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Abstract: Nonlinear feedback design via state-dependent Riccati equations is well established but unfea-
sible for large-scale systems because of computational costs. If the system can be embedded in the class
of linear parameter-varying (LPV) systems with the parameter dependency being affine-linear, then the
nonlinear feedback law has a series expansion with constant and precomputable coefficients. In this work,
we propose a general method to approximating nonlinear systems such that the series expansion is possible
and efficient even for high-dimensional systems. We lay out the stabilization of incompressible Navier-
Stokes equations as application, discuss the numerical solution of the involved matrix-valued equations,
and confirm the performance of the approach in a numerical example.

1 Introduction

Nonlinear feedback design for large-scale systems is chal-
lenging, as both the complexity induced by nonlineari-
ties and the huge computational tasks caused by the sys-
tem’s size have to be resolved. The commonly used meth-
ods of backstepping [22], feedback linearization [29, Ch.
5.3], or sliding mode control [16] require structural as-
sumptions and, thus, may not be accessible to a general
computational framework. The both holistic and general
approach via the Hamilton-Jacobi-Bellman (HJB) equa-
tions, however, is only feasible for very moderate system
sizes or calls for model order reduction; see, e.g., [14] for
a relevant discussion and an application in fluid flow con-
trol. As an alternative to reducing the system’s size, one
may consider approximations to the solution of the HJB
equations of lower complexity. For that, for example,
truncated polynomial expansions [13] or suboptimal so-
lutions via the so called state-dependent Riccati equation
(SDRE) [2] are considered. Here, we will follow on re-
cent developments [1] on series expansions of the SDRE
approximation to the HJB solution that can mitigate the

still high computational costs of repeatedly solving high-
dimensional Riccati equations.

As the general setup, we consider the input-affine sys-
tem

v̇(t) = f(v(t)) +Bu(t), y(t) = Cv(t), (1)

where for time t > 0, x(t) ∈ Rn denotes the state, u(t) ∈
Rp and y(t) ∈ Rq denote the input and output, f : Rn →
Rn is a possibly nonlinear function, and where B and C
are linear input and output operators. Under the mild
condition that f is Lipshitz continuous and f(0) = 0,
one can factorize the nonlinearity f(v) = A(v)v with a
state-dependent coefficient matrix A(v) and bring the sys-
tem (1) into state-dependent coefficient (SDC) form:

v̇(t) = A(v(t))v(t) +Bu(t), y(t) = Cv(t); (2)

see, e.g., [8, Eq. (7)]. For such systems, one can define a
feedback by

u(t) = −BTP (v(t))v(t),

where P solves the SDRE

A(v)TP + PA(v)− PBBTP = −CTC; (3)
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see [2] for general principles and [8] for a proof of per-
formance beyond an asymptotic smallness condition. Be-
cause of its nonlinear and, possibly high-dimensional na-
ture, a solve of the SDRE (3) comes at high costs that
make the SDRE approach unfeasible for large systems;
see [8] for an example illustrating how the effort grows
with the system’s dimension.

If, however, the factorization f(v) = A(v)v is affine-
linear with respect to a parametrization ρ(v) ∈ Rm of v,
i.e., it can be represented as

A(v) = A0 +

m∑
k=1

ρk(v)Ak, (4)

then the solution P (v) of the SDRE has a first-order ap-
proximation

P (v) ≈ P0 +

m∑
k=1

ρk(v)Lk

where P0 and Lk, k = 1, . . . ,m can be precomputed by
one Riccati and m Lyapunov equations; see [1,4]. In this
work we propose a general approach for controller design
that bases on approximative representations as in (4) for
which we employ

• an SDC representation of the nonlinear system,

• an approximative parametrization ρ̂(v) ∈ Rr, where
approximative means that r is chosen small such
that an exact reconstruction of v from ρ̂(v) might
not be possible, and

• an affine-linear approximation of the coefficient (4).

Also, we discuss how such an approach can be realized for
flow control problems modelled by semi-discrete Navier-
Stokes equations (NSE). For this, we rely on

• the coordinates provided by a proper orthogonal de-
composition (POD) of the velocity states; see [24]
for an introduction,

• the quadratic structure of the nonlinearity in the
incompressible NSE,

• implicit treatment of the incompressibility constraint,
and, importantly,

• low-rank solves for and low-rank representations of
the solutions to the high-dimensional Riccati and
Lyapunov equations.

We note that with this line of arguments, the feedback
design by truncated SDRE approximations can be made
feasible for, say, finite element approximations of general
nonlinear partial differential equations (PDEs).

Apart from the proposed algorithmic advances and nu-
merical insights into the feedback approximation, we ex-
pand here on the work of [1] insofar as the parametrization

step lifts fundamental structural assumptions on the prob-
lem class. A related approach, though with updates that
require the solutions of nonlinear matrix equations, can
be found in [15] based on the expansion of nonlinear sys-
tems into Volterra series [27]. Furthermore, we note that,
with the explicit low-complexity parametrization of the
nonlinearity in an otherwise linear problem formulation,
the difficulties of exponentially growing dimensions that
come with tensor expansions for general nonlinearities are
mitigated; see [23] for a recent discussion regarding model
order reduction.

The overall procedure is explained in detail as follows.
In Section 2, we explain how a low-complexity linear pa-
rameter-varying approximation can be obtained by pa-
rametrizing the state of an SDC system. The formulas for
expanding the SDRE solution and state the constituting
equations for the coefficients of the expansion are recalled
in Section 3. Section 4 lays out how POD can be used to
realize a low-complexity affine-linear parameter-varying
approximation of incompressible Navier-Stokes equations
and in Section 5 we briefly describe the concepts for solv-
ing the high-dimensional matrix equations. In Section 6,
we provide the results of numerical experiments to show
the applicability of the approach and to compare with
plain static feedback. The paper is concluded in Section 7.

2 Low-complexity linear
parameter-varying approximations

In this section, we consider now systems in SDC form (2).
If the system state v(t) is encoded into time-varying pa-
rameters ρ(t) = µ(v(t)) ∈ Rm, with m ≤ n, and v(t) =
ν(ρ(t)), where µ and ν are the corresponding encoding
and decoding maps, then the SDC representation (2) can
be formulated as a linear parameter-varying (LPV) sys-
tem via

v̇(t) = Ã(ρ(t))v(t) +Bu(t), y(t) = Cx(t), (5)

where Ã(ρ) := A(ν(ρ)). Such an embedding of a nonlinear
system into the class of LPV systems is typically called
quasi LPV system; see, e.g., [21]. Here we will focus

on affine-linear LPV representations, where Ã depends
affine-linearly on ρ so that (5) can be realized as

v̇(t) =

(
Ã0 +

m∑
k=1

ρk(t)Ãk

)
v(t) +Bu(t), y(t) = Cv(t),

where ρk is the k-th component of ρ and where Ã0 and
Ãk ∈ Rn×n are constant, k = 1, . . . ,m.

If the state v is not exactly parametrized but only ap-
proximated with less degrees of freedom in ρ̂(t) = µ̂(v(t)) ∈
Rr such that r � m, with an inexact reconstruction

v(t) ≈ ṽ(t) = ν̂(ρ̂(t)) = ν̂(µ̂(v(t))), (6)
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then an LPV approximation of (1) is given by

˙̂v(t) = Â(ρ̂(t))v̂(t) +Bu(t), ŷ(t) = Cv̂(t), (7)

with the approximated system matrix Â(ρ̂) := A(ν̂(ρ̂))
and the new system state v̂(t) ∈ Rn. Note that the state
v̂(t) is of full dimension n, as our reduction efforts will tar-
get the structure of the model rather than the dimension
of the states. Nonetheless, the ideas and techniques of
approximate low-dimensional parametrizations of states
and estimates on approximation errors of standard model
order reduction (MOR) schemes readily apply.

3 Series expansions of
state-dependent Riccati equations

The theory of first-order approximations for a single pa-
rameter dependency by [4] has been extended in [1] to the
multivariate case. We briefly recall the relevant formulas.

To prepare the argument, we assume that v is param-
etrized through ρ and consider the dependency of the
SDRE solution P on the current value of ρ, i.e., P (·) =
P (ρ(·)). Then, the multivariate Taylor expansion of P
about ρ0 = 0 up to order K reads

P (ρ) ≈ P (0) +
∑

1≤|α|≤K

ρ(α)Pα, (8)

where α = (α1, . . . , αm) ∈ Nm is a multiindex with |α| :=∑m
i=1 αi, where ρ(α) := ρα1

1 ρα2
2 · · · ραmm , and where, impor-

tantly, Pα are constant matrices given by

Pα := 1
α1!α2!···αm!

∂|α|

∂
α1
ρ1
∂
α2
ρ2
···∂αmρm

P (0).

In particular, the expansion up to order one (i.e., the
associated first-order approximation) can be written as

P (ρ) ≈ P (0) +
∑
|α|=1

ρ(α)Pα =: P0 +

m∑
k=1

ρkLk. (9)

Substituting P in the SDRE (3) by its series expansion (8)
and considering the affine-linear dependency of A on ρ
yields

( m∑
k=0

ρkAk
)T( ∑
|α|≤K

ρ(α)Pα
)

+
( ∑
|α|≤K

ρ(α)Pα
)( m∑
k=0

ρkAk
)

−
( ∑
|α|≤K

ρ(α)Pα
)
BBT

( ∑
|α|≤K

ρ(α)Pα
)

= −CTC,

where, for compactness of the expression, we introduce
ρ0 = 1 and use the relevant conventions for α = 0 ∈ Nm.

By matching the coefficients for ρ(α), we obtain equa-
tions for the matrices of the first-order approximation (9)
as

AT
0P0 + P0A0 − P0BB

TP0 = −CTC, (10)

for P0 and(
A0 −BBTP0

)T
Lk + Lk

(
A0 −BBTP0

)
= −

(
AT
kP0 + P0Ak

)
(11)

for Lk, with k = 1, . . . ,m; see also [1].

4 Approximations of Navier-Stokes
equations through linear affine
parametrizations

As the standard model for incompressible flows we con-
sider spatially discretized Navier-Stokes equations (NSE).
After a shift of variables that eliminates constant nonzero
Dirichlet boundary conditions, the semi-discrete NSEs
in the variables of the velocity v(t) ∈ Rn and pressure
p ∈ Rnp with control input u can be written as

Mv̇ = Ñ(v, v) + Ãv + JTp+ B̃u, (12a)

0 = Jv. (12b)

At least for theoretical considerations, the incompressibil-
ity constraint (12b) can be resolved and the velocity v can
be determined by the equivalent projected equations

Mv̇ = N(v, v) +Av +Bu, (13)

where N(v, v) = ΠTÑ(v, v), where A and B denote ΠTÃ

and ΠTB̃, respectively, and where

Π := In −M−1JT
(
JM−1JT

)−1
J (14)

is the so-called discrete Leray projector ; see [20] for prop-
erties of Π and formulations in the coordinates of the sub-
space spanned by ΠT and see [7] where we have proven
that the SDRE feedback based on (13) is equivalent to
that of (12).

By the homogeneity in the boundary conditions, the
nonlinearity N(v, v) that models the convection is linear
in both arguments (see, e.g., [5] for explicit formulas of
N(·, ·) in a spatial discretization) so that both

N1(v) : w 7→ N(v, w) and N2(v) : w 7→ N(w, v)

can be realized as state-dependent coefficient matrix and
so that for any blending parameter λ ∈ R, an SDC repre-
sentation is given as

N(v, v) = λN1(v)v + (1− λ)N2(v)v =: Nλ(v)v. (15)

Even more, if in an approximative parametrization as
in (6), the decoding is linear, then the induced LPV ap-
proximation is affine-linear ; see [18, Rem. 2].

In fact, let Vr ∈ Rn×r be the matrix of r POD modes
designed to best approximate the velocity in an r-dimen-
sional subspace of Rn, then with

ρ̂(t) := V T
r v(t) and ṽ(t) = Vrρ̂(t)
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and the approximation property of the POD basis, we
obtain

v(t) ≈ ṽ(t) = Vrρ̂(v(t)) =

r∑
i=1

ρ̂i(v(t))v̂i,

where v̂i, for i = 1, . . . , r are the columns of Vr ∈ Rn×r.
By the linearity of v → Nλ(v), the SDC representation (15)
is readily approximated by

N(v)v ≈ N(ṽ)v =

(
r∑
i=1

ρ̂iN̂i

)
v (16)

with N̂i := Nλ(v̂i), i = 1, . . . , r.
From the orthogonality of the POD basis it follows that

ṽ(t) = VrV
T
r v(t) → v(t) uniformly with r → n, r ≤ n,

which can be translated into convergence of the LPV ap-
proximations(

r̂∑
i=1

ρ̂iN̂i

)
→

(
r∑
i=1

ρ̂iN̂i

)
→

(
n∑
i=1

ρ̂iN̂i

)
= N(v),

for r̂ → r → n and r̂ ≤ r ≤ n. Practically, in view
of computing approximations to the SDRE solution and
the associated feedback law, this means that the series
expansion in (9) can be augmented or reduced by simply
adding or discarding parameters and the corresponding
factors Lk.

5 Numerical handling of
high-dimensional matrix equations

First, we note that for systems like the spatially dis-
cretized NSEs (13), a mass matrix M needs to be in-
corporated. Since M is typically symmetric positive defi-
nite and, thus, invertible, such systems are readily trans-
formed into the standard form of (2). In practice, how-
ever, it is beneficial to consider formulations of the Ric-
cati and Lyapunov equations (10) and (11) without the
explicit inversion:

AT
0P0M +MTP0A0 −MTP0BB

TP0M = −CTC, (17)

and

AT
0,clLkM+MTLkA0,cl = −

(
MTP0Ak +AT

kP0M
)
, (18)

for k = 1, . . . ,m, where A0,cl := A0 − BBTP0M is the
closed-loop system matrix corresponding to (17); see, for
example, [6]. Although, these formulations can cover also
problems where the mass matrix is not invertible as they
appear in differential-algebraic equations like the Navier-
Stokes equations in the original formulation (12), for the
presentation it is convenient to refer to the projected sys-
tem (13). In practice, the system matrices in (13) and the

involved projection Π from (14) are realized only implic-
itly during the application of iterative matrix equation
solvers for (17) and (18) like the low-rank ADI; see [9].

Another general problem occurring in the presence of
high-dimensional systems is the consumption of computa-
tional resources such as time and memory. In particular,
it is typically not possible to even store the large-scale
dense solutions P0 ∈ Rn×n and Lk ∈ Rn×n, k = 1, . . . ,m.
An established approach to handle this problem is the use
of low-rank factorizations. The stabilizing solution of the
Riccati equation (17) namely P0 is known to be positive
semi-definite such that in the case of small numbers of in-
puts and outputs, p, q � n, it can be well represented by
a low-rank Cholesky factorization, i.e., P0 ≈ Z0Z

T
0 with

Z0 ∈ Rn×`0 and `0 � n. One can find various numeri-
cal methods in the literature to efficiently compute these
low-rank factors of Riccati equations without ever form-
ing the full solution P0; see [10] for an overview. In our
numerical experiments, we rely on the low-rank Newton-
Kleinman-ADI method [11].

Considering the indefinite right-hand side of (18), one
needs to assume that the Lk’s are generically indefinite.
Nonetheless, the low-rank factorization P0 ≈ Z0Z

T
0 yields

the low-rank indefinite factorization

MTP0Ak +AT
kP0M

≈
[
MTZ0 AT

kZ0

] [ 0 I`0
I`0 0

] [
ZT
0M

ZT
0Ak

]
= CkSkC

T
k .

Based on this factorization in the right-hand side, it is
possible to similarly approximate the solution to (18) as
Lk ≈ ZkDkZ

T
k , for k = 1, . . . ,m, where Dk is a symmetric

but possibly indefinite matrix. Here, we are using the
LDLT-factorized low-rank ADI method [25].

6 Numerical experiments

The code, raw data and results of the presented numerical
experiments are available at [19]. For the solution of Ric-
cati and Lyapunov equations in MATLAB 9.9.0.1467703
(R2020b), we used the solver implementations from MOR-
LAB version 5.0 [12] and M-M.E.S.S. version 2.2 [28]. For
the simulation part, we resort to our Python interface
[17] between Scipy and the finite element toolbox FEn-
iCS [26].

We consider the stabilization of the flow in the wake of
a 2D cylinder through two control inlets at the periphery
of the cylinder. Measurement outputs are defined as aver-
aged velocities over a small neighborhood of three sensor
points in the wake; see [5] on technical details, the de-
tailed control setup, and on how the Dirichlet control is
relaxed as penalized Robin boundary conditions.

As for the numerical setup, we consider here the Rey-
noldsnumber 60 and start from the associated non-zero
steady state, which is to be stabilized; see Figure 1 for
the basic geometry of the example and snapshots of the
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Figure 1: Snapshots of the flow in the unstable steady
state and in the fully developed periodic vor-
tex shedding regime.

steady state and periodic regime that develops if no stabi-
lization is employed. For the spatial discretization, we use
quadratic-linear Taylor-Hood finite elements on a nonuni-
form mesh that leads to a system of size 57 000. For the
time integration we use an implicit-explicit Euler time
stepping method that in particular treats the linear part
and the incompressibility constraint implicitly, whereas
the nonlinear part and the feedback is treated explic-
itly in time. Generally, we are concerned with a system

of type (12) with
[
v(t) p(t)

]T ∈ R57 000 with the input
u(t) ∈ R2 and the output y(t) ∈ R6 extracted from the ve-
locity state by a linear output operator C as y(t) = Cv(t).

The basic procedure of the simulations comprises the
following steps:

(0) Compute the steady state for u = 0 to be used as
reference for the stabilization, for the shift of the
system that removes nonzero boundary conditions,
and as the starting value for the closed-loop simu-
lations.

(1) Perform open-loop simulations to collect data for
the POD basis for the affine-linear LPV approxi-
mation (16).

(2) Compute the Riccati solution P0 and the Lyapunov
solutions Lk via (17) and (18).

(3) Close the loop with the nonlinear feedback law

u(t) = −BT

(
P0 +

r∑
k=1

ρ̂k(v(t))Lk

)
Mv(t). (19)

In the presented numerical study, the relevant steps
were realized as follows. To acquire the data for the POD
basis, we take 401 snapshots of the velocity equally dis-
tributed on the time interval [0, 0.5] for the test signal

u(t) =
[
sin(t) 0

]T
, (20)

and define Vr as the matrix of the r leading left singu-
lar vectors with respect to the weighted inner-product

induced by the mass matrix M of the finite element dis-
cretization; see [3]. Then the LPV approximation (15)
is computed for the NSE with λ = 0.75. In the follow-
ing, we denote the feedback definition by the truncated
SDRE series approximation (19) of parameter dimension
r by xSDRE-r and the classical linear-quadratic regulator
feedback, which is readily defined as u(t) = −BTP0Mv(t)
by LQR (which is equivalent to xSDRE-0; cf. the feedback
law (19)).

To trigger the instabilities in the closed-loop simula-
tions, we apply the test signal (20) on a short time [0, tc]
before we switch on the feedback at t = tc. In this way,
the system will deviate from the linearization point. For
tc too large, the state may have left the region of attrac-
tion for which the linear LQR or the SDRE-based controller
will stabilize the nonlinear system.

In our experiments, we employed Tikhonov regulariza-
tion in the form of an α ∈ {1, 103}, which is included by
replacing the original input matrix B by the scaled version
B̆ := 1√

α
B in the definition of the SDRE (3) as well as in

the solved Riccati and Lyapunov equations (17) and (18).
Consequently, the corresponding feedback needs to be
scaled as well, e.g., in the LQR case as

u(t) = − 1

α
BTP̆0Mv(t),

where P̆0 solves the Riccati equation with B̆. Also, we
used bisection of the time domain to identify a tc close
to a critical value that marks the performance region of
the controllers. For both cases of α, we found that the
xSDRE-r approach enlarges the domain of attraction of
the LQR-controller. We illustrate this finding by plotting
the outputs of the closed-loop systems as measured for
the LQR-feedback and the xSDRE-r-feedback for various r.
Apart from the qualitative differences in the performance,
e.g., stabilization is achieved or not, in these setups, a
quantitative effect of the reduction parameter r as part
of the nonlinear feedback definition becomes evident. In
fact, for the case of α = 103 and tc = 0.125, the plain LQR-
feedback did not stabilize the system, while additional
modes in the feedback design improved the performance
steadily, until with r = 10 stabilization was achieved; see
Figure 2 with the norms of the feedback actions over time
for this setup.

For smaller regularization parameter α = 1 that en-
ables larger control actions, the overall region of perfor-
mance is extended at the expense of a more sensitive con-
trol regime. Here, an illustrative tc could be identified at
t = 0.65 with the LQR-feedback being not stabilizing in
contrast to the xSDRE-10-feedback; see Figure 3. How-
ever, with xSDRE-2 was stabilizing while xSDRE-5 failing
to do so, a clear trend for improvement in performance
for larger r could not be observed.

Overall, we can state that the truncated SDRE ap-
proach, with an almost negligible overhead in the sim-
ulation phase, is capable to improve the feedback per-
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Figure 2: Norms of feedback for different r and the corre-
sponding outputs for the LQR and the xSDRE-10-
feedback for the case of α = 103 and tc =
0.125. A continuous performance improvement
for xSDRE-r can be observed with stabilization
of the system at xSDRE-10, while the classical
LQR-feedback fails.

Figure 3: Norms of feedback for different r and the corre-
sponding outputs for the LQR and the xSDRE-10-
feedback for the case of α = 1 and tc = 0.65.
The xSDRE-10-feedback is able to stabilize the
system in contrast to the classical LQR approach.

formance if compared to the classical LQR feedback. In
particular, for larger regularization parameters the dif-
ference in the region of attraction was rather small but
the smooth relation between the additional complexity r
and the performance turned out to be a useful hyperpa-
rameter in the feedback design. In the regime with less
regularization, the xSDRE-r approach proved to give de-
cisive advantages concerning the domain of performance
at the extra cost of finding a suitable r.

7 Conclusion

In this work, we have presented a general framework that
uses the embedding of nonlinear systems in the class of
LPV systems, POD for reduction of the complexity of the
parameter dimension, and the quadratic structure of the
convection term in the Navier-Stokes equations to make
the nonlinear feedback design through truncated expan-
sions of the SDRE applicable. With state-of-the-art ma-
trix equations solvers, computational feasibility of this
approach was achieved too. As illustrated by a numer-
ical example, this generic nonlinear approach provides a
measurable improvement over the closely related classi-
cal LQR approach with a small additional computational
effort at runtime.

Certainly, through the dependency on the POD basis
for the parametrization, this approach is problem-specific.
We would argue, however, that POD is a rather standard
and generally applicable way to define parametrizations
so that our proposed method enjoys a similarly general
scope.

The potentials and needs for future work are manifold.
Firstly, it would be interesting to investigate expansions
of second order. Secondly, we have not paid particular at-
tention to the definition of the coordinates for the affine
LPV approximation and simply resorted to POD. Since
a small dimension r is most important, in particular if
one wants to consider a second-order expansions of the
SDRE, other, possibly nonlinear parametrizations might
be considered. For the analysis of the approximation,
suitable measures for the residual, e.g., in the SDRE ap-
proximation, need to be derived together with formulas
for feasible evaluations in the large-scale systems case.

Acknowledgments

Jan Heiland was supported by the German Research Foun-
dation (DFG) Research Training Group 2297 “Mathemat-
ical Complexity Reduction (MathCoRe)”, Magdeburg.

References

[1] A. Alla, D. Kalise, and V. Simoncini. State-
dependent Riccati equation feedback stabilization for

Preprint. 2023-03-21



J. Heiland, S. W. R. Werner: Low-complexity LPV approximations of NSEs for SDRE feedback 7

nonlinear PDEs. Adv. Comput. Math., 49(1):9, 2023.
doi:10.1007/s10444-022-09998-4.

[2] H. T. Banks, B. M. Lewis, and H. T. Tran. Nonlin-
ear feedback controllers and compensators: a state-
dependent Riccati equation approach. Comput. Op-
tim. Appl., 37(2):177–218, 2007. doi:10.1007/

s10589-007-9015-2.

[3] M. Baumann, P. Benner, and J. Heiland. Space-time
Galerkin POD with application in optimal control
of semilinear partial differential equations. SIAM J.
Sci. Comput., 40(3):A1611–A1641, 2018. doi:10.

1137/17M1135281.

[4] S. C. Beeler, H. T. Tran, and H. T. Banks. Feed-
back control methodologies for nonlinear systems.
J. Optim. Theory Appl., 107(1):1–33, 2000. doi:

10.1023/A:1004607114958.

[5] M. Behr, P. Benner, and J. Heiland. Example se-
tups of Navier-Stokes equations with control and
observation: Spatial discretization and representa-
tion via linear-quadratic matrix coefficients. e-print
arXiv:1707.08711, arXiv, 2017. Mathematical Soft-
ware (cs.MS). doi:10.48550/arXiv.1707.08711.

[6] P. Benner and J. Heiland. LQG-balanced truncation
low-order controller for stabilization of laminar flows.
In R. King, editor, Active Flow and Combustion Con-
trol, volume 127 of Notes Numer. Fluid Mech. Mul-
tidiscip. Des., pages 365–379. Springer, Cham, 2015.
doi:10.1007/978-3-319-11967-0_22.

[7] P. Benner and J. Heiland. Nonlinear feedback stabi-
lization of incompressible flows via updated Riccati-
based gains. In 2017 IEEE 56th Annual Conference
on Decision and Control (CDC), pages 1163–1168,
2017. doi:10.1109/CDC.2017.8263813.

[8] P. Benner and J. Heiland. Exponential stability
and stabilization of extended linearizations via con-
tinuous updates of Riccati-based feedback. Int. J.
Robust Nonlinear Control, 28(4):1218–1232, 2018.
doi:10.1002/rnc.3949.

[9] P. Benner, J. Heiland, and S. W. R. Werner. Ro-
bust output-feedback stabilization for incompressible
flows using low-dimensional H∞-controllers. Com-
put. Optim. Appl., 82(1):225–249, 2022. doi:10.

1007/s10589-022-00359-x.

[10] P. Benner, J. Heiland, and S. W. R. Werner.
A low-rank solution method for Riccati equa-
tions with indefinite quadratic terms. Numer. Al-
gorithms, 92(2):1083–1103, 2023. doi:10.1007/

s11075-022-01331-w.

[11] P. Benner, M. Heinkenschloss, J. Saak, and H. K.
Weichelt. Efficient solution of large-scale algebraic
Riccati equations associated with index-2 DAEs via
the inexact low-rank Newton-ADI method. Appl.
Numer. Math., 152:338–354, 2020. doi:10.1016/j.

apnum.2019.11.016.

[12] P. Benner and S. W. R. Werner. MORLAB – Model
Order Reduction LABoratory (version 5.0), Au-
gust 2019. See also: https://www.mpi-magdeburg.

mpg.de/projects/morlab. doi:10.5281/zenodo.

3332716.

[13] T. Breiten, K. Kunisch, and L. Pfeiffer. Infinite-
horizon bilinear optimal control problems: Sensitiv-
ity analysis and polynomial feedback laws. SIAM
J. Control Optim., 56(5):3184–3214, 2018. doi:

10.1137/18M1173952.

[14] T. Breiten, K. Kunisch, and L. Pfeiffer. Feedback
stabilization of the two-dimensional Navier-Stokes
equations by value function approximation. Appl.
Math. Optim., 80(3):599–641, 2019. doi:10.1007/

s00245-019-09586-x.

[15] W. A. Cebuhar and V. Costanza. Approxima-
tion procedures for the optimal control of bilinear
and nonlinear systems. J. Optim. Theory Appl.,
43(4):615–627, 1984. doi:10.1007/BF00935009.

[16] S. J. Dodds. Feedback Control: Linear, Nonlinear
and Robust Techniques and Design with Industrial
Applications, chapter Sliding Mode Control and Its
Relatives, pages 705–792. Advanced Textbooks in
Control and Signal Processing. Springer, London,
2015. doi:10.1007/978-1-4471-6675-7_10.

[17] J. Heiland. dolfin navier scipy: a python Scipy FEn-
iCS interface. Jun 2019. doi:10.5281/zenodo.

3238622.

[18] J. Heiland, P. Benner, and R. Bahmani. Convo-
lutional neural networks for very low-dimensional
LPV approximations of incompressible Navier-
Stokes equations. Front. Appl. Math. Stat., 8:879140,
2022. doi:10.3389/fams.2022.879140.

[19] J. Heiland and S. W. R. Werner. Code, data
and results for numerical experiments in “Low-
complexity linear parameter-varying approximations
of incompressible Navier-Stokes equations for trun-
cated state-dependent Riccati feedback” (version
1.0), March 2023. doi:10.5281/zenodo.7742469.

[20] M. Heinkenschloss, D. C. Sorensen, and K. Sun. Bal-
anced truncation model reduction for a class of de-
scriptor systems with application to the Oseen equa-
tions. SIAM J. Sci. Comput., 30(2):1038–1063, 2008.
doi:10.1137/070681910.

Preprint. 2023-03-21

https://doi.org/10.1007/s10444-022-09998-4
https://doi.org/10.1007/s10589-007-9015-2
https://doi.org/10.1007/s10589-007-9015-2
https://doi.org/10.1137/17M1135281
https://doi.org/10.1137/17M1135281
https://doi.org/10.1023/A:1004607114958
https://doi.org/10.1023/A:1004607114958
https://doi.org/10.48550/arXiv.1707.08711
https://doi.org/10.1007/978-3-319-11967-0_22
https://doi.org/10.1109/CDC.2017.8263813
https://doi.org/10.1002/rnc.3949
https://doi.org/10.1007/s10589-022-00359-x
https://doi.org/10.1007/s10589-022-00359-x
https://doi.org/10.1007/s11075-022-01331-w
https://doi.org/10.1007/s11075-022-01331-w
https://doi.org/10.1016/j.apnum.2019.11.016
https://doi.org/10.1016/j.apnum.2019.11.016
https://www.mpi-magdeburg.mpg.de/projects/morlab
https://www.mpi-magdeburg.mpg.de/projects/morlab
https://doi.org/10.5281/zenodo.3332716
https://doi.org/10.5281/zenodo.3332716
https://doi.org/10.1137/18M1173952
https://doi.org/10.1137/18M1173952
https://doi.org/10.1007/s00245-019-09586-x
https://doi.org/10.1007/s00245-019-09586-x
https://doi.org/10.1007/BF00935009
https://doi.org/10.1007/978-1-4471-6675-7_10
https://doi.org/10.5281/zenodo.3238622
https://doi.org/10.5281/zenodo.3238622
https://doi.org/10.3389/fams.2022.879140
https://doi.org/10.5281/zenodo.7742469
https://doi.org/10.1137/070681910


J. Heiland, S. W. R. Werner: Low-complexity LPV approximations of NSEs for SDRE feedback 8

[21] P. J. W. Koelewijn and R. Tóth. Scheduling di-
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