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Highlights
The oxidase assembly (OXA) insertase
family represents an example of evolutive
functional specialization.

OXA insertase facilitates the membrane
integration of proteins from different
genetic origins.

OXA association with mitochondrial
ribosomes facilitates the insertion
of newly synthesized mitochondrial-
encoded proteins.
Most mitochondrial proteins are synthesized in the cytosol and transported into mi-
tochondria by protein translocases. Yet, mitochondria contain their own genome
and gene expression system, which generates proteins that are inserted in the
inner membrane by the oxidase assembly (OXA) insertase. OXA contributes to
targeting proteins from both genetic origins. Recent data provides insights
into how OXA cooperates with the mitochondrial ribosome during synthesis of
mitochondrial-encoded proteins. A picture of OXA emerges in which it coordinates
insertion of OXPHOS core subunits and their assembly into protein complexes but
also participates in the biogenesis of select imported proteins. These functions po-
sition theOXA as amultifunctional protein insertase that facilitates protein transport,
assembly, and stability at the inner membrane.
OXA links protein insertion to the early
steps of oxidative phosphorylation
biogenesis.
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OXA1 facilitates protein translocation and assembly in mitochondria
Among eukaryotic cell organelles, mitochondria display a remarkable feature regarding their pro-
tein biogenesis resulting from their endosymbiotic origin. While most mitochondrial proteins are
nuclear-encoded and imported from the cytosol, mitochondria contain their own genome
(mtDNA) and a dedicated transcription and translation machinery [1–3]. To facilitate the import of pro-
teins into mitochondria, cargo-specific protein translocases are required [4–8]. Yet, themitochondria-
encoded proteins also need to be inserted into the lipid phase of the inner mitochondrial membrane.
This translocation process requires OXA1 insertase. While OXA1 is essential for the translocation of
mitochondria-encoded proteins, it also contributes to the inner membrane insertion of some
nuclear-encoded proteins. Here, we discuss the identification of OXA1, its functions, and interaction
network partners that lead to the developing view of OXA as a module that acts as a platform for
protein translation, membrane insertion, and protein assembly.

Chronicle of Oxa1 identification
OXA1 was identified in the yeast Saccharomyces cerevisiae as a conserved gene (PET1402/
OXA1) important for respiratory growth, cytochrome c oxidase biogenesis, and export or
assembly of the mitochondria-encoded Cox2 subunit [9,10]. OXA1 spans the inner mitochon-
drial membrane five times, exposing the C terminus into the matrix. Further studies on the oxa1
mutant implicated Oxa1 in the cytochrome c oxidase assembly and the F1FO-ATP synthase
[11]. Oxa1 is required to export N and C termini of Cox2 across the inner membrane but also
interacts with a range of mitochondria-encoded nascent polypeptide chains [12]. Moreover,
Oxa1 contributes to the translocation of nuclear-encoded imported proteins as the transport
of the nuclear-encoded Oxa1 is defective in mutant mitochondria lacking Oxa1 [12]. The effect
of a loss of Oxa1 on the cytochrome c oxidase differs from the impact on the F1FO-ATP
synthase. Although reduction of the fully assembled F1FO-ATP synthase complex and its enzy-
matic activity were apparent in the absence of Oxa1, the biogenesis of the complex appeared
not effectively blocked [11,13]. A post-translational interaction of Oxa1 with ATP9 indicated
that Oxa1 contributes to the late steps of F1FO-ATP synthase assembly. Oxa1 was found to
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interact with the fully assembled F1FO-ATP synthase, suggesting that the Oxa1 insertase is in-
volved in cotranslational processes and participates in assembly but also displays interaction
with the oxidative phosphorylation (OXPHOS) system [13].

Mammalian OXA1 homolog – OXA1L
The human OXA1L shares 33% sequence identity with the yeast ortholog and complements
the loss of Oxa1 in yeast [14]. Recently, a patient with affected OXA1L function was identified
[15]. The patient displayed severe mitochondrial encephalopathy, developmental delay, hy-
potonia, and respiratory chain deficiency. This phenotype originated from heterozygous mu-
tations in the OXA1L gene. One allele contained an 8 bp duplication, causing a frameshift
(c.500_507dup, p.[Ser170Glnfs*18]), while the other showed a substitution c.620G>T induc-
ing p.(Cys207Phe) exchange and affected the splicing so that exon 4 is skipped. Hence, the
mature protein lacks an amino acid stretch (p.[Cys207_Glu254del]). Patient fibroblasts and
skeletal muscle displayed reduced levels of complexes I, IV, and V [15]. Yet, under conditions
of OXA1L knockdown, different effects on mitochondrial OXPHOS complexes were ob-
served. Stiburek et al. found reduced complexes I and V levels in HEK293 cells with a stable
knockdown of OXA1L [16]. Thompson et al. reported reduced amounts of complexes I and
III–V, and the mitochondrial ribosome in inducible HEK 293T OXA1L knockout cells [15]. In
summary, loss of OXA1L affects the human mitochondrial OXPHOS system, especially
those complexes that contain mitochondria-encoded subunits. Accordingly, the severity of
the observed effect appears to be linked to the magnitude of protein reduction and the
analyzed cell type.

N- and C-terminal export
Together with Oxa1, the Oxa1-related Cox18 protein is required to export the mitochondria-
encoded Cox2 [17]. In particular, yeast Cox18 is implicated in the export of the Cox2 C-terminal
domain [18]. While Cox18 shares sequence similarities with Oxa1, it lacks the C-terminal matrix
exposed ribosome binding domain of Oxa1 (see below) [19]. Both proteins fulfill distinct functions,
indicated by the fact that overexpression of Oxa1 does not fully complement the loss of Cox18
[18,20]. Apparently, Cox18 is primarily involved in the Cox2 C-terminal export [19,21] while Oxa1
plays a role in both N- and C-terminal export of Cox2 [22], placing the two homologs into related
yet distinct roles in mitochondrial protein export. Similar to Oxa1, Cox18 was shown to be func-
tionally conserved among eukaryotes and identified as a transient interactor of COX2 in human
cells [23,24].

Oxa2 was identified in Neurospora crassa as an Oxa1-related protein. Complementation studies
in S. cerevisiae revealed a closer functional link to the yeast Cox18. The growth phenotype
on nonfermentable media, Cox2 levels, and complex IV activity could be partially restored
in cox18 cells upon expressing Oxa2NC. However, Oxa2Nc expression could not rescue the
respiration defect in oxa1 cells [25]. When studying the interaction of Oxa2 with newly synthesized
proteins, co-immunoprecipitation with Cox1, Cox2, and Cox3 was observed, and pulse-chase
experiments showed that the interaction of Cox2 and Cox3 with Oxa2 remained more stable
than with Oxa1. These observations indicate a role for Cox18/Oxa2 downstream of the Oxa1
function [25].

OXA insertase family: import machinery across kingdoms
The bacterial plasma membrane, mitochondrial inner membrane, and chloroplast thylakoid
membrane share related insertion machinery represented by the proteins YidC, Oxa1, and
Alb3. A common feature of these proteins is the presence of five characteristic transmembrane
domains. While the first two N-terminal hydrophobic stretches appear important for the insertase
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activity and are conserved among eubacteria, mitochondria, and plastids, the remaining three
C-terminal transmembrane regions are more variable [26]. Functional similarities between
these proteins are supported by complementation studies on YidC by yeast Oxa1 and chloro-
plast Alb3 [27,28]. YidC is involved in two different protein insertion pathways: the Sec-translocon-
dependent and Sec-translocon-independent pathways. In the first of these pathways, YidC inter-
acts with the Sec-translocon during the insertion of membrane proteins and acts as the recipient of
the nascent protein in proximity to the ribosomal exit site, thereby supporting the translocation of
hydrophobic regions across the membrane [29]. Similarly, Oxa1 interacts with newly synthesized
polypeptide chains and contributes to the early steps of their biogenesis [28,30]. The second
YidC-dependent pathway, independent of the Sec-translocon, resembles the protein insertion
process into the mitochondrial inner membrane from the matrix site. One prominent substrate
of YidC in this pathway is the subunit c of the F1FO-ATP synthase [31]. In chloroplasts, Alb3
facilitates the insertion of the light-harvesting chlorophyll-binding protein subunits and is likely in-
volved in the folding or assembly of cpSec61-inserted proteins [32].

While the YidC/Oxa1/Alb3 family was long thought to lack eukaryotic homologs that function
outside endosymbiotic organelles, this family was recently expanded. Based on structural
similarities, GET1, EMC3, and TMCO1, which act in the endoplasmic reticulum (ER), were
shown to be related to the Oxa1 family [33,34]. Moreover, genetic analysis in which an Emc6–
Emc3 fusion protein was targeted into yeast mitochondria showed that these proteins could partially
restoreOxa1 function concerning protein insertion into themembrane; however, it did not support the
assembly process of Atp9 [35]. Accordingly, the mechanisms by which these proteins facilitate pro-
tein insertion into the lipid phase are conserved. This raises the question of whether these similarities
are based on evolutive functional diversification or convergent evolution depending on the biophysical
proprieties of transported protein cargoes.

Protein import facilitated by Oxa1/OXA1L
Most information regarding Oxa1/OXA1L function is based on studies using yeast as a
model system. While Oxa1 was initially established as a protein required for the biogenesis
of mitochondria-encoded proteins (see above), Oxa1 also contributes to the biogenesis of
select nuclear-encoded proteins such as Oxa1 itself [12,36,37]. This role of Oxa1/OXA1L
in membrane insertion of nuclear-encoded proteins that are first translocated into mitochondrial
is referred to as conservative insertion [36,38,39]. Such Oxa1-dependent proteins are mostly
imported intomitochondria in a TIM23-dependent manner. Once these proteins are fully or partially
imported into the matrix, Oxa1 facilitates inner membrane translocation. Considering the direction-
ality of the transport process that resembles the topology of bacterial protein export and the relation
of Oxa1 to YidC, the term conservative insertion was chosen to describe the process (Figure 1).
The substrates that follow this sorting pathway are multispanning membrane proteins. One ex-
ample is newly imported Oxa1, which is inserted into the membrane by Oxa1 [38,40]. Other ex-
amples are the ABC transporter Mdl1 and the succinate dehydrogenase subunit Sdh3, which
are transported by the TIM23 complex. While TIM23 mediates membrane insertion of strongly
hydrophobic transmembrane spans in a stop–transfer mechanism, less hydrophobic trans-
membrane spans are inserted by Oxa1 [36,37]. Therefore, it is tempting to speculate that an
Oxa1-like (YidC-like) translocase was present in the prokaryotic ancestor of mitochondria
that co-evolved with the appearance of the other translocases. Cox18 is a member of a phylo-
genetic tree branch of the Oxa1p/YidC/Alb3 protein family [25]. YidC topology is similar to
Cox18 and can partially complement Cox18-deficient strains [41]. Yet, Cox18 is only dedicated
to transport reactions of mitochondrial-encoded proteins. Moreover, Cox18 lacks the
C-terminal matrix domain present in Oxa1 that enables interaction with the mitochondrial
ribosome [25].
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Figure 1. Involvement of oxidase assembly (OXA)1 family in protein translocation. Core components of the
oxidative phosphorylation machinery (OXPHOS) are encoded on the mitochondrial genome and synthesized by
mitochondrial ribosomes. The translating ribosomes associate with the membrane-embedded Oxa1/OXA1L, which inserts
the newly synthesized proteins cotranslationally into the inner membrane (IM). Moreover, some presequence-carrying
membrane proteins are translated by cytosolic ribosomes. They are transported across the outer mitochondrial membrane
(OM) by the translocase of the outer membrane (TOM) and subsequently handed over to the presequence translocase of the
inner membrane (TIM23). The protein can be partially released into the IM by TIM23-dependent stop–transfer or fully
imported into the matrix. Finally, noninserted transmembrane spans are translocated or exported by Oxa1/OXA1L through
conservative insertion. Both Oxa1 involving pathways, the export of mitochondrial encoded proteins, and the conservative
insertion are membrane potential dependent. Abbreviation: IMS, intermembrane space.
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Export of newly synthesized mitochondrial-encoded proteins
The prominent role of Oxa1/OXA1L is the insertion of newly synthesized mitochondrial-encoded
proteins into the inner membrane (Figure 1). Oxa1 crosslinks to nascent chains of mitochondrial-
encoded proteins [30]. Moreover, the C-terminal matrix-exposed domain of Oxa1 binds to the
mitochondrial ribosome to enable the cotranslational insertion of nascent polypeptides into the
inner membrane [42,43]. Yet, the paths of the newly synthesized polypeptides in mitochondrial
ribosomes from N. crassa and S. cerevisiae are different [44]. The Oxa1–ribosome interaction
is thought to occur through electrostatic forces between the positively charged C-terminal
domain and the large ribosomal subunit and in a nascent-chain-independent manner [42,43].
This could be supported by Mba1, an inner mitochondrial membrane protein that serves as a
second interaction site for the ribosomes [45,46]. Yet, the absence of the C-terminal Oxa1
domain leads to the accumulation of translation products in the matrix [42]. Interestingly, the
mitochondrial ribosome only associates with the mammalian OXA1L when the ribosome is
actively translating [47,48].

OXA involvement in OXPHOS complex assembly
The mammalian mitochondrial genome encodes 13 core subunits of the OXPHOS system.
OXA1L mediates the cotranslational insertion of those newly synthesized proteins into the
membrane but also forms complexes with membrane proteins that assist in the assembly
process of the newly synthesized proteins, so-called assembly factors. Accordingly, the interac-
tion between the newly synthesized polypeptide chain and OXA1L is maintained beyond the
768 Trends in Cell Biology, September 2023, Vol. 33, No. 9
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translation process. Consequently, an interplay of OXA1L with assembly factors, newly synthe-
sized mitochondrial-encoded proteins, and imported OXPHOS subunits are crucial for proper
OXPHOS biogenesis [15,49–54].

For translation, mitochondrial mRNAs engage with the ribosome. It is still unknown how the start
codon is recognized on the 5′-UTR-less mRNAs [55]. However, recent structural data on the
translation initiation complex indicate that the N-terminal domain of the ribosomal protein mL45
(mL45-NTD) is inserted into the peptide exit tunnel [47,56]. Upon translation switch from initiation
to elongation, this domain is displaced. This conformational change during elongation and the
movement of the nascent peptide chain through the exit tunnel enables mL45-NTD binding to
OXA1L and ribosome engagement with the membrane [47]. The vestibular area in the ribosomal
exit tunnel constricts the path and decreases the tunnel width to a minimum in Paraleucilla
magna, humans, and Tetrahymena thermophila mitochondrial ribosome [57]. Therefore, protein
folding likely occurs after exit of the polypeptide and could involve OXA. Once the actively-
translating ribosome is docked, OXA1L facilitates the translocation of the newly synthesized
protein across the inner membrane. In the case of YidC, structural data reveal that the transmem-
brane domains form a hydrophilic cleft and provide the environment for the translocation of
hydrophilic domains across the lipid phase [58,59]. Considering the homology between YidC
and OXA1L, it is expected that OXA1L displays a similar arrangement in the membrane. This
leads to the question of how the cleft is shielded from the lipids in the membrane. In bacteria,
YidC cooperates with the SecYEG translocon and the SecY lateral gate that position close to
the hydrophilic groove in YidC during protein translocation [60]. Interestingly, the insertion of
single-spanning membrane proteins might be mediated by the hydrophilic groove of monomeric
YidC, independent of Sec translocase [59]. However, the issue of how OXA accompanies poly-
peptides during translocation is unaddressed. Oxa1 has been suggested to homodimerize so
that the groove of the second Oxa1 could generate a hydrophilic channel [61,62]. Alternatively,
accessory proteins that engage with Oxa1/OXA1L and the nascent chain might stabilize nascent
chains during translocation. In agreement with the latter view, although Oxa1/OXA1L is described
as the general insertase for newly synthesized proteins, there is increasing evidence that its
function and specificity are regulated by associated factors (Figure 2). Such proteins can be
specific for a particular translation product or be shared between different early OXPHOS assem-
bly intermediates [50,52,53,63]. Such early assembly factors that stabilize the nascent chain
could associate with OXA1L prior to the recognition and binding by the translating ribosome,
as in the case of the COX1-dedicated C12ORF62 [48]. Therefore, OXA1L might exist as part of
different scaffolds specialized during and after the insertion of a complex core component of
OXPHOS; a hypothesis that requires further investigation (Figure 2).

Protein quality control linked to OXA-mediated transport
The functionality of protein import machineries and that of the imported proteins are safeguarded
by protein quality control (PQC) systems. One example is ER-associated degradation [64]. In mito-
chondria, PQC at the outer mitochondrial membrane is currently the best-analyzed pathway [65].
The import through the translocase of the outer membrane (TOM) is controlled by themitochondrial
protein translocation-associated degradation (mitoTAD) pathway [66]. In addition, Msp1/ATAD1
can remove precursors stalled at the TOM and mistargeted tail-anchored proteins inserted in the
outer mitochondrial membrane [67–69]. Notably, no such mechanism has been described at the
inner mitochondrial membrane translocases. The coisolation of the AAA-protease YME1L with
OXA1L has been reported [15]. In the absence of OXA1L proteins that are not inserted into
the lipid phase are prone to degradation by the AFG3L2 protease in the inner membrane [70].
These findings suggest that the AAA proteases at the inner membrane might be involved in
OXA1-associated quality control, but the underlying mechanism remains unaddressed.
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Figure 2. Schematic representation of oxidase assembly (OXA)1 acting as a versatile module for translation,
insertion, and assembly of oxidative phosphorylation (OXPHOS) proteins. The translating mitochondrial
ribosome associates with OXA1 at the inner mitochondrial membrane in the initial targeting stage. Depending on the
translated mitochondrial-encoded protein of a given OXPHOS complex, different accessory factors interact with OXA1
during cotranslational protein insertion to form specific translocation complexes. OXA1 likely remains associated with the
newly synthesized protein. Together with other factors, OXA1 might facilitate the assembly of mitochondrial-encoded
proteins with nuclear-encoded subunits after membrane insertion. With the subsequent incorporation of the remaining set
of subunits, this process yields the mature complex. Subsequently, the intermediated complexes are combined to
generate functional OXPHOS complexes and supercomplexes.
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Outstanding questions
What is the mechanism of OXA-
mediated proteinmembrane insertion?

How many different OXA-containing
complexes exist in the inner mitochon-
drial membrane that facilitate specific
transport of mtDNA-encoded subunits?
Which other factors are involved?

Does a quality control system for OXA-
mediated import exist, and if so, what
are its constituents and mechanism?
Concluding remarks
The Oxa1/OXA1L insertase represents a central protein transport module in the inner mitochon-
drial membrane functionally adapting to the handled cargos in different interaction networks.
It can handle polypeptides synthesized in the cytosol or the mitochondrial matrix. Oxa1/OXA1L
engages with mitochondrial ribosomes for cotranslational protein insertion into the inner mito-
chondrial membrane. In addition, Oxa1/OXA1L recruits membrane proteins that stabilize nascent
chains duringmembrane insertion.With these liaising factors linking Oxa1/OXA1L to an assembly
pipeline for a specific translation product and OXPHOS complex, Oxa1/OXA1L supports the
biogenesis process. In addition, Oxa1/OXA1L also facilitates the insertion of transmembrane
spans post-translationally from the matrix side to obtain the correct membrane organization
(see Outstanding questions).
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