have high densities of both prophages, plas-
mids and ICEs/IMEs (Figure 1A).

To look for RGPs exclusively integrated in the chromo-
some, we used the 1746 chromosomal replicons to gener-
ate plasmid-free pangenomes for each ESKAPE taxon. We
identified a total of 50482 plasmid-free RGPs in chromoso-
mal replicons (Figure 1D). Of these, 2685 were classified as
ICEs/IMEs due to the presence of relaxase and integrase
domains (Figure 1B and D). At least one ICE/IME was
detected in >50% of genomes for all ESKAPE pathogens
and was abundant in E. faecium and P. aeruginosa (∼3
elements/genome) (Figure 1B and C). After masking the
ICEs/IMEs identified in the ESKAPE chromosomes, we
performed a search for prophages. These elements were the
most abundant MGE type found in the ESKAPE collec-
tion. Additionally, prophages were significantly more preva-
lent than ICEs/IMEs and plasmids across all ESKAPE
pathogens (Supplementary Figure S2).

When looking into the presence/absence combination
of co-occurring MGEs across the ESKAPE pathogens,
we noticed that the most frequent combination involved
the presence of the three MGEs (in 717 out of the 1746
genomes, Supplementary Table S2). We noticed that the
majority of the strains with the three MGEs co-occurring
in the same genome belonged to K. pneumoniae (340/717).
Our results show that different MGEs are asymmetrically
distributed across the ESKAPE pathogens, with K. pneu-
moniae genomes taking the lead for the co-occurrence of
ICEs/IMEs, plasmids and prophages.

MGE sequence similarity varies across the ESKAPE mo-
bilome

MGEs tend to have a GC content lower than that of the
remainder of its host genome (65–67). Here, we explore
how conserved is this trend across different MGE types
from all ESKAPE pathogens. We confirmed that for most
MGE/ESKAPE pairs, the arithmetic mean GC content
of the different MGEs is significantly lower when com-
pared to masked genomes across the ESKAPE pathogens
(Supplementary Figure S3A, P-value < 2.2e–16). With the
exception of S. aureus, we observed that plasmids across
the ESKAPE pathogens show more variation in size when
compared with ICEs/IMEs and prophages (Supplementary
Figure S3B). Across all ESKAPE pathogens, we observed a
weak positive correlation between the ICEs/IMEs and plas-
mids’ GC content and sequence length (R = 0.38 and 0.35,
respectively, P < 2.2e–16), and a weak negative correlation
between the prophages’ GC content and sequence length (R
= −0.15, P < 2.2e−16, Supplementary Figure S4). Similar
Pearson correlation coefficients were observed for plasmids
and prophages in a previous study (67). The underlying rea-
sons for this correlation are unclear and warrant further re-
search.

Given the presence of highly similar MGEs in our
dataset, we dereplicated the 21 478 elements found here
into a representative set of 10 339 MGEs. Each MGE was
then reduced to a set of k-mers and the Jaccard index (JI)
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Figure 1. Distribution of MGEs across the ESKAPE pathogens. (A) Maximum likelihood tree representing the ESKAPE genomes. Tree nodes are coloured
according to the ESKAPE pathogen. Three bar charts with aligned fields are shown outside the tree: the innermost bar chart shows the density of
ICEs/IMEs, while the density of prophages and plasmids across the genomes are shown in the middle and outermost bar charts, respectively. (B) To-
tal number of MGEs and of considered masked genomes per ESKAPE pathogen. Size of the circles is proportional to the number of identified elements.
(C) Proportion of genomes carrying at least one plasmid, ICE/IME or prophage. (D) Total number of RGPs and ICEs/IMEs per ESKAPE. The size of
the green bars is proportional to the total number of ICEs/IMEs identified per ESKAPE pathogen, and the relative number of ICEs/IMEs per RGPs is
shown in percentage next to the green bars. Bars are sorted according to the relative number of ICEs/IMEs per RGPs. Ab, A. baumannii; Ef, E. faecium;
En, Enterobacter sp.; Kp, K. pneumoniae; Pa, P. aeruginosa; Sa, S. aureus.

was used as a measure of DNA sequence similarity be-
tween all MGE pairs. The majority of MGE pairs shared
little similarity, with a JI value below 0.25 (Supplemen-
tary Figure S5A), in accordance with the high diversity fre-
quently observed across MGEs. We then used an alignment-
free sequence similarity comparison of the ESKAPE mo-
bilome to infer an undirected network (Figure 2A and B).
To plot this network, we used as a threshold the mean
value (0.0537361) of the estimated pairwise distances be-
tween the 10339 MGEs identified in this study (Supple-
mentary Figure S5A). The sparse network assigned 97.8%
(10110/10339) of the MGEs into 87 clusters. The network

revealed clear structural differentiation, where the major-
ity of the smaller clusters were homogeneous for a given
ESKAPE/MGE pair (Figure 2A and B). The absence of
pairwise distance similarities with intermediate JI (Supple-
mentary Figure S5A) helps to explain this clustering in
discrete groups, instead of a continuous genetic structure.
However, the two largest clusters challenge interspecies and
MGE type barriers and correspond to multiple MGEs with
the four Proteobacteria representatives in the first (i.e. K.
pneumoniae, Enterobacter sp., P. aeruginosa and A. bauman-
nii), and S. aureus and E. faecium in the second cluster.
MGEs within these promiscuous clusters tend to be more
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Figure 2. Network of clustered MGEs, using the mean Jaccard index as a threshold. Network grouped by (A) MGE type; and (B) ESKAPE pathogen. Each
MGE is represented by a node, connected by edges according to the pairwise distances between all MGE pairs. The network has a clustering coefficient of
0.781, a density of 0.014, a centralization of 0.065, and a heterogeneity of 0.959. Ab, A. baumannii; Ef, E. faecium; En, Enterobacter sp.; Kp, K. pneumoniae;
Pa, P. aeruginosa; Sa, S. aureus.

dissimilar than those assigned to densely connected and
ESKAPE/MGE pair-restricted clusters. We observed high
genetic similarity between different MGE/ESKAPE pairs
(Supplementary Figure S6). We also observed cross-phylum
interactions, between different MGEs across the ESKAPE
pathogens. In parallel, we built a network using the masked
genomes as nodes connected by edges indicating pairwise
distances, and we exclusively observed species-specific clus-
tering (Supplementary Figures S5B and S7), which is in
agreement with selective forces that favor the genomic co-
herence of bacterial species (68,69). Altogether, our results
highlight that while some elements are found in multiple
genera (and phyla), for the majority of clusters host similar-
ity and MGE type restrain DNA sharing between different
ESKAPE MGEs.

The proteome of the ESKAPE mobilome is highly diverse in
sequence and functions

To gain functional insights into the proteome of the ES-
KAPE mobilome, we investigated the diversity of clusters
of orthologous groups (COGs) encoded by MGEs identi-
fied in this study. COGs are protein sets conserved across
lineages that typically share function and are therefore used
for systematic function prediction in poorly characterised
genomes (70). COGs have been assigned to curated and
uniform functional categories, thus enabling the compar-
ison of their distribution amongst genomes (71). We dis-
tinguished 2761 different COGs in the ESKAPE MGEs
(Supplementary Figure S8). These clusters encompass most
functional categories reported in the COGs scheme (Fig-
ure 3), thereby highlighting the diversity of functions asso-
ciated with the ESKAPE mobilome. ICEs, plasmids, and
prophages contain 148, 164 and 794 unique COGs, respec-
tively, consistent with their distinctive features as mobile ele-
ments (Supplementary Figure S8). However, they also share
921 COGs (∼33%), indicative of a common pool of proteins
and functions carried by MGEs in ESKAPE pathogens.
COGs present in only two of the three MGE types were

also identified, with prophages and plasmids sharing more
COGs than other pairs (Supplementary Figure S8).

From 36% to 55% of proteins in the different MGE
proteomes were assigned to a COG (see methods). Inter-
estingly, we detected some variation in the relative con-
tribution of MGE proteomes to different COG func-
tional categories among the ESKAPE pathogens (Figure
3). For example, proteins associated with ‘Carbohydrate
transport and metabolism’ (category G) were more fre-
quent in MGE proteomes of E. faecium than in other
ESKAPE (Figure 3). The relative frequency of proteins
in the ‘Cell wall/membrane/envelope biogenesis’ category
(M) also varied noticeably across MGE/ESKAPE pairs. On
the other hand, proteins of the ‘Transcription’ and ‘Repli-
cation, recombination and repair’ categories (K and L, re-
spectively) were among the most frequent in the MGE pro-
teomes of all ESKAPE. As expected, proteins assigned to
the COGs mobilome category (X) dominated all the MGE
proteomes.

To explore the diversity of the ESKAPE MGEs proteome
further, we clustered their 943 246 proteins based on se-
quence similarity, resulting in 72 247 groups (Supplemen-
tary Table S3). Around 69% of the representatives of these
protein groups were assigned the tag ‘hypothetical protein’
by prokka, underlining the large proportion of uncharac-
terised proteins encoded by ESKAPE MGEs. Among the
representatives with an assigned function, transposases and
integrases were the most frequent protein product (2290
cluster representatives) (Supplementary Table S3). Recom-
binase, repressor and resistance, were also common terms
across the representative products with >200 occurrences
each; the latter being mostly associated with metal or drug
resistance.

We then looked for protein clusters widespread in MGE
proteomes, i.e. those observed in the three MGE types
or in at least three of the ESKAPE pathogens. Our
search resulted in the identification of 1421 protein clusters
widespread across MGEs and 426 present in at least three
different ESKAPE (Supplementary Table S3), with 187
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Figure 3. Relative contribution of ESKAPE MGEs proteome to COG functional categories. The barplots in the figure are split into facets corresponding
to the different ESKAPE pathogens. The relative frequency of proteins in the different COG functional categories was calculated separately for each MGE
type by dividing the number of proteins belonging to a given category by the total number of proteins observed in the corresponding MGE/ESKAPE pair.
Hence, the bars illustrate the incidence of proteins of a given functional category in the proteomes of the different MGE types per ESKAPE. The COG
functional categories are indicated on the X-axis and described at the bottom of the figure.

clusters identified in common between the two widespread
categories. Although hypothetical proteins dominated both
widespread categories (55% of MGEs and 50% of ESKAPE
widespread protein clusters), various protein clusters with
functions associated with transposition and AMR were also
identified (Supplementary Table S3). Hierarchical cluster-
ing of the MGE/ESKAPE pairs and widespread protein
clusters based on the distribution and relative frequency of
the latter uncovered structured patterns of sharing (Figure
4). For example, we detected a component of ESKAPE-
widespread protein clusters present in plasmids of Enter-
obacter sp., K. pneumoniae and ICEs/IMEs of P. aerugi-
nosa. When it comes to protein clusters present in differ-
ent MGE types, we observed clusters predominantly occur-

ring in ICEs/IMEs and phages of A. baumannii and E. fae-
cium. Overall, the distribution of ESKAPE widespread pro-
teins clustered MGE/ESKAPE pairs by MGE type (Figure
4). The clustering observed from the distribution of MGE
widespread proteins was more intricate, with only a cou-
ple of clusters featuring the same ESKAPE pathogen. Al-
together, our results show that more than seventy thousand
protein clusters, representing nearly one million sequences,
are linked to the mobilome component of the ESKAPE
pangenomes. These proteins are involved in a broad range
of functional categories; frequently in transcription, repli-
cation and recombination. Only ∼2.3% of protein clusters
are widespread within the ESKAPE MGEs context, but
they feature complex distribution and frequency patterns.
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Figure 4. Distribution of widespread protein clusters across MGE/ESKAPE pairs. The heatmaps show the distribution and relative frequency of protein
clusters (columns) identified as widespread in either MGEs (i.e. present at least once in the three MGE types; left side) or ESKAPE pathogens (i.e. present
in at least three different ESKAPE; right side). The number of protein clusters represented in the heatmaps is shown in parenthesis. MGE/ESKAPE pairs
are indicated on the left side of the heatmaps. The relative frequency of the protein clusters in the different MGE/ESKAPE pairs was calculated by dividing
the number of occurrences identified by the total number of proteins observed in a given pair. The trees displayed at the top and left side of the heatmaps
illustrate the hierarchical clustering of protein clusters and MGE/ESKAPE pairs using the ward.D method with euclidean distance. A list of the protein
clusters, their products and relative frequency values is provided in Supplementary Table S3.

AMR genes are overrepresented in the ESKAPE mobilome

In order to explore the AMR repertoire of the ESKAPE
mobilome, we only focused on genes that are horizontally
transferred, such as beta-lactamases and aminoglycoside-
modifying enzymes (that lead to antimicrobial inactiva-
tion), and those that promote target site modification (such
as rRNA methyltransferases, the vanA and vanB gene clus-
ters, and the staphylococcal cassette chromosome mec). We
observed that AMR genes are broadly distributed in plas-
mids across the ESKAPE pathogens. Even though the total
number of prophages far outnumber that of plasmids in our
collection (Figure 1), the absolute count of AMR genes in
plasmids is greater than that observed in prophages (6068
versus 1845, respectively) (Supplementary Figure S9). In-
terestingly, most AMR genes in plasmids and prophages
are found in K. pneumoniae, whereas P. aeruginosa carries
the majority of these genes within ICEs/IMEs (Supple-
mentary Table S4). All ESKAPE pathogens have a large
proportion of AMR-carrying plasmids (>35% of plasmids
across the different ESKAPE carry at least one AMR gene),
while a high proportion of AMR-harbouring ICEs (>25%)
was only observed for S. aureus and P. aeruginosa (Sup-
plementary Figures S10A and B). As previously reported
(72), we observed that AMR genes are rarely found in
prophages (<12% of prophages across the different ES-
KAPE carry at least one AMR gene) (Supplementary Fig-
ure S10C). As expected from the vast repertoire of MGEs
present in K. pneumoniae (Figure 1A), this species pre-
sented a wider selection of different AMR genes. Some
AMR genes were restricted to specific ESKAPE pathogens,
while others were more promiscuous. For example, dif-
ferent beta-lactamases (bla genes) were prevalent among
proteobacterial representatives of the ESKAPE pathogens
but were mostly absent from S. aureus and E. faecium
(Supplementary Figure S9 and Table S4). The only excep-
tion was the blaZ gene, which was exclusively identified

in plasmids, prophages, and ICEs/IMEs from S. aureus.
This gene is typically embedded within the SCCmec ele-
ments of this species and may have been acquired from
distantly related non-Staphylococcus species (73). Genes
encoding resistance to aminoglycosides (aac, ant and aph
genes), chloramphenicol (cat genes), trimethoprim (dfr
genes) and tetracyclines (tet genes) were found in all rep-
resentatives of the ESKAPE pathogens. Genes involved in
resistance to vancomycin (the vanHAX and vanHBX gene
clusters) were exclusively found in S. aureus and E. fae-
cium, while genes coding resistance for quinolones (qnr
genes) and colistin (mcr genes) were only found in the pro-
teobacterial representatives (Supplementary Figure S9 and
Table S4).

We next assessed the distribution of virulence genes.
These genes are broadly distributed in prophages and
ICEs/IMEs across the ESKAPE pathogens (Supplemen-
tary Figure S11 and Table S5). In fact, we identified no
virulence genes in E. faecium plasmids, and only 0.6% of
A. baumannii plasmids carry these genes. More than 25%
ICEs/IMEs in S. aureus, K. pneumoniae, and E. faecium
carried at least one virulence gene (Supplementary Figures
S10C and D). P. aeruginosa is the ESKAPE pathogen carry-
ing a wider variety of virulence genes in these MGEs, mostly
on prophages. Polyketide synthesis loci ybt and clb encoding
the iron-scavenging siderophore yersiniabactin and geno-
toxin colibactin, respectively, were solely identified in En-
terobacteriaceae representatives of the ESKAPE pathogens
(i.e. K. pneumoniae and Enterobacter sp.). These virulence
loci were mostly present in ICEs/IMEs, as previously re-
ported (74), but we also found these genes on plasmids and
prophages (Supplementary Figure S11 and Table S5). In-
terestingly, S. aureus was the ESKAPE pathogen with a
higher proportion of both plasmids and ICEs/IMEs car-
rying at least one AMR or virulence genes (Supplementary
Figure S10).
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Since chromosomes are substantially larger than MGEs
and consequentially have more genes, we corrected the
prevalence of AMR and virulence genes to the total num-
ber of genes present in MGEs and masked genomes across
the different ESKAPE pathogens. Overall, we noticed that
AMR genes were largely overrepresented in MGEs (∼5×),
when compared with masked genomes (Figure 5). On the
other hand, virulence genes were ∼2× more likely to be lo-
cated on masked genomes. Taken together, our results show
that plasmids are important vectors for AMR genes across
the ESKAPE pathogens, while ICEs/IMEs and prophages
play a more important role for the distribution of viru-
lence genes. When compared with masked genomes, we con-
firmed that AMR genes are preferentially distributed in the
ESKAPE mobilome.

CRISPR-Cas systems shape the number of MGEs,
AMR and virulence genes across ESKAPE pathogens

We focused on CRISPR-Cas systems as an example of
a bacterial defense system. CRISPR-Cas systems were
identified in every ESKAPE pathogen except E. faecium,
which was therefore excluded from subsequent analyses.
The proportion of genomes with CRISPR-Cas systems var-
ied across the ESKAPE pathogens, from around 45.7% for
P. aeruginosa to around 0.7% for S. aureus (Figure 6A and
Supplementary Table S2). We then explored the prevalence
of CRISPR-Cas systems across closely related strains be-
longing to the same MLST profile. Since Enterobacter sp.
consists of multiple species, this ESKAPE pathogen was
excluded from subsequent analyses. Given the low preva-
lence of CRISPR-Cas systems in S. aureus, this species was
also excluded, and we focused exclusively on P. aeruginosa,
K. pneumoniae, and A. baumannii. Interestingly, some se-
quence types (ST) consisted entirely of either CRISPR-Cas
positive or negative genomes (Supplementary Figure S12
and Table S2). For example, the most frequent MLST pro-
file in A. baumannii from our dataset was ST2 (n = 101),
which only included strains with no CRISPR-Cas systems.
On the other hand, the second most prevalent MLST pro-
file in this species (ST1, n = 14), only consisted of strains
with I-F CRISPR-Cas systems. The most frequently ob-
served MLST profile from K. pneumoniae (ST11, n = 105),
consists mostly of CRISPR-Cas negative strains (96.2%,
101/105). The four strains with positive hits carried IV-A3
CRISPR-Cas systems on plasmids. ST258 (n = 47) was the
second most common K. pneumoniae MLST profile identi-
fied in our dataset, and again, consisted entirely of strains
with no CRISPR-Cas systems. However, ST147 and ST15
(n = 31 and n = 23, respectively) carried I-E CRISPR-
Cas systems in all strains. Finally, looking at P. aeruginosa,
we found that the most prevalent MLST profiles in our
dataset (ST235 and ST549, n = 16 and n = 11, respectively)
carried no CRISPR-Cas systems. The only exception was
found in a ST235 strain, which carried an I-C CRISPR-Cas
system on an ICE/IME. In contrast, ST233 and ST1971
(n = 8 for both) consisted exclusively of strains carrying
the I-F CRISPR-Cas system on masked genomes (Supple-
mentary Table S2). These findings suggest that the presence
or absence of CRISPR-Cas systems across the ESKAPE
pathogens is related to sequence type and thus most likely

due to phylogenetic history of the strains (Supplementary
Figure S12).

Our analysis revealed a large variety of MGE-encoded
CRISPR-Cas subtypes, with I-C, I-E, III-A, IV-A1 and IV-
A3 represented across the dataset (Figure 6B). We found
CRISPR-Cas systems on plasmids (n = 28 IV-A3 sub-
type in K. pneumoniae and n = 1 IV-A1 in P. aeruginosa),
ICEs/IMEs (n = 7 I-C in P. aeruginosa and n = 1 III-
A in S. aureus), and prophages (n = 1 I-C in P. aerugi-
nosa, n = 1 IV-A3 and n = 1 I-E both in K. pneumoniae)
(Figure 6B and Supplementary Table S6). The plasmids
and ICEs/IMEs carrying these systems were large, ranging
from 102 to 430 kb. We also observed that all CRISPR-
Cas-carrying plasmids have a MOB relaxase. This is in
agreement with previous findings (75), which reported an
enrichment of CRISPR-Cas systems across plasmids with
conjugative functions and of larger sizes. We also found
AMR and virulence genes on these CRISPR-Cas positive
MGEs, but no anti-CRISPRs within the boundaries of
these MGEs, suggesting that the CRISPR-Cas systems are
functional.

When looking into the influence of GC content and se-
quence length in pairs of conspecific ESKAPE pathogens
with and without CRISPR-Cas systems, we would expect
to observe smaller and GC richer strains on those carry-
ing these systems. Size expectations could only be met for P.
aeruginosa, for which CRISPR-Cas positive genomes were
significantly smaller than their counterparts (Supplemen-
tary Figure S13A, P-value 0.0028), as observed before (76–
78). Surprisingly in K. pneumoniae, genomes with CRISPR-
Cas systems were significantly larger than CRISPR-Cas
negative genomes (Supplementary Figure S13A, P-value
0.0023). The non-significant differences observed for A.
baumannii, Enterobacter sp. and S. aureus could in part
be explained by the low sample size of CRISPR-Cas pos-
itive genomes (Figure 6A). Regarding the GC content, we
observed significant differences in A. baumannii, K. pneu-
moniae, and P. aeruginosa. CRISPR-Cas positive genomes
were GC richer in A. baumannii and P. aeruginosa (Supple-
mentary Figure S13B, P-values 0.0013 and 0.046, respec-
tively). Curiously, we noticed that CRISPR-Cas positive
genomes in K. pneumoniae were GC poorer (Supplementary
Figure S13B, P-value 5.7e−09). Given the known associa-
tion between GC content and genome size (67), these GC
differences in CRISPR-Cas positive and negative P. aerugi-
nosa genomes may be a spurious correlation driven by small
size of CRISPR-Cas positive genomes. So, we corrected the
GC content for variation in genome size, and we observed
that the association was maintained (Supplementary Figure
S14A, P-value 0.0035), in accordance to a previous study
(77).

Since virulence genes are overrepresented in the chro-
mosome (Figure 5), we assessed the distribution of these
genes in pairs of conspecific ESKAPE pathogens with and
without CRISPR-Cas systems. Virulence genes were sig-
nificantly less abundant in CRISPR-Cas positive genomes
from P. aeruginosa and A. baumannii (Supplementary Fig-
ure S13C, P-values 4.1e−06 and 0.0016, respectively).
Given that P. aeruginosa genomes positive for these sys-
tems are significantly smaller than their CRISPR-Cas neg-
ative counterparts (Supplementary Figure S13A), the lower
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Figure 5. Relative proportion of AMR, virulence, and Anti-CRISPRs between MGEs and masked genomes across the ESKAPE pathogens. The number
of AMR, virulence, or Anti-CRISPRs proteins found for MGEs or masked genomes per ESKAPE was normalized to the total number of proteins found
for each element per ESKAPE pathogen. Absolute counts of AMR, virulence or anti-CRISPRs proteins is shown inside or outside the bars.

Figure 6. Distribution of CRISPR-Cas and Anti-CRISPR across the ESKAPE pathogens. (A) Proportion of CRISPR-Cas positive genomes across the
ESKAPE pathogens. (B) Distribution of CRISPR-Cas systems within ICEs/IMEs, plasmids, and prophages. (C) Distribution of Anti-CRISPR proteins
across ICEs/IMEs, plasmids, and prophages. Even though we found anti-CRISPRs on masked genomes, we only plotted those found on MGEs. A complete
list of Anti-CRISPRs is given in Supplementary Table S8. Ab, A. baumannii; Ef, E. faecium; En, Enterobacter sp.; Kp, K. pneumoniae; Pa, P. aeruginosa;
Sa, S. aureus.

prevalence of these genes in CRISPR-Cas positive P. aerug-
inosa genomes may again be driven by a spurious correla-
tion. As so, we corrected the number of virulence genes for
variation in genome size, and we observed that indeed the
difference was no longer significant (Supplementary Fig-
ure S14B, P-value 0.74), confirming our prediction that the
genome size was a confounding variable obscuring the ef-

fect of CRISPR-Cas systems on the prevalence of virulence
genes in P. aeruginosa.

We then explored whether CRISPR-Cas presence or ab-
sence reduced the number of MGEs acquired in pairs of
conspecific ESKAPE pathogens. We would expect to detect
a smaller number of MGEs in genomes harbouring these
immune systems. However, this trend was only observed
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in K. pneumoniae (Figure 7). The variation in the num-
ber of MGEs in genomes either with or without CRISPR-
Cas systems still holds when correcting for genome size
(Supplementary Figure S15). Finally, we focused on AMR
and virulence genes carried exclusively by plasmids and
ICEs/IMEs, as these were the most important vectors (Sup-
plementary Figure S10). For most MGE/ESKAPE pairs,
we observed no significant difference between pairs of con-
specific genomes with and without CRISPR-Cas systems.
When it comes to AMR genes, we only observed signifi-
cant differences in MGEs from P. aeruginosa (Supplemen-
tary Figure S16A, P-values 0.037). Indeed, AMR genes
were more prevalent on ICEs/IMEs from P. aeruginosa
genomes with CRISPR-Cas systems (Supplementary Ta-
ble S7). A similar correlation was previously reported (78).
Curiously, the less prevalent I-C CRISPR-Cas subtype,
which was exclusively identified in P. aeruginosa and mostly
on ICEs/IMEs (Supplementary Table S6), was recently
found to be positively correlated with certain AMR genes
(76). Regarding virulence genes, we observed significant dif-
ferences in MGEs from K. pneumoniae, where CRISPR-
Cas-carrying elements were associated with more virulence
genes than their CRISPR-Cas negative counterparts (Sup-
plementary Figure S16B, P-values 0.0054). Taken together,
we observed species-specific trends shaping the number of
MGEs, AMR and virulence genes across pairs of conspe-
cific ESKAPE genomes with and without CRISPR-Cas
systems.

Anti-CRISPRs are overrepresented in the ESKAPE mo-
bilome

Anti-CRISPR proteins (n = 410) antagonising CRISPR-
Cas subtypes I-E, I-F and II-A were identified across
prophages, ICEs/IMEs and prophages from all ESKAPE
pathogens except S. aureus (Figure 6C and Supplementary
Table S8). The majority of these counter-defense systems
were found in prophages and ICEs/IMEs from P. aerugi-
nosa. We also looked for these proteins across the masked
genomes and found hits in all ESKAPE except A. bauman-
nii and S. aureus (Supplementary Table S8). After correct-
ing their prevalence to total number of genes, we verified
that anti-CRISPRs are largely overrepresented in MGEs
(∼15×) when compared with masked genomes (Figure 5).
When compared with masked genomes, our results show
that Anti-CRISPR proteins are preferentially encoded in
MGEs.

CRISPR spacers in ICEs/IMEs, prophages and plasmids
have different targeting biases

We explored the targets for all CRISPR spacers, re-
trieved from complete CRISPR-Cas systems, but also or-
phan CRISPRs, identified in our collection of ESKAPE
genomes. Since we provided here a representative dataset
of prophages, ICEs/IMEs, and plasmids (n = 16 153,
n = 2685 and n = 2640, respectively), we used this collec-
tion as a database and took the CRISPR spacers identi-
fied in masked genomes as a query. In parallel, we used
the CRISPR spacers identified in MGEs as a query and
the MGEs collection as a database. For the latter, and to

avoid self-targeting hits, we masked all CRISPR spacers
from the MGEs collection used as database. We observed
that only a small fraction of MGEs carry CRISPR spac-
ers (1.3%, 33/2640 plasmids; 0.6% ICEs/IMEs, and 0.07%
prophages). A total of 1087 spacers was found across all
MGEs (n = 554 on plasmids, n = 343 on ICEs/IMEs
and n = 190 on prophages). Given the large number of
MGEs and CRISPR-Cas-encoding plasmids in K. pneumo-
niae (Figures 1 and 6B), it was no surprise to observe that
more than half of the spacers were found in this species
(577/1087). The large majority of plasmid spacers were
identified on mobilizable plasmids (99.4%, 551/554). We
then corrected the total length of CRISPR spacers found
on each MGE by the size of the corresponding MGE. In-
terestingly, we found that the density of CRISPR arrays is
significantly higher across prophages than that of plasmids
and ICEs/IMEs (P-value 3.7e−07, Supplementary Figure
S17).

We then looked for MGE spacer targets and identi-
fied matches for 1271 MGEs from our collection (5.9%,
n = 1271/21 478, Supplementary Table S9). A substan-
tially larger fraction of CRISPR spacers from plasmids tar-
geted mobilizable plasmids from our ESKAPE collection
(81.8%, 21 628/26 438 of total plasmid spacer’s interac-
tions). Only a small fraction of plasmid spacers targeted
prophages (13.0%), non-transmissible plasmids (4.7%), and
ICEs/IMEs (0.5%) (Figure 8A). Most prophages spac-
ers targeted other prophages (85.3%, 1513/1773 of total
prophage spacer’s interactions). Only a small fraction of
prophage spacers targeted ICEs/IMEs (7.6%) and plasmids
(7.1%). Surprisingly and unlike CRISPR spacers found on
plasmids and prophages, ICE/IMEsspacers were not bi-
ased towards other ICEs/IMEs (37.8%, 795/2102 of total
ICEs/IMEs interactions), but towards prophages (61.3%).
Only a small fraction of ICE/IME spacers targeted plas-
mids (0.9%) (Figure 8A). Most genes that are targeted by
CRISPR spacers encode for hypothetical proteins (Supple-
mentary Table S10). Still, we found that CRISPR spacers
in prophages from P. aeruginosa can target genes encod-
ing partition proteins on plasmids from the same species,
and that the CRISPR spacers on plasmids from K. pneu-
moniae and prophages from P. aeruginosa target genes in-
volved in the conjugation apparatus of plasmids from mul-
tiple ESKAPE pathogens. We also observed that CRISPR
spacers from prophages and plasmids in K. pneumoniae
target genes on ICEs/IMEs encoding lysozymes, recom-
binases and genes involved in conjugation. Multiple genes
were targeted by CRISPR spacers on prophages from multi-
ple ESKAPE pathogens, including those coding for portal,
tail, and virion structural proteins (Supplementary Table
S10). Finally, when blasting MGE spacers against the 1271
MGEs from our collection, we found no targets for 41.1%
of ICE/IME spacers (141/343), 12.4% of plasmid spacers
(69/554) and 0.5% of prophage spacers (1/190).

When it comes to CRISPR arrays on masked genomes,
we observed a total of 13 400 spacers in 30.4% ES-
KAPE genomes (n = 531/1746). Across the S. aureus
genomes, we found a total of 174 CRISPR spacers
(31.5%, 174/553) and only four Cas operons, which ex-
plains the low prevalence of CRISPR-Cas systems in this
species (<1%, Figure 6A). Consistent with the absence
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Figure 7. The absence of CRISPR-Cas systems does not associate with MGE increases in ESKAPE pathogens with the exception of K. pneumoniae.
Boxplots compare the number of MGEs present in pairs of conspecific ESKAPE pathogens, with and without CRISPR-Cas systems. The graph shows
the complete data distributions (individual points) and a summary of data distributions based on boxplots, where the middle horizontal line indicates the
median, the boxes the quartiles above and below the median, and the whiskers the remaining quartiles. Values above 0.05 were considered as non-significant
(ns). We used the following convention for symbols indicating statistical significance: * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 and **** for P ≤ 0.0001. Ab,
A. baumannii; En, Enterobacter sp.; Kp, K. pneumoniae; Pa, P. aeruginosa; Sa, S. aureus.

of CRISPR-Cas systems in the E. faecium strains from
our dataset, no spacers were identified in masked genomes
from this species. The number of CRISPR spacers per
genome varied considerably between the masked genomes
of the ESKAPE pathogens (Supplementary Figure S18),
reaching as high as 189 in A. baumannii. In fact, only
strains from this species carried >100 spacers per masked
genome. We observed that 38.4% (5141/13 400) of CRISPR
spacers in ESKAPE masked genomes yielded matches
to spacer targets in MGE sequences, found on 16.4%
MGEs (n = 3523/21 478, Supplementary Table S11). Most
CRISPR spacers from masked genomes targeted prophages
(44.5%, 83034/18 6619 total interactions), mobilizable plas-
mids (39.9%) and ICEs/IMEs (10.5%). As observed for
CRISPR spacers in MGEs, CRISPR spacers from masked
genomes rarely targeted non-transmissible plasmids (5.2%).
We then tested if MGE or masked genome spacers preferen-
tially targeted ESKAPE MGEs of variable size. We found
that the CRISPR spacers from both MGEs and masked
genomes targeted significantly larger MGEs than those with
no spacer targets (P-value < 2.2e−16, Figure 8B and C).
Altogether, our results show that plasmids and prophages
mostly targeted other plasmids and prophages, respec-
tively, while ICEs/IMEs preferentially targeted prophages.

Our data also shows that CRISPR spacers found either
on MGEs or masked genomes consistently target larger
MGEs.

DISCUSSION

In this work, we performed a systematic analysis of
prophages, ICEs/IMEs, and plasmids across all ESKAPE
pathogens. We focused on this panel because the ESKAPE
group of pathogens consists of clinically-relevant bacteria,
for which many genomes are completely sequenced (an im-
portant parameter when delineating MGEs), and which
include representatives of both Proteobacteria and Firmi-
cutes, and also phylogenetically divergent bacteria (with ex-
ception of K. pneumoniae and Enterobacter sp., the remain-
ing representatives belong to different bacterial families).
Studying MGEs in parallel allowed us to explore their un-
even distribution across a collection of complete genomes
from important pathogens, and to explore potential DNA
sharing events between different MGE types. By separat-
ing these elements from masked (MGE-free) genomes, we
were able to observe an overrepresentation of AMR genes
and anti-CRISPRs across the ESKAPE mobilome. Fur-
thermore, we focused on CRISPR-Cas as an example of
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Figure 8. CRISPR spacers are involved in MGE-MGE conflict. (A) CRISPR spacers found on ICEs/IMEs (top left), plasmids (top middle) and prophages
(top right), and their interactions with spacer targets identified in ESKAPE MGEs. (B) Significant variation in the sequence length of MGEs either targeted
or not targeted by CRISPR spacers found in MGEs. (C) Significant variation in the sequence length of MGEs either targeted or not targeted by CRISPR
spacers found in masked genomes. Graphs in (B) and (C) show a summary of data distributions based on boxplots, where the middle horizontal line
indicates the median, the boxes the quartiles above and below the median, and the whiskers the remaining quartiles. Values above 0.05 were considered as
non-significant (ns). We used the following convention for symbols indicating statistical significance: * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤
0.0001. Ab, A. baumannii; En, Enterobacter sp.; Kp, K. pneumoniae; Pa, P. aeruginosa; Sa, S. aureus.

bacterial defense systems, which are efficient against invad-
ing DNA and provide information on their targets through
analysis of the associated spacer sequences (22,25), and
therefore yield insight into the presence of possible defenses
against the here studied MGEs. We assessed the influence
of CRISPR-Cas defense systems in shaping the acquisition
of MGEs and beneficial genes, and we unveiled different
targeting biases for CRISPR spacers identified in plasmids,
prophages and ICEs/IMEs.

The network-based approach used here to study the ES-
KAPE MGEs revealed a clear structural differentiation,
where the majority of clusters were homogeneous for a
given ESKAPE/MGE pair. Using pairwise genetic dis-
tances of alignment-free k-mer sequences has circumvented
the exclusion of non-coding elements that was observed
in gene content similarity networks from previous work
(79), providing a more comprehensive picture of plasmid
population and dynamics (13). Other groups have shown
that plasmids form coherent clusters (13,14), similar in con-
cept to what was observed for bacterial genomes (46,68,69).
Focusing on the ESKAPE pathogens, we demonstrated

here that the same happens for ICEs/IMEs and prophages
for the majority of the clusters. However, two large het-
erogeneous clusters were also observed. Unlike bacterial
genomes, where recombination between closely related
replicons is the main force promoting genomic cohesive-
ness (46,68) (Supplementary Figure S7), MGEs such as
plasmids, ICEs/IMEs and prophages are found in multiple
genera (and phyla) (80). Based on our network-based ap-
proach, we observed that the ESKAPE mobilome appears
to follow a bipartite structure, with some elements being ca-
pable of shuffling DNA between distantly related species.

The abundance of MGEs is strongly associated with the
prevalence of AMR genes. This is particularly evident for K.
pneumoniae, which carries a high proportion of important
vectors of AMR genes, such as plasmids and ICEs/IMEs.
After correcting the prevalence to total number of genes,
we observed that AMR genes are nearly 5 times more
likely to be found on ESKAPE MGEs than on masked
genomes. Most likely the use of different antibiotics target-
ing either Gram negative or positive infections may have
selected for the emergence of different AMR genes across
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the Proteobacteria/Firmicutes divide. For example, van-
comycin is used as last resort for the treatment of sep-
sis and other infections caused by Gram-positive bacteria,
while colistin mainly serves to target multi-drug resistant
Gram-negative infections (31). Anti-CRISPRs are nearly
15 times more abundant on the ESKAPE MGEs than on
masked genomes. Unlike AMR genes, where genes confer-
ring resistance to similar antibiotics were identified in differ-
ent ESKAPE pathogens, the distribution of virulence genes
across the ESKAPE mobilome was mostly species-specific.
This may be explained by different mechanisms of viru-
lence and toxicity across bacterial species. Even consider-
ing the relative proportion of these genes, we confirmed that
these genes are twice more likely to be identified in masked
genomes than in MGEs.

Curiously, we found no CRISPR-Cas systems in our cu-
rated E. faecium dataset. In addition to our main analy-
sis, we specifically searched for the presence of these sys-
tems on the excluded genomes, based on <95% genome
similarity threshold defined for species delineation (46), and
found three strains with these systems, all belonging to the
II-A subtype (Supplementary Table S12). Since the major-
ity of the most representative MLST profiles in our collec-
tion consists of genomes either with or without CRISPR-
Cas systems (Supplementary Table S2), analysis of intra-
ST CRISPR variability between pairs of conspecific ES-
KAPE genomes was not performed in this study. Except
for P. aeruginosa (76,77), we found no evidence for genome
length as a marker for HGT inhibition by CRISPR-Cas sys-
tems. A similar observation was made before, for a different
collection of bacterial pathogens (78).

Defense systems such as CRISPR-Cas are inherently
costly to bacterial hosts, mainly due to different forms of
autoimmunity (81). To offset the short-term deleterious ef-
fects, these systems benefit from associating with MGEs,
such as the examples observed here and elsewhere (42).
Although these and other defense mechanisms such as
restriction-modification systems do not qualify as bona fide
MGEs (the systems lack mechanisms controlling their own
replication), these quasi-autonomous systems take advan-
tage of MGEs to promote their own dissemination and
maintenance across bacterial hosts. Conversely, MGEs ben-
efit from these systems and may pervasively repurpose them
for inter-MGE competition (75). In fact, we found that
spacers in the ICE/IME, prophage, and plasmid CRISPR
arrays target competing MGEs, underscoring the genetic in-
dependence of CRISPR-Cas systems in MGE-MGE con-
flicts. Importantly, the presence of CRISPR-Cas subtypes
preferentially distributed in MGEs (I-C and IV-A3) points
to the existence of distinct selective pressure that pro-
mote the maintenance of specific subtypes on ICEs/IMEs
and plasmids versus masked genomes. Given the large
sizes of CRISPR-Cas systems, we observed a bias in their
distribution towards larger MGEs (both plasmids and
ICEs/IMEs > 100 kb). Since plasmids with an identifiable
relaxase (hence classified as conjugative or mobilizable) are
larger than the so-called non-transmissible plasmids (64),
we unsurprisingly found a relaxase in all CRISPR-Cas pos-
itive plasmids. Prophages seem to follow similar streamlin-
ing dynamics (82). Even though nearly half of P. aeruginosa
genomes carry at least one CRISPR-Cas system (Figure 6A

and Supplementary Table S2), multiple anti-CRISPRs were
found across prophages and ICEs/IMEs (Figure 6C), sug-
gesting a potential role played by these elements in silencing
immune systems in this species.

Our results shows that only a restricted fraction of
CRISPR spacers matched spacer MGE targets, which is
in agreement with previous findings (75,77). While the
large majority of plasmid- and prophage-encoded spacers
were predicted to target other plasmids and prophages,
respectively, CRISPR arrays in ICEs/IMEs preferentially
targeted prophages, but also a large proportion of other
ICEs/IMEs (Figure 8). This complementary targeting
preference can be explained by the different lifestyle of
these MGEs. Since plasmids are maintained as extra-
chromosomal elements, and ICEs/IMEs and prophages are
integrated in the chromosome, we hypothesize that while
plasmids preferentially target plasmid competitors (42),
ICEs/IMEs exploit CRISPR-Cas systems to protect their
host against viral predators and other ICEs/IMEs.

Several bioinformatic tools exist to look for plasmids and
prophages, but currently the options for ICEs/IMEs are
scarce (83). We provide here an accurate identification of
these elements, building upon a recently reported tool to
scan RGPs (51). However, our approach depends on the
availability of a pangenome for the considered taxa, which
is an important limitation for species with an insufficient
number of completely sequenced genomes. It would be in-
teresting in the future to assess the distribution of func-
tional and non-functional prophages (and also other types
of MGEs). Even though it is not always straightforward to
distinguish functional from non-functional prophages, size
variation could be a useful indicator. Since CRISPR arrays
consist of a memory bank that is well suited to provide bio-
logical and ecological insights, and many spacer sequences
can be traced back to their original locations, studying these
systems yields valuable insights into the possible selective
advantages of these defense systems. Nevertheless, bacteria
and different MGEs employ multiple defense systems (84),
next to CRISPR-Cas, and these defense systems could also
influence MGE distributions. Their analysis may represent
a promising focus for future research and could further help
to understand limitations to the spread of MGEs.

Moreover, our work only focused on three MGE types,
which are likely to be of main importance for the dissem-
ination of genes involved in pathogenesis and AMR and
thus critical for our understanding of the evolution of the
ESKAPE pathogens. Nevertheless, other MGEs should be
considered in future work, for example those that contribute
to communication between cells (such as phage-inducible
chromosomal islands (85)), or intracellular transfer events
(e.g. transposons and insertions sequences (19)).

To conclude, our results indicate that prophages,
ICEs/IMEs, and plasmids are asymmetrically distributed
across the ESKAPE pathogens. We found that these MGEs
can be found in multiple genera (and phyla), even though
most clusters are constrained by host similarity and/or the
type of MGE. We observed that the proteome of ESKAPE
MGEs is highly diverse, involved in diverse functional
categories, and features convoluted distribution patterns
(including both MGE/ESKAPE specific and widespread
proteins). When comparing against masked (MGE-free)
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genomes, we observed the pervasive association of AMR
genes and anti-CRISPRs with the ESKAPE mobilome. We
also found different targeting biases to CRISPR spacers
found on plasmids, prophages, and ICEs/IMEs, high-
lighting their genetic independence. Taken together, our
results illustrate the potential of network-based approaches
and comparative genomics to underscore the composition
and dynamics of gene flow across different MGEs, and
sheds a new light in the role of the overlooked ICEs/IMEs
as important players in the MGE-MGE warfare in the
ESKAPE pathogens and thus the main groups of highly
problematic human pathogens.
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56. Steinegger,M. and Söding,J. (2018) Clustering huge protein sequence
sets in linear time. Nat. Commun., 9, 2542.

57. Zhao,X. (2019) BinDash, software for fast genome distance
estimation on a typical personal laptop. Bioinformatics, 35, 671–673.

58. Buchfink,B., Reuter,K. and Drost,H.-G. (2021) Sensitive protein
alignments at tree-of-life scale using DIAMOND. Nat. Methods, 18,
366–368.

59. Cantalapiedra,C.P., Hernández-Plaza,A., Letunic,I., Bork,P. and
Huerta-Cepas,J. (2021) eggNOG-mapper v2: functional annotation,
orthology assignments, and domain prediction at the metagenomic
scale. Mol. Biol. Evol., 38, 5825–5829.

60. Zankari,E., Hasman,H., Cosentino,S., Vestergaard,M.,
Rasmussen,S., Lund,O., Aarestrup,F.M. and Larsen,M.V. (2012)
Identification of acquired antimicrobial resistance genes. J.
Antimicrob. Chemother., 67, 2640–2644.

61. Chen,L., Zheng,D., Liu,B., Yang,J. and Jin,Q. (2016) VFDB 2016:
hierarchical and refined dataset for big data analysis - 10 years on.
Nucleic Acids Res., 44, D694–D697.

62. Russel,J., Pinilla-Redondo,R., Mayo-Muñoz,D., Shah,S.A. and
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